KR100488779B1 - Method for manufacturing low precious metal loading Pd only three way catalyst - Google Patents

Method for manufacturing low precious metal loading Pd only three way catalyst Download PDF

Info

Publication number
KR100488779B1
KR100488779B1 KR10-2002-0029277A KR20020029277A KR100488779B1 KR 100488779 B1 KR100488779 B1 KR 100488779B1 KR 20020029277 A KR20020029277 A KR 20020029277A KR 100488779 B1 KR100488779 B1 KR 100488779B1
Authority
KR
South Korea
Prior art keywords
oxide
added
catalyst
cerium
palladium
Prior art date
Application number
KR10-2002-0029277A
Other languages
Korean (ko)
Other versions
KR20030091347A (en
Inventor
여권구
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR10-2002-0029277A priority Critical patent/KR100488779B1/en
Publication of KR20030091347A publication Critical patent/KR20030091347A/en
Application granted granted Critical
Publication of KR100488779B1 publication Critical patent/KR100488779B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 저 팔라듐 함량의 삼원촉매 제조방법에 관한 것으로서, 더욱 상세하게는 팔라듐(Pd) 용액을 알루미나(Al2O3)에 함침시킨 후 환원시키고 여기에 산화세륨(CeO2), 산화프라세오디미움(PrO2) 및 혼합용액을 첨가하여 반응시킨 다음 이를 밀링하여 촉매 슬러리를 제조하는 과정에서, 종래 산화세륨만을 사용하는 방법 대신 산화세륨 및 세륨-지르코늄 복합산화물 (CeㆍZr)O2를 함께 사용하고, 상기 혼합용액 첨가 및 반응 이후 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 적정량 첨가시켜줌으로써, 완성된 촉매가 충분한 질소산화물 제거성능과 내열성을 가지면서도 고가의 팔라듐 함량을 기존의 제조방법에 비해 크게 줄여 제조할 수 있는 저 팔라듐 함량의 삼원촉매 제조방법에 관한 것이다.The present invention relates to a method for producing a low palladium content three-way catalyst, and more particularly, a palladium (Pd) solution is impregnated in alumina (Al 2 O 3 ) and then reduced and added thereto to cerium oxide (CeO 2 ) and placer oxide. In the process of adding and reacting Odium (PrO 2 ) and a mixed solution and then milling it, a cerium oxide and cerium-zirconium composite oxide (Ce.Zr) O 2 is substituted instead of the conventional method of using only cerium oxide. together, and the mixed solution was added and reaction by giving to after the metal oxide is added the appropriate amount of (a perovskite) of (LaCe) (FeCo) O 3 and (LaSr) (FeCo) O 3 selected one of, the finished catalyst The present invention relates to a method for producing a low palladium content three-way catalyst having sufficient nitrogen oxide removal performance and heat resistance, which can be produced by greatly reducing an expensive palladium content as compared to a conventional method.

Description

저 팔라듐 함량의 삼원촉매 제조방법{Method for manufacturing low precious metal loading Pd only three way catalyst}Method for manufacturing low precious metal loading Pd only three way catalyst

본 발명은 저 팔라듐 함량의 삼원촉매 제조방법에 관한 것으로서, 더욱 상세하게는 팔라듐(Pd) 용액을 알루미나(Al2O3)에 함침시킨 후 환원시키고 여기에 산화세륨(CeO2), 산화프라세오디미움(PrO2) 및 혼합용액을 첨가하여 반응시킨 다음 이를 밀링하여 촉매 슬러리를 제조하는 과정에서, 종래 산화세륨만을 사용하는 방법 대신 산화세륨 및 세륨-지르코늄 복합산화물 (CeㆍZr)O2를 함께 사용하고, 상기 혼합용액 첨가 및 반응 이후 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 적정량 첨가하여줌으로써, 완성된 촉매가 충분한 질소산화물 제거성능과 내열성을 가지면서도 고가의 팔라듐 함량을 기존의 제조방법에 비해 크게 줄여 제조할 수 있는 저 팔라듐 함량의 삼원촉매 제조방법에 관한 것이다.The present invention relates to a method for producing a low palladium content three-way catalyst, and more particularly, a palladium (Pd) solution is impregnated in alumina (Al 2 O 3 ) and then reduced and added thereto to cerium oxide (CeO 2 ) and placer oxide. In the process of adding and reacting Odium (PrO 2 ) and a mixed solution and then milling it, a cerium oxide and cerium-zirconium composite oxide (Ce.Zr) O 2 is substituted instead of the conventional method of using only cerium oxide. together, and the above mixed solution was added and the reaction since the metal oxide (a perovskite) of (LaCe) (FeCo) O 3 and (LaSr) (FeCo) O 3 an appropriate amount was added to a selected one of the by giving, finished catalyst The present invention relates to a method for producing a low palladium content three-way catalyst having sufficient nitrogen oxide removal performance and heat resistance, which can be produced by greatly reducing an expensive palladium content as compared to a conventional method.

일반적으로 질소산화물 등의 오염물질 제거를 위하여 이용되는 삼원촉매(three way catalyst)는 배기가스의 유해성분인 탄화수소계 화합물, 일산화탄소 및 질소산화물(NOx)과 동시에 반응하여 이들 화합물을 제거시키는 촉매를 의미하는데, 주로 Pt/Rh, Pd/Rh 또는 Pt/Pd/Rh계 삼원촉매를 이용하여 왔다. 그런데, 상기와 같은 촉매는 배기가스 중 질소산화물을 환원시키는 원소로서 로듐(Rh)을 사용하고 있는데, 이 로듐은 고가이면서 내열성 측면에서 문제가 있다. 이에, 로듐 없이 팔라듐(Pd)만을 사용한 팔라듐 삼원촉매가 개발 공지된 바 있으며[대한민국 특허등록번호 제235029호, 미국특허번호 제6,043,188호], 그 제조방법을 간단히 설명하면 다음과 같다.In general, a three way catalyst used to remove pollutants such as nitrogen oxides means a catalyst that reacts with hydrocarbon-based compounds, carbon monoxide and nitrogen oxides (NOx), which are harmful components of exhaust gas, to remove these compounds. For example, Pt / Rh, Pd / Rh or Pt / Pd / Rh based ternary catalysts have been used. By the way, the catalyst as described above uses rhodium (Rh) as an element for reducing nitrogen oxides in the exhaust gas, which is problematic in terms of cost and heat resistance. Thus, palladium ternary catalysts using only palladium (Pd) without rhodium have been known and developed [Korean Patent Registration No. 235029, US Patent No. 6,043,188].

먼저, 팔라듐 용액을 알루미나(Al2O3)에 함침한 후 환원시킨다. 여기에 산화세륨 및 혼합용액을 첨가한 다음 ph를 조절하여 반응시키고, 이를 밀링하여 촉매물질 코팅 슬러리(coating slurry)를 만든 후, 여기에 세라믹 모노리스(ceramic monolith)를 담가서 코팅하고 건조 및 소성하여 팔라듐 삼원촉매를 완성한다.First, the palladium solution is impregnated with alumina (Al 2 O 3 ) and then reduced. After adding cerium oxide and a mixed solution and then adjusting the pH to react, milling it to form a coating slurry, and coating it with ceramic monolith, drying and calcining palladium Complete the three-way catalyst.

그러나, 강화되는 배기가스규제의 대응에 있어서 최근에는 촉매의 고성능화가 요구되고 있고, 이러한 촉매의 고성능화가 요구되면서 촉매재료로서의 귀금속 사용량이 많아지고 있으며, 이로 인하여 촉매의 가격이 계속적으로 상승하는 추세인 바, 그 대처방안이 절실히 요구되고 있는 실정이다.However, in response to the tightening exhaust gas regulations, in recent years, high performance of catalysts has been required, and as the performance of such catalysts is required, the use of precious metals as a catalyst material has increased, and thus the price of catalysts has continuously increased. It is a situation that is urgently required to take measures.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 발명한 것으로서, 팔라듐(Pd) 용액을 알루미나(Al2O3)에 함침시킨 후 환원시키고 여기에 산화세륨(CeO2), 산화프라세오디미움(PrO2) 및 혼합용액을 첨가하여 반응시킨 다음 이를 밀링하여 촉매 슬러리를 제조하는 과정에서, 종래 산화세륨만을 사용하는 방법 대신 산화세륨 및 세륨-지르코늄 복합산화물 (CeㆍZr)O2를 함께 사용하고, 상기 혼합용액 첨가 및 반응 이후 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 적정량 첨가시켜줌으로써, 완성된 촉매가 충분한 질소산화물 제거성능과 내열성을 가지면서도 고가의 팔라듐 함량을 기존의 제조방법에 비해 크게 줄여 제조할 수 있는 저 팔라듐 함량의 삼원촉매 제조방법을 제공하는데 그 목적이 있다.Therefore, the present invention has been invented to solve the above problems, the palladium (Pd) solution is impregnated with alumina (Al 2 O 3 ) and then reduced and added thereto cerium oxide (CeO 2 ), praseodymium oxide In the process of adding (PrO 2 ) and a mixed solution, and then milling it to prepare a catalyst slurry, cerium oxide and cerium-zirconium composite oxide (CeZr) O 2 are used together instead of the conventional method of using only cerium oxide. and the mixed solution was added and the reaction after the metal oxide (a perovskite) of (LaCe) (FeCo) O 3 and (LaSr) (FeCo) O by giving to the appropriate amount added to a selected one of 3, a sufficient nitrogen finished catalyst It is an object of the present invention to provide a low palladium content three-way catalyst production method that can be produced by reducing the expensive palladium content compared to the existing production method while having oxide removal performance and heat resistance.

본 발명은 팔라듐(Pd) 용액을 알루미나(Al2O3)에 함침시킨 후 환원시키고, 여기에 산화세륨(CeO2), 산화프라세오디미움(PrO2) 및 혼합용액을 첨가하여 반응시킨 다음 밀링하여 촉매 슬러리를 제조한 후, 이 촉매 슬러리를 세라믹 모노리스 담체에 코팅하여 팔라듐 삼원촉매를 제조하는 방법에 있어서,In the present invention, a palladium (Pd) solution is impregnated with alumina (Al 2 O 3 ) and then reduced, and reacted by adding cerium oxide (CeO 2 ), praseodymium oxide (PrO 2 ), and a mixed solution. In the method of preparing a catalyst slurry by milling, the catalyst slurry is coated on a ceramic monolith carrier to produce a palladium terpolymer.

상기 환원 후 산화세륨:세륨-지르코늄 복합산화물 (CeㆍZr)O2의 사용비를 15:85 ∼ 30:70의 중량비로 혼합하여 전체 담체 겉보기 부피에 대하여 30 ∼ 40g/ℓ로 첨가하고, 상기 산화프라세오디미움은 전체 담체 겉보기 부피에 대하여 5 ∼ 7g/ℓ로 첨가하며, 상기 혼합용액 첨가 및 반응 이후 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 전체 담체의 겉보기 부피에 대하여 40 ∼ 45g/ℓ만큼 첨가하는 것을 특징으로 한다.After the reduction, the use ratio of cerium oxide: cerium-zirconium composite oxide (Ce.Zr) O 2 was mixed at a weight ratio of 15:85 to 30:70, and added at 30 to 40 g / l based on the total carrier apparent volume. Praseodymium oxide is added in an amount of 5 to 7 g / l based on the total carrier apparent volume, and after addition and reaction of the mixed solution, (LaCe (FeCo) O 3 and (LaSr) ( FeCo) O 3 It is characterized in that the addition of 40 to 45g / L relative to the apparent volume of the entire carrier.

이하, 상기와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention as described above in more detail.

본 발명은 완성된 촉매가 충분한 질소산화물 제거성능과 내열성을 가지면서도 고가의 팔라듐 함량을 기존의 제조방법에 비해 크게 줄여 제조할 수 있는 저 팔라듐 함량의 삼원촉매 제조방법에 관한 것이다.The present invention relates to a low palladium content three-way catalyst production method that can be produced by reducing the expensive palladium content compared to the conventional production method while having a sufficient nitrogen oxide removal performance and heat resistance.

본 발명에 따른 저 팔라듐 삼원촉매의 제조방법을 단계별로 구체화하여 설명하면 다음과 같다.Referring to the step-by-step description of the method for producing a low palladium three-way catalyst according to the present invention.

제 1 공정으로, 팔라듐 용액을 알루미나(Al2O3)에 함침시킨 다음, 이를 환원시키는 공정을 수행한다. 상기 환원공정은 하이드라진 하이드레이트(hydrazinehydrate)를 팔라듐 1g 당 1.66㎖가 되도록 적가하여 수행한다.In a first process, a palladium solution is impregnated into alumina (Al 2 O 3 ), and then a process of reducing it is performed. The reduction process is carried out by dropwise addition of hydrazine hydrate (hydrazinehydrate) to 1.66ml per 1g of palladium.

제 2 공정으로, 벌크(bulk)의 산화세륨(CeO2) 및 세륨-지르코늄 복합산화물 (CeㆍZr)O2를 첨가하고, 이에 산화프라세오디미움(PrO2)을 첨가한 후, 이에 혼합용액을 첨가하는 공정을 수행한다.In a second process, bulk cerium oxide (CeO 2 ) and cerium-zirconium composite oxide (Ce.Zr) O 2 are added, and praseodymium (PrO 2 ) is added thereto, followed by mixing thereto. The process of adding the solution is carried out.

이때, 상기 산화세륨(CeO2)과 세륨-지르코늄 복합산화물 (CeㆍZr)O2는 서로 혼합하여 첨가하는 바, 그 이유는 구조적 안정화를 유도하여 촉매의 내열성을 향상시키기 위함이다. 또한, 상기 산화세륨(CeO2):세륨-지르코늄 복합산화물 (CeㆍZr)O2는 15:85 ∼ 30:70의 중량비로 혼합하여 첨가하며, 상기 범위를 벗어나면 내열성 향상에 기여하는 정도가 미흡한 문제가 있어 바람직하지 못하다. 그리고, 상기 산화세륨(CeO2)과 세륨-지르코늄 복합산화물 (CeㆍZr)O2는 전체 담체의 겉보기 부피에 대하여 30 ∼ 40g/ℓ를 첨가하며, 이 첨가범위를 벗어나면 또한 내열성 향상을 기대하기 어렵다.At this time, the cerium oxide (CeO 2 ) and cerium-zirconium composite oxide (Ce.Zr) O 2 are mixed and added to each other, in order to induce structural stabilization to improve heat resistance of the catalyst. In addition, the cerium oxide (CeO 2 ): cerium-zirconium composite oxide (Ce.Zr) O 2 is added by mixing in a weight ratio of 15:85 to 30:70, and if it is outside the above range, the degree of contribution to improving heat resistance is It is not desirable because there is insufficient problem. In addition, the cerium oxide (CeO 2 ) and cerium-zirconium compound oxide (Ce.Zr) O 2 are added in an amount of 30 to 40 g / l based on the apparent volume of the entire carrier. Difficult to do

상기 산화프라세오디미움(PrO2)은 분말상태로 첨가하는 바, 이는 촉매상에서 세륨(Ce)을 안정화시킴으로써 일산화탄소(CO)의 흡착과 산소저장능력을 조절하여 질소산화물(NOx)을 효과적으로 제거한다. 이때, 산화프라세오디미움(PrO2)은 전체 담체의 겉보기 부피에 대하여 5 ∼ 7g/ℓ를 첨가하는 바, 상기 범위 미만으로 소량 첨가하면 내열성 향상 및 질소산화물 정화효율 향상의 효과가 적어지는 문제가 있고, 상기 범위를 초과하여 첨가하면 효과 대비 가격이 높아지는 문제가 있다.The praseodymium oxide (PrO 2 ) is added in the form of a powder, which stabilizes cerium (Ce) on the catalyst, thereby effectively controlling the adsorption and oxygen storage capacity of carbon monoxide (CO) to effectively remove nitrogen oxides (NOx). . At this time, the Praseodymium oxide (PrO 2 ) is added to 5 ~ 7g / ℓ relative to the apparent volume of the entire carrier, if a small amount of less than the above range is a problem that the effect of improving the heat resistance and nitrogen oxide purification efficiency is less There is a problem in that the price is increased compared to the effect of adding over the above range.

상기 혼합용액은 산화바륨, 산화란타늄, 아세트산 및 물을 혼합한 것으로서, 산화바륨은 전체 담체의 겉보기 부피에 대하여 5 ∼ 6g/ℓ, 산화란타늄은 전체 담체의 겉보기 부피에 대하여 1 ∼ 2g/ℓ를 첨가하는 것이 알루미나의 내열성, 산화세륨의 특성 향상을 위하여 바람직하다. 또한, 아세트산은 전체 담체의 겉보기 부피에 대하여 23.5 ∼ 33.5g/ℓ인 것이 pH의 조절에 있어서 바람직한 바, pH는 4.5 이하인 것이 다음의 코팅을 위한 촉매 슬러리 제조에 있어서 점도의 조절을 위하여 바람직하다.The mixed solution is a mixture of barium oxide, lanthanum oxide, acetic acid and water, and barium oxide is 5 to 6 g / l based on the total volume of the carrier, and lanthanum oxide is 1 to 2 g / l relative to the apparent volume of the carrier. It is preferable to add in order to improve the heat resistance of alumina and the characteristic of cerium oxide. In addition, acetic acid is preferably 23.5 to 33.5 g / l based on the pH of the total carrier, and the pH is preferably 4.5 or less for controlling the viscosity in preparing the catalyst slurry for the next coating.

제 3 공정으로, 상기 제 2 공정에서 얻은 혼합물을 볼 밀(ball mill)의 방법으로 슬러리 반응 및 입도를 조절해가면서 밀링하여 입자크기 7㎛ 이하인 것이 전체 입자 중 90% 이상이 되도록 미분한다. 이때, 입자크기가 상기 범위를 벗어나도록 밀링하는 경우 활성의 저감 및 내구성이 저감되는 문제가 있다. 상기 밀링 공정을 수행한 결과, 고형분이 30 ∼ 50%이고 점도가 200 ∼ 400cpsi인 촉매 슬러리를 얻는다.In the third process, the mixture obtained in the second process is milled while controlling the slurry reaction and particle size by the ball mill method, and the fine particles are finely ground to have 90% or more of the total particles having a particle size of 7 μm or less. At this time, when milling the particle size outside the above range there is a problem that the reduction in activity and durability is reduced. As a result of the milling process, a catalyst slurry having a solid content of 30 to 50% and a viscosity of 200 to 400 cpsi is obtained.

제 4 공정으로, 상기 제 3 공정에서 얻은 촉매 슬러리에 질소산화물의 제거성능을 향상시키기 위하여 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 전체 담체의 겉보기 부피에 대하여 40 ∼ 45g/ℓ만큼 첨가하여 최종의 촉매 슬러리를 제조한다.A fourth step, the second the (LaCe) (FeCo) O 3 and (LaSr) the metal oxide (a perovskite), in order to improve the removal performance of the nitrogen oxide to the catalyst slurry obtained in the third step (FeCo) O 3 of The selected catalyst is added by 40 to 45 g / l relative to the apparent volume of the total carrier to prepare the final catalyst slurry.

제 5 공정으로, 상기 촉매 슬러리에 세라믹 모노리스 담체를 담가서 코팅한 후 건조하고 소성하는 공정을 수행한다. 이때, 상기 코팅은 세그레게이션 효과(segregation effect)를 이용한 단일코팅으로서, 이는 일반적으로 임의의 성분을 원하는 위치에 두기 위하여 주로 2중 코팅을 하고 있으나, 서로 뭉치는 특성을 갖는 화합물 상태를 이용하여 필요부분에 성분을 위치시킴으로써 단일코팅의 효율을 극대화시킬 수 있으며, 촉매성능을 향상시킬 수 있는 효과이다. 다시 말해, 코팅시에 각 성분의 투입방식 및 성분의 적정한 출발물질의 선정으로 딥핑(dipping)형태로도 가능한 원하는 성분을 원하는 위치에 코팅한다. 또한, 상기 건조공정은 건조로에서 150℃의 온도로 2시간 동안 수행되고, 상기 소성공정은 전기로에서 450 ∼ 550℃ 온도로 4시간 동안 수행된다. 이때, 건조 및 소성조건이 상기 범위를 벗어나면 코팅층의 크랙이 발생하고 유해한 화합물이 형성되는 문제가 있다.In a fifth process, a ceramic monolith carrier is immersed in the catalyst slurry, coated, dried and calcined. At this time, the coating is a single coating using a segregation effect, which is generally a double coating in order to place any component in a desired position, but using a compound state having a property of agglomeration with each other By locating the components in the required portion can maximize the efficiency of the single coating, it is an effect that can improve the catalytic performance. In other words, the desired component, which may be in the form of dipping, is coated at the desired position by the method of dosing each component during the coating and selecting an appropriate starting material of the component. In addition, the drying process is performed for 2 hours at a temperature of 150 ℃ in a drying furnace, the firing process is carried out for 4 hours at 450 ~ 550 ℃ temperature in an electric furnace. At this time, when the drying and firing conditions are out of the above range, there is a problem that cracks occur in the coating layer and harmful compounds are formed.

이와 같이 하여, 상기와 같은 제조공정을 통해 삼원촉매를 제조하면, 완성된 촉매가 충분한 질소산화물 제거성능과 내열성을 가지면서도 고가의 팔라듐 함량을 기존의 제조공정에 비해 크게 줄일 수 있다.In this way, if the three-way catalyst is prepared through the above-described manufacturing process, the finished catalyst can have a significant nitrogen oxide removal performance and heat resistance, while reducing the expensive palladium content as compared with the conventional manufacturing process.

상기와 같은 저 팔라듐 함량의 삼원촉매 제조방법은 자동차 배기가스 정화용 촉매 및 산업용 촉매 등의 제조시에 폭넓게 이용될 수 있다. The low palladium content three-way catalyst production method as described above can be widely used in the production of catalysts for automobile exhaust gas purification and industrial catalysts.

이하, 본 발명을 실시예에 의거 더욱 상세하게 설명하는 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by Examples.

실시예Example

팔라듐(Pd) 4.0g이 들어있는 용액을 알루미나(Al2O3) 100g에 함침시킨 다음, 하이드라진 하이드레이트(hydrazinehydrate)를 팔라듐 1g 당 1.66㎖가 되도록 적가하여 환원시켰다. 그 다음, 산화세륨(CeO2) 7.5g 및 세륨-지르코늄 복합산화물 (CeㆍZr)O2 22.5g을 혼합하여 첨가하고, 이에 산화프라세오디미움(PrO2) 6.0g을 첨가하였다. 또한, 이에 산화바륨 5.6g, 산화란타늄 1.33g, 아세트산 27.3g 및 물 375㎖를 혼합한 용액을 넣고, 아세트산을 사용하여 pH를 4.2로 맞추었다. 그리고, 볼 밀(ball mill)의 방법으로 입자크기를 9㎛ 이하로 밀링하고, 이후 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 전체 담체의 겉보기 부피에 대하여 45g/ℓ만큼 분말형태로 투입한 후, 최종적으로 입자크기가 7㎛ 이하인 것이 전체 입자 중에서 94%가 되도록 밀링하여 고형분이 40%이고 점도가 300cpsi인 촉매 슬러리를 얻었다. 여기에, 세라믹 모노리스 담체를 담가서 코팅한 후, 건조로에서 150℃의 온도로 2시간 동안 건조하고, 전기로에서 450 ∼ 550℃의 온도로 4시간 동안 소성하여, 팔라듐 삼원촉매를 완성하였다.A solution containing 4.0 g of palladium (Pd) was impregnated into 100 g of alumina (Al 2 O 3 ), and then reduced by dropwise addition of hydrazine hydrate to 1.66 mL per 1 g of palladium. Then, 7.5 g of cerium oxide (CeO 2 ) and 22.5 g of cerium-zirconium composite oxide (Ce.Zr) O 2 were mixed and added thereto, and 6.0 g of praseodymium (PrO 2 ) was added thereto. In addition, a solution containing 5.6 g of barium oxide, 1.33 g of lanthanum oxide, 27.3 g of acetic acid, and 375 ml of water was added thereto, and the pH was adjusted to 4.2 using acetic acid. Then, the particle size is milled to 9 μm or less by a ball mill method, and then a metal oxide (perovskite) selected from (LaCe (FeCo) O 3 and (LaSr) (FeCo) O 3 is selected. One was put in powder form by 45 g / l based on the total volume of the total carrier, and finally, the catalyst slurry was milled to have a particle size of 7 μm or less and 94% of all particles, thereby obtaining a catalyst slurry having a solid content of 40% and viscosity of 300 cpsi. Got it. The ceramic monolith carrier was immersed and coated therein, dried at a temperature of 150 ° C. for 2 hours in a drying furnace, and calcined at 450-550 ° C. in an electric furnace for 4 hours to complete the palladium terpolymer.

비교예Comparative example

팔라듐(Pd) 7.0g이 들어있는 용액을 알루미나(Al2O3) 100g에 함침시킨 다음, 하이드라진 하이드레이트(hydrazinehydrate)를 팔라듐 1g 당 1.66㎖가 되도록 적가하여 환원시켰다. 그 다음, 산화세륨(CeO2) 30g을 첨가하고, 이에 산화바륨 5.6g, 산화란타늄 1.33g, 아세트산 27.3g 및 물 375㎖를 혼합한 용액을 넣고, 아세트산을 사용하여 pH를 4.2로 맞추었다. 그리고, 볼 밀(ball mill)의 방법으로 입자크기 7㎛ 이하인 것이 전체 입자 중 94%가 되도록 밀링하여 고형분 40%이고 점도가 300cpsi인 최종의 촉매 슬러리를 얻었다. 여기에, 세라믹 모노리스 담체를 담가서 코팅한 후, 건조로에서 150℃의 온도로 2시간 동안 건조하고, 전기로에서 450 ∼ 550℃의 온도로 4시간 동안 소성하여, 팔라듐 삼원촉매를 완성하였다.A solution containing 7.0 g of palladium (Pd) was impregnated into 100 g of alumina (Al 2 O 3 ), and then reduced by dropwise addition of hydrazine hydrate to 1.66 mL per 1 g of palladium. Then, 30 g of cerium oxide (CeO 2 ) was added, and a solution containing 5.6 g of barium oxide, 1.33 g of lanthanum oxide, 27.3 g of acetic acid, and 375 ml of water was added thereto, and the pH was adjusted to 4.2 using acetic acid. The final catalyst slurry having a solid content of 40% and a viscosity of 300 cpsi was obtained by milling the particle size of 7 µm or less by 94% of the total particles by a ball mill method. The ceramic monolith carrier was immersed and coated therein, dried at a temperature of 150 ° C. for 2 hours in a drying furnace, and calcined at 450-550 ° C. in an electric furnace for 4 hours to complete the palladium terpolymer.

상기 실시예와 비교예에 따라 제조된 촉매를 비교 시험하여 그 결과를 다음의 표 1에 나타내었다.The catalyst prepared according to the above Example and Comparative Example was tested and the results are shown in Table 1 below.

상기 표 1에서, 저온활성화온도는 50% 정화되는 온도로 상기 측정된 온도가 낮을수록 탄화수소, 일산화탄소, 질소산화물의 정화효능이 우수함을 의미하며, 삼원특성은 3가지 성분의 제거성능을 나타내는 것으로 높을수록 좋은 특성을 나타낸다. 또한, 950℃ 에이징은 대기 중에서 950℃의 전기로 분위기로 140시간 동안 실시한 것의 결과이다. 비교 시험의 결과로서, 상기 표 1에 나타낸 바와 같이, 본 발명의 실시예에 따라 제조된 삼원촉매는, 비교예에 비해 팔라듐의 함량을 크게 줄여 제조하였음에도 불구하고, 탄화수소, 일산화탄소, 질소산화물의 정화효능과 제거성능이 비교예의 삼원촉매와 거의 동등한 수준임을 알 수 있었다. In Table 1, the low temperature activation temperature is a 50% purification temperature means that the lower the measured temperature, the better the purification efficiency of hydrocarbons, carbon monoxide, nitrogen oxides, the three-way characteristic is high to indicate the removal performance of the three components The better the property is. In addition, 950 degreeC aging is the result of having carried out for 140 hours in the atmosphere of 950 degreeC electric furnace in air | atmosphere. As a result of the comparative test, as shown in Table 1, the three-way catalyst prepared according to the embodiment of the present invention, despite the significantly reduced palladium content compared to the comparative example prepared, purifying hydrocarbons, carbon monoxide, nitrogen oxides Efficacy and removal performance was found to be almost the same level as the three-way catalyst of the comparative example.

이와 같이 하여, 본 발명의 제조방법을 통해 삼원촉매를 제조하면, 완성된 촉매가 충분한 질소산화물 제거성능과 내열성을 가지면서도 고가의 팔라듐 함량을 기존의 제조방법에 비해 크게 줄일 수 있다.In this way, when the three-way catalyst is produced through the production method of the present invention, the expensive catalyst can significantly reduce the expensive palladium content compared with the conventional production method while having sufficient nitrogen oxide removal performance and heat resistance.

이상에서 살펴본 바와 같이, 본 발명에 따른 저팔라듐 함량의 삼원촉매 제조방법에 의하면 완성된 촉매가 충분한 질소산화물 제거성능과 내열성을 가지면서도 고가의 팔라듐 함량을 기존의 제조방법에 비해 크게 줄여 제조할 수 있는 효과가 있고, 제조원가 절감의 경제적인 효과로 인해 본 발명에 따른 저 팔라듐 함량의 삼원촉매 제조방법은 자동차 배기가스 정화용 촉매 및 산업용 촉매 등의 제조시에 폭넓게 이용될 수 있다. As described above, according to the method for preparing a low palladium content three-way catalyst according to the present invention, the finished catalyst can be prepared by significantly reducing the expensive palladium content as compared to the conventional production method while having sufficient nitrogen oxide removal performance and heat resistance. Due to the economical effect of the production cost savings, the three-way catalyst manufacturing method of the low palladium content according to the present invention can be widely used in the production of catalysts for automobile exhaust gas purification, industrial catalysts and the like.

Claims (1)

팔라듐(Pd) 용액을 알루미나(Al2O3)에 함침시킨 후 환원시키고, 여기에 산화세륨(CeO2) 및 산화프라세오디미움(PrO2)과, 그리고 산화바륨 5 ∼ 6g/ℓ, 산화란타늄 1 ∼ 2g/ℓ및 아세트산 23.5 ∼ 33.5g/ℓ의 농도비로 포함되어 이루어진 혼합용액을 첨가하여 반응시킨 다음 밀링하여 촉매 슬러리를 제조한 후, 이 촉매 슬러리를 세라믹 모노리스 담체에 코팅하여 팔라듐 삼원촉매를 제조하는 방법에 있어서,The palladium (Pd) solution is impregnated with alumina (Al 2 O 3 ) and then reduced, followed by cerium oxide (CeO 2 ) and praseodymium oxide (PrO 2 ), and barium oxide 5-6 g / l, oxidation After reacting by adding a mixed solution containing lanthanum at a concentration of 1 to 2 g / l and acetic acid at 23.5 to 33.5 g / l, and then milling to prepare a catalyst slurry, the catalyst slurry is coated on a ceramic monolith carrier to coat a palladium tertiary catalyst. In the method for producing 상기 환원 후 산화세륨:세륨-지르코늄 복합산화물 (CeㆍZr)O2의 사용비를 15:85 ∼ 30:70의 중량비로 혼합하여 전체 담체 겉보기 부피에 대하여 30 ∼ 40g/ℓ로 첨가하고, 상기 산화프라세오디미움은 전체 담체 겉보기 부피에 대하여 5 ∼ 7g/ℓ로 첨가하며, 상기 혼합용액 첨가 및 반응 이후 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 전체 담체의 겉보기 부피에 대하여 40 ∼ 45g/ℓ만큼 첨가하는 것을 특징으로 하는 저 팔라듐 함량의 삼원촉매 제조방법.After the reduction, the use ratio of cerium oxide: cerium-zirconium composite oxide (Ce.Zr) O 2 was mixed at a weight ratio of 15:85 to 30:70, and added at 30 to 40 g / l based on the total carrier apparent volume. Praseodymium oxide is added in an amount of 5 to 7 g / l based on the total carrier apparent volume, and after addition and reaction of the mixed solution, (LaCe (FeCo) O 3 and (LaSr) ( A method for producing a low palladium content three-way catalyst, characterized in that the selected one of FeCo) O 3 is added by 40 to 45g / l relative to the apparent volume of the entire carrier.
KR10-2002-0029277A 2002-05-27 2002-05-27 Method for manufacturing low precious metal loading Pd only three way catalyst KR100488779B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0029277A KR100488779B1 (en) 2002-05-27 2002-05-27 Method for manufacturing low precious metal loading Pd only three way catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0029277A KR100488779B1 (en) 2002-05-27 2002-05-27 Method for manufacturing low precious metal loading Pd only three way catalyst

Publications (2)

Publication Number Publication Date
KR20030091347A KR20030091347A (en) 2003-12-03
KR100488779B1 true KR100488779B1 (en) 2005-05-12

Family

ID=32384491

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0029277A KR100488779B1 (en) 2002-05-27 2002-05-27 Method for manufacturing low precious metal loading Pd only three way catalyst

Country Status (1)

Country Link
KR (1) KR100488779B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985256B1 (en) * 2010-04-02 2010-10-04 김종헌 Clamp for support of handrail

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261289A (en) * 1992-01-20 1993-10-12 Sekiyu Sangyo Kasseika Center Catalyst for catalytically reducing nox
JPH0768175A (en) * 1993-06-11 1995-03-14 Daihatsu Motor Co Ltd Catalyst for purification of exhaust gas
JPH0780311A (en) * 1993-06-30 1995-03-28 Daihatsu Motor Co Ltd Catalyst for purification of exhaust gas
KR20010005501A (en) * 1997-03-26 2001-01-15 스티븐 아이. 밀러 Catalyst Composition Containing an Intimately Mixed Oxide of Cerium and Praseodymium
JP2001269578A (en) * 2000-01-19 2001-10-02 Toyota Motor Corp Exhaust gas cleaning catalyst
KR20030008713A (en) * 2001-07-19 2003-01-29 현대자동차주식회사 High Performance Pd only Three way Catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261289A (en) * 1992-01-20 1993-10-12 Sekiyu Sangyo Kasseika Center Catalyst for catalytically reducing nox
JPH0768175A (en) * 1993-06-11 1995-03-14 Daihatsu Motor Co Ltd Catalyst for purification of exhaust gas
JPH0780311A (en) * 1993-06-30 1995-03-28 Daihatsu Motor Co Ltd Catalyst for purification of exhaust gas
KR20010005501A (en) * 1997-03-26 2001-01-15 스티븐 아이. 밀러 Catalyst Composition Containing an Intimately Mixed Oxide of Cerium and Praseodymium
JP2001269578A (en) * 2000-01-19 2001-10-02 Toyota Motor Corp Exhaust gas cleaning catalyst
KR20030008713A (en) * 2001-07-19 2003-01-29 현대자동차주식회사 High Performance Pd only Three way Catalyst

Also Published As

Publication number Publication date
KR20030091347A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
KR100527943B1 (en) Method for manufacturing double layer coated Pd only three way catalyst
JP5361855B2 (en) Palladium-rhodium single layer catalyst
EP2542339B1 (en) Carbon monoxide conversion catalyst
US4157316A (en) Polyfunctional catalysts
US5814576A (en) Catalyst for purifying exhaust gas and method of producing same
JP2002535135A (en) Catalyst composition containing oxygen storage component
US4552733A (en) Polyfunctional catalysts and method of use
EP4137224A1 (en) Improved twc catalysts for gasoline engine exhaust gas treatments
US6043188A (en) Process for manufacturing palladium ternary catalyst
KR100494543B1 (en) Method for manufacturing low precious metal loaded Pt-Pd-Rh three way catalyst
JPH06378A (en) Catalyst for purification of exhaust gas
JPH09248462A (en) Exhaust gas-purifying catalyst
KR100410952B1 (en) High Performance Pd only Three way Catalyst
CN112246251B (en) Natural gas automobile exhaust purification catalyst and preparation method thereof
KR100488779B1 (en) Method for manufacturing low precious metal loading Pd only three way catalyst
KR100235029B1 (en) Preparation of pd-three way catalyst
KR100494542B1 (en) Method for manufacturing double layer coated Pd only three way catalyst
KR100461112B1 (en) High Performance, Low precious metal loading Pd only Three way Catalyst
KR100535009B1 (en) Method for manufacturing double layer coated Pd only three way catalyst
KR100488853B1 (en) Method for manufacturing double layer coated Pd-Rh three way catalyst
JPH11226405A (en) Catalyst for purification of exhaust gas and its production
KR100384015B1 (en) Improved NOx conversion and thermal durable Pd only three way catalyst
KR100410942B1 (en) A process of preparing the High porous Pd only Three way Catalyst
JPH06210174A (en) Catalyst for purification of exhaust gas and its production
JP3314301B2 (en) Method for producing palladium (Pd) three-way catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee