KR100410952B1 - High Performance Pd only Three way Catalyst - Google Patents

High Performance Pd only Three way Catalyst Download PDF

Info

Publication number
KR100410952B1
KR100410952B1 KR10-2001-0043565A KR20010043565A KR100410952B1 KR 100410952 B1 KR100410952 B1 KR 100410952B1 KR 20010043565 A KR20010043565 A KR 20010043565A KR 100410952 B1 KR100410952 B1 KR 100410952B1
Authority
KR
South Korea
Prior art keywords
oxide
catalyst
palladium
cerium
heat resistance
Prior art date
Application number
KR10-2001-0043565A
Other languages
Korean (ko)
Other versions
KR20030008713A (en
Inventor
여권구
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR10-2001-0043565A priority Critical patent/KR100410952B1/en
Publication of KR20030008713A publication Critical patent/KR20030008713A/en
Application granted granted Critical
Publication of KR100410952B1 publication Critical patent/KR100410952B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 질소산화물(NOx) 제거능 및 내열성이 우수한 팔라듐(Pd) 삼원촉매의 제조방법에 관한 것으로서, 더욱 상세하게는 팔라듐 삼원촉매를 제조하는 방법에 있어서, 종래 산화세륨(CeO2)만을 이용하는 방법 대신 산화세륨(CeO2) 및 세륨-지르코늄 복합산화물[(CeㆍZr)O2]을 함께 이용하고, 그 다음 산화프라세오디미움(PrO2)을 첨가하는 공정을 사용하고, 질소산화물의 제거 성능을 향상시키기 위하여 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3를 추가로 사용함으로써, 배기가스 정화효과가 우수하고 그 중에서도 질소산화물의 제거효과가 탁월하며 내열성이 향상된 팔라듐 삼원촉매의 제조방법에 관한 것이다.The present invention relates to a method for preparing a palladium (Pd) tertiary catalyst having excellent nitrogen oxide (NOx) removal ability and heat resistance, and more particularly, in the method for preparing a palladium tertiary catalyst, a method using conventional cerium oxide (CeO 2 ) only. Instead, a process using cerium oxide (CeO 2 ) and cerium-zirconium complex oxide [(Ce.Zr) O 2 ] together, followed by the addition of praseodymium oxide (PrO 2 ), is used to remove nitrogen oxides. In order to improve the performance, by additionally using (LaCe (FeCo) O 3 ), which is a metal oxide (perovskite), it is excellent in purifying exhaust gas, and particularly excellent in removing nitrogen oxides and improving heat resistance. It relates to a method for producing a catalyst.

Description

질소산화물 제거능 및 내열성이 우수한 팔라듐 삼원촉매의 제조방법{High Performance Pd only Three way Catalyst}Manufacturing method of palladium tertiary catalyst excellent in nitrogen oxide removal ability and heat resistance {High Performance Pd only Three way Catalyst}

본 발명은 질소산화물(NOx) 제거능 및 내열성이 우수한 팔라듐(Pd) 삼원촉매의 제조방법에 관한 것으로서, 더욱 상세하게는 팔라듐 삼원촉매를 제조하는 방법에 있어서, 종래 산화세륨(CeO2)만을 이용하는 방법 대신 산화세륨(CeO2) 및 세륨-지르코늄 복합산화물[(CeㆍZr)O2]을 함께 이용하고, 그 다음 산화프라세오디미움(PrO2)을 첨가하는 공정을 사용함을 기초로하여 질소산화물의 제거 성능을 향상시키기 위하여 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3를 추가로 사용함으로써, 배기가스 정화효과가 우수하고 그 중에서도 질소산화물의 제거효과가 탁월하며 내열성이 향상된 팔라듐 삼원촉매의 제조방법에 관한 것이다.The present invention relates to a method for preparing a palladium (Pd) tertiary catalyst having excellent nitrogen oxide (NOx) removal ability and heat resistance, and more particularly, in the method for preparing a palladium tertiary catalyst, a method using conventional cerium oxide (CeO 2 ) only. Nitrogen oxides based on the use of cerium oxide (CeO 2 ) and cerium-zirconium composite oxides ((Ce.Zr) O 2 ], followed by the addition of praseodymium oxide (PrO 2 ) By further using (LaCe) (FeCo) O 3 which is a metal oxide (perovskite) to improve the removal performance of the gas, the exhaust gas purification effect is excellent, and the nitrogen oxide removal effect is excellent and the heat resistance is improved. It relates to a method for producing a palladium ternary catalyst.

일반적으로 삼원촉매(three way catalyst)는 배기가스의 유해성분인 탄화수소계 화합물, 일산화탄소 및 질소산화물(NOx)과 동시에 반응하여 이들 화합물을 제거시키는 촉매로서, 종래에는 Pt/Rh, Pd/Rh, Pt/Pd/Rh 등을 사용하여 왔다. 그런데, 상기와 같은 촉매는 배기가스 중 질소산화물을 환원시키는 원소로서 로듐(Rh)을 사용하고 있는데, 로듐(Rh)은 고가이며 내열성 측면에서 문제가 있다. 이에, 로듐(Rh) 없이 팔라듐(Pd)만을 사용한 팔라듐 삼원촉매가 개발 공지되었으며[대한민국 특허등록 제235029호(1999), 미국특허 제6,043,188호], 그 제조방법은 다음과 같다.In general, a three way catalyst is a catalyst that removes these compounds by simultaneously reacting with hydrocarbon-based compounds, carbon monoxide, and nitrogen oxides (NOx), which are harmful components of the exhaust gas, and conventionally, Pt / Rh, Pd / Rh, and Pt. / Pd / Rh and the like have been used. By the way, the catalyst as described above uses rhodium (Rh) as an element for reducing nitrogen oxide in the exhaust gas, rhodium (Rh) is expensive and there is a problem in terms of heat resistance. Thus, a palladium tertiary catalyst using only palladium (Pd) without rhodium (Rh) has been developed and known [Korean Patent Registration No. 235029 (1999), US Patent No. 6,043,188], and the manufacturing method thereof is as follows.

팔라듐 용액을 알루미나에 함침한 후 환원시키고 여기에 산화세륨 및 혼합용액을 첨가한 다음 pH를 조절하여 반응시키고 밀링하여 촉매물질 코팅슬러리(coating slurry)를 얻은 후 여기에 세라믹모노리스(ceramic monolith)를 담가서 코팅하고 건조 및 소성하여 팔라듐 삼원촉매를 제조한다.After impregnating the palladium solution with alumina, reducing it, adding cerium oxide and mixed solution to it, reacting by adjusting the pH and milling to obtain a coating slurry of catalyst material, and then immersing ceramic monolith in it. Coated, dried and calcined to produce a palladium terpolymer.

그런데, 자동차 등에서 배출되는 가스 중 질소산화물은 고효율로 정화되지 않으면 강화되는 배기가스규제의 대응에 있어서 사용산에 문제가 있고, 촉매의 내열성이 우수하지 못하면 쉽게 촉매성능이 저감되는 문제가 있으므로, 기존에 비하여 질소산화물 제거능 및 내열성이 더욱 뛰어난 삼원촉매를 개발하는 것이 당면과제로 남아 있다.However, nitrogen oxides in the gas discharged from automobiles have a problem in use acid in response to exhaust gas regulation that is not enhanced with high efficiency, and if the heat resistance of the catalyst is not excellent, there is a problem in that the catalytic performance is easily reduced. The challenge remains to develop three-way catalysts with better nitrogen oxide removal and heat resistance.

이에, 본 발명자는 종래 삼원촉매의 질소산화물 제거능을 보다 향상시키고 내열성을 증대시키기 위하여 연구 노력한 결과, 벌크 산화세륨(CeO2) 및 세륨-지르코늄 복합산화물[(CeㆍZr)O2]을 함께 이용하고 산화프라세오디미움(PrO2)을 첨가하면 고효율로 질소산화물을 제거할 수 있고 내열성이 증대됨을 알게 되어 본 발명을 완성하였다.Accordingly, the present inventors have made efforts to improve the nitrogen oxide removal ability of the three-way catalyst and to increase the heat resistance. As a result, the bulk cerium oxide (CeO 2 ) and cerium-zirconium composite oxide [(Ce.Zr) O 2 ] are used together. And the addition of praseodymium oxide (PrO 2 ) was able to remove the nitrogen oxide with high efficiency and the heat resistance was found to complete the present invention.

따라서, 본 발명은 고가의 로듐을 사용하지 않아 경제적이면서도 배기가스 정화효과가 우수하고 그 중에서도 질소산화물의 정화효과가 특히 우수한 팔라듐 삼원촉매를 제조하는 방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for producing a palladium tertiary catalyst which does not use expensive rhodium and is excellent in purifying an exhaust gas and having a particularly excellent purifying effect of nitrogen oxide.

본 발명은 팔라듐 용액을 알루미나에 함침하고 환원 후 산화세륨과 반응시켜 촉매 슬러리를 얻고, 상기 촉매 슬러리를 세라믹모노리스 담체에 코팅하여 팔라듐 삼원촉매를 제조하는 방법에 있어서,The present invention provides a catalyst slurry by impregnating a palladium solution into alumina, reacting with cerium oxide after reduction, and coating the catalyst slurry on a ceramic monolith carrier to produce a palladium tertiary catalyst.

상기 환원 후 산화세륨 및 세륨-지르코늄 복합산화물을 15 : 85 ∼ 30 : 70 의 비율로 혼합하여 전체 담체 겉보기 부피에 대하여 30 ∼ 40 g/ℓ로 첨가하고, 여기에 산화프라세오디미움을 전체 담체 겉보기 부피에 대하여 5 ∼ 7 g/ℓ로 첨가하고 질소산화물의 제거 성능을 향상시키기 위하여 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3를 10 ∼ 15 g/ℓ추가로 사용함으로써 질소산화물 제거능 및 내열성이 우수한 팔라듐 삼원촉매를 제조하는 방법을 그 특징으로 한다.After the reduction, cerium oxide and cerium-zirconium composite oxide are mixed at a ratio of 15:85 to 30:70 and added at 30 to 40 g / l based on the total carrier apparent volume, and the prasedium oxide is added to the whole carrier By adding 5 to 7 g / l to the apparent volume and using 10 to 15 g / l of (LaCe) (FeCo) O 3 which is a metal oxide (perovskite) to improve the removal performance of nitrogen oxides It is characterized by a method for producing a palladium tertiary catalyst excellent in nitrogen oxide removal ability and heat resistance.

이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명은 자동차 배기가스의 정화효과가 우수하고 그 중에서도 질소산화물의 제거효과가 탁월하며 내열성이 향상된 팔라듐만으로 이루어진 삼원촉매의 제조방법에 관한 것이다.The present invention relates to a method for producing a three-way catalyst consisting of palladium alone, which is excellent in purifying automobile exhaust gas, among other things, excellent in removing nitrogen oxides and having improved heat resistance.

본 발명에 따른 질소산화물 제거능 및 내열성이 우수한 팔라듐 삼원촉매의 제조방법을 단계별로 더욱 구체화하여 설명하면 다음과 같다.Hereinafter, the method for preparing a palladium three-way catalyst having excellent nitrogen oxide removal ability and heat resistance according to the present invention will be described in more detail as follows.

제 1 공정으로, 팔라듐 용액을 알루미나(Al2O3)에 함침시킨 다음 이를 환원시키는 공정을 수행한다. 환원방법은 하이드라진 하이드레이트(hydrazinehydrate)를 팔라듐 1 g당 1.66 ㎖가 되도록 적가하여 이루어진다.In a first process, a palladium solution is impregnated with alumina (Al 2 O 3 ) and then reduced. The reduction method is performed by dropwise addition of hydrazine hydride (hydrazinehydrate) to 1.66 ml per 1 g of palladium.

제 2 공정으로, 벌크(Bulk)의 산화세륨(CeO2) 및 세륨-지르코늄 복합산화물[(CeㆍZr)O2]을 첨가하고 산화프라세오디미움(PrO2)을 첨가 한 후 혼합용액을 첨가하는 공정을 수행한다.In the second process, bulk cerium oxide (CeO 2 ) and cerium-zirconium composite oxide [(Ce.Zr) O 2 ] are added, and the mixed solution is added after the addition of praseodymium oxide (PrO 2 ). The addition process is carried out.

이때, CeO2및 (CeㆍZr)O2를 혼합하여 첨가하는 바, 그 이유는 촉매의 내열성을 향상시키기 위한 것이다. 또한, 상기 CeO2및 (CeㆍZr)O2는 15 : 85 ∼ 30 : 70의 비율로 사용하는 바, 상기 범위를 벗어나면 내열성 향상에 기여하는 정도가 미흡한 문제가 있어 바람직하지 못하다. 그리고, 상기 CeO2및 (CeㆍZr)O2는 전체 담체의 겉보기 부피에 대하여 30 ∼ 40 g/ℓ를 사용하는 바, 상기 범위를 벗어나면 또한 향상효과가 적다.At this time, CeO 2 and (Ce.Zr) O 2 are mixed and added for the purpose of improving the heat resistance of the catalyst. In addition, the CeO 2 and (Ce.Zr) O 2 are used in a ratio of 15:85 to 30:70. If the CeO 2 is out of the above range, there is a problem that the degree of contribution to improvement of heat resistance is insufficient, which is not preferable. In addition, the CeO 2 and (Ce.Zr) O 2 are used in an amount of 30 to 40 g / l based on the apparent volume of the entire carrier.

상기 PrO2는 분말상태로 사용하는 바, 이는 촉매상에서 Ce을 안정화시킴으로써 CO의 흡착과 산소저장능력을 조절하여 질소산화물을 효과적으로 제거한다.이때, PrO2는 전체 담체의 겉보기 부피에 대하여 5 ∼ 7 g/ℓ를 사용하는 바, 상기 범위를 벗어나면 향상효과가 적고, 가격이 높은 문제가 있다.The PrO 2 is used in powder form, which stabilizes Ce on the catalyst to effectively remove nitrogen oxides by controlling CO adsorption and oxygen storage capacity. At this time, PrO 2 is 5 to 7 relative to the apparent volume of the entire carrier. When using g / l, there is a problem that the improvement effect is low and the price is high when out of the above range.

상기 혼합용액은 산화바륨, 산화란타늄, 아세트산 및 물을 혼합한 것으로, 산화바륨은 전체 담체의 겉보기 부피에 대하여 5 ∼ 6 g/ℓ, 산화란타늄은 전체 담체의 겉보기 부피에 대하여 1 ∼ 2 g/ℓ를 첨가하는 것이 알루미나의 내열성, 산화세륨의 특성 향상을 위하여 바람직하다. 또한, 아세트산은 전체 담체의 겉보기 부피에 대하여 23.5 ∼ 33.5 g/ℓ인 것이 pH의 조절에 있어서 바람직한 바, pH는 4.5 이하인 것이 다음의 코팅을 위한 촉매 슬러리 제조에 있어서 점도의 조절을 위하여 바람직하다.The mixed solution is a mixture of barium oxide, lanthanum oxide, acetic acid and water, and barium oxide is 5 to 6 g / l based on the apparent volume of the entire carrier, and lanthanum oxide is 1 to 2 g / relative to the apparent volume of the entire carrier. It is preferable to add L to improve the heat resistance of alumina and the properties of cerium oxide. In addition, acetic acid is preferably 23.5 to 33.5 g / l based on the pH of the total carrier, and the pH is preferably 4.5 or less for controlling the viscosity in preparing the catalyst slurry for the next coating.

제 3 공정으로, 상기 혼합물을 볼밀(Ball mill)방법으로 슬러리반응 및 입도를 조절하며 밀링하여 입자크기 7 ㎛ 이하인 것이 전체 입자 중 90 % 이상이 되도록 미분한다. 이때, 입자크기가 상기 범위를 벗어나도록 밀링하는 경우 활성의 저감 및 내구성이 저감되는 문제가 있다. 상기 밀링 공정을 수행한 결과, 고형분이 30 ∼ 50 %이고 점도가 200 ∼ 400 cpsi인 촉매 슬러리를 얻는다.In the third process, the mixture is milled by controlling the slurry reaction and particle size by a ball mill method, so that a particle size of 7 μm or less is 90% or more of all the particles. At this time, when milling the particle size outside the above range there is a problem that the reduction in activity and durability is reduced. As a result of the milling process, a catalyst slurry having a solid content of 30 to 50% and a viscosity of 200 to 400 cpsi is obtained.

제 4 공정으로, 3공정에서 얻은 슬러리에 질소산화물의 제거 성능을 향상시키기 위하여 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3를 10 ∼ 15 g/ℓ추가로 사용하여 최종으로 슬러리를 제조한다.In the fourth process, 10 to 15 g / l of (LaCe) (FeCo) O 3, which is a metal oxide (perovskite), is added to the slurry obtained in step 3 to improve the removal performance of nitrogen oxide. Prepare a slurry.

제 5공정으로 상기 촉매 슬러리에 세라믹 모노리스 담체를 담가서 코팅한 후 건조하고 소성하는 공정을 수행한다. 본 발명의 코팅은 세그레게이션효과(segregation effect)를 이용한 단일코팅으로서, 이는 일반적으로 임의의 성분을 원하는 위치에 두기 위하여 주로 2중 코팅을 하고 있으나, 서로 뭉치는 특성을 갖는 화합물 상태를 이용하여 필요부분에 성분을 위치시킴으로써 단일코팅의 효율을 극대화시킬 수 있으며, 촉매성능을 향상시킬 수 있는 효과이다. 다시말해, 본 발명의 코팅시에 각 성분의 투입방식 및 성분의 적정한 출발물질의 선정으로 딥핑(dipping)형태로도 가능한 원하는 성분을 원하는 위치에 코팅한다. 또한, 상기 건조는 건조로에서 150 ℃ 온도로 2시간 동안 수행되고, 소성은 전기로에서 450 ∼ 550 ℃ 온도로 4시간 동안 실시한다. 이때, 건조 및 소성조건이 상기 범위를 벗어나면 코팅층의 크랙발생 및 유해한 화합물이 형성되는 문제가 있다.In a fifth process, the ceramic monolith carrier is immersed in the catalyst slurry, coated, dried and calcined. The coating of the present invention is a single coating using a segregation effect, which is generally a double coating to place any component in a desired position, but using a compound state having a property of agglomeration with each other By locating the components in the required portion can maximize the efficiency of the single coating, it is an effect that can improve the catalytic performance. In other words, in the coating of the present invention, the desired component, which can be in the form of dipping, is coated at a desired position by the method of adding each component and selecting an appropriate starting material of the component. In addition, the drying is carried out for 2 hours at 150 ℃ temperature in a drying furnace, firing is carried out for 4 hours at 450 ~ 550 ℃ temperature in an electric furnace. At this time, when the drying and firing conditions are out of the above range, there is a problem that cracks and harmful compounds are formed in the coating layer.

따라서, 이상과 같은 본 발명에 따른 질소산화물 제거능이 우수한 팔라듐 삼원 촉매의 제조방법은 자동차 배기가스 정화, 디젤촉매 및 산업용 촉매 등에 폭넓게 사용될 수 있다.Therefore, the method for preparing a palladium three-way catalyst having excellent nitrogen oxide removal ability according to the present invention as described above can be widely used for automobile exhaust gas purification, diesel catalyst and industrial catalyst.

이하, 본 발명을 실시예에 의거하여 더욱 상세하게 설명하겠는바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by Examples.

실시예Example

팔라듐 7.0 g이 들어있는 용액을 알루미나 100 g에 함침시킨 다음 하이드라진 하이드레이트를 팔라듐 1 g당 1.66 ㎖가 되도록 적가하여 환원시켰다. 그 다음, CeO27.5 g 및 (CeㆍZr)O222.5 g를 혼합하여 첨가하고 PrO2를 6.0 g을 넣었다. 또한, 산화바륨 5.6 g, 산화란타늄 1.33 g, 아세트산 27.0 g 및 물 375 ㎖를 혼합한 용액을 넣고, 아세트산을 사용하여 pH를 4.2로 맞추었다. 그리고, 볼밀(Ball mill)방법으로 입자크기 9㎛ 이하로 한 후 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3를 10 g/ℓ추가로 분말 형태로 투입 한 후 최종적으로 입자크기를 7㎛ 인 것이 전체 입자중 94 %가 되도록 밀링하여 고형분이 40 %이고 점도가 300 cpsi인 촉매 슬러리를 얻었다. 여기에, 세라믹 모노리스 담체를 담가서 코팅한 후 건조로에서 150 ℃ 온도로 2시간 동안 건조하고 전기로에서 500 ℃ 온도로 4시간 동안 소성하였다.A solution containing 7.0 g of palladium was impregnated into 100 g of alumina and then reduced by dropwise addition of hydrazine hydrate to 1.66 mL per g of palladium. Then, 7.5 g of CeO 2 and 22.5 g of (Ce.Zr) O 2 were mixed and added, and 6.0 g of PrO 2 was added thereto. Furthermore, the solution which mixed 5.6 g of barium oxide, 1.33 g of lanthanum oxide, 27.0 g of acetic acid, and 375 ml of water was put, and pH was adjusted to 4.2 using acetic acid. After the particle size was 9 μm or less by a ball mill method, 10 g / l of (LaCe (FeCo) O 3 ), which is a metal oxide (perovskite), was added in a powder form and finally, The catalyst slurry was milled to a size of 7 μm with 94% of the total particles, with a solid content of 40% and a viscosity of 300 cpsi. Here, the ceramic monolith carrier was immersed and coated, dried at 150 ° C. for 2 hours in a drying furnace, and calcined at 500 ° C. in an electric furnace for 4 hours.

비교예Comparative example

공지된 방법으로 실시하되 CeO2를 30.0 g 첨가하는 것을 제외하고는 각 첨가물은 실시예와 동일한 양을 사용하였다.The additives were used in the same manner as in the examples, except that 30.0 g of CeO 2 was added.

상기 실시예와 비교예에 따라 제조된 촉매를 비교 시험하여 그 결과를 다음 표 1에 나타내었다.The catalyst prepared according to the above Example and Comparative Example was tested and the results are shown in Table 1 below.

상기 표 1에서, 저온활성온도는 50 % 정화되는 온도로서, 상기 측정된 온도가 낮을수록 탄화수소, 일산화탄소, 질소산화물의 정화효능이 우수함을 의미하며, 삼원특성은 3가지 성분의 제거능력을 나타내는 것으로 높을수록 좋은 특성을 나타낸다. 또한, 950 ℃ 에이징은 950 ℃ , 대기중에서 전기로 분위기에서 140시간 실시하였고, 여기서, 저온활성 온도는 실시예가 비교예에 비하여 18 ∼ 24 ℃ 정도 항상 낮은 것으로 나타나며, 이로써 본 발명의 정화효능이 높은 것을 알 수 있었다. 또한, 삼원특성은 본 발명이 동등 이상의 효과를 보이며 특히, 질소산화물에 대해서는 월등히 우수한 것을 확인하였다.In Table 1, the low temperature active temperature is a 50% purifying temperature, the lower the measured temperature means that the higher the purification efficiency of hydrocarbons, carbon monoxide, nitrogen oxides, the three-way characteristic indicates that the ability to remove three components The higher the value, the better the characteristics. In addition, 950 ℃ aging was carried out at 950 ℃, 140 hours in an atmosphere of an electric furnace in the air, where the low temperature activity temperature is always 18 ~ 24 ℃ as shown in the Examples compared to the comparative example, thereby high purification efficiency of the present invention I could see that. In addition, the three-way characteristic was confirmed that the present invention shows an effect of equal or more, and particularly excellent for nitrogen oxides.

상술한 바와 같이, 본 발명의 팔라듐 삼원촉매 제조방법은 질소산화물 제거능을 보다 향상시키고 내열성을 강화하여 각종 정화용 촉매 및 산업용 촉매 등으로 활용할 수 있다.As described above, the palladium tertiary catalyst production method of the present invention can be utilized as various purification catalysts and industrial catalysts by further improving nitrogen oxide removal ability and enhancing heat resistance.

Claims (1)

팔라듐 용액을 알루미나에 함침하고 환원 후 산화세륨과 반응시키고, 산화프라세오다이미윰을 사용하여 촉매 슬러리를 얻고, 상기 촉매 슬러리를 세라믹모노리스 담체에 코팅하여 팔라듐 삼원촉매를 제조하는 방법에 있어서,In the method of impregnating a palladium solution with alumina and reacting with cerium oxide after reduction, obtaining a catalyst slurry using praseodymidium oxide, coating the catalyst slurry on a ceramic monolith carrier to produce a palladium tertiary catalyst, 상기 환원 후 산화세륨 및 세륨-지르코늄 복합산화물을 15 : 85 ∼ 30 : 70 의 비율로 혼합하여 전체 담체 겉보기 부피에 대하여 30 ∼ 40 g/ℓ로 첨가하고, 여기에 산화프라세오디미움을 전체 담체 겉보기 부피에 대하여 5 ∼ 7 g/ℓ로 첨가하고 질소산화물의 제거 성능을 향상시키기 위하여 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3를 10∼ 15 g/ℓ추가로 사용하는 것을 특징으로 하는 질소산화물 제거능 및 내열성이 우수한 팔라듐 삼원촉매의 제조방법.After the reduction, cerium oxide and cerium-zirconium composite oxide are mixed at a ratio of 15:85 to 30:70 and added at 30 to 40 g / l based on the total carrier apparent volume, and the prasedium oxide is added to the whole carrier 5 to 7 g / l relative to the apparent volume, and 10 to 15 g / l of (LaCe) (FeCo) O 3, which is a metal oxide (perovskite), is used to improve nitrogen oxide removal performance. Method for producing a palladium tertiary catalyst excellent in the ability to remove nitrogen oxides and heat resistance.
KR10-2001-0043565A 2001-07-19 2001-07-19 High Performance Pd only Three way Catalyst KR100410952B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0043565A KR100410952B1 (en) 2001-07-19 2001-07-19 High Performance Pd only Three way Catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0043565A KR100410952B1 (en) 2001-07-19 2001-07-19 High Performance Pd only Three way Catalyst

Publications (2)

Publication Number Publication Date
KR20030008713A KR20030008713A (en) 2003-01-29
KR100410952B1 true KR100410952B1 (en) 2003-12-12

Family

ID=27715796

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0043565A KR100410952B1 (en) 2001-07-19 2001-07-19 High Performance Pd only Three way Catalyst

Country Status (1)

Country Link
KR (1) KR100410952B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488779B1 (en) * 2002-05-27 2005-05-12 현대자동차주식회사 Method for manufacturing low precious metal loading Pd only three way catalyst
KR100461112B1 (en) * 2002-05-28 2004-12-13 현대자동차주식회사 High Performance, Low precious metal loading Pd only Three way Catalyst
KR100488853B1 (en) * 2002-05-31 2005-05-11 현대자동차주식회사 Method for manufacturing double layer coated Pd-Rh three way catalyst
KR100494542B1 (en) * 2002-06-14 2005-06-13 현대자동차주식회사 Method for manufacturing double layer coated Pd only three way catalyst
KR100494543B1 (en) * 2002-06-14 2005-06-10 현대자동차주식회사 Method for manufacturing low precious metal loaded Pt-Pd-Rh three way catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920019413A (en) * 1989-11-17 1992-11-19 다니이 아끼오 Exhaust gas purification catalyst and its manufacturing method
JPH0768175A (en) * 1993-06-11 1995-03-14 Daihatsu Motor Co Ltd Catalyst for purification of exhaust gas
KR0136893B1 (en) * 1994-11-03 1998-04-25 강박광 Selective catalytic reduction of nitrogen oxide
JP2001104786A (en) * 1999-10-08 2001-04-17 Daihatsu Motor Co Ltd Catalyst for purifying exhaust gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920019413A (en) * 1989-11-17 1992-11-19 다니이 아끼오 Exhaust gas purification catalyst and its manufacturing method
JPH0768175A (en) * 1993-06-11 1995-03-14 Daihatsu Motor Co Ltd Catalyst for purification of exhaust gas
KR0136893B1 (en) * 1994-11-03 1998-04-25 강박광 Selective catalytic reduction of nitrogen oxide
JP2001104786A (en) * 1999-10-08 2001-04-17 Daihatsu Motor Co Ltd Catalyst for purifying exhaust gas

Also Published As

Publication number Publication date
KR20030008713A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
KR100527943B1 (en) Method for manufacturing double layer coated Pd only three way catalyst
JP5361855B2 (en) Palladium-rhodium single layer catalyst
JP4148997B2 (en) Method for producing ternary conversion catalyst
JP3786954B2 (en) Layered catalyst composite
KR101155847B1 (en) Exhaust gas purifying catalyst
EP2532422A2 (en) Catalyst compositions
WO2006016633A1 (en) Exhaust gas purifying catalyst and production process thereof
JP2020536723A (en) TWC catalyst for gasoline exhaust gas applications with improved thermal durability
US6043188A (en) Process for manufacturing palladium ternary catalyst
KR100410952B1 (en) High Performance Pd only Three way Catalyst
KR100494543B1 (en) Method for manufacturing low precious metal loaded Pt-Pd-Rh three way catalyst
KR100461112B1 (en) High Performance, Low precious metal loading Pd only Three way Catalyst
KR100384015B1 (en) Improved NOx conversion and thermal durable Pd only three way catalyst
KR100410942B1 (en) A process of preparing the High porous Pd only Three way Catalyst
KR100494542B1 (en) Method for manufacturing double layer coated Pd only three way catalyst
KR100535009B1 (en) Method for manufacturing double layer coated Pd only three way catalyst
KR100410801B1 (en) High porous and HC removal Pd only Three way Catalyst
KR100488779B1 (en) Method for manufacturing low precious metal loading Pd only three way catalyst
KR100488853B1 (en) Method for manufacturing double layer coated Pd-Rh three way catalyst
KR100235029B1 (en) Preparation of pd-three way catalyst
JP3314301B2 (en) Method for producing palladium (Pd) three-way catalyst
WO2024067058A1 (en) Improved catalysts for gasoline engine exhaust gas treatments
KR100384016B1 (en) High durable Pd-Rh three way catalyst for NOx reduction
EP4237141A1 (en) Novel tri-metal pgm catalysts for gasoline engine exhaust gas treatments
KR20050114296A (en) Method for manufacturing catalyzed diesel particulate filter system

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20071130

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee