KR100494542B1 - Method for manufacturing double layer coated Pd only three way catalyst - Google Patents

Method for manufacturing double layer coated Pd only three way catalyst Download PDF

Info

Publication number
KR100494542B1
KR100494542B1 KR10-2002-0033204A KR20020033204A KR100494542B1 KR 100494542 B1 KR100494542 B1 KR 100494542B1 KR 20020033204 A KR20020033204 A KR 20020033204A KR 100494542 B1 KR100494542 B1 KR 100494542B1
Authority
KR
South Korea
Prior art keywords
oxide
catalyst
cerium
palladium
feco
Prior art date
Application number
KR10-2002-0033204A
Other languages
Korean (ko)
Other versions
KR20030095674A (en
Inventor
여권구
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR10-2002-0033204A priority Critical patent/KR100494542B1/en
Publication of KR20030095674A publication Critical patent/KR20030095674A/en
Application granted granted Critical
Publication of KR100494542B1 publication Critical patent/KR100494542B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 2중층 코팅구조의 팔라듐 삼원촉매 제조방법에 관한 것으로서, 더욱 상세하게는 알루미나(Al2O3), 산화세륨(CeO2) 및 혼합용액 등을 첨가물로 사용하여 2중층 코팅을 위한 1차 및 2차 촉매 슬러리를 제조하는 과정에서, 종래 산화세륨만을 사용하는 방법 대신 산화세륨 및 세륨-지르코늄 복합산화물 (CeㆍZr)O2를 함께 사용하고, 이후 산화프라세오디미움(PrO2)을 첨가하며, 혼합용액의 첨가 및 반응 이후에는 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 적정량 첨가시켜줌으로써, 완성된 촉매가 보다 향상된 질소산화물 제거성능과 내열성을 가지면서도 고가인 팔라듐의 사용량을 기존의 제조방법에 비해 크게 줄여 제조할 수 있는 2중층 코팅구조의 팔라듐 삼원촉매 제조방법에 관한 것이다.The present invention relates to a method for preparing a palladium tertiary catalyst having a double layer coating structure, and more particularly, using alumina (Al 2 O 3 ), cerium oxide (CeO 2 ), a mixed solution, and the like as an additive. In the process of preparing the secondary and secondary catalyst slurry, cerium oxide and cerium-zirconium compound oxide (CeZr) O 2 are used together instead of the conventional method of using only cerium oxide, and then prasedium oxide (PrO 2 ) and the addition, the addition of the mixture solution and reaction after which the metal oxide (a perovskite) of (LaCe) (FeCo) O 3 and (LaSr) (FeCo) O by giving to the appropriate amount added to a selected one of three, and the finished catalyst The present invention relates to a method for preparing a palladium tertiary catalyst having a double layer coating structure, which can be manufactured by significantly reducing the amount of expensive palladium, compared to a conventional manufacturing method, while having improved nitrogen oxide removal performance and heat resistance.

Description

2중층 코팅구조의 팔라듐 삼원촉매 제조방법{Method for manufacturing double layer coated Pd only three way catalyst}Method for manufacturing double layer coated Pd only three way catalyst

본 발명은 2중층 코팅구조를 갖는 저 팔라듐 함량의 삼원촉매 제조방법에 관한 것으로서, 더욱 상세하게는 알루미나(Al2O3), 산화세륨(CeO2) 및 혼합용액 등을 첨가물로 사용하여 2중층 코팅을 위한 1차 및 2차 촉매 슬러리를 제조하는 과정에서, 종래 산화세륨만을 사용하는 방법 대신 산화세륨 및 세륨-지르코늄 복합산화물 (CeㆍZr)O2를 함께 사용하고, 이후 산화프라세오디미움(PrO2)을 첨가하며, 혼합용액의 첨가 및 반응 이후에는 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 적정량 첨가시켜줌으로써, 완성된 촉매가 보다 향상된 질소산화물 제거성능과 내열성을 가지면서도 고가인 팔라듐의 사용량을 기존의 제조방법에 비해 크게 줄여 제조할 수 있는 2중층 코팅구조의 팔라듐 삼원촉매 제조방법에 관한 것이다.The present invention relates to a method for producing a low palladium content three-way catalyst having a double layer coating structure, and more particularly, to a double layer using alumina (Al 2 O 3 ), cerium oxide (CeO 2 ), and a mixed solution as an additive. In the process of preparing the primary and secondary catalyst slurry for coating, instead of the conventional method using only cerium oxide, cerium oxide and cerium-zirconium compound oxide (CeZr) O 2 are used together, and then prasedium oxide (PrO 2) it has a metal oxide was added, and the addition of the mixture solution and reaction after (a perovskite) of (LaCe) (FeCo) O 3 and (LaSr) (FeCo) O 3 of by giving to the appropriate amount added to one selected The present invention relates to a method for preparing a palladium tertiary catalyst having a double layer coating structure, which can reduce the amount of expensive palladium, compared to a conventional manufacturing method, while having improved nitrogen oxide removal performance and heat resistance.

일반적으로 삼원촉매(three way catalyst)는 배기가스의 유해성분인 탄화수소계 화합물, 일산화탄소 및 질소산화물(NOx)과 동시에 반응하여 이들 화합물을 제거시키는 촉매를 의미하는데, 종래에는 주로 Pt/Rh, Pd/Rh 또는 Pt/Pd/Rh계의 삼원촉매가 이용되어 왔다. In general, a three way catalyst refers to a catalyst that removes these compounds by simultaneously reacting with hydrocarbon-based compounds, carbon monoxide and nitrogen oxides (NOx), which are harmful components of the exhaust gas, and conventionally, mainly Pt / Rh, Pd / Three-way catalysts of Rh or Pt / Pd / Rh systems have been used.

그런데, 상기와 같은 촉매는 배기가스 중 질소산화물을 환원시키는 원소로서 로듐(Rh)을 사용하고 있는데, 이 로듐은 고가이면서 내열성 측면에서 문제가 있다.By the way, the catalyst as described above uses rhodium (Rh) as an element for reducing nitrogen oxides in the exhaust gas, which is problematic in terms of cost and heat resistance.

이에, 로듐 없이 팔라듐(Pd)만을 사용한 팔라듐 삼원촉매가 개발 공지된 바 있으며[대한민국 특허등록번호 제235029호, 미국특허번호 제6,043,188호], 그 제조방법을 간단히 설명하면 다음과 같다.Thus, palladium ternary catalysts using only palladium (Pd) without rhodium have been known and developed [Korean Patent Registration No. 235029, US Patent No. 6,043,188].

먼저, 팔라듐 용액을 알루미나(Al2O3)에 함침한 후 환원시킨다.First, the palladium solution is impregnated with alumina (Al 2 O 3 ) and then reduced.

다음으로, 상기 환원 결과물에 산화세륨(CeO2) 및 혼합용액을 첨가한 다음 ph를 조절하여 반응시키고, 이를 밀링하여 촉매 슬러리(slurry)를 만든다.Next, cerium oxide (CeO 2 ) and a mixed solution are added to the reduction product, and then the pH is adjusted to react, and the catalyst is milled to form a slurry.

이후, 상기와 같이 제조된 촉매 슬러리에 세라믹 모노리스(ceramic monolith)를 담가서 코팅하고, 이를 건조 및 소성하여 팔라듐 삼원촉매를 완성한다. Then, the ceramic monolith (ceramic monolith) is immersed in the catalyst slurry prepared as described above, dried and calcined to complete the palladium tertiary catalyst.

그러나, 강화되는 배기가스규제의 대응에 있어서 최근에는 촉매의 고성능화 및 고내열성이 요구되고 있고, 이러한 촉매의 고성능화 및 고내열성의 요구로 인하여 촉매재료인 귀금속의 사용량이 많아지고 있는 바, 결국 촉매의 가격이 점차 상승되고 있는 실정이다.However, in response to the tightened exhaust gas regulations, in recent years, high performance and high heat resistance of catalysts have been required. Due to the high performance and high heat resistance of these catalysts, the use of precious metals as catalyst materials has increased. The price is gradually rising.

따라서, 기존에 비해 완성된 촉매의 질소산화물 제거성능과 내열성이 우수하면서도 귀금속의 사용량을 줄일 수 있는 삼원촉매 제조방법을 개발하여 효과적으로 실용화할 수 있도록 하는 것이 당면과제로 남아 있다.Therefore, it remains a challenge to develop a three-way catalyst production method that can reduce the use of precious metals while reducing nitrogen oxide removal performance and heat resistance of the finished catalyst.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 발명한 것으로서, 알루미나(Al2O3), 산화세륨(CeO2) 및 혼합용액 등을 첨가물로 사용하여 2중층 코팅을 위한 1차 및 2차 촉매 슬러리를 제조하는 과정에서, 종래 산화세륨만을 사용하는 방법 대신 산화세륨 및 세륨-지르코늄 복합산화물 (CeㆍZr)O2를 함께 사용하고, 이후 산화프라세오디미움(PrO2)을 첨가하며, 혼합용액의 첨가 및 반응 이후에는 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 적정량 첨가시켜줌으로써, 완성된 촉매가 보다 향상된 질소산화물 제거성능과 내열성을 가지면서도 고가인 팔라듐의 사용량을 기존의 제조방법에 비해 크게 줄여 제조할 수 있는 2중층 코팅구조의 팔라듐 삼원촉매 제조방법을 제공하는데 그 목적이 있다.Therefore, the present invention has been invented to solve the above problems, using alumina (Al 2 O 3 ), cerium oxide (CeO 2 ) and a mixed solution as an additive for the primary and secondary coating for the double layer coating In the process of preparing the catalyst slurry, instead of the conventional method using only cerium oxide, cerium oxide and cerium-zirconium compound oxide (Ce.Zr) O 2 are used together, and then praseodymium oxide (PrO 2 ) is added, after the addition and reaction of the mixed solution, the metal oxide (a perovskite) of (LaCe) (FeCo) O 3 and (LaSr) (FeCo) O 3 of by giving to the appropriate amount added to one selected, the improved nitrogen finished catalyst It is an object of the present invention to provide a method for preparing a palladium tertiary catalyst having a double layer coating structure which can reduce the amount of palladium that is expensive and has an oxide removal performance and heat resistance, compared to a conventional manufacturing method.

이하, 본 발명을 설명하면 다음과 같다.Hereinafter, the present invention will be described.

본 발명은 알루미나, 산화세륨 및 혼합용액을 사용하여 1차 및 2차 촉매 슬러리를 제조한 다음, 상기 1차 촉매 슬러리를 세라믹 모노리스 담체에 1차 코팅하고, 상기 2차 촉매 슬러리를 상기 1차 코팅 후 건조 및 소성시킨 세라믹 모노리스 담체에 2차 코팅하여 2중층 코팅구조의 팔라듐 삼원촉매를 제조하는 방법에 있어서,The present invention is to prepare a primary and secondary catalyst slurry using alumina, cerium oxide and mixed solution, and then the primary catalyst slurry is first coated on a ceramic monolith carrier, and the secondary catalyst slurry is coated on the primary In the method of manufacturing a palladium tertiary catalyst having a double-layer coating structure by secondary coating on a ceramic monolith carrier after drying and firing,

상기 1차 촉매 슬러리는 알루미나에 산화세륨:세륨-지르코늄 복합산화물 (CeㆍZr)O2의 사용비를 15:85 ∼ 30:70의 중량비로 혼합하여 전체 담체 겉보기 부피에 대하여 15 ∼ 25g/ℓ로 첨가하고, 이후 산화프라세오디미움을 전체 담체 겉보기 부피에 대하여 2 ∼ 5g/ℓ로 첨가한 다음, 혼합용액 첨가 및 반응 이후 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 전체 담체의 겉보기 부피에 대하여 15 ∼ 25g/ℓ만큼 첨가하여 제조하고; 상기 2차 촉매 슬러리는 팔라듐 용액이 함침된 알루미나를 환원 후 산화세륨:세륨-지르코늄 복합산화물 (CeㆍZr)O2의 사용비를 15:85 ∼ 30:70의 중량비로 혼합하여 전체 담체 겉보기 부피에 대하여 15 ∼ 25g/ℓ로 첨가하고, 이에 산화프라세오디미움을 전체 담체 겉보기 부피에 대하여 2 ∼ 5g/ℓ로 첨가한 다음, 상기 혼합용액 첨가 및 반응 이후 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 전체 담체의 겉보기 부피에 대하여 15 ∼ 25g/ℓ만큼 첨가하여 제조하는 것을 특징으로 한다.The primary catalyst slurry is a mixture of alumina and cerium oxide: cerium-zirconium composite oxide (Ce.Zr) O 2 in a weight ratio of 15:85 to 30:70, and is 15 to 25 g / l based on the total carrier apparent volume. Praseodymium oxide was added at 2 to 5 g / l based on the total carrier apparent volume, followed by addition of the mixed solution and the reaction (LaCe (FeCo) O 3 ), which is a metal oxide (perovskite). And (LaSr) (FeCo) O 3 , by adding from 15 to 25 g / l based on the total volume of the total carrier; The secondary catalyst slurry was prepared by mixing alumina impregnated with a palladium solution with a ratio of cerium oxide: cerium-zirconium composite oxide (Ce.Zr) O 2 at a weight ratio of 15:85 to 30:70, and the total carrier apparent volume. It is added at 15 to 25g / l with respect to this, Praseodymium oxide is added at 2 to 5g / l with respect to the total carrier apparent volume, and then the metal solution (perovskite) after the addition of the mixed solution and the reaction (LaCe) (FeCo) and with O 3 and characterized in that made by adding as much as 15 ~ 25g / ℓ with respect to (LaSr) (FeCo) a selected one of O 3 in the apparent volume of the total carrier.

이하, 본 발명을 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명은 완성된 촉매가 보다 향상된 질소산화물 제거성능과 내열성을 가지면서도 고가인 팔라듐의 사용량을 기존의 제조방법에 비해 크게 줄여 제조할 수 있는 2중층 코팅구조의 팔라듐 삼원촉매 제조방법에 관한 것이다.The present invention relates to a method for producing a palladium tertiary catalyst having a double-layer coating structure in which the finished catalyst can be produced by significantly reducing the amount of expensive palladium, compared to a conventional production method, while having improved nitrogen oxide removal performance and heat resistance.

본 발명의 삼원촉매 제조방법에서는 촉매물질로서 사용되는 백금(Pt), 팔라듐(Pd), 로듐(Rh) 중에서도 자동차 배기가스 정화효과가 우수하고 특히 질소산화물 제거효과가 탁월하며 우수한 내열성을 갖는 팔라듐만으로 삼원촉매를 제조하고, 세라믹 모노리스를 2중으로 코팅하여 제조한다.In the three-way catalyst production method of the present invention, among the platinum (Pt), palladium (Pd), and rhodium (Rh) used as the catalyst material, it is excellent in automobile exhaust gas purification effect, and particularly excellent in removing nitrogen oxides and having only excellent heat resistance. A three-way catalyst is prepared and prepared by double coating a ceramic monolith.

즉, 2중층 코팅구조의 팔라듐 삼원촉매를 제조하기 위하여, 별도의 1, 2차 촉매 슬러리를 제조한 다음, 1차 촉매 슬러리에 세라믹 모노리스 담체를 담가서 1차 코팅하고, 이를 건조 및 소성시킨 후, 2차 촉매 슬러리에 상기 1차 코팅된 세라믹 모노리스 담체를 담가서 2차 코팅하는 과정을 거치게 된다. That is, in order to manufacture a palladium tertiary catalyst having a double-layer coating structure, a separate first and second catalyst slurry was prepared, and then, the ceramic monolith carrier was immersed in the first catalyst slurry, and then first coated, dried and calcined, The secondary coating is subjected to a process of immersing the primary coated ceramic monolith carrier in a secondary catalyst slurry.

본 발명에 따른 팔라듐 삼원촉매 제조방법을 단계별로 구체화하여 설명하면 다음과 같다. Referring to the step-by-step description of the palladium three-way catalyst production method according to the present invention.

제 1 공정으로, 알루미나(Al2O3)에 벌크(bulk)의 산화세륨(CeO2) 및 세륨-지르코늄 복합산화물 (CeㆍZr)O2를 첨가하고, 이에 산화프라세오디미움(PrO2)을 첨가한 후, 혼합용액을 첨가하는 공정을 수행한다.In a first process, bulk cerium oxide (CeO 2 ) and cerium-zirconium composite oxide (Ce.Zr) O 2 are added to alumina (Al 2 O 3 ), and praseodymium oxide (PrO 2 ) is added thereto. ) Is added and then a mixed solution is added.

이때, 상기 산화세륨(CeO2)과 세륨-지르코늄 복합산화물 (CeㆍZr)O2는 서로 혼합하여 첨가하는 바, 그 이유는 구조적 안정화를 유도하여 촉매의 내열성을 향상시키기 위함이다.At this time, the cerium oxide (CeO 2 ) and cerium-zirconium composite oxide (Ce.Zr) O 2 are mixed and added to each other, in order to induce structural stabilization to improve heat resistance of the catalyst.

여기서, 상기 산화세륨(CeO2):세륨-지르코늄 복합산화물 (CeㆍZr)O2의 사용비를 15:85 ∼ 30:70의 중량비로 혼합하여 첨가하는 바, 상기 범위를 벗어나면 내열성 향상에 기여하는 정도가 미흡한 문제가 있어 바람직하지 못하다.Here, the ratio of the cerium oxide (CeO 2 ): cerium-zirconium composite oxide (Ce.Zr) O 2 is added in a weight ratio of 15:85 to 30:70, and when it is out of the above range, the heat resistance is improved. There is a problem of insufficient contribution, which is undesirable.

그리고, 상기 산화세륨(CeO2)과 세륨-지르코늄 복합산화물 (CeㆍZr)O2의 혼합물은 전체 담체의 겉보기 부피에 대하여 15 ∼ 25g/ℓ로 첨가하며, 이 첨가범위를 벗어나면 또한 내열성 향상을 기대하기 어렵다.In addition, the mixture of cerium oxide (CeO 2 ) and cerium-zirconium composite oxide (Ce.Zr) O 2 is added at 15 to 25 g / l based on the apparent volume of the entire carrier, and out of this addition range, the heat resistance is also improved. It is hard to expect.

상기 산화프라세오디미움(PrO2)은 분말상태로 첨가하는 바, 이는 촉매상에서 세륨(Ce)을 안정화시킴으로써 일산화탄소(CO)의 흡착과 산소저장능력을 조절하여 질소산화물(NOx)을 효과적으로 제거한다.The praseodymium oxide (PrO 2 ) is added in the form of a powder, which stabilizes cerium (Ce) on the catalyst, thereby effectively controlling the adsorption and oxygen storage capacity of carbon monoxide (CO) to effectively remove nitrogen oxides (NOx). .

이때, 산화프라세오디미움(PrO2)은 전체 담체의 겉보기 부피에 대하여 2 ∼ 5g/ℓ로 첨가하는 바, 상기 범위 미만으로 소량 첨가하면 내열성 향상 및 질소산화물 정화효율 향상의 효과가 적어지는 문제가 있고, 상기 범위를 초과하여 첨가하면 효과 대비 가격이 높아지는 문제가 있다.At this time, the Praseodymium oxide (PrO 2 ) is added at 2 ~ 5g / ℓ relative to the apparent volume of the entire carrier, when a small amount of less than the above range is less effective in improving the heat resistance and efficiency of nitrogen oxide purification efficiency There is a problem in that the price is increased compared to the effect when added beyond the above range.

상기 혼합용액은 산화바륨, 산화란타늄, 아세트산 및 물을 혼합한 것으로서, 산화바륨은 전체 담체의 겉보기 부피에 대하여 2 ∼ 4g/ℓ, 산화란타늄은 전체 담체의 겉보기 부피에 대하여 0.5 ∼ 2g/ℓ로 첨가하는 것이 알루미나의 내열성, 산화세륨의 특성 향상을 위하여 바람직하다. The mixed solution is a mixture of barium oxide, lanthanum oxide, acetic acid and water, and barium oxide is 2 to 4 g / l based on the total volume of the carrier, and lanthanum oxide is 0.5 to 2 g / l relative to the apparent volume of the carrier. It is preferable to add in order to improve the heat resistance of alumina and the characteristic of cerium oxide.

또한, 아세트산은 전체 담체의 겉보기 부피에 대하여 10 ∼ 20g/ℓ인 것이 pH의 조절에 있어서 바람직한 바, pH는 4.5 이하인 것이 다음의 코팅을 위한 촉매 슬러리 제조에 있어서 점도의 조절을 위하여 바람직하다.In addition, acetic acid is preferably 10 to 20 g / l relative to the apparent volume of the total carrier, and the pH is preferably 4.5 or less for controlling the viscosity in preparing the catalyst slurry for the next coating.

제 2 공정으로, 상기 제 1 공정에서 얻은 혼합물을 볼 밀(ball mill)의 방법으로 슬러리 반응 및 입도를 조절해가면서 밀링하여 입자크기 7㎛ 이하인 것이 전체 입자 중 90% 이상이 되도록 미분한다. In the second step, the mixture obtained in the first step is milled while controlling the slurry reaction and particle size by a ball mill method, and the fine particles are finely ground so as to have 90% or more of the total particles having a particle size of 7 μm or less.

이때, 입자크기가 상기 범위를 벗어나도록 밀링하는 경우 활성의 저감 및 내구성이 저감되는 문제가 있다. At this time, when milling the particle size outside the above range there is a problem that the reduction in activity and durability is reduced.

상기 밀링 공정을 수행한 결과, 고형분이 30 ∼ 50%이고 점도가 200 ∼ 400cpsi인 촉매 슬러리를 얻는다.As a result of the milling process, a catalyst slurry having a solid content of 30 to 50% and a viscosity of 200 to 400 cpsi is obtained.

제 3 공정으로, 상기 제 2 공정에서 얻은 촉매 슬러리에 질소산화물의 제거성능을 향상시키기 위하여 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 전체 담체의 겉보기 부피에 대하여 15 ∼ 25g/ℓ로 첨가하여 최종의 1차 촉매 슬러리를 제조한다.A third step, the first metal oxide in order to improve the removal performance of the nitrogen oxide to the catalyst slurry obtained in the second step (perovskite) is (LaCe) (FeCo) O 3 and (LaSr) (FeCo) O 3 of The selected one is added at 15-25 g / l relative to the apparent volume of the total carrier to prepare the final primary catalyst slurry.

제 4 공정으로, 상기 제 1 ∼ 3 공정을 통하여 제조된 1차 촉매 슬러리에 세라믹 모노리스 담체를 담가서 1차 코팅한 후 건조하고 소성하는 공정을 수행한다.In the fourth process, the ceramic monolith carrier is immersed in the primary catalyst slurry prepared through the first to third processes, followed by primary coating, followed by drying and firing.

본 발명의 코팅은 세그레게이션 효과(segregation effect)를 이용한 2중 코팅방식으로서, 서로 뭉치는 특성을 갖는 화합물 상태를 이용하여 필요부분에 성분을 위치시킴으로써 촉매의 효율을 극대화시킬 수 있으며, 촉매성능을 향상시킬 수 있는 효과이다. The coating of the present invention is a double coating method using a segregation effect, by maximizing the efficiency of the catalyst by locating the components in the necessary portion using the compound state having the property of agglomeration with each other, the catalytic performance The effect can be improved.

다시 말해, 본 발명의 코팅시에 각 성분의 투입방식 및 성분의 적정한 출발물질의 선정으로 딥핑(dipping)형태로도 가능한 원하는 성분을 원하는 위치에 코팅한다. In other words, in the coating of the present invention, the desired component, which can be in the form of dipping, is coated at a desired position by the method of adding each component and selecting an appropriate starting material of the component.

또한, 상기 건조공정은 건조로에서 150℃의 온도로 2시간 동안 수행되고, 상기 소성공정은 전기로에서 450 ∼ 550℃ 온도로 4시간 동안 수행된다. In addition, the drying process is performed for 2 hours at a temperature of 150 ℃ in a drying furnace, the firing process is carried out for 4 hours at 450 ~ 550 ℃ temperature in an electric furnace.

이때, 건조 및 소성조건이 상기 범위를 벗어나면 코팅층의 크랙이 발생하고 유해한 화합물이 형성되는 문제가 있다. At this time, when the drying and firing conditions are out of the above range, there is a problem that cracks occur in the coating layer and harmful compounds are formed.

제 5 공정으로, 팔라듐(Pd) 용액을 알루미나(Al2O3)에 함침시킨 다음, 이를 열고정화법을 이용하여 환원시키는 공정을 수행한다.In a fifth process, a palladium (Pd) solution is impregnated into alumina (Al 2 O 3 ), and then a process of reducing the same using a thermosetting method is performed.

상기 열고정화법의 실시예로서, 500℃의 온도조건에서 3시간 동안 열고정화처리를 수행한다.As an embodiment of the heat-purifying method, the heat-purifying treatment is performed for 3 hours at a temperature of 500 ℃.

제 6 공정으로, 벌크(bulk)의 산화세륨(CeO2) 및 세륨-지르코늄 복합산화물 (CeㆍZr)O2를 첨가하고, 이에 산화프라세오디미움(PrO2)을 첨가 한 후, 혼합용액을 첨가하는 공정을 수행한다.In a sixth process, bulk cerium oxide (CeO 2 ) and cerium-zirconium composite oxide (Ce.Zr) O 2 are added, and praseodymium (PrO 2 ) is added thereto, followed by a mixed solution. The process of adding is carried out.

이때, 상기 산화세륨(CeO2)과 세륨-지르코늄 복합산화물 (CeㆍZr)O2는 서로 혼합하여 첨가하는 바, 그 이유는 구조적 안정화를 유도하여 촉매의 내열성을 향상시키기 위함이다.At this time, the cerium oxide (CeO 2 ) and cerium-zirconium composite oxide (Ce.Zr) O 2 are mixed and added to each other, in order to induce structural stabilization to improve heat resistance of the catalyst.

여기서, 상기 산화세륨(CeO2):세륨-지르코늄 복합산화물 (CeㆍZr)O2의 사용비를 15:85 ∼ 30:70의 중량비로 혼합하여 첨가하는 바, 상기 범위를 벗어나면 내열성 향상에 기여하는 정도가 미흡한 문제가 있어 바람직하지 못하다.Here, the ratio of the cerium oxide (CeO 2 ): cerium-zirconium composite oxide (Ce.Zr) O 2 is added in a weight ratio of 15:85 to 30:70, and when it is out of the above range, the heat resistance is improved. There is a problem of insufficient contribution, which is undesirable.

그리고, 상기 산화세륨(CeO2)과 세륨-지르코늄 복합산화물 (CeㆍZr)O2의 혼합물은 전체 담체의 겉보기 부피에 대하여 15 ∼ 25g/ℓ로 첨가하며, 이 첨가범위를 벗어나면 또한 내열성 향상을 기대하기 어렵다.In addition, the mixture of cerium oxide (CeO 2 ) and cerium-zirconium composite oxide (Ce.Zr) O 2 is added at 15 to 25 g / l based on the apparent volume of the entire carrier, and out of this addition range, the heat resistance is also improved. It is hard to expect.

상기 산화프라세오디미움(PrO2)은 분말상태로 첨가하는 바, 이는 촉매상에서 세륨(Ce)을 안정화시킴으로써 일산화탄소(CO)의 흡착과 산소저장능력을 조절하여 질소산화물(NOx)을 효과적으로 제거한다.The praseodymium oxide (PrO 2 ) is added in the form of a powder, which stabilizes cerium (Ce) on the catalyst, thereby effectively controlling the adsorption and oxygen storage capacity of carbon monoxide (CO) to effectively remove nitrogen oxides (NOx). .

이때, 산화프라세오디미움(PrO2)은 전체 담체의 겉보기 부피에 대하여 2 ∼ 5g/ℓ로 첨가하는 바, 상기 범위 미만으로 소량 첨가하면 내열성 향상 및 질소산화물 정화효율 향상의 효과가 적어지는 문제가 있고, 상기 범위를 초과하여 첨가하면 효과 대비 가격이 높아지는 문제가 있다.At this time, the Praseodymium oxide (PrO 2 ) is added at 2 ~ 5g / ℓ relative to the apparent volume of the entire carrier, when a small amount of less than the above range is less effective in improving the heat resistance and efficiency of nitrogen oxide purification efficiency There is a problem in that the price is increased compared to the effect when added beyond the above range.

상기 혼합용액은 산화바륨, 산화란타늄, 아세트산 및 물을 혼합한 것으로서, 산화바륨은 전체 담체의 겉보기 부피에 대하여 2 ∼ 4g/ℓ, 산화란타늄은 전체 담체의 겉보기 부피에 대하여 0.5 ∼ 2g/ℓ로 첨가하는 것이 알루미나의 내열성, 산화세륨의 특성 향상을 위하여 바람직하다. The mixed solution is a mixture of barium oxide, lanthanum oxide, acetic acid and water, and barium oxide is 2 to 4 g / l based on the total volume of the carrier, and lanthanum oxide is 0.5 to 2 g / l relative to the apparent volume of the carrier. It is preferable to add in order to improve the heat resistance of alumina and the characteristic of cerium oxide.

또한, 아세트산은 전체 담체의 겉보기 부피에 대하여 10 ∼ 20g/ℓ인 것이 pH의 조절에 있어서 바람직한 바, pH는 4.5 이하인 것이 다음의 코팅을 위한 촉매 슬러리 제조에 있어서 점도의 조절을 위하여 바람직하다.In addition, acetic acid is preferably 10 to 20 g / l relative to the apparent volume of the total carrier, and the pH is preferably 4.5 or less for controlling the viscosity in preparing the catalyst slurry for the next coating.

제 7 공정으로, 상기 제 6 공정에서 얻은 혼합물을 볼 밀(ball mill)의 방법으로 슬러리 반응 및 입도를 조절해가면서 밀링하여 입자크기 7㎛ 이하인 것이 전체 입자 중 90% 이상이 되도록 미분한다. In the seventh step, the mixture obtained in the sixth step is milled while controlling the slurry reaction and particle size by a ball mill method, and the fine particles are finely ground to have 90% or more of the total particles having a particle size of 7 μm or less.

이때, 입자크기가 상기 범위를 벗어나도록 밀링하는 경우 활성의 저감 및 내구성이 저감되는 문제가 있다. At this time, when milling the particle size outside the above range there is a problem that the reduction in activity and durability is reduced.

상기 밀링 공정을 수행한 결과, 고형분이 30 ∼ 50%이고 점도가 200 ∼ 400cpsi인 촉매 슬러리를 얻는다.As a result of the milling process, a catalyst slurry having a solid content of 30 to 50% and a viscosity of 200 to 400 cpsi is obtained.

제 8 공정으로, 상기 제 7 공정에서 얻은 촉매 슬러리에 질소산화물의 제거성능을 향상시키기 위하여 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 전체 담체의 겉보기 부피에 대하여 15 ∼ 25g/ℓ로 첨가하여 최종의 2차 촉매 슬러리를 제조한다.The eighth step, the second the (LaCe) (FeCo) O 3 and (LaSr) 7 step catalyst slurry the metal oxide in order to improve the removal performance of the nitrogen oxide in (a perovskite) obtained in (FeCo) O 3 of The selected one is added at 15-25 g / l relative to the apparent volume of the total carrier to produce the final secondary catalyst slurry.

제 9 공정으로, 상기 제 5 ∼ 8 공정을 통하여 제조된 2차 촉매 슬러리에 1차 코팅된 세라믹 모노리스 담체를 담가서 2차 코팅한 후 건조하고 소성하는 공정을 수행한다.In a ninth process, the ceramic monolith carrier first coated in the secondary catalyst slurry prepared through the fifth to eighth processes is immersed in a secondary coating, followed by drying and firing.

상기 건조공정은 건조로에서 150℃의 온도로 2시간 동안 수행되고, 상기 소성공정은 전기로에서 450 ∼ 550℃ 온도로 4시간 동안 수행된다. The drying process is carried out for 2 hours at a temperature of 150 ℃ in a drying furnace, the firing process is carried out for 4 hours at a temperature of 450 ~ 550 ℃ in an electric furnace.

이때, 건조 및 소성조건이 상기 범위를 벗어나면 코팅층의 크랙이 발생하고 유해한 화합물이 형성되는 문제가 있다.At this time, when the drying and firing conditions are out of the above range, there is a problem that cracks occur in the coating layer and harmful compounds are formed.

이와 같이 하여, 상기의 제조공정으로 이루어진 본 발명의 제조방법에 따라 삼원촉매를 제조하게 되면, 완성된 촉매가 보다 향상된 질소산화물 제거성능과 내열성을 가지면서도 고가인 팔라듐의 사용량을 기존의 제조방법에 비해 크게 줄일 수 있다.In this way, when the three-way catalyst is prepared according to the manufacturing method of the present invention made of the above-described manufacturing process, the amount of the expensive palladium used while the finished catalyst has improved nitrogen oxide removal performance and heat resistance, It can be greatly reduced.

상기와 같은 저 팔라듐 함량의 삼원촉매 제조방법은 자동차 배기가스 정화용 촉매 및 산업용 촉매 등의 제조시에 폭넓게 이용될 수 있다. The low palladium content three-way catalyst production method as described above can be widely used in the production of catalysts for automobile exhaust gas purification and industrial catalysts.

이하, 본 발명을 실시예에 의거 더욱 상세하게 설명하는 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by Examples.

실시예Example

팔라듐(Pd)을 전체 담체 겉보기 부피에 대하여 7.0g/ℓ로 사용한 종래의 팔라듐 산화촉매와 비교하기 위하여, 본 실시예에서는 팔라듐(Pd)을 전체 담체 겉보기 부피에 대하여 4.0g/ℓ로 사용한 2중층 코팅구조의 팔라듐 삼원촉매를 제조하였다. In order to compare with the conventional palladium oxide catalyst using palladium (Pd) at 7.0 g / l relative to the total carrier apparent volume, in this embodiment a double layer using palladium (Pd) at 4.0 g / l relative to the total carrier apparent volume A palladium tertiary catalyst with a coating structure was prepared.

우선 1차 촉매 슬러리를 제조하기 위하여, 먼저 알루미나(Al2O3) 50g에 벌크(bulk)의 산화세륨(CeO2) 3.75g과 세륨-지르코늄 복합산화물 (CeㆍZr)O2 11.25g의 혼합물을 첨가하고, 이에 산화프라세오디미움(PrO2) 3.0g을 첨가하였다.First, in order to prepare a primary catalyst slurry, a mixture of 3.75 g of bulk cerium oxide (CeO 2 ) and 11.25 g of cerium-zirconium compound oxide (Ce.Zr) O 2 was first mixed with 50 g of alumina (Al 2 O 3 ). To this was added 3.0 g of praseodymium oxide (PrO 2 ).

또한, 이에 산화바륨 2.8g, 산화란타늄 0.67g, 아세트산 13.5g 및 물 187.5㎖를 혼합한 용액을 넣고, 아세트산을 사용하여 pH를 4.2로 맞추었다. In addition, a solution containing 2.8 g of barium oxide, 0.67 g of lanthanum oxide, 13.5 g of acetic acid, and 187.5 ml of water was added thereto, and the pH was adjusted to 4.2 using acetic acid.

그리고, 볼 밀(ball mill)의 방법으로 입자크기를 9㎛ 이하로 밀링하고, 이후 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 전체 담체의 겉보기 부피에 대하여 22.5g/ℓ만큼 분말형태로 추가 투입한 후, 최종적으로 입자크기가 7㎛ 이하인 것이 전체 입자 중에서 94%가 되도록 밀링하여 고형분이 40%이고 점도가 300cpsi인 최종의 1차 촉매 슬러리를 얻었다.Then, the particle size is milled to 9 μm or less by a ball mill method, and then a metal oxide (perovskite) selected from (LaCe (FeCo) O 3 and (LaSr) (FeCo) O 3 is selected. One was added in powder form by 22.5 g / L based on the total volume of the whole carrier, and finally, the final particle size was 40% and the viscosity was 300 cpsi. The primary catalyst slurry of was obtained.

여기에, 세라믹 모노리스 담체를 담가서 코팅한 후, 건조로에서 150℃의 온도로 2시간 동안 건조하고, 전기로에서 450 ∼ 550℃의 온도로 4시간 동안 소성하였다.Here, the ceramic monolith carrier was dipped and coated, and then dried in a drying furnace at a temperature of 150 ° C. for 2 hours and calcined in an electric furnace at a temperature of 450 to 550 ° C. for 4 hours.

다음으로 2차 촉매 슬러리를 제조하기 위하여, 먼저 팔라듐(Pd) 4.0g이 들어있는 용액을 알루미나(Al2O3) 50g에 함침시킨 다음, 500℃의 온도조건에서 3시간 동안 열고정화처리하여 환원시켰다.Next, to prepare a secondary catalyst slurry, first, a solution containing 4.0 g of palladium (Pd) was impregnated into 50 g of alumina (Al 2 O 3 ), and then reduced by thermal purification for 3 hours at a temperature of 500 ° C. I was.

그 다음, 산화세륨(CeO2) 3.75g 및 세륨-지르코늄 복합산화물 (CeㆍZr)O2 11.25g을 혼합하여 첨가하고, 이에 산화프라세오디미움(PrO2) 3.0g을 첨가하였다.Then, 3.75 g of cerium oxide (CeO 2 ) and 11.25 g of cerium-zirconium composite oxide (Ce.Zr) O 2 were mixed and added thereto, and 3.0 g of praseodymium (PrO 2 ) was added thereto.

또한, 이에 산화바륨 2.8g, 산화란타늄 0.67g, 아세트산 13.5g 및 물 187.5㎖를 혼합한 용액을 넣고, 아세트산을 사용하여 pH를 4.2로 맞추었다. In addition, a solution containing 2.8 g of barium oxide, 0.67 g of lanthanum oxide, 13.5 g of acetic acid, and 187.5 ml of water was added thereto, and the pH was adjusted to 4.2 using acetic acid.

그리고, 볼 밀(ball mill)의 방법으로 입자크기를 9㎛ 이하로 밀링하고, 이후 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 전체 담체의 겉보기 부피에 대하여 17.5g/ℓ만큼 분말형태로 투입한 후, 최종적으로 입자크기가 7㎛ 이하인 것이 전체 입자 중에서 94%가 되도록 밀링하여 고형분이 40%이고 점도가 300cpsi인 최종의 2차 촉매 슬러리를 얻었다.Then, the particle size is milled to 9 μm or less by a ball mill method, and then a metal oxide (perovskite) selected from (LaCe (FeCo) O 3 and (LaSr) (FeCo) O 3 is selected. One was charged in powder form by 17.5 g / L based on the total volume of the total carrier, and finally, the particle size was 7 μm or less, milled to 94% of the total particles, and the final content was 40% solids and 300 cpsi. A secondary catalyst slurry was obtained.

여기에, 1차 코팅된 세라믹 모노리스 담체를 담가서 코팅한 후, 건조로에서 150℃의 온도로 2시간 동안 건조하고, 전기로에서 450 ∼ 550℃의 온도로 4시간 동안 소성하여, 2중층 코팅구조의 팔라듐 삼원촉매를 완성하였다. The first coated ceramic monolith carrier was dipped and coated therein, followed by drying for 2 hours at a temperature of 150 ° C. in a drying furnace, and firing at a temperature of 450 to 550 ° C. for 4 hours in an electric furnace, thereby forming a palladium having a double layer coating structure. The three-way catalyst was completed.

비교예Comparative example

팔라듐(Pd)을 전체 담체 겉보기 부피에 대하여 4.0g/ℓ로 사용한 본 발명의 저 팔라듐 함량의 산화촉매와 비교하기 위하여, 비교예에서는 팔라듐(Pd)을 전체 담체 겉보기 부피에 대하여 7.0g/ℓ로 사용한 단일층 코팅구조의 팔라듐 삼원촉매를 공지된 방법으로 제조하였다.In order to compare the palladium (Pd) to the oxidation catalyst of the low palladium content of the present invention using 4.0 g / l of the total carrier apparent volume, in the comparative example, palladium (Pd) was 7.0 g / l of the total carrier apparent volume. The used palladium terpolymer was prepared by a known method.

먼저, 팔라듐(Pd) 7.0g이 들어있는 용액을 알루미나(Al2O3) 100g에 함침시킨 다음, 하이드라진 하이드레이트(hydrazinehydrate)를 팔라듐 1g 당 1.66㎖가 되도록 적가하여 환원시켰다.First, a solution containing 7.0 g of palladium (Pd) was impregnated into 100 g of alumina (Al 2 O 3 ), and then hydrazine hydrate (hydrazinehydrate) was added dropwise to 1.66 ml per 1 g of palladium.

그 다음, 산화세륨(CeO2) 30g을 첨가하고, 이에 산화바륨 5.6g, 산화란타늄 1.33g, 아세트산 27.3g 및 물 375㎖를 혼합한 용액을 넣고, 아세트산을 사용하여 pH를 4.2로 맞추었다.Then, 30 g of cerium oxide (CeO 2 ) was added, and a solution containing 5.6 g of barium oxide, 1.33 g of lanthanum oxide, 27.3 g of acetic acid, and 375 ml of water was added thereto, and the pH was adjusted to 4.2 using acetic acid.

그리고, 볼 밀(ball mill)의 방법으로 입자크기 7㎛ 이하인 것이 전체 입자 중 94%가 되도록 밀링하여 고형분 40%이고 점도가 300cpsi인 최종의 촉매 슬러리를 얻었다. The final catalyst slurry having a solid content of 40% and a viscosity of 300 cpsi was obtained by milling the particle size of 7 µm or less by 94% of the total particles by a ball mill method.

여기에, 세라믹 모노리스 담체를 담가서 코팅한 후, 건조로에서 150℃의 온도로 2시간 동안 건조하고, 전기로에서 450 ∼ 550℃의 온도로 4시간 동안 소성하여, 기존의 단일층 팔라듐 삼원촉매를 완성하였다. Here, the ceramic monolith carrier was immersed and coated, then dried at a temperature of 150 ° C. for 2 hours in a drying furnace, and calcined at 450 to 550 ° C. for 4 hours in an electric furnace to complete a conventional single layer palladium terpolymer. .

상기 실시예와 비교예에 따라 제조된 촉매를 비교 시험하여 그 결과를 다음의 표 1에 나타내었다.The catalyst prepared according to the above Example and Comparative Example was tested and the results are shown in Table 1 below.

상기 표 1에서, 저온활성화온도는 50% 정화되는 온도로 상기 측정된 온도가 낮을수록 탄화수소, 일산화탄소, 질소산화물의 정화효능이 우수함을 의미하며, 삼원특성은 3가지 성분의 제거성능을 나타내는 것으로 높을수록 좋은 특성을 나타낸다. In Table 1, the low temperature activation temperature is a 50% purification temperature means that the lower the measured temperature, the better the purification efficiency of hydrocarbons, carbon monoxide, nitrogen oxides, the three-way characteristic is high to indicate the removal performance of the three components The better the property is.

또한, 950℃ 에이징은 대기 중에서 950℃의 전기로 분위기로 140시간 동안 실시한 것의 결과이다. In addition, 950 degreeC aging is the result of having carried out for 140 hours in the atmosphere of 950 degreeC electric furnace in air | atmosphere.

비교 시험의 결과로서, 상기 표 1에 나타낸 바와 같이, 본 발명의 실시예에 따라 제조된 삼원촉매는, 비교예에 비해 팔라듐의 함량을 크게 줄여 제조하였음에도 불구하고, 탄화수소, 일산화탄소, 질소산화물의 정화효능과 제거성능이 비교예의 삼원촉매에 비해 우수한 수준임을 알 수 있었다.As a result of the comparative test, as shown in Table 1, the three-way catalyst prepared according to the embodiment of the present invention, despite the significantly reduced palladium content compared to the comparative example prepared, purifying hydrocarbons, carbon monoxide, nitrogen oxides Efficacy and removal performance was found to be superior to the three-way catalyst of the comparative example.

이와 같이 하여, 본 발명의 제조방법을 통해 삼원촉매를 제조하면, 완성된 촉매가 보다 향상된 질소산화물 제거성능과 내열성을 가지면서도 고가인 팔라듐의 사용량을 기존의 제조방법에 비해 크게 줄일 수 있다.In this way, when the three-way catalyst is produced through the production method of the present invention, the amount of the expensive palladium can be significantly reduced compared to the conventional production method while the finished catalyst has more improved nitrogen oxide removal performance and heat resistance.

이상에서 상술한 바와 같이, 본 발명에 따른 2중층 코팅구조의 팔라듐 삼원촉매 제조방법에 의하면, 완성된 촉매가 촉매성능을 더욱 더 향상시킬 수 있는 2중층 코팅구조를 가지는 것으로서, 보다 향상된 질소산화물 제거성능과 내열성을 가지면서도 고가인 팔라듐의 사용량을 기존의 제조방법에 비해 크게 줄여 제조할 수 있는 효과가 있고, 제조원가 절감의 경제적인 효과로 인해 본 발명에 따른 2중층 코팅구조의 팔라듐 삼원촉매 제조방법은 자동차 배기가스 정화용 촉매 및 산업용 촉매 등의 제조시에 폭넓게 이용될 수 있다.As described above, according to the method for preparing a palladium three-way catalyst having a double-layer coating structure according to the present invention, the finished catalyst has a double-layer coating structure that can further improve the catalytic performance, thereby further improving nitrogen oxide removal. Palladium tri-catalyst manufacturing method of the double-layer coating structure according to the present invention has the effect of reducing the amount of expensive palladium used compared to the existing manufacturing method while having the performance and heat resistance, and economical effect of manufacturing cost reduction Can be widely used in the manufacture of catalysts for automobile exhaust gas purification and industrial catalysts.

Claims (1)

알루미나, 산화세륨 및 아래의 혼합용액을 사용하여 1차 및 2차 촉매 슬러리를 제조한 다음, 상기 1차 촉매 슬러리를 세라믹 모노리스 담체에 1차 코팅하고, 상기 2차 촉매 슬러리를 상기 1차 코팅 후 건조 및 소성시킨 세라믹 모노리스 담체에 2차 코팅하여 2중층 코팅구조의 팔라듐 삼원촉매를 제조하는 방법에 있어서,After preparing the first and second catalyst slurry using alumina, cerium oxide and the following mixed solution, the first catalyst slurry is first coated on a ceramic monolith carrier, and the second catalyst slurry is first coated after In the method of preparing a palladium tertiary catalyst having a double coating structure by secondary coating on a dried and calcined ceramic monolith carrier, 상기 1차 촉매 슬러리는 알루미나에 산화세륨:세륨-지르코늄 복합산화물 (CeㆍZr)O2의 사용비를 15:85 ∼ 30:70의 중량비로 혼합하여 전체 담체 겉보기 부피에 대하여 15 ∼ 25g/ℓ로 첨가하고, 이후 산화프라세오디미움을 전체 담체 겉보기 부피에 대하여 2 ∼ 5g/ℓ로 첨가한 다음, 아래의 혼합용액 첨가 및 반응 이후 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 전체 담체의 겉보기 부피에 대하여 15 ∼ 25g/ℓ만큼 첨가하여 제조하고; 상기 2차 촉매 슬러리는 팔라듐 용액이 함침된 알루미나를 환원 후 산화세륨:세륨-지르코늄 복합산화물 (CeㆍZr)O2의 사용비를 15:85 ∼ 30:70의 중량비로 혼합하여 전체 담체 겉보기 부피에 대하여 15 ∼ 25g/ℓ로 첨가하고, 이에 산화프라세오디미움을 전체 담체 겉보기 부피에 대하여 2 ∼ 5g/ℓ로 첨가한 다음, 아래의 혼합용액 첨가 및 반응 이후 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3와 (LaSr)(FeCo)O3 중 선택된 하나를 전체 담체의 겉보기 부피에 대하여 15 ∼ 25g/ℓ만큼 첨가하여 제조하는 것을 특징으로 하는 2중층 코팅구조의 팔라듐 삼원촉매 제조방법.The primary catalyst slurry is a mixture of alumina and cerium oxide: cerium-zirconium composite oxide (Ce.Zr) O 2 in a weight ratio of 15:85 to 30:70, and is 15 to 25 g / l based on the total carrier apparent volume. Praseodymium oxide was added at a concentration of 2 to 5 g / l based on the total carrier apparent volume, followed by addition of the following mixed solution and the reaction (LaCe) (FeCo), which is a metal oxide (perovskite) Prepared by adding one selected from O 3 and (LaSr) (FeCo) O 3 by 15 to 25 g / l based on the total volume of the total carrier; The secondary catalyst slurry was prepared by mixing alumina impregnated with a palladium solution with a ratio of cerium oxide: cerium-zirconium composite oxide (Ce.Zr) O 2 at a weight ratio of 15:85 to 30:70, and the total carrier apparent volume. 15 to 25 g / l, and praseodymium oxide was added to 2 to 5 g / l based on the total carrier apparent volume, followed by the addition of the following mixed solution and metal oxide (perovskite) a (LaCe) (FeCo) O 3 and (LaSr) (FeCo) O against 3 of the one selected in the apparent volume of the entire carrier 15 ~ 25g / ℓ of palladium double-layer coating structure, characterized in that the addition produced by three won Catalyst preparation method. 혼합용액 : 산화바륨 2 ∼ 4g/ℓ, 산화란타늄 0.5 ∼ 2g/ℓ및 아세트산 10 ∼ 20g/ℓ의 농도비로 포함되어 이루어진 혼합용액Mixed solution: A mixed solution containing 2 to 4 g / l of barium oxide, 0.5 to 2 g / l of lanthanum oxide and 10 to 20 g / l of acetic acid
KR10-2002-0033204A 2002-06-14 2002-06-14 Method for manufacturing double layer coated Pd only three way catalyst KR100494542B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0033204A KR100494542B1 (en) 2002-06-14 2002-06-14 Method for manufacturing double layer coated Pd only three way catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0033204A KR100494542B1 (en) 2002-06-14 2002-06-14 Method for manufacturing double layer coated Pd only three way catalyst

Publications (2)

Publication Number Publication Date
KR20030095674A KR20030095674A (en) 2003-12-24
KR100494542B1 true KR100494542B1 (en) 2005-06-13

Family

ID=32386984

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0033204A KR100494542B1 (en) 2002-06-14 2002-06-14 Method for manufacturing double layer coated Pd only three way catalyst

Country Status (1)

Country Link
KR (1) KR100494542B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110142039B (en) * 2019-06-12 2022-03-01 中国科学院宁波材料技术与工程研究所 Preparation method of catalyst and application of catalyst in metal-air battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110335A (en) * 1983-11-21 1985-06-15 Nissan Motor Co Ltd Catalyst for purifying exhaust gas
JPH07124468A (en) * 1993-11-01 1995-05-16 Nissan Motor Co Ltd Production of hydrocarbon adsorbent and adsorption catalyst
JPH0938489A (en) * 1995-07-27 1997-02-10 Mazda Motor Corp Catalyst for purification of exhaust gas from engine and its production
JPH1057763A (en) * 1996-08-13 1998-03-03 Toyota Motor Corp Catalyst for purification of exhaust gas
KR19980026799A (en) * 1996-10-11 1998-07-15 박병재 Method for preparing palladium (Pd) terpolymer
KR20030008713A (en) * 2001-07-19 2003-01-29 현대자동차주식회사 High Performance Pd only Three way Catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110335A (en) * 1983-11-21 1985-06-15 Nissan Motor Co Ltd Catalyst for purifying exhaust gas
JPH07124468A (en) * 1993-11-01 1995-05-16 Nissan Motor Co Ltd Production of hydrocarbon adsorbent and adsorption catalyst
JPH0938489A (en) * 1995-07-27 1997-02-10 Mazda Motor Corp Catalyst for purification of exhaust gas from engine and its production
JPH1057763A (en) * 1996-08-13 1998-03-03 Toyota Motor Corp Catalyst for purification of exhaust gas
KR19980026799A (en) * 1996-10-11 1998-07-15 박병재 Method for preparing palladium (Pd) terpolymer
KR20030008713A (en) * 2001-07-19 2003-01-29 현대자동차주식회사 High Performance Pd only Three way Catalyst

Also Published As

Publication number Publication date
KR20030095674A (en) 2003-12-24

Similar Documents

Publication Publication Date Title
KR100527943B1 (en) Method for manufacturing double layer coated Pd only three way catalyst
JP5361855B2 (en) Palladium-rhodium single layer catalyst
EP2542339B1 (en) Carbon monoxide conversion catalyst
JP4148997B2 (en) Method for producing ternary conversion catalyst
US5814576A (en) Catalyst for purifying exhaust gas and method of producing same
US9216382B2 (en) Methods for variation of support oxide materials for ZPGM oxidation catalysts and systems using same
EP1810738B1 (en) Catalyst for exhaust gas purification
EP2532422A2 (en) Catalyst compositions
JPH05237390A (en) Catalyst for purification of exhaust gas
WO2013031288A1 (en) Catalyst
US6043188A (en) Process for manufacturing palladium ternary catalyst
KR100410952B1 (en) High Performance Pd only Three way Catalyst
KR100494543B1 (en) Method for manufacturing low precious metal loaded Pt-Pd-Rh three way catalyst
KR100494542B1 (en) Method for manufacturing double layer coated Pd only three way catalyst
CN112246251B (en) Natural gas automobile exhaust purification catalyst and preparation method thereof
KR100535009B1 (en) Method for manufacturing double layer coated Pd only three way catalyst
KR100461112B1 (en) High Performance, Low precious metal loading Pd only Three way Catalyst
KR100488779B1 (en) Method for manufacturing low precious metal loading Pd only three way catalyst
KR100488853B1 (en) Method for manufacturing double layer coated Pd-Rh three way catalyst
KR100235029B1 (en) Preparation of pd-three way catalyst
KR100410942B1 (en) A process of preparing the High porous Pd only Three way Catalyst
KR100384015B1 (en) Improved NOx conversion and thermal durable Pd only three way catalyst
JP3314301B2 (en) Method for producing palladium (Pd) three-way catalyst
KR100410801B1 (en) High porous and HC removal Pd only Three way Catalyst
JPH06210174A (en) Catalyst for purification of exhaust gas and its production

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080530

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee