JPS63205141A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPS63205141A
JPS63205141A JP62038074A JP3807487A JPS63205141A JP S63205141 A JPS63205141 A JP S63205141A JP 62038074 A JP62038074 A JP 62038074A JP 3807487 A JP3807487 A JP 3807487A JP S63205141 A JPS63205141 A JP S63205141A
Authority
JP
Japan
Prior art keywords
carrier
coating layer
catalyst
activated alumina
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62038074A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Eto
江渡 義行
Toru Sekiba
徹 関場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP62038074A priority Critical patent/JPS63205141A/en
Publication of JPS63205141A publication Critical patent/JPS63205141A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To efficiently purify HC, CO and NOx, by forming an exhaust gas purifying catalyst by supporting Pt or Pt and Rh being a catalytically active metal by the first coating layer of a carrier and supporting Pd and Rh by the second coating layer thereof. CONSTITUTION:An activated alumina carrier and cerium oxide are mixed with a nitric acid acidic bohemite alumina sol and the resulting mixture is ground to obtain a slurry which is, in turn, applied to the surface of a monolithic carrier base material based on cordierite. After drying, the coated base material is baked at 650-850 deg.C and, subsequently, Pt or Pt and Rh is supported by the carrier and the supported carrier is baked at 550-750 deg.C to form the first coating layer. Next, the second coating layer, wherein pores having a pore size peak of 500-1,000Angstrom are imparted to a coating layer consisting of activated alumina having a pore size peak of 100Angstrom or less, rare earth metal oxide and zirconium oxide and Pd and Rh are supported by said coating layer, is formed on the first coating layer.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、自動車等の内燃機関から排出される排ガス
中の有害成分である炭化水素(HC)、−酸化炭素(C
O)、窒素酸化物(NOx)を効率よく浄化する排ガス
浄化用触媒に関する。
Detailed Description of the Invention (Field of Industrial Application) This invention is directed to the treatment of hydrocarbons (HC) and -carbon oxides (C
O), relates to an exhaust gas purifying catalyst that efficiently purifies nitrogen oxides (NOx).

(従来の技術) 従来、排ガス中のHC,CoおよびNOxを浄化する排
ガス浄化用触媒は多数提案されており、なかでもセリウ
ムを活性アルミナに適当量添加させると耐熱性が著しく
向上するところから、例えば、特開昭52−11677
9号公報、特開昭54−159391号公報に開示され
ているように、あらかじめセリウムを含有させた活性ア
ルミナ粉末をモノリス担体基材の表面に付着させた後に
、白金、ロジウム、パラジウム、等の単独又は組み合せ
てなる触媒金属を担持させた触媒が提案されている。
(Prior Art) Many exhaust gas purification catalysts have been proposed to purify HC, Co, and NOx in exhaust gas, and among them, heat resistance is significantly improved when an appropriate amount of cerium is added to activated alumina. For example, JP-A-52-11677
As disclosed in Japanese Patent Application Laid-open No. 54-159391, after adhering activated alumina powder containing cerium to the surface of a monolithic carrier base material, platinum, rhodium, palladium, etc. Catalysts have been proposed in which catalytic metals, singly or in combination, are supported.

(発明が解決しようとする問題点) しかしながら、このような従来の排ガス浄化用触媒にあ
っては、反応ガスの拡散が、活性アルミナの持つ細孔に
支配される。一般に、活性アルミナの細孔はミクロポア
であるため、分子径の大きな炭化水素等のガスの拡散が
不十分となっていた。
(Problems to be Solved by the Invention) However, in such conventional exhaust gas purifying catalysts, the diffusion of reaction gas is controlled by the pores of activated alumina. In general, the pores of activated alumina are micropores, so that gases such as hydrocarbons with large molecular diameters do not diffuse sufficiently.

したがって、十分な活性点の活用が出来ず、貴金属量を
増加させて対応することになる結果触媒のコストが上昇
するという問題点があった。
Therefore, there is a problem in that the active sites cannot be fully utilized and the amount of noble metal has to be increased to cope with the problem, resulting in an increase in the cost of the catalyst.

(問題点を解決するための手段) このような従来の問題点を解決したこの発明の排ガス浄
化用触媒は、担体基材上に、細孔径ビークが100Å以
下である活性アルミナと希土類金属酸化物から成るコー
ト層に好ましくは塩化白金酸又は塩化白金酸と塩化ロジ
ウムを用い、白金または白金とロジウムが担持されてい
る第1コート層と、この層上に、細孔径ビークが100
Å以下である活性アルミナと希土類金属酸化物および酸
化ジルコニウムから成るコート層に500〜1000人
の細孔径ピークを持つ細孔が付与され、好ましくはジニ
トロジアンミンパラジウムと硝酸ロジウムを用いてパラ
ジウムとロジウムが担持されている第2コート層を備え
たことを特徴とする。
(Means for Solving the Problems) The exhaust gas purifying catalyst of the present invention, which solves these conventional problems, comprises activated alumina and rare earth metal oxides having a pore diameter peak of 100 Å or less on a carrier base material. Preferably, a coating layer consisting of chloroplatinic acid or chloroplatinic acid and rhodium chloride is used, and a first coating layer on which platinum or platinum and rhodium is supported;
Pores having a pore size peak of 500 to 1000 people are imparted to a coating layer consisting of activated alumina, rare earth metal oxide, and zirconium oxide, each having a diameter of 500 to 1000 μm. It is characterized by comprising a supported second coat layer.

以下、この発明を説明する。This invention will be explained below.

この発明の触媒は、担体基材上に第1コート層として細
孔径ピークが100Å以下である活性アルミナと希土類
金属酸化物から形成され、白金または白金とロジウムが
担持されて成るコート層を備える。このコート層は次の
方法で設けることができる。即ち細孔径ピーク(最大頻
度直径)が10・0Å以下である活性アルミナ粒状又は
粉末状担体に、希土類金属、例えばセリウム、ランタン
、ネオジム、プラセオジム等の1種又は数種の混合硝酸
塩の水溶液を用い、浸漬法等で所定量を担持させ乾燥し
た後、例えば空気気流中600〜650°Cで、1.5
〜2時間焼成して、希土類酸化物を含む100Å以下の
ミクロボアを有する活性アルミナを得る。
The catalyst of the present invention includes a first coat layer on a carrier base material, which is formed from activated alumina and a rare earth metal oxide having a pore size peak of 100 Å or less, and supports platinum or platinum and rhodium. This coat layer can be provided by the following method. That is, an aqueous solution of one or several mixed nitrates of rare earth metals, such as cerium, lanthanum, neodymium, praseodymium, etc., is used on an activated alumina granular or powdered carrier having a pore size peak (maximum frequency diameter) of 10.0 Å or less. After supporting a predetermined amount by a dipping method or the like and drying, for example, at 600 to 650°C in an air stream, 1.5
Calcinate for ~2 hours to obtain activated alumina with micropores of less than 100 Å containing rare earth oxides.

上記活性アルミナ担体と酸化セリウム(CeO□=セリ
ア)とを硝酸酸性ベーマイトアルミナゾルと混合粉砕し
て得られるスラリーを、コーディエライト質を主成分と
するモノリス担体基材表面に塗布する。乾燥終了後、例
えば空気雰囲気中650〜850°Cで焼成してコーテ
ィング担体を得る。得られたコーティング担体に、塩化
白金酸または塩化白金酸と塩化ロジウムとの混合水溶液
を用い、浸漬法等で、白金、または白金とロジウムを担
持させ、乾燥後、例えば燃焼ガス気流中で、550〜7
50°Cの如き温度で、0.5〜2時間焼成して触媒と
する。
A slurry obtained by mixing and pulverizing the above-mentioned activated alumina carrier and cerium oxide (CeO□=ceria) with a nitric acidic boehmite alumina sol is applied to the surface of a monolith carrier base material mainly composed of cordierite. After drying, the coated carrier is obtained by firing at 650 to 850°C in an air atmosphere, for example. Platinum or platinum and rhodium is supported on the obtained coating carrier by a dipping method using chloroplatinic acid or a mixed aqueous solution of chloroplatinic acid and rhodium chloride, and after drying, for example, in a combustion gas stream, ~7
The catalyst is calcined at a temperature such as 50° C. for 0.5 to 2 hours.

次にこの発明の触媒においては、第1コート層上に、細
孔径ピークが100Å以下である活性アルミナと希土類
金属酸化物および酸化ジルコニウムから成るコート層に
500〜1000人の細孔径ビークを持つ細孔が付与さ
れ、パラジウムとロジウムが担持された第2コート層を
備える。
Next, in the catalyst of the present invention, a coating layer consisting of activated alumina, rare earth metal oxide, and zirconium oxide with a pore size peak of 100 Å or less is coated on the first coat layer. A second coat layer is provided with holes and supports palladium and rhodium.

このコート層は次の方法でもけることができる。This coat layer can also be formed by the following method.

即ち、細孔径ビークが100Å以下である活性アルミナ
に、前記希土類金属の硝酸塩溶液を用い、浸漬法等によ
り希土類金属を所定量担持したのち、乾燥焼成して、希
土類金属酸化物を含有する活性アルミナ担体を得る。得
られた活性アルミナ担体と、水酸化ランタン粉末、酸化
ジルコニウム粉末、およびカーボンブラックとを、硝酸
酸性ベーマイトアルミナゾルと混合粉砕して得られるス
ラリーを前記触媒に塗布する。乾燥終了後、例えば空気
気流中、室温から昇温し、650〜850°Cで2時間
焼成したのち、ジニトロジアンミンパラジウム硝酸溶液
と、硝酸ロジウム溶液との混合溶液を用い、浸漬法等で
所定量のパラジウム、ロジウムを担持させ、乾燥後、例
えば燃焼ガス気流中で、550〜750°Cの如き温度
で、0.5〜2時間焼成して触媒とする。尚、焼成は、
昇温徐冷パターンを用いることが望ましい。
That is, activated alumina having a pore size peak of 100 Å or less is loaded with a predetermined amount of rare earth metal by a dipping method using the rare earth metal nitrate solution, and then dried and fired to obtain activated alumina containing rare earth metal oxide. Obtain a carrier. A slurry obtained by mixing and pulverizing the obtained activated alumina carrier, lanthanum hydroxide powder, zirconium oxide powder, and carbon black with nitric acidic boehmite alumina sol is applied to the catalyst. After drying, for example, the temperature is raised from room temperature in an air stream and baked at 650 to 850°C for 2 hours, followed by a predetermined amount using a dipping method or the like using a mixed solution of dinitrodiammine palladium nitric acid solution and rhodium nitrate solution. palladium or rhodium is supported, and after drying, it is calcined in a combustion gas stream at a temperature of 550 to 750°C for 0.5 to 2 hours to obtain a catalyst. In addition, the firing is
It is desirable to use a heating and slow cooling pattern.

γ−アルミナ、δ−アルミナ等の活性アルミナに希土類
金属酸化物を担持させると、活性アルミナの耐熱性は著
しく向上することが知られている。
It is known that when activated alumina such as γ-alumina and δ-alumina is supported with a rare earth metal oxide, the heat resistance of the activated alumina is significantly improved.

特に、セリウム、ランタン、プラセオジム、ネオジム、
イツトリウム等はその効果が著しく、活性アルミナのα
−アルミナへの変化を抑えると同時に、ミクロボアの失
落が起りにくくなる。この結果、高比表面積を維持し、
貴金属の高分散を維持することになる。活性アルミナへ
の希土類金属の担持量は、金属換算で対アルミナ比1重
量%未満では、耐熱性向上の効果が少なく、また5重量
%を超えると耐熱性は向上するが、相対的にアルミナの
比表面積を低下させ、同時にアルミナの特にミクロボア
を減少させることになり好ましくない。
In particular, cerium, lanthanum, praseodymium, neodymium,
Yztrium etc. has a remarkable effect, and the α of activated alumina
- At the same time as suppressing the change to alumina, the loss of micropores becomes less likely to occur. As a result, a high specific surface area is maintained,
High dispersion of precious metals will be maintained. If the amount of rare earth metal supported on activated alumina is less than 1% by weight relative to the alumina in terms of metal, the effect of improving heat resistance will be small, and if it exceeds 5% by weight, heat resistance will improve, but relatively This is undesirable because it lowers the specific surface area and at the same time particularly reduces the micropores of the alumina.

従って希土類金属の担持量は、金属換算で対アルミナ比
1〜5重量%、好ましくは2〜3重量%とするのが良い
Therefore, the amount of rare earth metal supported is preferably 1 to 5% by weight, preferably 2 to 3% by weight relative to alumina in terms of metal.

この発明においては、さらに希土類金属酸化物の1種ま
たは数種を希土類金属酸化物の持つ酸素(0、)ストレ
ージ効果および水素(H2)活性化効果を、触媒担体に
付与する目的で添加する。加えて、ロジウムが、活性ア
ルミナと反応を起し、アルミン酸ロジウムといわれる、
複合体を形成し、失活するため、これを防ぐ目的で酸化
ジルコニウムを添加する。この結果、活性アルミナの高
比表面積と、希土類金属酸化物の持つo2ストレージ効
果、Hz活性化効果、および酸化ジルコニウムによるロ
ジウムの有効活用とが、触媒の徘ガス浄化性能向上に寄
与する効果は大であり、特に自動車排ガス雰囲気がリッ
チ側(燃料過剰側)となった場合でも、希土類金属酸化
物の持つOtストレージ効果により安定した高浄化性能
を示すようになる。これに加えて、希土類金属酸化物の
持つH2活性化効果により、特に触媒温度が高温となる
リーン雰囲気(空気過剰側)でのNOxの高浄化性能を
示すようになる。尚、活性アルミナと混合する希土類金
属酸化物粉末は、金属換算(例えばセリウムとして)5
0重量%より−多くしても、これによる性能向上効果は
ほとんどなく、また5重量%未満では02ストレージ効
果、H2活性化効果が発明者の要求性能と比較して不十
分であるので、5〜50重景%の範囲にすることが望ま
しい。上記Otストレージ効果は、イツトリウム、セリ
ウム、プラセオジム、テルビウム等の酸化物が、H2活
性化効果は、ランタン、ネオジム、サマリウム等の酸化
物が持つ特性である。また、ロジウムの有効活用を図る
目的で用いる酸化ジルコニウムは、金属換算20重量%
より多くしても、これによる性能向上効果はほとんどな
く、また3重量%未満では、ロジウムの安定化に対して
の効果が不十分であるので、3〜20重量%の範囲にす
ることが望ましい。
In the present invention, one or more rare earth metal oxides are further added to the catalyst carrier for the purpose of imparting the oxygen (0,) storage effect and hydrogen (H2) activation effect of the rare earth metal oxides. In addition, rhodium reacts with activated alumina to form rhodium aluminate.
Zirconium oxide is added to prevent the formation of complexes and deactivation. As a result, the high specific surface area of activated alumina, the O2 storage effect and Hz activation effect of rare earth metal oxides, and the effective utilization of rhodium by zirconium oxide have a large effect on improving the wandering gas purification performance of the catalyst. In particular, even when the automobile exhaust gas atmosphere becomes rich (excessive fuel side), stable high purification performance is exhibited due to the Ot storage effect of rare earth metal oxides. In addition, due to the H2 activation effect of the rare earth metal oxide, it exhibits high NOx purification performance, especially in a lean atmosphere (air excess side) where the catalyst temperature is high. The rare earth metal oxide powder to be mixed with activated alumina has a metal equivalent (for example, as cerium) of 5.
Even if the amount is greater than 0% by weight, there is almost no performance improvement effect, and if it is less than 5% by weight, the 02 storage effect and H2 activation effect are insufficient compared to the performance required by the inventor. It is desirable to set it in the range of 50% to 50%. The Ot storage effect is a property of oxides such as yttrium, cerium, praseodymium, and terbium, and the H2 activation effect is a property of oxides such as lanthanum, neodymium, and samarium. In addition, zirconium oxide used for the purpose of effectively utilizing rhodium is 20% by weight in terms of metal.
Even if the amount is larger, there is almost no performance improvement effect, and if it is less than 3% by weight, the effect on stabilizing rhodium is insufficient, so it is desirable to keep it in the range of 3 to 20% by weight. .

この発明の触媒は、上述の効果を持つコーティング担体
に、特に炭化水素(IC)のコート層内拡散を十分に行
うために有効な細孔を付与している。この細孔の付与は
カーボンブラックを用いて行うのが好ましい。カーボン
ブラックをスラリーと混合し、焼成によって付与される
細孔は、用いるカーボンブラックの種類および量に支配
される。
The catalyst of the present invention provides a coated carrier having the above-mentioned effects with pores particularly effective for sufficient diffusion of hydrocarbons (IC) within the coated layer. This provision of pores is preferably carried out using carbon black. The pores created by mixing carbon black with a slurry and firing are controlled by the type and amount of carbon black used.

この際カーボンブラックに代る他の炭素質物質を用いる
場合、通常、固体状の炭素質は、物理的にあまり微粉化
でき難く、得られる細孔は普通期待するよりもかなり大
きなものになってしまう。また対スラリーに対し10重
量%以上の量を添加しようとすると、当然ながら、得ら
れるコート層の強度が弱まり、実用に供し得なくなり、
又この様に多量の炭素質を焼成除去する際の温度制御は
非常に困難になる。これに対しカーボンブラックは、極
めて微細かつ均一性の粉末であり、特にその微細構造に
特徴がある。すなわち、カーボンブラックは単一の単純
な球から成っているのではなく、個々の粒子が凝集して
大きな鎖状高次構造(ストラフチャー)を形成している
。このことがカーボンブラック添加後、焼成除去するこ
とで、望ましい位置に非常に狭い範囲で、多量の細孔を
付与するのみならず、多量の添加にもかかわらず高い強
度を維持する理由と考えられる。したがって、得られる
細孔径は、カーボンブラックの粒子径、添加量に加えて
ストラフチャーの大きさによって決定される。この発明
の目的とする炭化水素の拡散に寄与すると言われている
細孔径は、石油化学用の触媒担体としても検討されてい
る通り、500〜1000人であり、この径の細孔を、
アルミナ自身にでは無く、アルミナコート層内に作るこ
とで、コート層内に均一に分散担持される、白金および
、白金とロジウムを、より有効に活用することが出来る
。カーボンブラックを用いる場合には、ASTM  N
o、N−550、およびN−660でに規定されるカー
ボンブラックが好ましく、添加■は、対スラリー10重
量%から30重量%である。
When using other carbonaceous substances instead of carbon black, solid carbonaceous substances are usually physically difficult to pulverize, and the resulting pores are usually much larger than expected. Put it away. Furthermore, if an amount of 10% by weight or more is added to the slurry, the strength of the resulting coating layer will naturally weaken, making it unusable for practical use.
Furthermore, temperature control when removing such a large amount of carbon by firing becomes extremely difficult. On the other hand, carbon black is an extremely fine and uniform powder, and is particularly characterized by its fine structure. That is, carbon black does not consist of a single, simple sphere, but individual particles aggregate to form a large chain-like higher-order structure (strafture). This is thought to be the reason why carbon black is added and then removed by firing, which not only creates a large number of pores in a very narrow range at desired positions, but also maintains high strength despite the addition of a large amount of carbon black. . Therefore, the pore size obtained is determined by the particle size and amount of carbon black added, as well as the size of the stractures. The pore size that is said to contribute to the diffusion of hydrocarbons, which is the object of this invention, is 500 to 1000, as is also being considered as a petrochemical catalyst carrier.
By forming it in the alumina coat layer rather than in the alumina itself, platinum and platinum and rhodium, which are uniformly dispersed and supported in the coat layer, can be used more effectively. When using carbon black, ASTM N
Carbon blacks defined by o, N-550, and N-660 are preferred, and the addition (i) is from 10% to 30% by weight relative to the slurry.

添加量が10重量%未満では、コート層表面がら、内層
にまで細孔が連続して出来ないため、目的を十分達成で
きず、30重世%より多くては、細孔の連続発生は、十
分できるものの、焼成除去時のコート層温度上昇が制御
できなくなり、不都合となるため上記添加量とする。
If the amount added is less than 10% by weight, pores cannot be continuously formed from the surface of the coating layer to the inner layer, so the purpose cannot be fully achieved, and if the amount is more than 30%, the continuous generation of pores will be Although it is sufficient, the increase in temperature of the coat layer during baking removal becomes uncontrollable, which is inconvenient, so the addition amount is set as above.

以上のように担体の第1コート層に触媒活性金属である
白金または白金とロジウムを担持させ、第2コート層に
パラジウムとロジウムを担持させた触媒である。既に述
べた如く、一般に貴金属成分を有効に活用するためには
、高分散化させ、より多くの活性点を持たせる必要があ
るが、排ガス温度の低い領域では反応律速に支配される
ため、貴金属の分散は、むしろ触媒表面に高濃度に分散
させることが有利になる。したがって、コート層内部は
、排ガス成分が拡散律速に支配される部分に対応し、よ
り高度に分散担持させるため、塩化白金酸、および塩化
ロジウムを用いて、白金または白金、ロジウムを分散担
持させている。また第2コート層である表面層には、ジ
ニトロジアンミンパラジウムおよび硝酸ロジウムを用い
て、コート層、数マイクロメータの範囲に担持し、低温
活性を高めている。このことは蛍光X線分析法によるス
ポット測定により確認されている。
As described above, this is a catalyst in which platinum or platinum and rhodium, which are catalytically active metals, are supported on the first coat layer of the carrier, and palladium and rhodium are supported on the second coat layer. As already mentioned, in order to make effective use of precious metal components, it is generally necessary to make them highly dispersed and have more active sites. Rather, it is advantageous to disperse it at a high concentration on the surface of the catalyst. Therefore, the inside of the coating layer corresponds to the part where the exhaust gas components are controlled by diffusion rate, and in order to support the exhaust gas components in a more highly dispersed manner, platinum or platinum or rhodium is dispersed and supported using chloroplatinic acid and rhodium chloride. There is. In addition, dinitrodiammine palladium and rhodium nitrate are used in the surface layer, which is the second coat layer, and are supported within a range of several micrometers to enhance low-temperature activity. This has been confirmed by spot measurement using fluorescent X-ray analysis.

上述のように、白金はコート層内部に、塩化白金酸を用
いて担持させるのは、塩化白金酸は活性アルミナコート
層にほぼ均一に担持されるが、初期低温活性には不利で
あるが、耐久性には優れる。
As mentioned above, platinum is supported inside the coating layer using chloroplatinic acid. Although chloroplatinic acid is supported almost uniformly on the activated alumina coating layer, it is disadvantageous for initial low-temperature activation. Excellent durability.

一方策2コート層に担持させるジニトロジアンミンパラ
ジウムは、初期低温活性に優れるが、耐久性は不利とな
る。従って、このような組合せを選択することにより、
双方の特性を利用している。
On the other hand, dinitrodiammine palladium supported on the second coating layer has excellent initial low temperature activity, but is disadvantageous in durability. Therefore, by selecting such a combination,
It takes advantage of the characteristics of both.

ジニトロジアンミンパラジウムが、コート層表面に担持
される理由は、十分解明されていないが、ジニトロジア
ンミンパラジウムが錯体であるため、分子が大きく、ア
ルミナのミクロボア内への拡散が十分起らないことと、
PH理論上から内部拡散しにくいため表面層担持になる
と考えられる。
The reason why dinitrodiammine palladium is supported on the surface of the coating layer is not fully understood, but because dinitrodiammine palladium is a complex, its molecules are large and it does not diffuse sufficiently into the micropores of alumina.
It is thought that it is supported on the surface layer because it is difficult to internally diffuse from the viewpoint of pH theory.

また、白金は、セリウムを含む層に、パラジウムはラン
タンを含む層に分けて担持する理由は、以下の通りであ
る。
Further, the reason why platinum is supported separately in a layer containing cerium and palladium is carried separately in a layer containing lanthanum is as follows.

白金は、酸化セリウムと共存することで、高い酸化活性
を持つ、これは酸化セリウムから脱離する酸素が白金原
子とイオン結合する結果、活性状態になり、排ガス中に
含まれる一酸化炭素ならびに、炭化水素との反応性を高
めるためと考えられている。一方パラジウムは酸素共存
下では、780°C付近で、PdO≠Pdの解離再酸化
を起し、この際に粒子成長する。また白金と共存すると
、この解離、再酸化温度が下がるとされている。
Platinum has high oxidizing activity when it coexists with cerium oxide. This is because the oxygen released from cerium oxide forms an ion bond with platinum atoms, resulting in an active state and carbon monoxide contained in exhaust gas, It is thought that this is to increase reactivity with hydrocarbons. On the other hand, in the presence of oxygen, palladium undergoes dissociative reoxidation (PdO≠Pd) at around 780°C, and at this time, particles grow. It is also said that when it coexists with platinum, this dissociation and reoxidation temperature is lowered.

しかるにパラジウムはランタンと共存させると、La−
0−Pdなる複合体を作り、雰囲気安定性を持つ結果、
高い触媒活性を維持する。
However, when palladium coexists with lanthanum, La-
As a result of creating a composite called 0-Pd and having atmospheric stability,
Maintain high catalytic activity.

(実験例) この発明を、次の実施例、比較例および試験例により詳
細に説明する。
(Experimental Examples) The present invention will be explained in detail using the following Examples, Comparative Examples, and Test Examples.

実詣五土 細孔径ピークが80〜100人であるT−またはδ−ア
ルミナを主成分とする活性アルミナ担体を、硝酸セリウ
ム水溶液に含浸し、乾燥した後空気気流中600℃で2
時間焼成し、アルミナに対しセリウムを金属換算で3.
0重量%を含む活性アルミナ担体を得た。この活性アル
ミナの細孔径ピークは、水銀圧入式ポロシメータにより
細孔分布を測定した結果80〜90人であった。次に硝
酸酸性ベーマイトゾル(ベーマイトアルミナ10重量%
懸濁液に、10重量%HNO3を添加することによって
得られるゾル)2478g、上記活性アルミナ担体10
06g、酸化セリウム粉末516gをボールミルボット
に投入し、8時間粉砕してスラリーを得た。得られたス
ラリーを、モノリス担体基材(1,M!400セル)に
塗布し、100〜130°Cで1時間乾燥した後、65
0 ”Cで2時間焼成した。この場合の塗布量は220
 g/個に設定した。さらにこの担体に、担体1個当り
白金0.955 gを、塩化白金酸水溶液を用い、勺、
速乾燥したのち、600°Cで1時間燃焼ガス雰囲気中
で焼成して触媒担体を得た。次に上記活性アルミナ担体
を、硝酸ランタン水溶液に含浸、乾燥後、空気気流中6
00℃で2時間焼成し、アルミナに対しランタンを金属
換算で3.0重量%含む活性アルミナ担体を得た。次に
硝酸酸性ベーマイトゾル2478g、上記活性アルミナ
823 g、水酸化ランタン粉末394g、酸化ジルコ
ニウム粉未282gと、ASTM  N11LN−55
0に規定されたカーボンブラック600gとを、ボール
ミルポットに投入し、8時間粉砕して得たスラリーを、
前記触媒担体に塗布し、100〜130°Cで1時間乾
燥した後、室温よりlO″C/分の昇温速度で昇温し、
650°Cで2時間焼成した。この場合の塗布量は12
0g/個に設定した。さらにこの担体に、担体1個当り
パラジウム0.955 g、ロジウム0.191 gを
ジニトロジアンミンパラジウム硝酸酸性溶液と硝酸ロジ
ウム溶液の混合水溶液を用い、含浸担持し、マイクロ波
乾燥装置を用い、急速乾燥したのち、600°Cで1時
間燃焼ガス雰囲気中で焼成して触媒1を得た。この触媒
は、白金0.559g//l!、パラジウム0.559
g/ffi。
An activated alumina support mainly composed of T- or δ-alumina with a pore size peak of 80 to 100 is impregnated with an aqueous cerium nitrate solution, dried, and then heated at 600°C in an air stream for 2 hours.
After firing for a time, the amount of cerium compared to alumina was 3.
An activated alumina support containing 0% by weight was obtained. The peak pore diameter of this activated alumina was 80 to 90 as a result of measuring the pore distribution using a mercury intrusion porosimeter. Next, nitric acid acidic boehmite sol (boehmite alumina 10% by weight)
2478 g of sol obtained by adding 10% by weight HNO3 to the suspension, the above activated alumina carrier 10
06g of cerium oxide powder and 516g of cerium oxide powder were placed in a ball millbot and ground for 8 hours to obtain a slurry. The obtained slurry was applied to a monolithic carrier substrate (1, M! 400 cells), dried at 100 to 130°C for 1 hour, and then heated to 65°C.
Baked for 2 hours at 0"C.The amount of coating in this case was 220
g/piece. Furthermore, 0.955 g of platinum per carrier was added to this carrier using an aqueous solution of chloroplatinic acid.
After quick drying, it was fired at 600°C for 1 hour in a combustion gas atmosphere to obtain a catalyst carrier. Next, the activated alumina carrier was impregnated with an aqueous lanthanum nitrate solution, dried, and then placed in an air stream for 6 hours.
It was fired at 00° C. for 2 hours to obtain an activated alumina carrier containing 3.0% by weight of lanthanum in terms of metal based on alumina. Next, 2478 g of nitric acidic boehmite sol, 823 g of the above activated alumina, 394 g of lanthanum hydroxide powder, 282 g of zirconium oxide powder, and ASTM N11LN-55
600g of carbon black specified as
After coating the catalyst carrier and drying at 100 to 130°C for 1 hour, the temperature is raised from room temperature at a rate of 1O″C/min,
It was baked at 650°C for 2 hours. The amount of coating in this case is 12
It was set to 0g/piece. Furthermore, this carrier was impregnated with 0.955 g of palladium and 0.191 g of rhodium per carrier using a mixed aqueous solution of an acidic dinitrodiammine palladium nitric acid solution and a rhodium nitrate solution, and then rapidly dried using a microwave dryer. Thereafter, it was calcined at 600°C for 1 hour in a combustion gas atmosphere to obtain catalyst 1. This catalyst has 0.559g//l of platinum! , palladium 0.559
g/ffi.

ロジウム0.112g#!、セリウム32.4 g /
 l、ランタン12.7 g / l、ジルコニウム8
.5g//!を含有している。またカーボンブラックに
より付与された細孔は、500人に細孔径ピークを有し
ている。
Rhodium 0.112g#! , Cerium 32.4 g/
l, lanthanum 12.7 g/l, zirconium 8
.. 5g //! Contains. Furthermore, the pores imparted by carbon black have a pore diameter peak of 500.

実jl址翌 実施例1において、スラリーに混入するカーボンブラッ
クをASTM  No、N−660とした以外は同様に
して触媒2を得た。この触媒のカーボンブラックにより
付与された細孔は、700人に細孔径ピークを有してい
る。
A catalyst 2 was obtained in the same manner as in Example 1 except that the carbon black mixed in the slurry was ASTM No. N-660. The pores imparted by the carbon black of this catalyst have a pore diameter peak of 700.

刀1片l 実施例1において、スラリーに混合するカーボンブラッ
クの量を800gとした以外は同様にして、触媒3を得
た。この触媒の、カーボンブランクにより付与された細
孔は、800人に細孔径ピークを有している。
1 piece of sword 1 Catalyst 3 was obtained in the same manner as in Example 1, except that the amount of carbon black mixed into the slurry was changed to 800 g. The pores of this catalyst provided by the carbon blank have a pore diameter peak of 800.

災格皿土 実施例2において、スラリーに混入したカーボンブラッ
クの量を800gとした以外は同様にして触媒4を得た
。この触媒のカーボンブラックにより付与される細孔は
、1000人に細孔径ピークを有している。
Catalyst 4 was obtained in the same manner as in Example 2 except that the amount of carbon black mixed into the slurry was changed to 800 g. The pores provided by the carbon black of this catalyst have a pore diameter peak of 1000.

災施■工 実施例1において、セリウムを含む活性アルミナ100
6g、硝酸酸性ベーマイトゾル2478g、酸化セリウ
ム516gをボールミルボットに投入し、8時間粉砕し
て得たスラリーを、モノリス担体基材に塗布し、乾燥、
焼成して得られたコート担体に、白金0.955g/個
、ロジウム0.0955g/個を、塩化白金酸溶液と塩
化ロジウム溶液の混合水溶液を用い、含浸担持した以外
は同様にして触媒担体を得た。この触媒担体に、実施例
1と同様にランタン、ジルコニアを含むコート層を塗布
し、乾燥焼成した後、パラジウム0.955g/個、ロ
ジウム0.0955g/個を、ジニトロジアンミンパラ
ジウム硝酸酸性溶液と硝酸ロジウムの混合水溶液を用い
、含浸担持した以外同様にして触媒5を得た。この触媒
は、白金0.559g/j!、パラジウム0.559g
/f、ロジウム0.112g/ffi、セリウム32.
4g/l。
In construction example 1, activated alumina 100 containing cerium
6 g, 2478 g of nitric acidic boehmite sol, and 516 g of cerium oxide were placed in a ball mill bot and ground for 8 hours. The resulting slurry was applied to a monolithic carrier base material, dried,
A catalyst carrier was prepared in the same manner except that 0.955 g of platinum and 0.0955 g of rhodium were impregnated and supported on the coated carrier obtained by firing using a mixed aqueous solution of a chloroplatinic acid solution and a rhodium chloride solution. Obtained. A coating layer containing lanthanum and zirconia was applied to this catalyst carrier in the same manner as in Example 1, and after drying and baking, 0.955 g/piece of palladium and 0.0955 g/piece of rhodium were added to a dinitrodiammine palladium nitric acid solution and a nitric acid solution. Catalyst 5 was obtained in the same manner except that a mixed aqueous solution of rhodium was used and supported by impregnation. This catalyst contains 0.559 g/j of platinum! , palladium 0.559g
/f, rhodium 0.112g/ffi, cerium 32.
4g/l.

ランタン12.7 g / 1.、ジルコニウム8.5
g#!を含有している。またカーボンブラックにより付
与された細孔は、500人に細孔径ピークを有している
Lantern 12.7 g/1. , zirconium 8.5
g#! Contains. Furthermore, the pores imparted by carbon black have a pore diameter peak of 500.

此1石飢1 細孔径ピークが80〜100人であるγ−またはδ−ア
ルミナを主成分とする活性アルミナ担体を、硝酸セリウ
ム水溶液に含浸し、乾燥した後空気気流中600“Cで
2時間焼成し、アルミナに対しセリウムを金属換算で3
.0重里%含む活性アルミナ担体を得た。この活性アル
ミナの細孔径ピークは、水銀圧入式ポロシメータにより
細孔分布を測定した結果80〜90人であった。次に硝
酸酸性ベーマイトゾル(ベーマイトアルミナ10重置%
懸濁液に、lO重景%HN O,を添加することによっ
て得られるゾル)2478g、上記活性アルミナ担体1
006g、酸化セリウム粉末516gをボールミルボッ
トに投入し、8時間粉砕してスラリーを得た。得られた
スラリーを、モノリス担体基材(1,7jl!  40
0セル)に塗布し、100〜130°Cで1時間乾燥し
た後、650°Cで2時間焼成した。この場合の塗布量
は、220g/個に設定した。さらにこの担体に、担体
1個当り白金0.955gを、塩化白金酸水溶液を用い
象、速乾燥したのち、600°Cで1時間燃焼ガス雰囲
気中で焼成して触媒担体を得た。次に上記活性アルミナ
担体を、硝酸ランタン水溶液に含浸、乾燥後、空気気流
中600°Cで2時間焼焼成し、アルミナに対し、ラン
タンを金属換算で3.0重量%を含む活性アルミナ担体
を得た。次に硝酸酸性ベーマイトゾル2478g、上記
活性アルミナ823g、水酸化ランタン粉末394g、
酸化ジルコニウム粉末282gとを、ボールミルポット
に投入し、8時間粉砕して得たスラリーを、前記触媒担
体に塗布し、100−130°Cで1時間乾燥した後、
室温よりlO°C/分の昇温速度で昇温し、650°C
で2時間焼成した。この場合塗布量を120g/個に設
定した。さらにこの担体に、担体1個当りパラジウム0
.955g、ロジウム0、191 gをジニトロジアン
ミンパラジウム硝酸酸性溶液と硝酸ロジウム溶液の混合
水溶液を用い、含浸担持し、マイクロ波乾燥装置を用い
、急速乾燥したのち、600°Cで1時間燃焼ガス雰囲
気中で焼成して触媒Aを得た。この触媒は、白金0、5
59 g / l、パラジウム0.559g/n、ロジ
ウム0.112g/i!、、セリウム32.4g//!
1. An activated alumina support mainly composed of γ- or δ-alumina with a pore size peak of 80 to 100 pores was impregnated with an aqueous cerium nitrate solution, dried, and then heated at 600°C in an air stream for 2 hours. After firing, the amount of cerium compared to alumina is 3 in terms of metal.
.. An activated alumina carrier containing 0 weight percent was obtained. The peak pore diameter of this activated alumina was 80 to 90 as a result of measuring the pore distribution using a mercury intrusion porosimeter. Next, nitric acid acidic boehmite sol (boehmite alumina 10%
2478 g of the above-mentioned activated alumina carrier 1
006g of cerium oxide powder and 516g of cerium oxide powder were put into a ball millbot and ground for 8 hours to obtain a slurry. The obtained slurry was applied to a monolith carrier base material (1.7jl! 40
0 cell), dried at 100 to 130°C for 1 hour, and then baked at 650°C for 2 hours. The amount of coating in this case was set at 220 g/piece. Further, 0.955 g of platinum per carrier was added to this carrier using an aqueous solution of chloroplatinic acid, and after quick drying, the carrier was calcined at 600°C for 1 hour in a combustion gas atmosphere to obtain a catalyst carrier. Next, the above activated alumina carrier was impregnated with an aqueous solution of lanthanum nitrate, dried, and then calcined at 600°C for 2 hours in an air stream to form an activated alumina carrier containing 3.0% by weight of lanthanum in terms of metal based on the alumina. Obtained. Next, 2478 g of nitric acidic boehmite sol, 823 g of the above activated alumina, 394 g of lanthanum hydroxide powder,
282 g of zirconium oxide powder was placed in a ball mill pot and ground for 8 hours. The resulting slurry was applied to the catalyst carrier and dried at 100-130°C for 1 hour.
Raise the temperature from room temperature at a rate of 10°C/min to 650°C.
It was baked for 2 hours. In this case, the coating amount was set to 120 g/piece. Furthermore, this carrier has 0 palladium per carrier.
.. 955 g of rhodium and 0.191 g of rhodium were impregnated and supported using a mixed aqueous solution of an acidic dinitrodiammine palladium nitric acid solution and a rhodium nitrate solution, rapidly dried using a microwave dryer, and then dried at 600°C for 1 hour in a combustion gas atmosphere. Catalyst A was obtained by calcination. This catalyst has platinum 0,5
59 g/l, palladium 0.559 g/n, rhodium 0.112 g/i! ,, Cerium 32.4g //!
.

ランタン12.7g/Cジルコニウム8.5g#!を含
有している。またコート層の細孔は、活性アルミナの有
している細孔径80〜90人のみの細孔径ピークを有し
ている。
Lanthanum 12.7g/C zirconium 8.5g#! Contains. Further, the pores of the coating layer have a pore size peak of only 80 to 90 pores, which is the same as that of activated alumina.

上較貫l 比較例1において、ランタン、ジルコニウムを含むスラ
リーに、ASTM  NaN−550に規定されるカー
ボンブラックを360g混入させた以外は同様にして触
媒Bを得た。この触媒のカーボンブラックにより付与さ
れた細孔は、200人に細孔径ピークを有している。
Catalyst B was obtained in the same manner as in Comparative Example 1, except that 360 g of carbon black specified by ASTM NaN-550 was mixed into the slurry containing lanthanum and zirconium. The pores provided by the carbon black of this catalyst have a pore diameter peak of 200.

比較■ニ ジリカ2563 g、セリウムを金属換算3重量%を含
む活性アルミナ粒状担体1437gをボールミルに混ぜ
込み、6時間粉砕した後、コーディエライト質一体型担
体(400セル、1.7 ffi )にコーティングし
、650 ’Cで2時間焼成した。この時のコーテイン
グ量は340 g/個に設定した。
Comparison ■ 2563 g of Nijirica and 1437 g of activated alumina granular carrier containing 3% by weight of cerium as metal were mixed in a ball mill, ground for 6 hours, and then coated on a cordierite monolithic carrier (400 cells, 1.7 ffi). and calcined at 650'C for 2 hours. The amount of coating at this time was set at 340 g/piece.

さらにこの担体を塩化白金酸、塩化パラジウム、塩化ロ
ジウムの混合水溶液に浸漬し、Hz/Nz気流中で還元
した。白金、パラジウム、ロジウムは、担体1個当り、
それぞれ、0.96 g、0.96g、0.19gに設
定した。次に、燃焼ガス気流中600°Cで2時間焼成
して触媒Cを得た。この触媒は、白金0.559g/j
2.パラジウム0.559g1Lロジウム0.112g
/lセリウム6.6g/lを含有している。コート層の
有している細孔は60〜80人の細孔径ピークである。
Further, this carrier was immersed in a mixed aqueous solution of chloroplatinic acid, palladium chloride, and rhodium chloride, and reduced in a Hz/Nz gas flow. For platinum, palladium, and rhodium, per carrier,
They were set at 0.96 g, 0.96 g, and 0.19 g, respectively. Next, catalyst C was obtained by firing at 600° C. for 2 hours in a combustion gas stream. This catalyst contains 0.559g/j of platinum
2. Palladium 0.559g 1L Rhodium 0.112g
/l contains 6.6g/l of cerium. The pores of the coating layer have a peak pore size of 60 to 80 pores.

止較拠土 アルミナゾル2563 g、活性アルミナ粒状担体14
37gをボールミルで6時間粉砕した後、コーディエラ
イト質一体型担体(400セル、1、7 f )にコー
ティングし、650°Cで2時間焼成した。この時のコ
ーテイング量は、340 g/個に設定した。次いで硝
酸セリウムCe (NCh)zの水溶液で、セリウム金
属換算28g/個付着させ、120°Cで3時間乾燥し
た後、空気気流中600°Cで2時間焼成した。さらに
塩化白金酸、塩化パラジウムおよび塩化ロジウムの混合
水溶液に浸漬し、担体1個当り、白金0.96g、パラ
ジウム0.96 g、ロジウム0.19 gを担持した
後、燃焼ガス気流中600°Cで2時間焼成して触媒り
を得た。この触媒は、白金0.559g/f、パラジウ
ム0.559g/f、ロジウム0.112g/i!、セ
リウム16.47g/fを含有している。コート層の有
している細孔は90人の細孔径ピークである。
2563 g of solid base alumina sol, 14 g of activated alumina granular carrier
After pulverizing 37 g in a ball mill for 6 hours, it was coated on a cordierite monolithic carrier (400 cells, 1.7 f) and calcined at 650°C for 2 hours. The coating amount at this time was set to 340 g/piece. Next, 28 g of cerium metal was deposited using an aqueous solution of cerium nitrate Ce (NCh)z, dried at 120°C for 3 hours, and then fired at 600°C for 2 hours in an air stream. Further, the carrier was immersed in a mixed aqueous solution of chloroplatinic acid, palladium chloride, and rhodium chloride to support 0.96 g of platinum, 0.96 g of palladium, and 0.19 g of rhodium per carrier, and then heated at 600°C in a combustion gas stream. The mixture was calcined for 2 hours to obtain a catalyst. This catalyst contained 0.559 g/f of platinum, 0.559 g/f of palladium, and 0.112 g/i of rhodium! , contains 16.47 g/f of cerium. The pores of the coating layer have a peak pore diameter of 90 people.

拭狂拠 実施例1〜5より得た触媒1〜5、比較例1〜4で得た
触媒A−Dにつき下記条件で耐久試験を行なった後、性
能評価試験を行ない、その結果を表1に示す。
Catalysts 1 to 5 obtained from Examples 1 to 5 and catalysts A to D obtained from Comparative Examples 1 to 4 were subjected to a durability test under the following conditions, and then a performance evaluation test was conducted, and the results are shown in Table 1. Shown below.

耐」Jいトに件 触      媒   一体型貴金属触媒触媒出口ガス
温度     750°C空間速度  約7万l1r−
’ 耐久時間  100時間 エ  ン  ジ  ン       排気量2200c
c耐久中入ロガス雰囲気 Co   0.4〜0.6% 0□  0.5±0.1% No   1000ppn+ HC2500ppm CO□  14.9±0.1% 几血圧囁畢斬 車輌 セドリック(日産自動車■製 乗用車商品名)排気量 
  2000cc (発明の効果) 以上説明してきたように、この発明によれば、希土類酸
化物と細孔径ピークが100Å以下である活性アルミナ
層に塩化白金酸又は塩化白金酸と塩化ロジウムを用い、
白金、または白金とロジウムを担持されている第1コー
ト層とこの層上に表層部として希土類酸化物と、細孔径
ピークが100Å以下の活性アルミナ、および酸化ジル
コニウムとから成る層に、細孔径ピークが500〜10
00人の細孔が付与され、ジニトロジアンミンパラジウ
ム、硝酸ロジウムを用い、パラジウム、ロジウムが担持
されている第2コート層を備える構成としたために、分
子径の大きな炭化水素の触媒層内への拡散が十分に起り
、リッチ域からリーン域まで広い雰囲気範囲において高
い触媒活性を維持できるという効果が得られる。
Catalyst integrated noble metal catalyst Catalyst outlet gas temperature 750°C Space velocity Approximately 70,000 l1r-
' Endurance time 100 hours Engine displacement 2200c
c Durable log gas atmosphere Co 0.4~0.6% 0□ 0.5±0.1% No 1000ppn+ HC2500ppm CO□ 14.9±0.1% Low blood pressure whispering vehicle Cedric (manufactured by Nissan Motor Corporation) Passenger car product name) displacement
2000cc (Effects of the Invention) As explained above, according to the present invention, chloroplatinic acid or chloroplatinic acid and rhodium chloride are used in the rare earth oxide and the activated alumina layer having a pore diameter peak of 100 Å or less,
A first coat layer carrying platinum or platinum and rhodium, and a layer on this layer consisting of a rare earth oxide as a surface layer, activated alumina with a pore diameter peak of 100 Å or less, and zirconium oxide, have a pore diameter peak. is 500-10
Since the second coating layer is provided with 0.00 pores and supports palladium and rhodium using dinitrodiammine palladium and rhodium nitrate, it is possible for hydrocarbons with large molecular diameters to diffuse into the catalyst layer. occurs sufficiently, and the effect is that high catalytic activity can be maintained in a wide atmospheric range from a rich region to a lean region.

Claims (1)

【特許請求の範囲】[Claims] 1、担体基材上に、細孔径ピークが100Å以下である
活性アルミナと希土類金属酸化物から成るコート層に、
白金または白金とロジウムが担持されている第1コート
層と、この層上に、細孔径ピークが100Å以下である
活性アルミナと希土類金属酸化物および酸化ジルコニウ
ムから成るコート層に500〜1000Åの細孔径ピー
クを持つ細孔が付与され、パラジウムとロジウムが担持
されている第2コート層を備えたことを特徴とする排ガ
ス浄化用触媒。
1. On a carrier base material, a coating layer consisting of activated alumina and rare earth metal oxide with a pore size peak of 100 Å or less,
A first coat layer on which platinum or platinum and rhodium is supported, and a coat layer on this layer consisting of activated alumina, rare earth metal oxide, and zirconium oxide with a pore diameter peak of 100 Å or less, and a coat layer with a pore diameter of 500 to 1000 Å. A catalyst for exhaust gas purification characterized by comprising a second coat layer provided with pores having peaks and supporting palladium and rhodium.
JP62038074A 1987-02-23 1987-02-23 Catalyst for purifying exhaust gas Pending JPS63205141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62038074A JPS63205141A (en) 1987-02-23 1987-02-23 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62038074A JPS63205141A (en) 1987-02-23 1987-02-23 Catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS63205141A true JPS63205141A (en) 1988-08-24

Family

ID=12515339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62038074A Pending JPS63205141A (en) 1987-02-23 1987-02-23 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS63205141A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212142A (en) * 1991-11-04 1993-05-18 Engelhard Corporation High performance thermally stable catalyst
US5898014A (en) * 1996-09-27 1999-04-27 Engelhard Corporation Catalyst composition containing oxygen storage components
US5948723A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Layered catalyst composite
US5948377A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Catalyst composition
US5981427A (en) * 1996-09-04 1999-11-09 Engelhard Corporation Catalyst composition
US6087298A (en) * 1996-05-14 2000-07-11 Engelhard Corporation Exhaust gas treatment system
US6110862A (en) * 1998-05-07 2000-08-29 Engelhard Corporation Catalytic material having improved conversion performance
JP2001062294A (en) * 1999-08-25 2001-03-13 Toyota Motor Corp Exhaust gas cleaning catalyst
US6248688B1 (en) 1996-09-27 2001-06-19 Engelhard Corporation Catalyst composition containing oxygen storage components
KR100384016B1 (en) * 2000-12-05 2003-05-14 현대자동차주식회사 High durable Pd-Rh three way catalyst for NOx reduction
US6921738B2 (en) * 1996-12-06 2005-07-26 Engelhard Corporation Catalytic metal plate
EP1977819A2 (en) 1996-12-06 2008-10-08 Basf Catalysts Llc Catalytic metal plate
US7678347B2 (en) 2005-07-15 2010-03-16 Basf Catalysts Llc High phosphorous poisoning resistant catalysts for treating automobile exhaust
US7749472B2 (en) 2006-08-14 2010-07-06 Basf Corporation Phosgard, a new way to improve poison resistance in three-way catalyst applications
WO2019065797A1 (en) * 2017-09-27 2019-04-04 イビデン株式会社 Honeycomb catalyst

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212142A (en) * 1991-11-04 1993-05-18 Engelhard Corporation High performance thermally stable catalyst
US6087298A (en) * 1996-05-14 2000-07-11 Engelhard Corporation Exhaust gas treatment system
US5948723A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Layered catalyst composite
US5948377A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Catalyst composition
US5981427A (en) * 1996-09-04 1999-11-09 Engelhard Corporation Catalyst composition
US5989507A (en) * 1996-09-04 1999-11-23 Engelhard Corporation Catalyst composition
US6248688B1 (en) 1996-09-27 2001-06-19 Engelhard Corporation Catalyst composition containing oxygen storage components
US5898014A (en) * 1996-09-27 1999-04-27 Engelhard Corporation Catalyst composition containing oxygen storage components
EP1977819A2 (en) 1996-12-06 2008-10-08 Basf Catalysts Llc Catalytic metal plate
US6921738B2 (en) * 1996-12-06 2005-07-26 Engelhard Corporation Catalytic metal plate
US6110862A (en) * 1998-05-07 2000-08-29 Engelhard Corporation Catalytic material having improved conversion performance
JP2001062294A (en) * 1999-08-25 2001-03-13 Toyota Motor Corp Exhaust gas cleaning catalyst
KR100384016B1 (en) * 2000-12-05 2003-05-14 현대자동차주식회사 High durable Pd-Rh three way catalyst for NOx reduction
US7678347B2 (en) 2005-07-15 2010-03-16 Basf Catalysts Llc High phosphorous poisoning resistant catalysts for treating automobile exhaust
EP2781261A1 (en) 2005-07-15 2014-09-24 BASF Catalysts LLC High phosphorous poisoning resistant catalysts for treating automobile exhaust
US7749472B2 (en) 2006-08-14 2010-07-06 Basf Corporation Phosgard, a new way to improve poison resistance in three-way catalyst applications
WO2019065797A1 (en) * 2017-09-27 2019-04-04 イビデン株式会社 Honeycomb catalyst
JP2019058870A (en) * 2017-09-27 2019-04-18 イビデン株式会社 Honeycomb catalyst

Similar Documents

Publication Publication Date Title
EP1438135B1 (en) Layered catalyst composite and use thereof
JP4292005B2 (en) Exhaust gas purification catalyst composition
JP3274688B2 (en) Catalyst composition containing separated platinum and rhodium components
JP2001500780A (en) Catalyst composition and method for producing the same
KR20010043393A (en) Catalytic Material Having Improved Conversion Performance
JPS63162043A (en) Catalyst for cleaning exhaust gas
JP2002535135A (en) Catalyst composition containing oxygen storage component
JPH067923B2 (en) Three-way catalyst and method for producing the same
KR20140117361A (en) Alumina Material Containing Barium Sulfate and Exhaust Gas Purifying Catalyst Using Same
JPS63205141A (en) Catalyst for purifying exhaust gas
CN111065456A (en) Exhaust gas purifying catalyst
JP2022061979A (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst for automobile
CN113042045A (en) Catalyst for exhaust gas purification
JPS60110335A (en) Catalyst for purifying exhaust gas
JPS63240947A (en) Catalyst for purifying exhaust gas
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH06114264A (en) Production of catalyst for purification of exhaust gas
JPH0578378B2 (en)
JPH08229394A (en) Production of oxide-deposited catalyst carrier
JP3362532B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH0582258B2 (en)
JPH10216514A (en) Catalyst for exhaust gas purification
JPS6377545A (en) Catalyst for purifying exhaust gas
JPS6362548A (en) Production of catalyst for purifying exhaust gas
JPS6320036A (en) Production of catalyst for purifying exhaust gas