WO2015083590A1 - Exhaust-gas purifying catalyst and method for producing same - Google Patents

Exhaust-gas purifying catalyst and method for producing same Download PDF

Info

Publication number
WO2015083590A1
WO2015083590A1 PCT/JP2014/081205 JP2014081205W WO2015083590A1 WO 2015083590 A1 WO2015083590 A1 WO 2015083590A1 JP 2014081205 W JP2014081205 W JP 2014081205W WO 2015083590 A1 WO2015083590 A1 WO 2015083590A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
zirconium
barium
slurry
catalyst layer
Prior art date
Application number
PCT/JP2014/081205
Other languages
French (fr)
Japanese (ja)
Inventor
明生 立見
勝 香川
和人 板谷
和剛 武田
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to CN201480066003.3A priority Critical patent/CN105792929B/en
Publication of WO2015083590A1 publication Critical patent/WO2015083590A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0234Impregnation and coating simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J35/19
    • B01J35/391
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification catalyst and a method for producing the same, and more particularly to a catalyst suitable as a three-way catalyst for purifying carbon monoxide, hydrocarbons and nitrogen oxides in exhaust gas.
  • a three-way catalyst is used that simultaneously purifies by oxidizing or reducing carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx), which are harmful substances contained in the exhaust gas.
  • an oxygen storage material such as a ceria-zirconia composite oxide is used in addition to a general metal oxide support such as alumina as a support for supporting a catalyst metal.
  • OSM oxygen storage material
  • Patent Document 1 describes an exhaust gas purification catalyst in which palladium is disposed in a first coating layer and platinum and rhodium are disposed in a second coating layer.
  • the catalyst in which a plurality of catalyst layers are formed in this way needs to be individually manufactured for each catalyst layer to be formed, such as preparation of the slurry, application to the support, and firing in preparation of the catalyst.
  • the number of manufacturing steps is increased, resulting in an expensive catalyst.
  • Patent Document 2 discloses that rhodium and palladium are used as catalyst metals and two types of ceria-zirconia composite oxidation as a support. The catalyst using the product is described. In such a catalyst, the catalyst metal alloying is suppressed by carrying different catalyst metals on the two types of carriers.
  • Patent Document 2 describes a method for supporting a catalytic metal using tetraethylammonium hydroxide (TEAH) as an alkaline solution.
  • TEAH tetraethylammonium hydroxide
  • TEAH TEAH is added to raise the pH. Rhodium is deposited.
  • the second type carrier is suspended in the slurry, and TEAH is added to the slurry that has become acidic again by adding a palladium salt to raise the pH again, thereby precipitating palladium.
  • the catalyst of Patent Document 2 does not have sufficient purification performance when put to practical use as an exhaust gas purification catalyst, and further improvement in catalytic activity is expected.
  • a catalyst in which a catalytic metal is deposited using an alkaline solution is difficult to have a high catalytic activity.
  • the present inventors can realize further improvement in catalyst performance by reliably supporting the catalyst metal while suppressing the rearrangement of the catalyst metal and precipitation as a hydroxide.
  • the exhaust gas purifying catalyst of the present invention was obtained.
  • the obtained catalyst was analyzed in detail. When the ratio of zirconium concentration to cerium concentration (zirconium concentration / cerium concentration) was high on the catalyst layer surface, the supported state of the catalyst metal on the support was certain. As a result, the inventors have conceived the exhaust gas purifying catalyst of the present invention.
  • the present invention is an exhaust gas purification catalyst in which a single catalyst layer is formed on a support, the catalyst layer comprising an inorganic oxide composed of at least one of alumina, ceria, and zirconia, and ceria- the carrier comprising a mixture of a zirconia composite oxide, which palladium and rhodium are supported, furthermore, the ratio of the zirconium concentration in the surface of the catalyst layer (S Zr) and cerium concentration (S Ce) (S Zr / S Ce ) is 1.05 to 6.0 with respect to the ratio (C Zr / C Ce ) of zirconium concentration (C Zr ) to cerium concentration (C Ce ) at the interface of the catalyst layer with the support.
  • the present invention relates to an exhaust gas purification catalyst.
  • the exhaust gas purifying catalyst of the present invention is one in which two layers of palladium and rhodium are supported on a carrier as a catalyst metal while the catalyst layer is a single layer.
  • the catalyst of the present invention is characterized in that the ratio of zirconium concentration to cerium concentration (zirconium concentration / cerium concentration) is higher near the surface of the catalyst layer than near the interface with the support.
  • Such a catalyst of the present invention has a high degree of dispersion of the catalyst metal and high catalyst performance (particularly, CO oxidation and NOx reduction ability).
  • the zirconium / cerium concentration (S Zr / S Ce , C Zr / C Ce ) is the value at the surface of the catalyst layer (S Zr / S Ce ) and the value at the interface with the support of the catalyst layer (C Zr / C Ce). ) ((S Zr / S Ce ) / (C Zr / C Ce )), 1.05 to 6.0, preferably 1.1 to 5.0, and preferably 1.1 to 3.5 Particularly preferred. If it is less than 1.05, the durability of the catalyst metal tends to be insufficient, and if it exceeds 6.0, the degree of dispersion of the catalyst metal tends to be low.
  • Zirconium / cerium concentration ratio (S Zr / S Ce ) on the surface of the catalyst layer is measured from the outermost surface of the catalyst layer to the support side at the measurement position in the depth direction of the catalyst layer from the catalyst layer surface to the interface with the support.
  • the analysis result at a measurement position having a depth of 5 to 10 ⁇ m can be applied.
  • the zirconium / cerium concentration (C Zr / C Ce ) at the interface with the support of the catalyst layer the analysis result at a measurement position having a depth of 5 to 10 ⁇ m on the surface side from the interface with the support can be applied.
  • the above zirconium concentration / cerium concentration (S Zr / S Ce , C Zr / C Ce ) can be measured by an electron beam microanalyzer (EPMA).
  • CZ ceria-zirconia composite oxide
  • an inorganic oxide such as alumina.
  • CZ is preferably such that the ratio of zirconium oxide to cerium oxide (zirconia / ceria) is 95/5 to 5/95 in terms of mass ratio.
  • oxides of rare earth elements such as yttrium, lanthanum, and praseodymium, and oxides of alkaline earth elements such as magnesium and calcium may be included.
  • the content of CZ is preferably 20 to 80% by mass with respect to the total mass of the catalyst.
  • the inorganic oxide one or more of alumina, ceria, zirconia and the like can be used, and alumina is particularly preferable.
  • alumina ⁇ -alumina is suitable, and it may be doped with rare earth elements such as yttrium, lanthanum, and praseodymium.
  • the content of the inorganic oxide is preferably 20 to 80% by mass with respect to the total mass of the catalyst layer.
  • Catalyst metals include both palladium and rhodium.
  • the amount of the catalyst metal supported is preferably 0.1 to 2.5% by mass relative to the support. If it is less than 0.1% by mass, sufficient catalyst performance is difficult to obtain, and if it exceeds 2.5% by mass, it is not economical and the catalyst metal tends to aggregate.
  • the catalyst layer preferably contains a barium compound in addition to the carrier and the catalyst metal.
  • a catalyst containing barium is likely to have a higher CO oxidizing power and NOx reducing power.
  • the barium compound any of barium sulfate, barium carbonate, and barium oxide is preferable. These barium salts are present as barium sulfate or barium carbonate in unused exhaust gas purification catalysts, and are often present in the catalyst layer as barium carbonate or barium oxide after the catalyst is used.
  • the exhaust gas purification catalyst of the present invention is provided with the catalyst layer described above on a support made of a structural body such as a ceramic honeycomb, a metal honeycomb, or a nonwoven fabric.
  • a palladium salt and a rhodium salt are added to a carrier slurry in which a ceria-zirconia composite oxide and an inorganic oxide are suspended to form a catalyst layer precursor.
  • a catalyst layer precursor a ceria-zirconia composite oxide and an inorganic oxide.
  • a manufacturing method in which a zirconium compound is contained in the carrier slurry can be applied.
  • the catalyst metal is surely supported in a supported state because the catalyst metal can be prevented from precipitating as a hydroxide as in the case where the catalyst metal is supported using an alkaline solution, and the catalyst metal is supported on the carrier as ions. It is thought to be for this purpose. Further, as in the case where the catalyst metal is precipitated as a hydroxide, the catalyst metal is hardly coarsened due to the bond between the hydroxides.
  • the carrier, ceria-zirconia composite oxide and inorganic oxide are suspended in water to prepare a carrier slurry.
  • the amount of each carrier added is preferably 20 to 70% by mass of the inorganic oxide and 20 to 70% by mass of the ceria-zirconia composite oxide with respect to the entire catalyst layer obtained.
  • the particle size distribution is preferably 0.1 to 20 ⁇ m.
  • the ceria-zirconia composite oxide and the inorganic oxide those having the same types and particle sizes as described above can be applied as the exhaust gas purification catalyst.
  • the carrier slurry it is preferable to make a slurry by mixing an insoluble barium compound as an additive together with the ceria-zirconia composite oxide and the inorganic oxide.
  • an insoluble barium compound in addition to the zirconium compound, a catalyst with higher catalytic performance can be easily obtained.
  • the insoluble barium compound may be added at any time before or after the preparation of the catalyst slurry as long as it is before the addition of the catalyst metal, but is added together with the ceria-zirconia composite oxide or inorganic oxide as the support at the time of preparation of the support slurry. It is preferable to do. Since the insoluble barium compound is in a particulate form, it is easy to adjust a mixed slurry having a uniform particle size distribution by pulverizing and mixing together with a particulate carrier to form a slurry.
  • an insoluble barium compound when applied as in the present invention, the particle shape can be maintained in the carrier slurry, so that the oxygen absorption / release capability is not inhibited on the surface of the ceria-zirconia composite oxide, and the barium is not contained in the catalyst layer. It is also possible to disperse the components uniformly.
  • an insoluble barium compound the thing similar to the above-mentioned particle diameter as a structure of an exhaust gas purification catalyst is applicable.
  • a palladium salt and a rhodium salt are added as catalyst metal salts to the carrier slurry to prepare a mixed slurry that becomes a precursor of the catalyst layer.
  • a general water-soluble compound such as nitrate and acetate can be used, and nitrate is preferred.
  • the amount of each catalyst metal salt added is preferably 0.1 to 2.5% by mass of palladium and 0.1 to 0.5% by mass of rhodium with respect to the support.
  • the catalyst metal in the production method of the present invention, by adding a zirconium salt, the catalyst metal can be immobilized on the support without using an alkaline solution as in the production method described in Patent Document 2, so that the catalyst metal is water. Precipitation as an oxide can be suppressed.
  • the pH of the mixed slurry after the addition of the catalyst metal salt is a value that varies depending on the amount of addition of the catalyst metal salt, but in the implementation conditions of the present invention, it is often within the range of about 2.5 to 6.0, It is particularly often about 3.0 to 5.0. According to the present invention, after the addition of the catalyst metal salt, the catalyst metal can be reliably deposited on the support without adding an alkaline solution.
  • the catalyst metal may fall off in the step of drying and firing the mixed slurry to which the catalyst metal is added, but the catalyst metal deposited by the production method of the present invention is dried and fired. In such cases, the catalyst metal is unlikely to fall off.
  • the mixed slurry prepared above is preferably prepared such that the solid content of all catalyst components in the slurry is 20 to 50% by mass with respect to the mixed slurry.
  • the obtained mixed slurry is applied to a support to form a single catalyst precursor layer, and then fired to form a catalyst layer to produce an exhaust gas purification catalyst.
  • the firing temperature of the support is preferably 400 to 700 ° C.
  • the viscosity of the slurry may be adjusted using a regulator such as acetic acid or water. However, addition of an alkaline solution that tends to reduce the dispersibility of the catalyst metal is also avoided when adjusting the viscosity.
  • the support coated with the mixed slurry is preferably dried before firing. The drying temperature is preferably 90 to 200 ° C.
  • the exhaust gas purification catalyst of the present invention is particularly excellent in catalyst performance while utilizing the characteristics of a plurality of catalyst metals.
  • First embodiment 100 g of activated alumina (lanthanum-doped ⁇ -alumina) which is an inorganic oxide, 60 g of ceria-zirconia composite oxide (CeZrLaY, zirconia / ceria ratio 65/35), and barium acetate (purity 99% or more) 7.0 g was added to a mixed solution of 1.8 g of acetic acid and 0.17 L of pure water, and pulverized and mixed with an alumina media mill to prepare a carrier slurry.
  • activated alumina lanthanum-doped ⁇ -alumina
  • CaZrLaY ceria-zirconia composite oxide
  • barium acetate purity 99% or more
  • zirconium oxynitrate (purity 99.0% or more) or the like is added to and mixed with this carrier slurry, and further 8.3 g of palladium nitrate (Tanaka Kikinzoku Kogyo Co., Ltd.) and rhodium nitrate (Tanaka Kikinzoku Kogyo). 1.7 g was added and mixed to prepare a mixed slurry.
  • the slurry had a pH of about 4.4.
  • Acetic acid and water were added to the slurry to adjust the viscosity, and the slurry was applied to a support (monolith manufactured by cordierite, volume 1 L, cell number 600 cpsi, wall thickness 4.3 mil).
  • a catalyst to which no barium salt or zirconium salt was added (Test No. 1-1), a catalyst in which the amount of zirconium salt added was changed (Test Nos. 1-3 to 1-5), Catalysts (test Nos. 1-6 to 1-8) using zirconium acetate, zirconium hydroxide, and zirconia sol instead of zirconium oxynitrate were also produced in the same manner as described above. Further, a catalyst (Test No. 1-9) containing zirconium oxynitrate and using barium sulfate as the barium salt instead of barium acetate was also produced.
  • the zirconium / cerium concentration ratio in the catalyst layer was analyzed, and the supported state of the catalyst metal on the carrier was also confirmed. Moreover, the exhaust gas purification ability of CO, NO, and HC was evaluated as catalyst performance.
  • the zirconium / cerium concentration ratio in the catalyst layer was analyzed using an electron beam microanalyzer (EPMA).
  • the electron beam irradiation conditions were an acceleration voltage of 20 kV and an irradiation current of 1.0 ⁇ 10 ⁇ 8 A, and the irradiation position of the electron beam on the catalyst layer was moved every 0.2 ⁇ m from the vicinity of the center of the support toward the surface of the catalyst layer. Line analysis was performed.
  • the average (X 2 ) of the zirconium / cerium concentration ratio was determined. In this test, the measurement position where the X-ray intensity of Zr was 10 or less was defined as the outermost surface of the catalyst layer.
  • the ratio of the obtained surface layer side zirconium / cerium ratio (X 1 ) and the support side zirconium / cerium ratio (X 2 ) was determined to obtain the zirconium concentration ratio (X 1 / X 2 ) of the catalyst layer surface layer side and the support side. . No.
  • the EPMA measurement results for 1-5 are shown in FIG.
  • the supported state of the catalyst metal on the support depending on the presence or absence of addition of Ba salt and Zr salt was confirmed.
  • Test No. In the steps of producing the respective catalysts 1-1, 1-2, and 1-9, the mixed slurry after addition of the catalyst metal salt was used. Specifically, the concentration of noble metals (Pd and Rh) contained in the supernatant of the supernatant obtained by centrifuging the mixed slurry after the addition of palladium nitrate and rhodium nitrate and filter filtration is determined by the high frequency inductively coupled plasma method ( ICP). From the noble metal concentration in the supernatant, the proportion of the noble metal added to the slurry fixed on the inorganic oxide support was determined.
  • ICP inductively coupled plasma method
  • the exhaust gas purification performance (T 50 ) of the catalysts 1-1 to 1-9 was evaluated.
  • a catalyst cored in a cylindrical shape from the support was used for performance evaluation.
  • the cored catalyst was subjected to deterioration treatment at 900 ° C. for 10 hours using an atmospheric furnace before performance evaluation.
  • reaction gas for performance evaluation simulates engine exhaust gas, as Rich gas, CO 2 10%, CO 0.77%, H 2 0.2%, C 3 H 8 100 ppm, C 3 H 6 300 ppm, NO 800 ppm, Using O 2 0.4% and H 2 O 10.0%, as Lean gas, CO 2 10%, CO 0.77%, H 2 0.2%, C 3 H 8 100 ppm, C 3 H 6 300 ppm , NO 800 ppm, O 2 0.4%, H 2 O 10.0%. Any of the atmospheric gas even balance was N 2.
  • the reaction gas supplied to the catalyst was a space velocity (SV) of 90,000 h ⁇ 1 and Rich / Lean was continuously switched every second.
  • the catalyst containing the zirconium salt (Test Nos. 1-3 to 1-9) had a low T 50 and a high catalytic activity in any purification performance of CO, NO, and HC. Further, when both barium and zirconia were contained (Test No. 1-9), T 50 was particularly low, and good catalytic activity was exhibited.
  • the catalyst to which the zirconium salt was added had a larger amount of catalytic metal immobilized on the carrier and the catalytic activity was better than the catalyst to which the zirconium salt was not added.
  • the catalyst to which both barium and zirconia were added most of the catalyst metal used was immobilized, and the catalytic activity was particularly high.
  • Second embodiment A catalyst was produced using barium sulfate having a particle size shown in Table 4 below. Other manufacturing conditions and performance evaluation were performed in the same manner as in the first embodiment.
  • Catalysts were produced using barium salts and zirconium salts shown in Table 5 below.
  • Test No. 3-1 after adding palladium nitrate and rhodium nitrate to the carrier slurry, TEAH was added as an alkaline solution to raise the pH to 7.0.
  • Test No. The catalysts 3-3 to 3-5 were subjected to a aging treatment at 950 ° C. for 10 hours after the production of the catalyst. Other catalyst production conditions were the same as in the first embodiment, and the catalyst was produced.
  • the unit dispersion and average particle size of the catalyst metal were measured by the CO pulse adsorption method. Specifically, the catalyst is held at 400 ° C. for 15 minutes in an oxygen atmosphere, then held at 400 ° C. for 15 minutes in a hydrogen atmosphere, and further cooled to 50 ° C. in a helium atmosphere. Was measured. By this measurement, the number of atoms of the catalyst metal exposed on the catalyst layer surface can be measured.
  • the unit dispersity indicates the ratio (%) of the amount of the catalyst metal supported on the carrier that is exposed on the surface of the catalyst layer, and was calculated from the CO adsorption amount.
  • the average particle diameter was calculated from the surface area of the catalyst metal calculated from the CO adsorption amount, assuming that the shape of the catalyst metal was spherical.
  • the catalyst added with the zirconium salt and not using the alkaline solution was adjusted to pH in the alkaline solution.
  • the catalyst metal unit dispersion was higher and the average particle size was smaller than that of the catalyst with adjusted (Test No. 3-1).
  • the catalyst metal was increased in particle size because the catalyst metal was precipitated as a hydroxide.
  • the exhaust gas purification catalyst of the present invention is particularly suitable as a three-way catalyst.

Abstract

The purpose of the present invention is to provide an exhaust-gas purifying catalyst containing a plurality of catalyst metals, with the catalyst layer thereof comprising a single layer, wherein the degree of dispersion of the catalyst metals is high and the catalyst performance thereof is also high. An additional purpose of the present invention is to provide a method for producing this catalyst, which can be definitively supported, without using an alkali solution. The present invention pertains to an exhaust-gas purifying catalyst obtained by forming a single catalyst layer on a support body, wherein: the catalyst layer is obtained by supporting palladium and rhodium on a carrier obtained by mixing an inorganic oxide such as alumina and a ceria-zirconia composite oxide with one another; and the ratio (SZr/SCe) of the zirconium concentration to the cerium concentration in the surface of the catalyst layer is 1.05-6.0 times the ratio (CZr/CCe) of the zirconium concentration to the cerium concentration at the interface between the catalyst layer and the support body.

Description

排ガス浄化触媒及びその製造方法Exhaust gas purification catalyst and method for producing the same
 本発明は、排ガス浄化触媒及びその製造方法に関し、特に排ガス中の一酸化炭素、炭化水素及び窒素酸化物を浄化する三元触媒として好適な触媒に関する。 The present invention relates to an exhaust gas purification catalyst and a method for producing the same, and more particularly to a catalyst suitable as a three-way catalyst for purifying carbon monoxide, hydrocarbons and nitrogen oxides in exhaust gas.
 排ガス浄化触媒として、排ガス中に含まれる有害物質である一酸化炭素(CO)、炭化水素(HC)及び窒素酸化物(NOx)を酸化又は還元して同時に浄化する三元触媒が利用されている。この触媒の構成としては、触媒金属を担持させる担体として、アルミナ等の一般的な金属酸化物担体に加え、セリア-ジルコニア複合酸化物等の酸素貯蔵物質が用いられている。酸素貯蔵物質(OSM)を含む触媒では、OSMによる酸素の吸排出能を利用し、3種の有害物質(CO、HC、及びNOx)の酸化還元反応を効率的に進行させやすい。また、三元触媒には、触媒金属として、白金、パラジウム、ロジウム等の貴金属を2種以上含むものが多い。これらの貴金属は、それぞれ浄化しやすい有害物質が異なるため、異なる貴金属を複数組み合わせて、3種の有害物質を効率的に除去可能とするものである。 As the exhaust gas purification catalyst, a three-way catalyst is used that simultaneously purifies by oxidizing or reducing carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx), which are harmful substances contained in the exhaust gas. . As the structure of this catalyst, an oxygen storage material such as a ceria-zirconia composite oxide is used in addition to a general metal oxide support such as alumina as a support for supporting a catalyst metal. In the catalyst containing the oxygen storage material (OSM), it is easy to efficiently proceed the oxidation-reduction reaction of the three kinds of harmful substances (CO, HC, and NOx) by using the ability of oxygen absorption / extraction by the OSM. Many three-way catalysts contain two or more kinds of noble metals such as platinum, palladium, rhodium, etc. as catalyst metals. Since these noble metals are different in harmful substances that are easy to purify, a plurality of different noble metals can be combined to efficiently remove three kinds of harmful substances.
 ここで、触媒金属として複数の貴金属を含む触媒で問題となるのは、触媒金属同士の合金化が生じた場合、目的とした触媒性能が十分に発揮されないことである。このため、複数の触媒金属を適用する場合、触媒層を複数層からなる構造とし、各触媒層に別々の触媒金属を配置させてなる排ガス浄化触媒が一般的となっている。例えば、特許文献1には、第1被覆層にパラジウム、第2被覆層にプラチナ及びロジウムを配置させた排ガス浄化触媒が記載されている。 Here, a problem with a catalyst containing a plurality of noble metals as a catalyst metal is that when the catalyst metal is alloyed with each other, the intended catalyst performance is not sufficiently exhibited. For this reason, when a plurality of catalyst metals are applied, an exhaust gas purification catalyst in which a catalyst layer has a structure composed of a plurality of layers and separate catalyst metals are arranged in each catalyst layer is generally used. For example, Patent Document 1 describes an exhaust gas purification catalyst in which palladium is disposed in a first coating layer and platinum and rhodium are disposed in a second coating layer.
 しかしながら、このように複数の触媒層を形成した触媒は、触媒の作製にあたり、スラリーの調整、支持体への塗布、及び焼成といった製造工程を、形成する触媒層ごとに個別に行う必要が生じ、単一の触媒層からなる触媒に比べ製造工程数が多くなり、コスト高の触媒となる。 However, the catalyst in which a plurality of catalyst layers are formed in this way needs to be individually manufactured for each catalyst layer to be formed, such as preparation of the slurry, application to the support, and firing in preparation of the catalyst. Compared with a catalyst composed of a single catalyst layer, the number of manufacturing steps is increased, resulting in an expensive catalyst.
 このような背景の下、複数の触媒金属を用い、且つ、触媒層を単一層とした触媒として、特許文献2に、触媒金属としてロジウム及びパラジウムを用い、担体として2種類のセリア-ジルコニア複合酸化物を用いた触媒が記載されている。かかる触媒では、2種類の担体それぞれに異なる触媒金属を担持することで、触媒金属合金化の抑制を図っている。 Against this background, as a catalyst using a plurality of catalyst metals and a single catalyst layer, Patent Document 2 discloses that rhodium and palladium are used as catalyst metals and two types of ceria-zirconia composite oxidation as a support. The catalyst using the product is described. In such a catalyst, the catalyst metal alloying is suppressed by carrying different catalyst metals on the two types of carriers.
 以上説明した排ガス浄化触媒を製造するための方法としては、一般的に、担体を含むスラリーに触媒金属塩を添加後、アルカリ溶液でスラリーのpHを上昇させて、触媒金属を不溶性化合物として析出させる方法が適用されている。アルカリ溶液により触媒金属塩の添加で酸性となったスラリーのpHを上昇させることで、触媒金属が担体上に固定化される。この点、特許文献2には、アルカリ溶液として水酸化テトラエチルアンモニウム(TEAH)を用いた触媒金属の担持方法が記載されている。具体的には、2種類の担体それぞれに異なる触媒金属を担持すべく、まず1種目の担体を含むスラリーにロジウム塩を添加して強酸性となった際、TEAHを添加してpHを上昇させてロジウムを析出させている。次に、当該スラリーに2種目の担体を懸濁させ、パラジウム塩を添加して再び酸性となったスラリーにTEAHを添加してpHを再上昇させ、パラジウムを析出させている。 As a method for producing the exhaust gas purification catalyst described above, generally, after adding a catalyst metal salt to a slurry containing a support, the pH of the slurry is increased with an alkaline solution to precipitate the catalyst metal as an insoluble compound. The method is applied. The catalyst metal is immobilized on the support by raising the pH of the slurry that has become acidic by addition of the catalyst metal salt with an alkaline solution. In this regard, Patent Document 2 describes a method for supporting a catalytic metal using tetraethylammonium hydroxide (TEAH) as an alkaline solution. Specifically, in order to support different catalyst metals on each of the two types of carriers, when rhodium salt is first added to the slurry containing the first type of carrier and becomes strongly acidic, TEAH is added to raise the pH. Rhodium is deposited. Next, the second type carrier is suspended in the slurry, and TEAH is added to the slurry that has become acidic again by adding a palladium salt to raise the pH again, thereby precipitating palladium.
特開平11-151439号公報Japanese Patent Laid-Open No. 11-151439 特表2010-521302号公報Special table 2010-521302 gazette
 しかしながら、特許文献2の触媒は、排ガス浄化触媒としての実用化に際し充分な浄化性能を有しておらず、さらなる触媒活性の向上が期待されるものであった。特に、かかる触媒の製造方法として、アルカリ溶液を用いて触媒金属を析出させた触媒は、触媒活性の高いものとなりにくかった。 However, the catalyst of Patent Document 2 does not have sufficient purification performance when put to practical use as an exhaust gas purification catalyst, and further improvement in catalytic activity is expected. In particular, as a method for producing such a catalyst, a catalyst in which a catalytic metal is deposited using an alkaline solution is difficult to have a high catalytic activity.
 そこで本発明は、複数の触媒金属を含み、触媒層が単一層からなる排ガス浄化触媒において、更に高い浄化性能を有する触媒の提供を目的とする。また、かかる触媒の製造方法として、アルカリ溶液を用いることなく、触媒金属を担体に確実に析出させることのできる製造方法の提供を目的とする。 Therefore, an object of the present invention is to provide a catalyst having higher purification performance in an exhaust gas purification catalyst containing a plurality of catalyst metals and having a single catalyst layer. Another object of the present invention is to provide a production method capable of reliably depositing a catalyst metal on a support without using an alkaline solution.
 このため本発明者等は、触媒性能が良好となる排ガス浄化触媒について鋭意検討し、担体に対する触媒金属の担持状態に着目した。この際、上記した特許文献2の触媒では、触媒金属の段階的な担持や、アルカリ溶液によるpH調整等により、析出した触媒金属の脱落や再配置を生じるものと想定した。具体的には、2種目の触媒金属を析出させるための触媒金属塩添加や、アルカリ溶液を添加する段階において、一旦は担体上に析出した1種目の触媒金属が溶出し、別の担体上に再配置すると考えられる。また、アルカリ溶液を用いて析出させた触媒金属は水酸化物として沈殿し、互いに結合して粗大化しやすい。このことから、本発明者等は、上記した触媒金属の再配置や、水酸化物としての沈殿を抑制しつつ、触媒金属を確実に担持することにより、更なる触媒性能の向上が実現可能になると考え、本発明の排ガス浄化触媒を得るに至った。その結果、得られた触媒について詳細に分析したところ、触媒層表面においてジルコニウム濃度とセリウム濃度との比(ジルコニウム濃度/セリウム濃度)が高いものであると、触媒金属の担体への担持状態が確実となることを見出し本発明の排ガス浄化触媒に想到した。 For this reason, the present inventors diligently studied an exhaust gas purification catalyst with good catalytic performance and focused on the state of catalyst metal supported on the support. At this time, in the catalyst of Patent Document 2 described above, it was assumed that the catalyst metal deposited was dropped or rearranged by stepwise loading of the catalyst metal, pH adjustment with an alkaline solution, or the like. Specifically, in the stage of adding a catalyst metal salt for depositing the second type of catalyst metal or adding an alkaline solution, the first type of catalyst metal once deposited on the carrier elutes and is deposited on another carrier. It is thought to rearrange. Moreover, the catalyst metal deposited using an alkaline solution precipitates as a hydroxide, and is easily bonded and coarsened. Therefore, the present inventors can realize further improvement in catalyst performance by reliably supporting the catalyst metal while suppressing the rearrangement of the catalyst metal and precipitation as a hydroxide. As a result, the exhaust gas purifying catalyst of the present invention was obtained. As a result, the obtained catalyst was analyzed in detail. When the ratio of zirconium concentration to cerium concentration (zirconium concentration / cerium concentration) was high on the catalyst layer surface, the supported state of the catalyst metal on the support was certain. As a result, the inventors have conceived the exhaust gas purifying catalyst of the present invention.
 すなわち、本発明は、支持体上に、単一の触媒層が形成されてなる排ガス浄化触媒であって、触媒層は、アルミナ、セリア、ジルコニアの少なくともいずれかよりなる無機酸化物と、セリア‐ジルコニア複合酸化物とを混合してなる担体に、パラジウム及びロジウムが担持されたものであり、更に、触媒層の表面におけるジルコニウム濃度(SZr)とセリウム濃度(SCe)との比(SZr/SCe)が、触媒層の支持体との界面におけるジルコニウム濃度(CZr)とセリウム濃度(CCe)との比(CZr/CCe)に対して1.05~6.0である排ガス浄化触媒に関する。 That is, the present invention is an exhaust gas purification catalyst in which a single catalyst layer is formed on a support, the catalyst layer comprising an inorganic oxide composed of at least one of alumina, ceria, and zirconia, and ceria- the carrier comprising a mixture of a zirconia composite oxide, which palladium and rhodium are supported, furthermore, the ratio of the zirconium concentration in the surface of the catalyst layer (S Zr) and cerium concentration (S Ce) (S Zr / S Ce ) is 1.05 to 6.0 with respect to the ratio (C Zr / C Ce ) of zirconium concentration (C Zr ) to cerium concentration (C Ce ) at the interface of the catalyst layer with the support. The present invention relates to an exhaust gas purification catalyst.
 本発明の排ガス浄化触媒は、触媒層を単一層としつつ、触媒金属としてパラジウム及びロジウムの2種が担体に担持されたものである。そして本発明の触媒は、ジルコニウム濃度とセリウム濃度との比(ジルコニウム濃度/セリウム濃度)が、触媒層の表面付近において支持体との界面付近よりも高い点に特徴を有する。このような本発明の触媒は、触媒金属の分散度が高く、触媒性能(特にCO酸化やNOx還元能)の高いものとなる。 The exhaust gas purifying catalyst of the present invention is one in which two layers of palladium and rhodium are supported on a carrier as a catalyst metal while the catalyst layer is a single layer. The catalyst of the present invention is characterized in that the ratio of zirconium concentration to cerium concentration (zirconium concentration / cerium concentration) is higher near the surface of the catalyst layer than near the interface with the support. Such a catalyst of the present invention has a high degree of dispersion of the catalyst metal and high catalyst performance (particularly, CO oxidation and NOx reduction ability).
 ジルコニウム/セリウム濃度(SZr/SCe、CZr/CCe)は、触媒層の表面における値(SZr/SCe)が、触媒層の支持体との界面における値(CZr/CCe)に対して((SZr/SCe)/(CZr/CCe))、1.05~6.0であり、1.1~5.0が好ましく、1.1~3.5が特に好ましい。1.05未満であると触媒金属の耐久性が不十分になる傾向があり、6.0を超えると触媒金属の分散度が低くなる傾向となる。 The zirconium / cerium concentration (S Zr / S Ce , C Zr / C Ce ) is the value at the surface of the catalyst layer (S Zr / S Ce ) and the value at the interface with the support of the catalyst layer (C Zr / C Ce). ) ((S Zr / S Ce ) / (C Zr / C Ce )), 1.05 to 6.0, preferably 1.1 to 5.0, and preferably 1.1 to 3.5 Particularly preferred. If it is less than 1.05, the durability of the catalyst metal tends to be insufficient, and if it exceeds 6.0, the degree of dispersion of the catalyst metal tends to be low.
 触媒層の表面のジルコニウム/セリウム濃度比(SZr/SCe)としては、触媒層表面から支持体との界面までにおける触媒層の深さ方向の測定位置において、触媒層の最表面から支持体側に5~10μmの深さの測定位置における分析結果を適用できる。また、触媒層の支持体との界面のジルコニウム/セリウム濃度(CZr/CCe)としては、支持体との界面より表面側に5~10μmの深さの測定位置における分析結果を適用できる。以上のジルコニウム濃度/セリウム濃度(SZr/SCe、CZr/CCe)は、電子線マイクロアナライザ(EPMA)によって測定できる。 Zirconium / cerium concentration ratio (S Zr / S Ce ) on the surface of the catalyst layer is measured from the outermost surface of the catalyst layer to the support side at the measurement position in the depth direction of the catalyst layer from the catalyst layer surface to the interface with the support. In addition, the analysis result at a measurement position having a depth of 5 to 10 μm can be applied. As the zirconium / cerium concentration (C Zr / C Ce ) at the interface with the support of the catalyst layer, the analysis result at a measurement position having a depth of 5 to 10 μm on the surface side from the interface with the support can be applied. The above zirconium concentration / cerium concentration (S Zr / S Ce , C Zr / C Ce ) can be measured by an electron beam microanalyzer (EPMA).
 以下、本発明の排ガス浄化触媒の各構成につき、詳細に説明する。
 担体としては、アルミナ等の無機酸化物とともに、酸素貯蔵物質であるセリア-ジルコニア複合酸化物(CZ)を用いる。CZは、セリウム酸化物に対するジルコニウム酸化物の比率(ジルコニア/セリア)が質量比で95/5~5/95であると好ましい。また、添加物としてイットリウム、ランタン、プラセオジム等の希土類元素の酸化物や、マグネシウム、カルシウム等のアルカリ土類元素の酸化物うち1種以上を含むものでもよい。CZの含有量は、触媒全体の質量に対し20~80質量%が好ましい。
Hereinafter, each configuration of the exhaust gas purification catalyst of the present invention will be described in detail.
As a carrier, an oxygen storage material, ceria-zirconia composite oxide (CZ) is used together with an inorganic oxide such as alumina. CZ is preferably such that the ratio of zirconium oxide to cerium oxide (zirconia / ceria) is 95/5 to 5/95 in terms of mass ratio. Further, as an additive, one or more of oxides of rare earth elements such as yttrium, lanthanum, and praseodymium, and oxides of alkaline earth elements such as magnesium and calcium may be included. The content of CZ is preferably 20 to 80% by mass with respect to the total mass of the catalyst.
 無機酸化物としては、アルミナ、セリア、ジルコニア等のいずれか1種以上を用いることができ、特にアルミナが好適である。アルミナとしては、γ‐アルミナが好適であり、イットリウム、ランタン、プラセオジム等の希土類元素をドープしたものでもよい。無機酸化物の含有量は、触媒層全体の質量に対し20~80質量%が好ましい。 As the inorganic oxide, one or more of alumina, ceria, zirconia and the like can be used, and alumina is particularly preferable. As the alumina, γ-alumina is suitable, and it may be doped with rare earth elements such as yttrium, lanthanum, and praseodymium. The content of the inorganic oxide is preferably 20 to 80% by mass with respect to the total mass of the catalyst layer.
 触媒金属としては、パラジウムとロジウムの双方を含む。触媒金属の担持量は、担体に対して0.1~2.5質量%とするのが好ましい。0.1質量%未満では十分な触媒性能が得にくく、2.5質量%を超えると経済的でなく、且つ触媒金属の凝集が起きやすくなる。 Catalyst metals include both palladium and rhodium. The amount of the catalyst metal supported is preferably 0.1 to 2.5% by mass relative to the support. If it is less than 0.1% by mass, sufficient catalyst performance is difficult to obtain, and if it exceeds 2.5% by mass, it is not economical and the catalyst metal tends to aggregate.
 触媒層には、上記担体及び触媒金属に加え、バリウム化合物を含むことが好ましい。ジルコニウム/セリウム比が上述の範囲であることに加え、バリウムも含む触媒であると、CO酸化力及びNOx還元力の更に高い触媒となりやすい。バリウム化合物としては、硫酸バリウム、炭酸バリウム、酸化バリウムのいずれかが好ましい。これらバリウム塩は、未使用の排ガス浄化触媒においては硫酸バリウム又は炭酸バリウムとして存在し、触媒使用後は炭酸バリウム又は酸化バリウムとして触媒層中に存在することが多い。 The catalyst layer preferably contains a barium compound in addition to the carrier and the catalyst metal. In addition to the zirconium / cerium ratio being in the above range, a catalyst containing barium is likely to have a higher CO oxidizing power and NOx reducing power. As the barium compound, any of barium sulfate, barium carbonate, and barium oxide is preferable. These barium salts are present as barium sulfate or barium carbonate in unused exhaust gas purification catalysts, and are often present in the catalyst layer as barium carbonate or barium oxide after the catalyst is used.
 バリウム化合物の含有量は、触媒層中の全成分を酸化物として換算した質量に対する酸化バリウムとして換算した質量で0.1~10質量%が好ましく、より好適には1.0~6.0質量%である。0.1質量%未満であるとバリウム化合物の添加効果が得られ難い。含有量上限は特に制限不要であるが、10質量%以上添加しても、バリウム化合物の添加効果は、それ以上向上し難い。バリウム化合物の粒径は0.01μm以上2.0μm未満が好ましい。粒径0.01μm未満としても、添加効果の更なる向上は期待しにくく、触媒層中にバリウム化合物の凝集塊が形成しやすいものとなる。このような凝集塊が形成した場合、触媒層の密着性が低下する。バリウム化合物の粒径が2.0μm以上であると、触媒性能が向上しにくい。粒子形状は、球状又は板状が好ましい。 The content of the barium compound is preferably 0.1 to 10% by mass, more preferably 1.0 to 6.0% by mass in terms of barium oxide with respect to the mass in which all components in the catalyst layer are converted as oxides. %. If it is less than 0.1% by mass, it is difficult to obtain the effect of adding a barium compound. The upper limit of the content is not particularly limited, but the addition effect of the barium compound is hardly improved even when added in an amount of 10% by mass or more. The particle diameter of the barium compound is preferably 0.01 μm or more and less than 2.0 μm. Even when the particle size is less than 0.01 μm, it is difficult to expect further improvement in the addition effect, and barium compound aggregates are easily formed in the catalyst layer. When such an aggregate is formed, the adhesion of the catalyst layer is lowered. When the particle size of the barium compound is 2.0 μm or more, the catalyst performance is difficult to improve. The particle shape is preferably spherical or plate-like.
 本発明の排ガス浄化触媒は、以上説明した触媒層を、セラミックハニカム、メタルハニカム、不織布等の構造体からなる支持体上に備えるものである。 The exhaust gas purification catalyst of the present invention is provided with the catalyst layer described above on a support made of a structural body such as a ceramic honeycomb, a metal honeycomb, or a nonwoven fabric.
 以上説明した本発明の排ガス浄化触媒を製造する方法としては、セリア-ジルコニア複合酸化物及び無機酸化物を懸濁した担体スラリーに、パラジウム塩及びロジウム塩を添加して触媒層の前駆体となる混合スラリーを調整する工程と、混合スラリーを支持体に塗布して、単層の触媒前駆体層を形成する工程と、を含み、混合スラリーを調整する工程のパラジウム塩及びロジウム塩を添加する段階の担体スラリー内に、ジルコニウム化合物を含むものとする製造方法を適用できる。 As a method for producing the exhaust gas purification catalyst of the present invention described above, a palladium salt and a rhodium salt are added to a carrier slurry in which a ceria-zirconia composite oxide and an inorganic oxide are suspended to form a catalyst layer precursor. Adding the palladium salt and the rhodium salt in the step of adjusting the mixed slurry, the step of adjusting the mixed slurry, and the step of applying the mixed slurry to the support to form a single catalyst precursor layer. A manufacturing method in which a zirconium compound is contained in the carrier slurry can be applied.
 本発明の製造方法は、触媒金属塩であるパラジウム塩及びロジウム塩を添加する段階において、担体を懸濁したスラリー内に、添加剤としてジルコニウム化合物を含むものである。本発明の製法で得られた触媒は、触媒活性の高い触媒となり、特に浄化成分(CO、HC、NOx)の浄化率が50%に達する温度(T50)の低温化に効果が見られる。これは、パラジウム及びロジウムが、担体上で再配置しにくく、確実に担持されるためと考えられる。このように触媒金属が確実な担持状態となるのは、アルカリ溶液を用いて担持する場合のように、触媒金属が水酸化物として沈殿することを抑制でき、触媒金属がイオンとして担体に担持されるためと考えられる。そして、触媒金属が水酸化物として沈殿する場合のように、水酸化物同士の結合による触媒金属の粗大化も生じにくい。 In the production method of the present invention, a zirconium compound is added as an additive in a slurry in which a support is suspended in a step of adding a palladium salt and a rhodium salt, which are catalytic metal salts. The catalyst obtained by the production method of the present invention is a catalyst having high catalytic activity, and is particularly effective for lowering the temperature (T 50 ) at which the purification rate of the purification components (CO, HC, NOx) reaches 50%. This is presumably because palladium and rhodium are not easily rearranged on the carrier and are reliably supported. As described above, the catalyst metal is surely supported in a supported state because the catalyst metal can be prevented from precipitating as a hydroxide as in the case where the catalyst metal is supported using an alkaline solution, and the catalyst metal is supported on the carrier as ions. It is thought to be for this purpose. Further, as in the case where the catalyst metal is precipitated as a hydroxide, the catalyst metal is hardly coarsened due to the bond between the hydroxides.
 以下、本発明の製造方法について詳細に説明する。担体であるセリア‐ジルコニア複合酸化物及び無機酸化物を水に懸濁し、担体スラリーを調製する。各担体の添加量は、得られる触媒層全体に対し無機酸化物を20~70質量%、セリア‐ジルコニア複合酸化物を20~70質量%とすることが好ましい。担体スラリーを調製する際は、粉砕・混合して担体を均一かつ所定の粒度分布とすることが好ましい。粒度分布は、0.1~20μmにすることが好ましい。尚、セリア‐ジルコニア複合酸化物及び無機酸化物は、排ガス浄化触媒の構成として上記した種類、粒径と同様のものを適用できる。 Hereinafter, the production method of the present invention will be described in detail. The carrier, ceria-zirconia composite oxide and inorganic oxide, are suspended in water to prepare a carrier slurry. The amount of each carrier added is preferably 20 to 70% by mass of the inorganic oxide and 20 to 70% by mass of the ceria-zirconia composite oxide with respect to the entire catalyst layer obtained. When preparing the carrier slurry, it is preferable to pulverize and mix to obtain a uniform and predetermined particle size distribution. The particle size distribution is preferably 0.1 to 20 μm. As the ceria-zirconia composite oxide and the inorganic oxide, those having the same types and particle sizes as described above can be applied as the exhaust gas purification catalyst.
 上記担体スラリーの調製の際、セリア-ジルコニア複合酸化物及び無機酸化物と共に、添加剤として不溶性バリウム化合物を混合してスラリー化することが好ましい。ジルコニウム化合物に加え、不溶性バリウム化合物を添加することで、更に触媒性能の高い触媒を得やすい。不溶性バリウム化合物は、触媒金属添加前であれば、担体スラリーの調製前後を問わず、いつ添加してもよいが、担体スラリー調製時に、担体であるセリア-ジルコニア複合酸化物や無機酸化物と共に添加することが好ましい。不溶性バリウム化合物は粒子状であるため、同じく粒子状の担体と共に粉砕・混合してスラリー化することで、粒度分布の均一な混合スラリーを調整しやすい。 In preparing the carrier slurry, it is preferable to make a slurry by mixing an insoluble barium compound as an additive together with the ceria-zirconia composite oxide and the inorganic oxide. By adding an insoluble barium compound in addition to the zirconium compound, a catalyst with higher catalytic performance can be easily obtained. The insoluble barium compound may be added at any time before or after the preparation of the catalyst slurry as long as it is before the addition of the catalyst metal, but is added together with the ceria-zirconia composite oxide or inorganic oxide as the support at the time of preparation of the support slurry. It is preferable to do. Since the insoluble barium compound is in a particulate form, it is easy to adjust a mixed slurry having a uniform particle size distribution by pulverizing and mixing together with a particulate carrier to form a slurry.
 不溶性バリウム化合物としては、硫酸バリウム又は炭酸バリウムが好ましく、硫酸バリウムが特に好ましい。不溶性バリウム化合物の添加量は、得られる触媒層中の全成分を酸化物として換算した質量に対する酸化バリウムとして換算した質量で1.0~10質量%が好ましい。ここで、本発明では、バリウム化合物として不溶性の化合物を適用するものである。可溶性バリウム化合物は、セリア-ジルコニア複合酸化物の表面に微分散し、酸素吸放出能を阻害する傾向がある上、偏析しやすく、触媒層中に均一に分散しにくい。一方、本発明のように不溶性バリウム化合物を適用した場合、担体スラリー中で粒子形状を維持できるため、セリア‐ジルコニア複合酸化物表面で酸素吸放出能を阻害することがなく、触媒層中にバリウム成分を均一に分散させることも可能である。尚、不溶性バリウム化合物としては、排ガス浄化触媒の構成として上記した粒径と同様のものを適用できる。 As the insoluble barium compound, barium sulfate or barium carbonate is preferable, and barium sulfate is particularly preferable. The amount of the insoluble barium compound added is preferably 1.0 to 10% by mass in terms of barium oxide with respect to the mass of all components in the resulting catalyst layer as oxides. Here, in the present invention, an insoluble compound is applied as the barium compound. The soluble barium compound is finely dispersed on the surface of the ceria-zirconia composite oxide, tends to inhibit the oxygen absorption / release ability, is easily segregated, and is not easily dispersed uniformly in the catalyst layer. On the other hand, when an insoluble barium compound is applied as in the present invention, the particle shape can be maintained in the carrier slurry, so that the oxygen absorption / release capability is not inhibited on the surface of the ceria-zirconia composite oxide, and the barium is not contained in the catalyst layer. It is also possible to disperse the components uniformly. In addition, as an insoluble barium compound, the thing similar to the above-mentioned particle diameter as a structure of an exhaust gas purification catalyst is applicable.
 そして、上記担体スラリーに触媒金属塩としてパラジウム塩及びロジウム塩を添加し、触媒層の前駆体となる混合スラリーを調整する。触媒金属塩としては、硝酸塩、酢酸塩などの一般的な水溶性の化合物を用いることができ、好ましくは硝酸塩である。各触媒金属塩の添加量は、担体に対しパラジウムを0.1~2.5質量%、ロジウムを0.1~0.5質量%の範囲にすることが好ましい。 Then, a palladium salt and a rhodium salt are added as catalyst metal salts to the carrier slurry to prepare a mixed slurry that becomes a precursor of the catalyst layer. As the catalyst metal salt, a general water-soluble compound such as nitrate and acetate can be used, and nitrate is preferred. The amount of each catalyst metal salt added is preferably 0.1 to 2.5% by mass of palladium and 0.1 to 0.5% by mass of rhodium with respect to the support.
 ジルコニウム化合物を添加するタイミングとしては、上記した混合スラリー調整の際、パラジウム塩及びロジウム塩を添加する前が好ましい。ジルコニウム化合物は、オキシ硝酸ジルコニウム、酢酸ジルコニウム、ジルコニアゾルのいずれか1種以上が好ましく、オキシ硝酸ジルコニウムが特に好ましい。ジルコニウム化合物の添加量は、得られる触媒層中の全成分を酸化物として換算した質量に対する酸化ジルコニウムとして換算した質量で0.5~5.0質量%となるように加えるのが好ましい。この添加量であると、上述したZr/Ce比の触媒を得ることが可能となり、得られた触媒における触媒金属の分散度が高く、触媒性能も高いものとなりやすい。 The timing for adding the zirconium compound is preferably before adding the palladium salt and the rhodium salt when adjusting the mixed slurry. The zirconium compound is preferably at least one of zirconium oxynitrate, zirconium acetate, and zirconia sol, and particularly preferably zirconium oxynitrate. The added amount of the zirconium compound is preferably 0.5 to 5.0% by mass in terms of zirconium oxide relative to the mass of all components in the resulting catalyst layer as oxide. With this addition amount, it becomes possible to obtain a catalyst having the above-mentioned Zr / Ce ratio, and the resulting catalyst has a high degree of dispersion of the catalyst metal and tends to have high catalyst performance.
 本発明の製造方法では、ジルコニウム塩を添加することにより、特許文献2記載の製造方法のようにアルカリ溶液を用いることなく、触媒金属を担体上に固定化することができるため、触媒金属が水酸化物として沈殿することを抑制できる。触媒金属塩添加後の混合スラリーのpHは、触媒金属塩の添加量により変化する値ではあるが、本発明の実施条件では、約2.5~6.0の範囲内となることが多く、約3.0~5.0であることが特に多い。本発明によれば、触媒金属塩の添加後、アルカリ溶液を添加することなく、触媒金属を担体に確実に析出させることができる。触媒金属の析出が確実でない場合、触媒金属を添加した混合スラリーを乾燥・焼成させる工程において、触媒金属が脱落する場合があるが、本発明の製造方法で析出させた触媒金属は、乾燥・焼成等の際にも触媒金属の脱落は生じにくい。 In the production method of the present invention, by adding a zirconium salt, the catalyst metal can be immobilized on the support without using an alkaline solution as in the production method described in Patent Document 2, so that the catalyst metal is water. Precipitation as an oxide can be suppressed. The pH of the mixed slurry after the addition of the catalyst metal salt is a value that varies depending on the amount of addition of the catalyst metal salt, but in the implementation conditions of the present invention, it is often within the range of about 2.5 to 6.0, It is particularly often about 3.0 to 5.0. According to the present invention, after the addition of the catalyst metal salt, the catalyst metal can be reliably deposited on the support without adding an alkaline solution. If the catalyst metal is not surely deposited, the catalyst metal may fall off in the step of drying and firing the mixed slurry to which the catalyst metal is added, but the catalyst metal deposited by the production method of the present invention is dried and fired. In such cases, the catalyst metal is unlikely to fall off.
 以上で調製する混合スラリーは、混合スラリーに対し、スラリー中の全触媒成分の固形分量が20~50質量%になるように調製することが好ましい。得られた混合スラリーは、支持体に塗布して単層の触媒前駆体層を形成させた後、焼成して触媒層を形成して排ガス浄化触媒を製造できる。支持体の焼成温度は400~700℃が好適である。混合スラリーは、支持体への塗布に際し、酢酸、水等の調整剤を用いてスラリー粘度の調整を行ってもよい。ただし、粘度調整の際にも、触媒金属の分散性を低下させる傾向となるアルカリ溶液の添加は避ける。混合スラリーを塗布した支持体は、焼成前に乾燥させることが好ましい。乾燥温度は90~200℃が好適である。 The mixed slurry prepared above is preferably prepared such that the solid content of all catalyst components in the slurry is 20 to 50% by mass with respect to the mixed slurry. The obtained mixed slurry is applied to a support to form a single catalyst precursor layer, and then fired to form a catalyst layer to produce an exhaust gas purification catalyst. The firing temperature of the support is preferably 400 to 700 ° C. When the mixed slurry is applied to the support, the viscosity of the slurry may be adjusted using a regulator such as acetic acid or water. However, addition of an alkaline solution that tends to reduce the dispersibility of the catalyst metal is also avoided when adjusting the viscosity. The support coated with the mixed slurry is preferably dried before firing. The drying temperature is preferably 90 to 200 ° C.
 本発明の排ガス浄化触媒は、複数の触媒金属の特性を利用しつつ、触媒性能の特に優れたものである。 The exhaust gas purification catalyst of the present invention is particularly excellent in catalyst performance while utilizing the characteristics of a plurality of catalyst metals.
第一実施形態における排ガス浄化触媒のEPMA分析図。The EPMA analysis figure of the exhaust gas purification catalyst in 1st embodiment.
 以下、本発明における最良の実施形態について説明する。 Hereinafter, the best embodiment of the present invention will be described.
 第一実施形態:無機酸化物である活性アルミナ(ランタンドープγ-アルミナ)100g、セリア-ジルコニア複合酸化物(CeZrLaY、ジルコニア/セリア比が65/35)60gと、酢酸バリウム(純度99%以上)7.0gを、酢酸1.8g及び純水0.17Lの混合溶液中に加え、アルミナメディアミルにより粉砕及び混合して担体スラリーを調整した。ジルコニウム塩を添加する場合、この担体スラリーにオキシ硝酸ジルコニウム(純度99.0%以上)等を添加混合し、更に硝酸パラジウム(田中貴金属工業(株)製)8.3g及び硝酸ロジウム(田中貴金属工業(株)製)1.7gを添加混合して混合スラリーを調整した。このスラリーのpHは約4.4であった。当該スラリーに、酢酸、水を添加して粘度調整し、支持体(コーディエライト製モノリス、容積1L、セル数600cpsi、壁厚4.3mil)に塗布した。以上説明した混合スラリー調整後、支持体への塗布までの段階において、アルカリ溶液は添加しなかった。95℃で30分乾燥後、500℃で2時間焼成して排ガス浄化触媒を得た(試験No.1-2)。 First embodiment : 100 g of activated alumina (lanthanum-doped γ-alumina) which is an inorganic oxide, 60 g of ceria-zirconia composite oxide (CeZrLaY, zirconia / ceria ratio 65/35), and barium acetate (purity 99% or more) 7.0 g was added to a mixed solution of 1.8 g of acetic acid and 0.17 L of pure water, and pulverized and mixed with an alumina media mill to prepare a carrier slurry. In the case of adding a zirconium salt, zirconium oxynitrate (purity 99.0% or more) or the like is added to and mixed with this carrier slurry, and further 8.3 g of palladium nitrate (Tanaka Kikinzoku Kogyo Co., Ltd.) and rhodium nitrate (Tanaka Kikinzoku Kogyo). 1.7 g was added and mixed to prepare a mixed slurry. The slurry had a pH of about 4.4. Acetic acid and water were added to the slurry to adjust the viscosity, and the slurry was applied to a support (monolith manufactured by cordierite, volume 1 L, cell number 600 cpsi, wall thickness 4.3 mil). No alkali solution was added in the stage from the mixed slurry adjustment described above to the application to the support. After drying at 95 ° C. for 30 minutes, it was calcined at 500 ° C. for 2 hours to obtain an exhaust gas purification catalyst (Test No. 1-2).
 下記表1のように、バリウム塩及びジルコニウム塩を添加していない触媒(試験No.1-1)、ジルコニウム塩の添加量を変化させた触媒(試験No.1-3~1-5)、オキシ硝酸ジルコニウムに替えて酢酸ジルコニウム、水酸化ジルコニウム、ジルコニアゾルを用いた触媒(試験No.1-6~1-8)についても、上記と同様の方法で製造した。また、オキシ硝酸ジルコニウムを含むとともに、バリウム塩として、酢酸バリウムに替えて硫酸バリウムを用いた触媒(試験No.1-9)も製造した。 As shown in Table 1 below, a catalyst to which no barium salt or zirconium salt was added (Test No. 1-1), a catalyst in which the amount of zirconium salt added was changed (Test Nos. 1-3 to 1-5), Catalysts (test Nos. 1-6 to 1-8) using zirconium acetate, zirconium hydroxide, and zirconia sol instead of zirconium oxynitrate were also produced in the same manner as described above. Further, a catalyst (Test No. 1-9) containing zirconium oxynitrate and using barium sulfate as the barium salt instead of barium acetate was also produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記で得られた触媒について、触媒層中のジルコニウム/セリウム濃度比を分析し、触媒金属の担体への担持状態も確認した。また、触媒性能として、CO、NO、HCの排ガス浄化能力を評価した。 For the catalyst obtained above, the zirconium / cerium concentration ratio in the catalyst layer was analyzed, and the supported state of the catalyst metal on the carrier was also confirmed. Moreover, the exhaust gas purification ability of CO, NO, and HC was evaluated as catalyst performance.
 上記試験No.1-3~1-5の触媒について、電子線マイクロアナライザ(EPMA)を用いて触媒層中のジルコニウム/セリウム濃度比を分析した。電子線照射条件は加速電圧20kV、照射電流1.0×10-8Aとし、支持体中心付近から触媒層表層に向かって0.2μm毎に、触媒層に対する電子線の照射位置を移動させて線分析を行った。触媒層表層から支持体側に5~10μmの深さの測定位置におけるジルコニウム/セリウム濃度比の平均(X)と、支持体と触媒層の界面から表層側に5~10μmの深さの測定位置におけるジルコニウム/セリウム濃度比の平均(X)を求めた。本試験では、ZrのX線強度が10以下になる測定位置を触媒層の最表面とした。得られた表層側ジルコニウム/セリウム比(X)と支持体側ジルコニウム/セリウム比(X)との比を求め、触媒層表層側と支持体側のジルコニウム濃度比(X/X)とした。No.1-5についてのEPMA測定結果を図1に示す。 Test No. above. For the catalysts 1-3 to 1-5, the zirconium / cerium concentration ratio in the catalyst layer was analyzed using an electron beam microanalyzer (EPMA). The electron beam irradiation conditions were an acceleration voltage of 20 kV and an irradiation current of 1.0 × 10 −8 A, and the irradiation position of the electron beam on the catalyst layer was moved every 0.2 μm from the vicinity of the center of the support toward the surface of the catalyst layer. Line analysis was performed. Zirconium / cerium concentration ratio average (X 1 ) at a measurement position at a depth of 5 to 10 μm from the catalyst layer surface to the support side, and a measurement position at a depth of 5 to 10 μm from the interface between the support and the catalyst layer to the surface layer side The average (X 2 ) of the zirconium / cerium concentration ratio was determined. In this test, the measurement position where the X-ray intensity of Zr was 10 or less was defined as the outermost surface of the catalyst layer. The ratio of the obtained surface layer side zirconium / cerium ratio (X 1 ) and the support side zirconium / cerium ratio (X 2 ) was determined to obtain the zirconium concentration ratio (X 1 / X 2 ) of the catalyst layer surface layer side and the support side. . No. The EPMA measurement results for 1-5 are shown in FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図1、表2より、Zr塩を添加して製造した触媒は、触媒層表層付近のZr/Ceが、支持体との界面付近よりも高いことを確認できた。 1 and Table 2, it was confirmed that the catalyst produced by adding the Zr salt had higher Zr / Ce near the surface of the catalyst layer than near the interface with the support.
 次に、Ba塩及びZr塩の添加有無による、触媒金属の担体に対する担持状態を確認した。この確認試験には、試験No.1-1、1-2、1-9の各触媒を製造する工程において、触媒金属塩添加後の混合スラリーを用いた。具体的には、硝酸パラジウム及び硝酸ロジウム添加後の混合スラリーを遠心分離後、フィルター濾過して得た上澄み液について、液中に含まれる貴金属(Pd及びRh)の濃度を高周波誘導結合プラズマ法(ICP)により分析した。上澄み液中の貴金属濃度から、スラリーに添加した貴金属のうち無機酸化物担体上に固定された割合を求めた。 Next, the supported state of the catalyst metal on the support depending on the presence or absence of addition of Ba salt and Zr salt was confirmed. In this confirmation test, Test No. In the steps of producing the respective catalysts 1-1, 1-2, and 1-9, the mixed slurry after addition of the catalyst metal salt was used. Specifically, the concentration of noble metals (Pd and Rh) contained in the supernatant of the supernatant obtained by centrifuging the mixed slurry after the addition of palladium nitrate and rhodium nitrate and filter filtration is determined by the high frequency inductively coupled plasma method ( ICP). From the noble metal concentration in the supernatant, the proportion of the noble metal added to the slurry fixed on the inorganic oxide support was determined.
 上記の結果、ジルコニウム塩及びバリウム塩を添加しなかった触媒(試験No.1-1)の製造工程における混合スラリーでは、担体に固定化されたパラジウム及びロジウムの割合は87%であった。これに対し、バリウム塩を添加した触媒(試験No.1-2)では、固定化されたパラジウム及びロジウムの割合は70%であった。また、ジルコニウム塩及びバリウム塩の双方を添加した触媒(試験No.1-9)では、ほぼ100%のパラジウム及びロジウムが固定化されていた。 As a result, in the mixed slurry in the production process of the catalyst to which no zirconium salt or barium salt was added (Test No. 1-1), the ratio of palladium and rhodium immobilized on the support was 87%. On the other hand, in the catalyst to which barium salt was added (Test No. 1-2), the ratio of immobilized palladium and rhodium was 70%. Further, in the catalyst (Test No. 1-9) to which both the zirconium salt and the barium salt were added, almost 100% of palladium and rhodium were immobilized.
 そして、以上の試験No.1-1~1-9の触媒について、排ガス浄化性能(T50)を評価した。性能評価には支持体から円筒状にコア抜きされた触媒を用いた。コア抜きされた触媒は性能評価の前に雰囲気炉を用いて900℃、10hの劣化処理を行った。性能評価の反応ガスはエンジン排ガスを模擬する為、Richガスとして、CO 10%,CO 0.77%,H 0.2%,C 100ppm,C 300ppm,NO 800ppm,O 0.4%,HO 10.0%を用い、Leanガスとして、CO 10%,CO 0.77%,H 0.2%,C 100ppm,C 300ppm,NO 800ppm,O 0.4%,HO 10.0%を用いた。いずれの雰囲気ガスも残部はNとした。触媒へ供給する反応ガスは空間速度(SV)90,000h―1で、Rich/Leanを1秒毎に連続的に切替えた。触媒入口温度を100~600℃まで40℃/分で温度上昇させる昇温反応試験において、触媒入口と出口の反応ガス組成を分析し、一酸化炭素、炭化水素、窒素酸化物の浄化率を計測した。浄化率が50%に達する温度をT50として浄化能力を評価した。T50が低い程、触媒の浄化能力が高いことが示される。 And the above test No. The exhaust gas purification performance (T 50 ) of the catalysts 1-1 to 1-9 was evaluated. A catalyst cored in a cylindrical shape from the support was used for performance evaluation. The cored catalyst was subjected to deterioration treatment at 900 ° C. for 10 hours using an atmospheric furnace before performance evaluation. Since the reaction gas for performance evaluation simulates engine exhaust gas, as Rich gas, CO 2 10%, CO 0.77%, H 2 0.2%, C 3 H 8 100 ppm, C 3 H 6 300 ppm, NO 800 ppm, Using O 2 0.4% and H 2 O 10.0%, as Lean gas, CO 2 10%, CO 0.77%, H 2 0.2%, C 3 H 8 100 ppm, C 3 H 6 300 ppm , NO 800 ppm, O 2 0.4%, H 2 O 10.0%. Any of the atmospheric gas even balance was N 2. The reaction gas supplied to the catalyst was a space velocity (SV) of 90,000 h −1 and Rich / Lean was continuously switched every second. In a temperature rising reaction test in which the temperature at the catalyst inlet is increased from 100 to 600 ° C at 40 ° C / min, the reaction gas composition at the catalyst inlet and outlet is analyzed to measure the purification rate of carbon monoxide, hydrocarbons, and nitrogen oxides. did. The temperature at which the purification rate reached 50% was evaluated purifying ability as T 50. More T 50 is low, indicating that high catalytic purification ability.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上より、ジルコニウム塩を含む触媒(試験No.1-3~1-9)は、T50が低く、CO、NO、HCのいずれの浄化性能においても触媒活性の高いことが示された。また、バリウム及びジルコニアの双方を含む(試験No.1-9)と、T50が特に低く、良好な触媒活性を示した。 From the above, it was shown that the catalyst containing the zirconium salt (Test Nos. 1-3 to 1-9) had a low T 50 and a high catalytic activity in any purification performance of CO, NO, and HC. Further, when both barium and zirconia were contained (Test No. 1-9), T 50 was particularly low, and good catalytic activity was exhibited.
 以上より、ジルコニウム塩を添加した触媒は、ジルコニウム塩を添加しなかった触媒と比べ、担体に固定化された触媒金属の量が多く、触媒活性が良好であった。バリウム及びジルコニアの双方を添加した触媒では、用いた触媒金属のほとんどが固定化され、触媒活性も特に高かった。 From the above, the catalyst to which the zirconium salt was added had a larger amount of catalytic metal immobilized on the carrier and the catalytic activity was better than the catalyst to which the zirconium salt was not added. In the catalyst to which both barium and zirconia were added, most of the catalyst metal used was immobilized, and the catalytic activity was particularly high.
 第二実施形態:下記表4に示す粒径の硫酸バリウムを用いて触媒を製造した。その他の製造条件、性能評価は、第一実施形態と同様の方法で行った。 Second embodiment : A catalyst was produced using barium sulfate having a particle size shown in Table 4 below. Other manufacturing conditions and performance evaluation were performed in the same manner as in the first embodiment.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上より、バリウム化合物の粒径0.01μm以上2μm未満において、T50が特に低く、良好な触媒活性が示された。 From the above, when the particle size of the barium compound was 0.01 μm or more and less than 2 μm, T 50 was particularly low, and good catalytic activity was shown.
 第三実施形態:CO吸着法により、触媒層における触媒金属の分散度を評価した。また、劣化処理を行った触媒についても評価した。 Third Embodiment : The degree of dispersion of the catalyst metal in the catalyst layer was evaluated by a CO adsorption method. Moreover, the catalyst which performed the deterioration process was also evaluated.
 下記表5に示すバリウム塩及びジルコニウム塩を用いて触媒を製造した。試験No.3-1は、担体スラリーに硝酸パラジウム及び硝酸ロジウムを添加した後、アルカリ溶液としてTEAHを添加しpHを7.0に上昇させた。試験No.3-3~3-5の触媒については、触媒製造後、950℃、10h劣化処理を行った。その他の触媒製造条件は、第一実施形態と同様として触媒を製造した。 Catalysts were produced using barium salts and zirconium salts shown in Table 5 below. Test No. 3-1, after adding palladium nitrate and rhodium nitrate to the carrier slurry, TEAH was added as an alkaline solution to raise the pH to 7.0. Test No. The catalysts 3-3 to 3-5 were subjected to a aging treatment at 950 ° C. for 10 hours after the production of the catalyst. Other catalyst production conditions were the same as in the first embodiment, and the catalyst was produced.
 以上で得られた触媒について、触媒金属の単位分散度及び平均粒子径をCOパルス吸着法により測定した。具体的には、触媒を酸素雰囲気中、400℃で15分保持し、次いで水素雰囲気中でも、400℃で15分保持し、さらにヘリウム雰囲気で50℃まで冷却した後、COパルス法によりCO吸着量を測定した。この測定により、触媒層表面に露出した触媒金属の原子数を測定できる。そして、単位分散度は、担体に担持された触媒金属の量のうち、触媒層表面に露出している量の割合(%)を示すものであり、CO吸着量より算出した。単位分散度が大きいほど、触媒層表面において触媒金属の露出した部分の表面積が大きいため、性能の良好な触媒となりやすい。また、平均粒子径は、CO吸着量より算出した触媒金属の表面積より、触媒金属の形状を球状と仮定して算出した。 For the catalyst obtained above, the unit dispersion and average particle size of the catalyst metal were measured by the CO pulse adsorption method. Specifically, the catalyst is held at 400 ° C. for 15 minutes in an oxygen atmosphere, then held at 400 ° C. for 15 minutes in a hydrogen atmosphere, and further cooled to 50 ° C. in a helium atmosphere. Was measured. By this measurement, the number of atoms of the catalyst metal exposed on the catalyst layer surface can be measured. The unit dispersity indicates the ratio (%) of the amount of the catalyst metal supported on the carrier that is exposed on the surface of the catalyst layer, and was calculated from the CO adsorption amount. The larger the unit dispersion, the larger the surface area of the exposed portion of the catalyst metal on the surface of the catalyst layer, and thus the better the performance of the catalyst. The average particle diameter was calculated from the surface area of the catalyst metal calculated from the CO adsorption amount, assuming that the shape of the catalyst metal was spherical.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 劣化処理をしていない触媒(試験No.3-1、3-2)についてみると、ジルコニウム塩を添加し、アルカリ溶液を用いなかった触媒(試験No.3-2)は、アルカリ溶液でpHを調整した触媒(試験No.3-1)に比べ、触媒金属の単位分散度が高く、平均粒子径も小さなものであった。アルカリ溶液を添加した触媒では、触媒金属が水酸化物として沈降したため、触媒金属が大粒径化したものと考えられる。 As for the catalyst not subjected to the deterioration treatment (Test Nos. 3-1, 3-2), the catalyst added with the zirconium salt and not using the alkaline solution (Test No. 3-2) was adjusted to pH in the alkaline solution. The catalyst metal unit dispersion was higher and the average particle size was smaller than that of the catalyst with adjusted (Test No. 3-1). In the catalyst to which the alkaline solution was added, it is considered that the catalyst metal was increased in particle size because the catalyst metal was precipitated as a hydroxide.
 900℃で10時間劣化処理を行った触媒(試験No.3-3~3-5)では、ジルコニウム塩を添加していない触媒(試験No.3-3)において、触媒金属の大規模な凝集がみられ、COパルス法での分散度及び粒子径の算出が行えなかった。これに対し、ジルコニウム塩を添加した触媒(試験No.3-4、3-5)は、劣化処理をしていない触媒と比べ、分散度の低下と粒子径の増大がみられたものの、ジルコニウム塩を添加していない触媒と比べ、触媒金属の凝集は抑制されていることが示された。このことから、ジルコニウム塩を添加した触媒では、触媒の使用等により触媒が劣化した場合にも、触媒金属の凝集を抑制する効果が期待できる。 In the catalyst (test Nos. 3-3 to 3-5) subjected to deterioration treatment at 900 ° C. for 10 hours, large-scale aggregation of the catalyst metal was observed in the catalyst to which no zirconium salt was added (test No. 3-3). As a result, the degree of dispersion and particle size could not be calculated by the CO pulse method. On the other hand, the catalysts added with zirconium salts (Test Nos. 3-4 and 3-5) showed lower dispersibility and increased particle size compared to catalysts not subjected to deterioration treatment. It was shown that the agglomeration of the catalyst metal was suppressed as compared with the catalyst to which no salt was added. From this, the catalyst added with a zirconium salt can be expected to suppress the aggregation of the catalyst metal even when the catalyst is deteriorated due to the use of the catalyst or the like.
 本発明によれば、排ガス浄化触媒として触媒性能が高く、製造コストも安い触媒を提供することが可能となる。本発明の排ガス浄化触媒は、特に三元触媒として好適である。 According to the present invention, it is possible to provide a catalyst having high catalytic performance and low manufacturing cost as an exhaust gas purification catalyst. The exhaust gas purification catalyst of the present invention is particularly suitable as a three-way catalyst.

Claims (13)

  1.  支持体上に、単一の触媒層が形成されてなる排ガス浄化触媒であって、
     前記触媒層は、アルミナ、セリア、ジルコニアの少なくともいずれかよりなる無機酸化物と、セリア‐ジルコニア複合酸化物とを混合してなる担体に、パラジウム及びロジウムが担持されたものであり、
     更に、前記触媒層の表面におけるジルコニウム濃度(SZr)とセリウム濃度(SCe)との比(SZr/SCe)が、触媒層の支持体との界面におけるジルコニウム濃度(CZr)とセリウム濃度(CCe)との比(CZr/CCe)に対して1.05~6.0である排ガス浄化触媒。
    An exhaust gas purification catalyst in which a single catalyst layer is formed on a support,
    The catalyst layer is one in which palladium and rhodium are supported on a support formed by mixing an inorganic oxide composed of at least one of alumina, ceria, and zirconia, and a ceria-zirconia composite oxide,
    Furthermore, the ratio (S Zr / S Ce ) between the zirconium concentration (S Zr ) and the cerium concentration (S Ce ) on the surface of the catalyst layer is such that the zirconium concentration (C Zr ) and cerium at the interface with the support of the catalyst layer. An exhaust gas purification catalyst having a ratio (C Zr / C Ce ) to the concentration (C Ce ) of 1.05 to 6.0.
  2.  触媒層は、更に、バリウム化合物を含む請求項1記載の排ガス浄化触媒。 The exhaust gas purification catalyst according to claim 1, wherein the catalyst layer further contains a barium compound.
  3.  バリウム化合物は、硫酸バリウム、炭酸バリウム、酸化バリウムのいずれかからなる請求項2に記載の排ガス浄化触媒。 The exhaust gas purifying catalyst according to claim 2, wherein the barium compound is any one of barium sulfate, barium carbonate, and barium oxide.
  4.  バリウム化合物は、粒径0.01μm以上2.0μm未満である請求項2又は請求項3記載の排ガス浄化触媒。 The exhaust gas purification catalyst according to claim 2 or 3, wherein the barium compound has a particle size of 0.01 µm or more and less than 2.0 µm.
  5.  請求項1~請求項4のいずれかに記載の排ガス浄化触媒の製造方法であって、
     無機酸化物とセリア‐ジルコニア複合酸化物とを懸濁した担体スラリーに、パラジウム塩及びロジウム塩を添加して触媒層の前駆体となる混合スラリーを調整する工程と、
     前記混合スラリーを支持体に塗布して、単層の触媒前駆体層を形成する工程と、を含み、
     前記混合スラリーを調整する工程のパラジウム塩及びロジウム塩を添加する段階の担体スラリー内に、ジルコニウム化合物を含むものとする排ガス浄化触媒の製造方法。
    A method for producing an exhaust gas purifying catalyst according to any one of claims 1 to 4,
    Adding a palladium salt and a rhodium salt to a carrier slurry in which an inorganic oxide and a ceria-zirconia composite oxide are suspended, and adjusting a mixed slurry to be a precursor of a catalyst layer;
    Applying the mixed slurry to a support to form a single catalyst precursor layer, and
    A method for producing an exhaust gas purifying catalyst, comprising a zirconium compound in a carrier slurry in a step of adding a palladium salt and a rhodium salt in the step of preparing the mixed slurry.
  6.  混合スラリーを調整する工程のパラジウム塩及びロジウム塩を添加する段階の担体スラリー内に、不溶性バリウム化合物を更に含む請求項5記載の製造方法。 6. The production method according to claim 5, further comprising an insoluble barium compound in the carrier slurry in the step of adding the palladium salt and rhodium salt in the step of adjusting the mixed slurry.
  7.  不溶性バリウム化合物は、硫酸バリウム又は炭酸バリウムである請求項6に記載の製造方法。 The production method according to claim 6, wherein the insoluble barium compound is barium sulfate or barium carbonate.
  8.  不溶性バリウム化合物の添加量は、触媒層中の全成分を酸化物として換算した質量に対する酸化バリウムとして換算した質量で1.0~10質量%である請求項6又は請求項7に記載の製造方法。 The production method according to claim 6 or 7, wherein the addition amount of the insoluble barium compound is 1.0 to 10% by mass in terms of the mass converted as barium oxide with respect to the mass converted as an oxide of all components in the catalyst layer. .
  9.  ジルコニウム化合物は、オキシ硝酸ジルコニウム、酢酸ジルコニウム、ジルコニアゾルのいずれか1種以上である請求項5~請求項8のいずれかに記載の製造方法。 The production method according to any one of claims 5 to 8, wherein the zirconium compound is at least one of zirconium oxynitrate, zirconium acetate, and zirconia sol.
  10.  ジルコニウム化合物の添加量は、触媒層中の全成分を酸化物として換算した質量に対する酸化ジルコニウムとして換算した質量で0.5~5.0質量%である請求項5~請求項9のいずれかに記載の製造方法。 The addition amount of the zirconium compound is 0.5 to 5.0% by mass in terms of zirconium oxide with respect to the mass in which all components in the catalyst layer are converted as oxides. The manufacturing method as described.
  11.  不溶性バリウム化合物を、セリア-ジルコニア複合酸化物及び無機酸化物と共に混合した後にスラリー化して担体スラリーを調整する請求項6~請求項10のいずれかに記載の製造方法。 The production method according to any one of claims 6 to 10, wherein the carrier slurry is prepared by mixing an insoluble barium compound together with a ceria-zirconia composite oxide and an inorganic oxide and then forming a slurry.
  12.  ジルコニウム化合物の添加は、セリア-ジルコニア複合酸化物及び無機酸化物を混合し、スラリー化して担体スラリーを調整後、パラジウム塩及びロジウム塩の添加前に行う請求項5~請求項11のいずれかに記載の製造方法。 The addition of the zirconium compound is performed after mixing the ceria-zirconia composite oxide and the inorganic oxide, forming a slurry to prepare a support slurry, and before adding the palladium salt and rhodium salt. The manufacturing method as described.
  13.  触媒前駆体層の形成工程後、支持体を400~700℃で焼成して触媒層を形成する請求項5~請求項12のいずれかに記載の製造方法。 The production method according to any one of claims 5 to 12, wherein the catalyst layer is formed by calcining the support at 400 to 700 ° C after the step of forming the catalyst precursor layer.
PCT/JP2014/081205 2013-12-02 2014-11-26 Exhaust-gas purifying catalyst and method for producing same WO2015083590A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480066003.3A CN105792929B (en) 2013-12-02 2014-11-26 Exhaust gas purifying catalyst and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013249137A JP5777690B2 (en) 2013-12-02 2013-12-02 Exhaust gas purification catalyst and method for producing the same
JP2013-249137 2013-12-02

Publications (1)

Publication Number Publication Date
WO2015083590A1 true WO2015083590A1 (en) 2015-06-11

Family

ID=53273353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081205 WO2015083590A1 (en) 2013-12-02 2014-11-26 Exhaust-gas purifying catalyst and method for producing same

Country Status (3)

Country Link
JP (1) JP5777690B2 (en)
CN (1) CN105792929B (en)
WO (1) WO2015083590A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130623A1 (en) * 2016-01-28 2017-08-03 株式会社キャタラー Pd-SUPPORTING Zr-BASED COMPOSITE OXIDE
CN110494215A (en) * 2017-04-11 2019-11-22 株式会社科特拉 Exhaust gas purification catalyst

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11446638B2 (en) * 2017-12-28 2022-09-20 Umicore Shokubai Japan Co., Ltd Hydrogen-producing catalyst and exhaust gas purifying catalyst using same
CN108993560A (en) * 2018-07-25 2018-12-14 昆明贵研催化剂有限责任公司 A kind of water resistant, high temperature resistant methane oxidation catalyst and preparation method thereof
CN112675845B (en) * 2020-12-28 2022-03-29 四川大学 Pd-Rh single-coating catalyst for purifying tail gas of natural gas vehicle and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6458347A (en) * 1987-08-28 1989-03-06 Engelhard Nippon Catalyst of superior heat resistance for purifying internal combustion engine exhaust gas and its preparation
WO1990014888A1 (en) * 1989-06-09 1990-12-13 N.E. Chemcat Corporation Exhaust gas purifying catalyst excellent in thermal resistance and method of production thereof
JPH09131530A (en) * 1995-11-09 1997-05-20 Ict:Kk Catalyst for purification of exhaust gas from internal combustion engine
JPH11151439A (en) * 1997-11-20 1999-06-08 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
JP2003526493A (en) * 1998-05-01 2003-09-09 エンゲルハード・コーポレーシヨン Catalyst member having substrate sprayed by electric arc spray method and method for producing the same
JP2006263583A (en) * 2005-03-24 2006-10-05 Mazda Motor Corp Catalyst for cleaning exhaust gas
WO2009116468A1 (en) * 2008-03-19 2009-09-24 株式会社アイシーティー Catalyst for cleaning internal combustion engine exhaust gas and method for cleaning exhaust gas using said catalyst

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19847008A1 (en) * 1998-10-13 2000-04-20 Degussa Nitrogen oxide storage catalytic converter
CN1854474A (en) * 2005-04-27 2006-11-01 马自达汽车股份有限公司 Diesel particulate filter
JP4841539B2 (en) * 2007-04-12 2011-12-21 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
US8038951B2 (en) * 2007-08-09 2011-10-18 Basf Corporation Catalyst compositions
JP5086964B2 (en) * 2008-10-08 2012-11-28 三井金属鉱業株式会社 Method for producing exhaust gas purifying catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6458347A (en) * 1987-08-28 1989-03-06 Engelhard Nippon Catalyst of superior heat resistance for purifying internal combustion engine exhaust gas and its preparation
WO1990014888A1 (en) * 1989-06-09 1990-12-13 N.E. Chemcat Corporation Exhaust gas purifying catalyst excellent in thermal resistance and method of production thereof
JPH09131530A (en) * 1995-11-09 1997-05-20 Ict:Kk Catalyst for purification of exhaust gas from internal combustion engine
JPH11151439A (en) * 1997-11-20 1999-06-08 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
JP2003526493A (en) * 1998-05-01 2003-09-09 エンゲルハード・コーポレーシヨン Catalyst member having substrate sprayed by electric arc spray method and method for producing the same
JP2006263583A (en) * 2005-03-24 2006-10-05 Mazda Motor Corp Catalyst for cleaning exhaust gas
WO2009116468A1 (en) * 2008-03-19 2009-09-24 株式会社アイシーティー Catalyst for cleaning internal combustion engine exhaust gas and method for cleaning exhaust gas using said catalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130623A1 (en) * 2016-01-28 2017-08-03 株式会社キャタラー Pd-SUPPORTING Zr-BASED COMPOSITE OXIDE
JP6246424B1 (en) * 2016-01-28 2017-12-13 株式会社キャタラー Pd-supported Zr-based composite oxide
CN108602049A (en) * 2016-01-28 2018-09-28 株式会社科特拉 The Zr system complex oxides of loading Pd
US11084022B2 (en) 2016-01-28 2021-08-10 Cataler Corporation Pd-supporting Zr-based composite oxide
CN108602049B (en) * 2016-01-28 2021-09-03 株式会社科特拉 Pd-supporting Zr-based composite oxide
CN110494215A (en) * 2017-04-11 2019-11-22 株式会社科特拉 Exhaust gas purification catalyst
US11504700B2 (en) 2017-04-11 2022-11-22 Cataler Corporation Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP2015104715A (en) 2015-06-08
CN105792929A (en) 2016-07-20
CN105792929B (en) 2018-06-26
JP5777690B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP4950365B2 (en) Mixed phase ceramic oxide ternary alloy catalyst formulation and method for producing the catalyst
EP2452750A1 (en) Exhaust gas purifying catalyst and method for producing same
EP1900427A1 (en) Catalyst system for vehicle exhaust gas purification devices, exhaust gas purification device using the same, and method for purification of exhaust gases
WO2015083590A1 (en) Exhaust-gas purifying catalyst and method for producing same
JP2005262201A (en) Exhaust gas-cleaning catalyst and method for manufacturing the same
CN111065456B (en) Exhaust gas purifying catalyst
CN106999921B (en) Titania doped zirconia as platinum group metal support in catalysts for treating exhaust gas streams from combustion engines
WO2014080695A1 (en) Complex oxide particles and catalyst for purifying exhaust gas using same
CN113042045B (en) Exhaust gas purifying catalyst
JP2022061979A (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst for automobile
JP4831753B2 (en) Exhaust gas purification catalyst
JPS63205141A (en) Catalyst for purifying exhaust gas
CN113042047A (en) Catalyst for exhaust gas purification
WO2019167515A1 (en) Exhaust purification three-way catalyst and manufacturing method therefor, and exhaust purification monolithic catalyst
CN106457226B (en) Catalyst for exhaust gas purification
JP6532825B2 (en) Exhaust gas purification catalyst
JP4979087B2 (en) Composite oxide powder, production method and production apparatus thereof, and exhaust gas purification catalyst
JP2013180283A (en) Oxidation catalyst and exhaust gas cleaning method using the same
JP6050703B2 (en) Exhaust gas purification catalyst
JP5030573B2 (en) Composite oxide powder and method for producing the same
JP7329060B2 (en) Exhaust gas purifying catalyst, exhaust gas purifying method, and exhaust gas purifying catalyst manufacturing method
JP4775953B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP4836187B2 (en) Exhaust gas purification catalyst, production method thereof and regeneration method thereof
JP6096818B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
RU2790008C2 (en) Catalyst for exhaust gas purification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868109

Country of ref document: EP

Kind code of ref document: A1