JPH10356A - Catalyst of purification of exhaust gas and method for purifying exhaust gas - Google Patents

Catalyst of purification of exhaust gas and method for purifying exhaust gas

Info

Publication number
JPH10356A
JPH10356A JP8152245A JP15224596A JPH10356A JP H10356 A JPH10356 A JP H10356A JP 8152245 A JP8152245 A JP 8152245A JP 15224596 A JP15224596 A JP 15224596A JP H10356 A JPH10356 A JP H10356A
Authority
JP
Japan
Prior art keywords
powder
exhaust gas
porous particles
catalyst
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8152245A
Other languages
Japanese (ja)
Other versions
JP3741292B2 (en
Inventor
Yasuo Ikeda
靖夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP15224596A priority Critical patent/JP3741292B2/en
Publication of JPH10356A publication Critical patent/JPH10356A/en
Application granted granted Critical
Publication of JP3741292B2 publication Critical patent/JP3741292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the degradation in durability by the grain growth of Pt, to prevent the degradation in the NOx occluding and releasing capability of a NOx occluding material and to improve durability by allowing first power deposited with Rh on porous particles and second powder deposited with Pt and the NOx occluding material on the porous particles to coexist. SOLUTION: The catalyst for purification of exhaust gases which purifies the exhaust gases discharged from an automobile, etc., is produced by allowing the first power deposited with the Rh on the porous particles and the second powder deposited with the Pt and the NOx occluding material on the porous particles to coexist. At the time of purification of the exhaust gases, the catalyst is arranged in the exhaust gases to occlude NOx in the NOx occluding material in an oxygen excessive lean atmosphere. This atmosphere is temporarily changed from the stoichiometric to rich atmosphere, by which the NOx released from the NOx occluding material is reduced and the gases are purified. The grain sizes of the porous particles are preferably in the range of 1 to 100μm for both of the first and second powders. The amt. of the Rh deposited on the first powder is preferably in a range of 0.1 to 10g per 120g porous particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車などの内燃
機関から排出される排ガスを浄化する排ガス浄化用触媒
及び排ガス浄化方法に関し、さらに詳しくは、酸素過剰
の排ガス、すなわち排ガス中に含まれる一酸化炭素(C
O)、水素(H2 )及び炭化水素(HC)等の還元性成
分を完全に酸化するのに必要な酸素量より過剰の酸素を
含む排ガス中の、窒素酸化物(NOx )を効率良く還元
浄化できる排ガス浄化用触媒及び排ガス浄化方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst and an exhaust gas purifying method for purifying exhaust gas discharged from an internal combustion engine of an automobile or the like. Carbon oxide (C
O), hydrogen (H 2 ) and hydrocarbons (HC) such as nitrogen oxides (NO x ) in exhaust gas containing excess oxygen in excess of the amount of oxygen necessary to completely oxidize reducing components. The present invention relates to an exhaust gas purifying catalyst capable of reduction purification and an exhaust gas purifying method.

【0002】[0002]

【従来の技術】従来より自動車の排ガス浄化用触媒とし
て、理論空燃比(ストイキ)において排ガス中のCO及
びHCの酸化とNOx の還元とを同時に行って浄化する
三元触媒が用いられている。このような三元触媒として
は、例えばコーディエライトなどからなる耐熱性基材に
γ−アルミナからなる多孔質担体層を形成し、その多孔
質担体層に白金(Pt)、ロジウム(Rh)などの触媒
貴金属を担持させたものが広く知られている。
2. Description of the Related Art Conventionally, a three-way catalyst has been used as a catalyst for purifying exhaust gas of automobiles, which purifies by simultaneously oxidizing CO and HC and reducing NOx in exhaust gas at a stoichiometric air-fuel ratio (stoichiometric). As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh), or the like is formed on the porous carrier layer. What carried the catalyst noble metal is widely known.

【0003】一方、近年、地球環境保護の観点から、自
動車などの内燃機関から排出される排ガス中の二酸化炭
素(CO2 )が問題とされ、その解決策として酸素過剰
雰囲気において希薄燃焼させるいわゆるリーンバーンが
有望視されている。このリーンバーンにおいては、燃費
が向上するために燃料の使用が低減され、その燃焼排ガ
スであるCO2 の発生を抑制することができる。
On the other hand, in recent years, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem from the viewpoint of protection of the global environment. As a solution, lean combustion in an oxygen-excess atmosphere has been proposed. Burn is promising. In this lean burn, the use of fuel is reduced to improve fuel efficiency, and the generation of CO 2 , which is the combustion exhaust gas, can be suppressed.

【0004】これに対し、従来の三元触媒は、空燃比が
理論空燃比(ストイキ)において排ガス中のCO,H
C,NOx を同時に酸化・還元し浄化するものであっ
て、リーンバーン時の排ガスの酸素過剰雰囲気下におい
ては、NOx の還元除去に対して充分な浄化性能を示さ
ない。このため、酸素過剰雰囲気下においてもNOx
浄化しうる触媒及び浄化システムの開発が望まれてい
た。
On the other hand, in the conventional three-way catalyst, when the air-fuel ratio is the stoichiometric air-fuel ratio (stoichiometric), CO, H
It purifies by simultaneously oxidizing and reducing C and NO x, and does not exhibit sufficient purification performance for the reduction and removal of NO x under an atmosphere of excess oxygen in the exhaust gas during lean burn. Therefore, development of a catalyst and purification system has been desired can purify NO x even in an oxygen rich atmosphere.

【0005】そこで本願出願人は、先にBaなどのアル
カリ土類金属とPtをアルミナなどの多孔質担体に担持
した排ガス浄化用触媒(例えば特開平5−317625
号公報)を提案している。この排ガス浄化用触媒を用
い、空燃比をリーン側からパルス状にストイキ〜リッチ
側となるように制御することにより、リーン側ではNO
x がアルカリ土類金属(NOx 吸蔵材)に吸蔵され、そ
れがストイキ又はリッチ側でHCやCOなどの還元性成
分と反応して浄化されるため、リーンバーンにおいても
NOx を効率良く浄化することができる。
Accordingly, the applicant of the present application has previously described Al and others such as Ba.
Supports potassium earth metal and Pt on porous carriers such as alumina
Exhaust gas purifying catalysts (for example, see JP-A-5-317625)
Gazette). Using this exhaust gas purification catalyst
Air-fuel ratio is pulsed from lean to stoichiometric to rich
Control on the lean side, NO on the lean side
xIs an alkaline earth metal (NOxOcclusion material)
This leads to reduction of HC or CO on the stoichiometric or rich side.
Purified by reacting with the minute, even in lean burn
NOxCan be efficiently purified.

【0006】[0006]

【発明が解決しようとする課題】上記排ガス浄化用触媒
におけるNOx の浄化反応は、排ガス中のNOを酸化し
てNOx とする第1ステップと、NOx 吸蔵材上にNO
x を吸蔵する第2ステップと、NOx 吸蔵材から放出さ
れたNOx を触媒上で還元する第3ステップとからなる
ことがわかっている。
[0007] purification reaction of the NO x in the catalyst for the exhaust gas purification, a first step of the NO x is oxidized to NO in the exhaust gas, NO on the NO x storage material
It is known that the method comprises a second step of storing x and a third step of reducing NO x released from the NO x storage material on the catalyst.

【0007】しかしながら従来の排ガス浄化用触媒にお
いては、リーン雰囲気においてPtに粒成長が生じ、触
媒活性点の減少により上記第1ステップと第3ステップ
の反応性が低下するという不具合がある。一方、リーン
雰囲気におけるこのような粒成長が生じにくい触媒貴金
属として、Rhが知られているが、酸化能はPtには及
ばない。そこでPtとRhを併用することが考えられて
いる。
[0007] However, the conventional exhaust gas purifying catalyst has a disadvantage in that Pt grains grow in a lean atmosphere, and the reactivity of the first and third steps is reduced due to a decrease in catalytic active points. On the other hand, Rh is known as a catalytic noble metal in which such grain growth hardly occurs in a lean atmosphere, but its oxidizing ability is inferior to Pt. Therefore, it has been considered to use Pt and Rh together.

【0008】ところがPtとRhを併用すると、Ptの
酸化能が低下するという不具合があることが明らかとな
った。そのため、Rhの添加量が多くなるにつれてNO
を酸化してNOx とする第1ステップの反応性が低下
し、第2ステップにおけるNO x の吸蔵能も低下する。
またRhはNOx 吸蔵材との相性が悪く、RhとNOx
吸蔵材とが共存するとNOx 吸蔵材及びRhの特性が十
分に発揮できないという問題もある。
However, when Pt and Rh are used together,
It is clear that there is a problem that the oxidizing ability decreases.
Was. Therefore, as the amount of Rh added increases, NO
Oxidizes NOxThe reactivity of the first step decreases
NO in the second step xStorage capacity also decreases.
Rh is NOxPoor compatibility with occlusion material, Rh and NOx
NO when coexisting with occlusion materialxThe characteristics of the storage material and Rh are sufficient
There is also a problem that it cannot be fully demonstrated.

【0009】本発明はこのような事情に鑑みてなされた
ものであり、PtとRhを用いてPtの粒成長による耐
久性の低下を抑制するとともに、NOx 吸蔵材のNOx
吸蔵・放出能の低下を防止し、以て耐久性の向上を図る
ことを目的とする。
[0009] The present invention has been made in view of such circumstances, and to suppress the deterioration of the durability due to the grain growth of Pt with Pt and Rh, NO x storage material of the NO x
An object of the present invention is to prevent a decrease in occlusion / release ability and thereby improve durability.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化用触媒の特徴は、多孔質粒子にRhを担
持した第1粉末と、多孔質粒子にPtとNOx 吸蔵材を
担持した第2粉末とを混在してなることにある。また同
様に上記課題を解決する本発明の排ガス浄化方法の特徴
は、多孔質粒子にRhを担持した第1粉末と多孔質粒子
にPtとNOx 吸蔵材を担持した第2粉末とを混在して
なる触媒を排ガス中に配置し、酸素過剰のリーン雰囲気
においてNOx 吸蔵材にNOx を吸蔵し、一時的にスト
イキ〜リッチ雰囲気に変化させることによりNOx 吸蔵
材から放出されるNOx を還元して浄化することにあ
る。
Means for Solving the Problems The characteristics of the exhaust gas purifying catalyst of the present invention for solving the above-mentioned problems, carrying first powder carrying Rh on porous particles, Pt and the NO x storage material in the porous particles And the mixed second powder. Similarly characteristic of the exhaust gas purifying method of the present invention for solving the above problems, and a second powder carrying Pt and the NO x storage material in the first powder and the porous particles carrying Rh on porous particles mixed comprising Te catalyst was placed in the exhaust gas, oxygen occludes NO x in the NO x storage material in excess lean atmosphere, the NO x released from the NO x storage material by temporarily varying the stoichiometric-rich atmosphere It is to purify by reduction.

【0011】[0011]

【発明の実施の形態】本発明の排ガス浄化用触媒では、
Rhは第1粉末に存在し、PtとNOx 吸蔵材は第2粉
末に存在して、第1粉末と第2粉末とが混在している。
つまりPtとNOx 吸蔵材とは近接担持され、RhとP
tとは分離担持されている。したがって、Rhの近接に
よりPtの酸化能が低下する不具合が防止されている。
また、PtとNOx 吸蔵材とが近接担持されていること
で、Ptにより排ガス中のNOが酸化されてNOx とな
る第1ステップと、NOx 吸蔵材にNOx を吸蔵する第
2ステップとが円滑に行われる。
BEST MODE FOR CARRYING OUT THE INVENTION In the exhaust gas purifying catalyst of the present invention,
Rh is present in the first powder, Pt and the NO x storage material is present in the second powder, the first powder and the second powder are mixed.
In other words, Pt and the NO x storage material are carried in close proximity, and Rh and P
It is separated and carried from t. Therefore, the problem that the oxidizing ability of Pt decreases due to the proximity of Rh is prevented.
In addition, since Pt and the NO x storage material are carried in close proximity, the first step in which NO in the exhaust gas is oxidized by the Pt to become NO x, and the second step in which NO x is stored in the NO x storage material Is performed smoothly.

【0012】そして第1粉末と第2粉末とが混在した状
態であるので、離間した状態といえどもRhは第2粉末
とある程度近接している。したがってNOx 吸蔵材から
放出されたNOx は、Rhにより還元されて浄化され
る。また、RhはPtと比較してリーン雰囲気中におけ
る粒成長が著しく小さい。したがってRhの存在により
三元活性の耐久性が向上する。またRhはNOx 吸蔵材
と分離して担持されているため、相互の相性の悪さが解
消され、NOx 吸蔵材及びRhの性能が低下するのが防
止される。
Since the first powder and the second powder are in a mixed state, Rh is somewhat close to the second powder even in a separated state. Thus the NO x storage NO released from material x is purified is reduced by Rh. Further, Rh has a significantly smaller grain growth in a lean atmosphere than Pt. Therefore, the durability of ternary activity is improved by the presence of Rh. Further, since Rh is supported separately from the NO x storage material, mutual incompatibility is eliminated, and the performance of the NO x storage material and Rh is prevented from lowering.

【0013】また本発明の排ガス浄化方法では、リーン
雰囲気において、PtによりHC及びCOが酸化浄化さ
れる。それと同時に、Ptにより排ガス中のNOが酸化
されてNOx となる第1ステップと、NOx 吸蔵材にN
x を吸蔵する第2ステップとが行われる。この時、P
tとNOx 吸蔵材とが近接担持され、RhはPtと分離
して担持されているため、Rhの近接によりPtの酸化
能が低下するような不具合がなく、第1ステップ及び第
2ステップは円滑に行われる。
Further, in the exhaust gas purifying method of the present invention, HC and CO are oxidized and purified by Pt in a lean atmosphere. N same time, a first step of NO in the exhaust gas is oxidized NO x by Pt, to the NO x storage material
And a second step of storing O x . At this time, P
t and the the NO x storage material is close supported, Rh because it is carried separately from the Pt, there is no trouble such as oxidizing ability of Pt is lowered by the proximity of the Rh, the first step and second step It is performed smoothly.

【0014】そして一時的にストイキ〜リッチ雰囲気に
変化させることにより、NOx 吸蔵材に吸蔵されていた
NOx が放出され、Pt及びRhの触媒作用により排ガ
ス中のHC及びCOと反応することで、NOx が還元浄
化されるとともにHC及びCOが酸化浄化される。多孔
質粒子としては、第1粉末、第2粉末ともにアルミナ、
シリカ、ジルコニア、シリカ−アルミナ、ゼオライトな
どから選択することができる。このうちの一種でもよい
し複数種類を混合あるいは複合化して用いることもでき
る。なお、耐熱性、またZrはRhとの相性が良いこと
などの理由により、第1粉末にはアルミナ又はジルコニ
アを用い、第2粉末にはアルミナを用いることが好まし
い。
[0014] Then By temporarily changed to the stoichiometric-rich atmosphere, NO x, which have been stored in the NO x storage material is released, by reacting with HC and CO in the exhaust gas by the catalytic action of Pt and Rh , NO x is reduced and purified, and HC and CO are oxidized and purified. As the porous particles, both the first powder and the second powder are made of alumina,
It can be selected from silica, zirconia, silica-alumina, zeolite and the like. One of these may be used, or a plurality of them may be mixed or combined for use. Note that it is preferable to use alumina or zirconia for the first powder and to use alumina for the second powder because of the heat resistance and the good compatibility of Zr with Rh.

【0015】多孔質粒子の粒径は、第1粉末と第2粉末
ともに1〜100μmの範囲が好ましい。粒径が1μm
より小さいとRhとPtを分離担持した効果を得にく
く、100μmより大きくなると、第1粉末と第2粉末
の間の作用が小さくなる。また、多孔質粒子の粒径は、
第1粉末と第2粉末とでほぼ同一の粒径とすることが望
ましい。粒径に大きな差があると、小さな粒子が大きな
粒子の間に細密充填されるため、RhとPt及びNOx
吸蔵材が近接する確率が高くなるからである。
The particle size of the porous particles is preferably in the range of 1 to 100 μm for both the first powder and the second powder. Particle size 1μm
If it is smaller, it is difficult to obtain the effect of separating and supporting Rh and Pt, and if it is larger than 100 μm, the action between the first powder and the second powder becomes small. Also, the particle size of the porous particles,
It is desirable that the first powder and the second powder have substantially the same particle size. If there is a large difference in particle size, small particles are densely packed between large particles, so that Rh and Pt and NOx
This is because the probability that the occlusion material approaches will increase.

【0016】第1粉末のRhの担持量としては、多孔質
粒子120g当たり0.1〜10gの範囲が望ましい。
Rhの担持量が0.1g/120gより少ないと耐久性
が低下し、10g/120gより多く担持しても効果が
飽和するとともにコストの増大を招く。また第2粉末の
Ptの担持量としては、多孔質粒子120g当たり0.
1〜10gの範囲が望ましい。Ptの担持量が0.1g
/120gより少ないとHC、CO及びNOx の浄化率
が低下し、10g/120gより多く担持しても効果が
飽和するとともにコストの増大を招く。なお第2粉末に
は、PtとともにPdを担持させることもできる。
The amount of Rh supported in the first powder is preferably in the range of 0.1 to 10 g per 120 g of the porous particles.
If the supported amount of Rh is less than 0.1 g / 120 g, the durability is reduced. If the supported amount is more than 10 g / 120 g, the effect is saturated and the cost is increased. The amount of Pt carried in the second powder was 0.1 g per 120 g of the porous particles.
A range of 1 to 10 g is desirable. 0.1 g of Pt carried
If it is less than / 120 g, the purification rate of HC, CO and NOx will decrease, and if it is carried more than 10 g / 120 g, the effect will be saturated and the cost will increase. In addition, Pd can be carried on the second powder together with Pt.

【0017】NOx 吸蔵材としては、アルカリ金属、ア
ルカリ土類金属及び希土類金属から選ばれる少なくとも
一種の元素を用いることができる。アルカリ金属として
はリチウム(Li)、ナトリウム(Na)、カリウム
(K)、セシウム(Cs)が挙げられる。また、アルカ
リ土類金属とは周期表2A族元素をいい、マグネシウム
(Mg)、カルシウム(Ca)、ストロンチウム(S
r)、バリウム(Ba)が挙げられる。また希土類金属
としてはランタン(La)、セリウム(Ce)、プラセ
オジム(Pr)などが挙げられる。
As the NO x occluding material, at least one element selected from alkali metals, alkaline earth metals and rare earth metals can be used. Examples of the alkali metal include lithium (Li), sodium (Na), potassium (K), and cesium (Cs). Alkaline earth metals refer to Group 2A elements of the periodic table, and include magnesium (Mg), calcium (Ca), strontium (S
r) and barium (Ba). Examples of the rare earth metal include lanthanum (La), cerium (Ce), and praseodymium (Pr).

【0018】このNOx 吸蔵材の第2粉末中の担持量と
しては、多孔質粒子120g当たり0.05〜0.5モ
ルの範囲が望ましい。NOx 吸蔵材の担持量が0.05
モル/120gより少ないとNOx 浄化率が低下し、
0.5モル/120gより多く担持しても効果が飽和す
る。第1粉末と第2粉末の混合比は、RhとPtの重量
比換算で第1粉末:第2粉末=0.05:1〜1:1の
範囲が好ましい。また多孔質粒子として第1粉末と第2
粉末ともにアルミナを用いた場合には、アルミナの重量
比換算で第1粉末:第2粉末=0.1:1〜2:1の範
囲が好ましい。これらの範囲から外れると、上記したR
h及びPtの過不足の場合と同様の不具合が発生する場
合がある。
The amount of the NO x occluding material carried in the second powder is preferably in the range of 0.05 to 0.5 mol per 120 g of the porous particles. The loading amount of the NO x storage material is 0.05
If the amount is less than mol / 120 g, the NO x purification rate decreases,
Even if more than 0.5 mol / 120 g is supported, the effect is saturated. The mixing ratio of the first powder and the second powder is preferably in the range of 0.05: 1 to 1: 1 (first powder: second powder) in terms of the weight ratio of Rh and Pt. In addition, the first powder and the second powder are used as porous particles.
When alumina is used as the powder, the first powder: the second powder is preferably in the range of 0.1: 1 to 2: 1 in terms of the weight ratio of alumina. Outside of these ranges, R
In some cases, the same problem as in the case where h and Pt are excessive or insufficient may occur.

【0019】なお、少なくとも第1粉末においては、多
孔質粒子にRhとともにFe,Ni及びCoから選ばれ
る遷移金属を担持させることが好ましい。この遷移金属
により、排ガス中のCOと水との水性ガスシフト反応が
生じ、発生した水素ガスによりNOx が還元されるとい
う格別な効果が生まれる。したがってNOx 浄化率が一
層向上する。
In the first powder, it is preferable that the porous particles carry a transition metal selected from Fe, Ni and Co together with Rh. The transition metal causes a water gas shift reaction between CO and water in the exhaust gas, and has a special effect that NO x is reduced by the generated hydrogen gas. Therefore, the NO x purification rate is further improved.

【0020】この遷移金属は、第2粉末の多孔質粒子に
担持することもできるが、第1粉末の多孔質粒子にRh
とともに担持することが好ましい。この遷移金属の担持
量は、多孔質粒子120g当たり0.01〜0.5モル
の範囲とすることが望ましい。遷移金属の担持量が0.
01モル/120gより少ないと担持した効果が現れ
ず、0.5モル/120gより多く担持しても効果が飽
和するとともに貴金属の作用を低下させる。
This transition metal can be supported on the porous particles of the second powder, but Rh particles are added to the porous particles of the first powder.
It is preferred to carry it together. The amount of the supported transition metal is preferably in the range of 0.01 to 0.5 mol per 120 g of the porous particles. The amount of the transition metal supported is 0.
If the amount is less than 01 mol / 120 g, the effect of supporting is not exhibited. If the amount is more than 0.5 mol / 120 g, the effect is saturated and the effect of the noble metal is reduced.

【0021】なお、遷移金属を担持した多孔質粒子に
は、さらにSi及びMgの少なくとも一方からなる助触
媒を担持することも好ましい。この助触媒を担持するこ
とにより、水素生成反応が促進される効果が加わる。こ
の助触媒の担持量としては、多孔質粒子120g当たり
0.01〜0.5モルの範囲とすることが望ましい。助
触媒の担持量が0.01モル/120gより少ないと担
持した効果が現れず、0.5モル/120gより多く担
持しても効果が飽和する。
It is preferred that the porous particles carrying the transition metal further carry a co-catalyst comprising at least one of Si and Mg. By supporting the co-catalyst, an effect of accelerating the hydrogen generation reaction is added. The amount of the cocatalyst carried is desirably in the range of 0.01 to 0.5 mol per 120 g of the porous particles. If the supported amount of the cocatalyst is less than 0.01 mol / 120 g, the effect of supporting is not exhibited, and if the supported amount is more than 0.5 mol / 120 g, the effect is saturated.

【0022】第1粉末と第2粉末の混合物から排ガス浄
化用触媒を形成するには、混合物を定法によりペレット
化してペレット触媒とすることができる。また混合物を
主成分とするスラリーを、コーディエライトや金属箔か
らなるハニカム担体にコートし焼成してモノリス触媒と
することもできる。請求項2に記載の本発明の浄化方法
では、酸素過剰のリーン雰囲気において第2粉末のPt
によりNOが酸化されてNOx となり、Ptと近接担持
されたNO x 吸蔵材にNOx が速やかに吸蔵される。こ
こでPtはRhと分離担持されているため、Ptの酸化
能が阻害されるのが防止され、NOは円滑にNOx とな
る。またNOx 吸蔵材はRhと分離担持されているの
で、NOx 吸蔵能の低下が防止されている。したがって
NOx はNOx 吸蔵材に円滑に吸蔵され、外部への放出
が防止されている。また排ガス中のHC及びCOは、P
t及びRhの触媒作用により存在する過剰の酸素と反応
して容易に酸化浄化される。
The exhaust gas is purified from the mixture of the first powder and the second powder.
The mixture is pelletized by a conventional method to form a catalyst for
Into a pellet catalyst. Also mix
Whether the main component slurry is cordierite or metal foil
Coated with a honeycomb support made of
You can also. The purification method of the present invention according to claim 2.
In the oxygen-rich lean atmosphere, the Pt of the second powder
NO is oxidized by NOxAnd Pt and proximity carrying
NO xNO for occlusion materialxIs quickly absorbed. This
Here, Pt is separated and supported from Rh, so that Pt is oxidized.
Function is prevented from being hindered, and NOxTona
You. Also NOxThe storage material is separated from Rh
And NOxA decrease in storage capacity is prevented. Therefore
NOxIs NOxSmoothly absorbed by the storage material and released to the outside
Has been prevented. HC and CO in the exhaust gas are P
Reaction with excess oxygen present by catalysis of t and Rh
It is easily oxidized and purified.

【0023】そしてストイキ〜リッチ雰囲気において、
NOx 吸蔵材からNOx が放出され、放出されたNOx
はPt及びRhの触媒作用により排ガス中のHC及びC
Oと反応してN2 となって還元浄化される。このとき、
Ptに粒成長が生じて還元能が低下していたとしても、
RhはNOx の還元能に優れているためNOx は円滑に
還元浄化される。
In a stoichiometric-rich atmosphere,
NO x from the NO x storage material is released, the released NO x
Is HC and C in exhaust gas by the catalytic action of Pt and Rh.
It reacts with O to become N 2 and is reduced and purified. At this time,
Even if Pt undergoes grain growth and the reducing ability is reduced,
Since Rh is excellent in NO x reducing ability, NO x is reduced and purified smoothly.

【0024】[0024]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。 (実施例1) <第1粉末の調製>平均粒径5μmのアルミナ粉末に所
定濃度の硝酸ロジウム水溶液の所定量を含浸させ、11
0℃で3時間乾燥後、250℃で2時間焼成してRhを
担持した。Rhの担持量は、アルミナ粉末120g当た
り0.1g、0.5g、1.0g及び2.0gの4水準
選んで、4種類の第1粉末を調製した。
The present invention will be specifically described below with reference to examples and comparative examples. (Example 1) <Preparation of first powder> An alumina powder having an average particle diameter of 5 µm was impregnated with a predetermined amount of a rhodium nitrate aqueous solution having a predetermined concentration.
After drying at 0 ° C. for 3 hours, it was baked at 250 ° C. for 2 hours to carry Rh. Four types of first powders were prepared by selecting four levels of Rh loading from 0.1 g, 0.5 g, 1.0 g and 2.0 g per 120 g of alumina powder.

【0025】<第2粉末の調製>平均粒径5μmのアル
ミナ粉末に所定濃度の酢酸バリウム水溶液の所定量を含
浸させ、110℃で3時間乾燥後、500℃で2時間焼
成しBaを担持した。Baの担持量は、アルミナ粉末1
20g当たり0.4モルである。次に、上記で得られた
Ba担持アルミナ粉末を、濃度15g/Lの重炭酸アン
モニウム水溶液に含浸させ、110℃で3時間乾燥し
た。これによりBaは炭酸バリウムとなってアルミナ粉
末に均一に担持された。
<Preparation of Second Powder> A predetermined amount of barium acetate aqueous solution having a predetermined concentration was impregnated into alumina powder having an average particle diameter of 5 μm, dried at 110 ° C. for 3 hours, and calcined at 500 ° C. for 2 hours to carry Ba. . The supported amount of Ba is as follows:
0.4 mol per 20 g. Next, the Ba-supported alumina powder obtained above was impregnated with an aqueous solution of ammonium bicarbonate having a concentration of 15 g / L, and dried at 110 ° C. for 3 hours. As a result, Ba became barium carbonate and was uniformly supported on the alumina powder.

【0026】このBa/アルミナ粉末に、所定濃度のジ
ニトロジアンミン白金硝酸水溶液の所定量を含浸させ、
110℃で3時間乾燥後250℃で2時間乾燥してPt
を担持した。Ptの担持量はアルミナ粉末120g当た
り2.0gである。これにより第2粉末が調製された。 <触媒の調製>それぞれの第1粉末と第2粉末を重量比
で等量均一に混合し、定法でペレット化して、4種類の
ペレット触媒を調製した。このペレット触媒の模式的な
構成説明図を図1に示す。
This Ba / alumina powder is impregnated with a predetermined amount of a dinitrodiammineplatinum nitric acid aqueous solution having a predetermined concentration,
After drying at 110 ° C for 3 hours, drying at 250 ° C for 2 hours, Pt
Was carried. The supported amount of Pt is 2.0 g per 120 g of alumina powder. Thus, a second powder was prepared. <Preparation of Catalyst> Each of the first powder and the second powder was uniformly mixed in an equal weight ratio and pelletized by a conventional method to prepare four types of pellet catalysts. FIG. 1 is a schematic structural explanatory view of this pellet catalyst.

【0027】<評価試験>得られた各ペレット触媒を評
価試験装置内にそれぞれ配置し、表1に示すモデルガス
を通過させた。つまりリッチモデルガスとリーンモデル
ガスを、それぞれ入りガス温度350℃で、2分間毎に
交互に2リットル/minの条件で流し、その時の触媒
入りガス中のNO濃度と触媒出ガス中のNO濃度の差か
ら、それぞれの触媒についてNOの過渡浄化率を測定し
た。結果を図2に示す。
<Evaluation Test> Each of the obtained pellet catalysts was placed in an evaluation test apparatus, and the model gas shown in Table 1 was passed therethrough. That is, the rich model gas and the lean model gas are alternately flown at a rate of 2 liters / min every two minutes at an inlet gas temperature of 350 ° C., and the NO concentration in the catalyst-containing gas and the NO concentration in the catalyst-out gas at that time. , The transient purification rate of NO was measured for each catalyst. The results are shown in FIG.

【0028】[0028]

【表1】 また表2に示す耐久モデルガスを、リッチ1分間−リー
ン4分間で切り換えながら、入りガス温度800℃で1
0時間流す耐久試験を行った。その後上記と同様にして
過渡NO浄化率を測定し、この結果を図3に示す。
[Table 1] In addition, while changing the durability model gas shown in Table 2 between rich 1 minute and lean 4 minutes, 1 minute at an inlet gas temperature of 800 ° C.
An endurance test was performed for 0 hours. Thereafter, the transient NO purification rate was measured in the same manner as above, and the results are shown in FIG.

【0029】[0029]

【表2】 (実施例2)アルミナ粉末の代わりに平均粒径5μmの
ジルコニア粉末を用いたこと以外は実施例1と同様にし
て、4種類の第1粉末を調製した。そして実施例1と同
様の第2粉末と混合し、同様に4種類のペレット触媒を
調製した。
[Table 2] (Example 2) Four kinds of first powders were prepared in the same manner as in Example 1 except that zirconia powder having an average particle size of 5 µm was used instead of alumina powder. And it mixed with the 2nd powder similar to Example 1, and prepared 4 types of pellet catalysts similarly.

【0030】得られた実施例2のペレット触媒2.0g
を用いて、初期と耐久後のNO浄化率を実施例1と同様
に測定し、結果を図2及び図3に示す。 (比較例)図4に本比較例の排ガス浄化用触媒の模式的
構成説明図を示す。平均粒径5μmのアルミナ粉末に所
定濃度の酢酸バリウム水溶液の所定量を含浸させ、11
0℃で3時間乾燥後、500℃で2時間焼成しBaを担
持した。Baの担持量は、アルミナ粉末120g当たり
0.2モルである。
2.0 g of the obtained pellet catalyst of Example 2
The NO purification rates at the initial stage and after the endurance were measured in the same manner as in Example 1, and the results are shown in FIG. 2 and FIG. (Comparative Example) FIG. 4 is a schematic structural explanatory view of an exhaust gas purifying catalyst of this comparative example. An alumina powder having an average particle size of 5 μm is impregnated with a predetermined amount of a barium acetate aqueous solution having a predetermined concentration.
After drying at 0 ° C. for 3 hours, it was baked at 500 ° C. for 2 hours to carry Ba. The amount of Ba supported is 0.2 mol per 120 g of alumina powder.

【0031】次に、上記で得られたBa担持アルミナ粉
末を、濃度15g/Lの重炭酸アンモニウム水溶液に含
浸させ、110℃で3時間乾燥した。これによりBaは
炭酸バリウムとなってアルミナ粉末に均一に担持され
た。このBa/アルミナ粉末に、所定濃度のジニトロジ
アンミン白金硝酸水溶液の所定量を含浸させ、110℃
で3時間乾燥後250℃で2時間乾燥してPtを担持し
た。Ptの担持量はアルミナ粉末120g当たり1.0
gである。
Next, the Ba-supported alumina powder obtained above was impregnated with an aqueous solution of ammonium bicarbonate having a concentration of 15 g / L, and dried at 110 ° C. for 3 hours. As a result, Ba became barium carbonate and was uniformly supported on the alumina powder. This Ba / alumina powder is impregnated with a predetermined amount of a dinitrodiammineplatinum nitric acid aqueous solution having a predetermined concentration,
And dried at 250 ° C. for 2 hours to carry Pt. The amount of Pt supported was 1.0 per 120 g of alumina powder.
g.

【0032】次に、得られたPt担持Ba/アルミナ粉
末に所定濃度の硝酸ロジウム水溶液の所定量を含浸さ
せ、110℃で3時間乾燥後、250℃で2時間焼成し
てRhを担持した。Rhの担持量は、アルミナ粉末12
0g当たり0.05g、0.25g、0.5g及び1.
0gの4水準選んで、4種類の触媒粉末を調製した。そ
して定法によりそれぞれの触媒粉末をペレット化し、4
種類のペレット触媒を調製した。得られた比較例のペレ
ット触媒について、初期と耐久後のNO浄化率を実施例
1と同様に測定し、結果を図2及び図3に示す。
Next, the obtained Pt-supported Ba / alumina powder was impregnated with a predetermined amount of a rhodium nitrate aqueous solution having a predetermined concentration, dried at 110 ° C. for 3 hours, and calcined at 250 ° C. for 2 hours to carry Rh. The supported amount of Rh is alumina powder 12
0.05 g, 0.25 g, 0.5 g and 1.0 g per 0 g.
Four levels of 0 g were selected to prepare four types of catalyst powder. Then, each catalyst powder is pelletized by a standard method,
Various types of pellet catalysts were prepared. With respect to the obtained pellet catalyst of the comparative example, the NO purification rates at the initial stage and after the durability were measured in the same manner as in Example 1, and the results are shown in FIGS. 2 and 3.

【0033】(評価)図2及び図3より、比較例ではR
hの担持量が増えるに従ってNO浄化率が低下している
のに対し、実施例1及び実施例2ではRhの担持量が増
えるにつれてNO浄化率が向上している。これはRhを
Ptと分離担持した効果であることが明らかである。
(Evaluation) From FIG. 2 and FIG.
While the NO purification rate decreases as the supported amount of h increases, the NO purification rate increases in Examples 1 and 2 as the supported amount of Rh increases. This is apparently due to the effect of separating Rh from Pt and supporting it.

【0034】また、第1粉末の多孔質粒子として、アル
ミナ粉末よりもジルコニア粉末の方がやや高いNO浄化
率を示していることもわかる。そして図3の方が差は小
さいものの、上記傾向は図2及び図3とも同様であり、
本実施例の排ガス浄化用触媒は初期、耐久後ともに高い
NO浄化率を示すことが明らかである。
It can also be seen that zirconia powder as the porous particles of the first powder has a slightly higher NO purification rate than alumina powder. And although the difference is smaller in FIG. 3, the above tendency is the same in both FIG. 2 and FIG.
It is clear that the exhaust gas purifying catalyst of this embodiment shows a high NO purification rate both at the initial stage and after the endurance.

【0035】なお、上記実施例ではペレット触媒につい
て述べたが、コーディエライトや金属箔からなるハニカ
ム担体に第1粉末と第2粉末の混合粉末を主とするコー
ト層を形成したモノリス触媒としても、上記ペレット触
媒と同様の作用効果が奏されることはいうまでもない。
Although the pellet catalyst has been described in the above embodiment, a monolith catalyst in which a coat layer mainly composed of a mixed powder of the first powder and the second powder is formed on a honeycomb carrier made of cordierite or metal foil may also be used. Needless to say, the same operation and effects as those of the above-mentioned pellet catalyst are exhibited.

【0036】[0036]

【発明の効果】すなわち本発明の排ガス浄化用触媒によ
れば、初期、耐久後ともに高いNOx浄化能を示し、高
い耐久性を有している。また本発明の排ガス浄化方法に
よれば、NOの酸化によるNOx の生成と、そのNOx
のNOx 吸蔵材への吸蔵、及びNOx 吸蔵材から放出さ
れたNOx の還元とが円滑に進行し、初期から耐久後ま
で高いNOx 浄化性能を確保することができる。
Effects of the Invention] That is, according to the exhaust gas purifying catalyst of the present invention, the initial showed both high the NO x purification performance after the durability test, has high durability. Further, according to the exhaust gas purifying method of the present invention, the generation of NO x by the oxidation of NO and the NO x
It can be the NO adsorption to x storage material, and NO x reduction and NO x released from the storage material proceeds smoothly, to ensure high NO x purification performance from the initial to after the durability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の排ガス浄化用触媒の模式的
構成説明図である。
FIG. 1 is a schematic structural explanatory view of an exhaust gas purifying catalyst according to one embodiment of the present invention.

【図2】Rh担持量と初期NO浄化率の関係を示すグラ
フである。
FIG. 2 is a graph showing a relationship between a Rh carrying amount and an initial NO purification rate.

【図3】Rh担持量と耐久後NO浄化率の関係を示すグ
ラフである。
FIG. 3 is a graph showing the relationship between the amount of Rh carried and the NO purification rate after durability.

【図4】比較例の排ガス浄化用触媒の模式的拡大説明図
である。
FIG. 4 is a schematic enlarged explanatory view of an exhaust gas purifying catalyst of a comparative example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多孔質粒子にRhを担持した第1粉末
と、多孔質粒子にPtとNOx 吸蔵材を担持した第2粉
末とを混在してなることを特徴とする排ガス浄化用触
媒。
1. A first powder carrying the Rh on porous particles and porous particles Pt and the NO x storage material supported by the second powder and the mixed exhaust gas purification catalyst characterized by comprising a.
【請求項2】 多孔質粒子にRhを担持した第1粉末と
多孔質粒子にPtとNOx 吸蔵材を担持した第2粉末と
を混在してなる触媒を排ガス中に配置し、酸素過剰のリ
ーン雰囲気において該NOx 吸蔵材にNOx を吸蔵し、
一時的にストイキ〜リッチ雰囲気に変化させることによ
り該NOx 吸蔵材から放出されるNO x を還元して浄化
することを特徴とする排ガス浄化方法。
2. A first powder comprising Rh supported on porous particles.
Pt and NO on porous particlesxA second powder carrying an occluding material;
Is placed in the exhaust gas to reduce the excess oxygen.
NO in the atmospherexNO for occlusion materialxOcclude,
By temporarily changing to a stoichiometric-rich atmosphere
NOxNO released from the storage material xTo reduce and purify
Exhaust gas purification method characterized by performing.
JP15224596A 1996-06-13 1996-06-13 Exhaust gas purification catalyst and exhaust gas purification method Expired - Lifetime JP3741292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15224596A JP3741292B2 (en) 1996-06-13 1996-06-13 Exhaust gas purification catalyst and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15224596A JP3741292B2 (en) 1996-06-13 1996-06-13 Exhaust gas purification catalyst and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH10356A true JPH10356A (en) 1998-01-06
JP3741292B2 JP3741292B2 (en) 2006-02-01

Family

ID=15536277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15224596A Expired - Lifetime JP3741292B2 (en) 1996-06-13 1996-06-13 Exhaust gas purification catalyst and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP3741292B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286462A (en) * 1997-04-11 1998-10-27 Nissan Motor Co Ltd Catalyst of purifying exhaust gas
WO2002066153A1 (en) * 2001-02-19 2002-08-29 Toyota Jidosha Kabushiki Kaisha Catalyst for hydrogen generation and catalyst for purification of exhaust gas
US6461579B1 (en) 1997-12-08 2002-10-08 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas and exhaust gas purifying method
US6806225B1 (en) 1998-06-30 2004-10-19 Toyota Jidosha Kabushiki Kaisha Catalyst for exhaust gas purification, process for producing the same, and method of purifying exhaust gas
JP2018038974A (en) * 2016-09-08 2018-03-15 株式会社豊田中央研究所 NOx PURIFYING CATALYST AND NOx PURIFYING METHOD USING THE SAME
US11020277B2 (en) 2008-05-30 2021-06-01 Kci Licensing, Inc. Reduced-pressure, compression systems and apparatuses for use on a curved body part
US11426165B2 (en) 2008-05-30 2022-08-30 Kci Licensing, Inc. Reduced-pressure, linear wound closing bolsters and systems

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286462A (en) * 1997-04-11 1998-10-27 Nissan Motor Co Ltd Catalyst of purifying exhaust gas
US6461579B1 (en) 1997-12-08 2002-10-08 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas and exhaust gas purifying method
US6806225B1 (en) 1998-06-30 2004-10-19 Toyota Jidosha Kabushiki Kaisha Catalyst for exhaust gas purification, process for producing the same, and method of purifying exhaust gas
WO2002066153A1 (en) * 2001-02-19 2002-08-29 Toyota Jidosha Kabushiki Kaisha Catalyst for hydrogen generation and catalyst for purification of exhaust gas
US7220702B2 (en) 2001-02-19 2007-05-22 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
US7229947B2 (en) 2001-02-19 2007-06-12 Toyota Jidosha Kabushiki Kaisha Catalyst for hydrogen generation and catalyst for purifying of exhaust gas
US11413193B2 (en) 2008-05-30 2022-08-16 Kci Licensing, Inc. Dressing assemblies for wound treatment using reduced pressure
US11020277B2 (en) 2008-05-30 2021-06-01 Kci Licensing, Inc. Reduced-pressure, compression systems and apparatuses for use on a curved body part
US11382796B2 (en) 2008-05-30 2022-07-12 Kci Licensing, Inc. Reduced-pressure surgical wound treatment systems and methods
US11419768B2 (en) 2008-05-30 2022-08-23 Kci Licensing, Inc. Reduced pressure, compression systems and apparatuses for use on joints
US11426165B2 (en) 2008-05-30 2022-08-30 Kci Licensing, Inc. Reduced-pressure, linear wound closing bolsters and systems
US11793679B2 (en) 2008-05-30 2023-10-24 Kci Licensing, Inc. Super-absorbent, reduced-pressure wound dressing and systems
US11969319B2 (en) 2008-05-30 2024-04-30 Solventum Intellectual Properties Company Reduced-pressure, compression systems and apparatuses for use on a curved body part
JP2018038974A (en) * 2016-09-08 2018-03-15 株式会社豊田中央研究所 NOx PURIFYING CATALYST AND NOx PURIFYING METHOD USING THE SAME

Also Published As

Publication number Publication date
JP3741292B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
EP0852966B1 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
JP3358766B2 (en) Exhaust gas purification catalyst
JPH11226404A (en) Catalyst for purification of exhaust gas
WO2002066153A1 (en) Catalyst for hydrogen generation and catalyst for purification of exhaust gas
JP5217072B2 (en) Exhaust gas purification catalyst and process for producing the same
JPH09215922A (en) Catalyst for purifying exhaust gas
JP3846139B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3798727B2 (en) Exhaust gas purification catalyst
JP3821343B2 (en) Exhaust gas purification device
JP3685463B2 (en) Exhaust gas purification catalyst
JP3589383B2 (en) Exhaust gas purification catalyst
JP3741292B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2000015101A (en) Catalyst for purifying exhaust gas
JPH03106446A (en) Catalyst for purifying exhaust gas and preparation thereof
JP3589376B2 (en) Exhaust gas purification catalyst
JPH08141394A (en) Catalyst for purifying exhaust gas
JP3508969B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2004216224A (en) Nox occlusion reduction type catalyst
JP3741297B2 (en) Exhaust gas purification catalyst
JP3739226B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH09299795A (en) Catalyst for purification of exhaust gas
JP2001179100A (en) Hydrogen producing catalyst, exhaust gas cleaning catalyst and exhaust gas cleaning method
JPH1052627A (en) Exhaust gas purifying catalyst
JP3338889B2 (en) Exhaust gas purification device
JP2005185966A (en) Automobile exhaust emission purification catalyst

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051103

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

EXPY Cancellation because of completion of term