JPH0459049A - Catalyst for diesel engine exhaust gas cleanup - Google Patents

Catalyst for diesel engine exhaust gas cleanup

Info

Publication number
JPH0459049A
JPH0459049A JP2159922A JP15992290A JPH0459049A JP H0459049 A JPH0459049 A JP H0459049A JP 2159922 A JP2159922 A JP 2159922A JP 15992290 A JP15992290 A JP 15992290A JP H0459049 A JPH0459049 A JP H0459049A
Authority
JP
Japan
Prior art keywords
catalyst
rhodium
alumina
palladium
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2159922A
Other languages
Japanese (ja)
Other versions
JP3061399B2 (en
Inventor
Makoto Horiuchi
真 堀内
Satoru Inui
哲 乾
Koichi Saito
斉藤 皓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2159922A priority Critical patent/JP3061399B2/en
Priority to EP91110066A priority patent/EP0462593B1/en
Priority to CA002044984A priority patent/CA2044984C/en
Priority to DE69105366T priority patent/DE69105366T2/en
Priority to KR1019910010220A priority patent/KR950010783B1/en
Priority to US07/718,261 priority patent/US5177041A/en
Publication of JPH0459049A publication Critical patent/JPH0459049A/en
Application granted granted Critical
Publication of JP3061399B2 publication Critical patent/JP3061399B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To obtain a catalyst capable of efficiently removing particulate substances in exhaust gas by providing a catalyst components consisting of inorganic oxide, noble metal, and rhodium and incorporating rhodium only into the upper layer part of a catalyst component holding layer. CONSTITUTION:Catalyst components containing refractory inorganic oxide, such as alumina and silica, palladium and/or platinum, and rhodium are held by a refractory three-dimensional structure, such as ceramic foam, and this rhodium is incorporated only into the upper layer part having a thickness equivalent to <=80% of the thickness of the catalyst component holding layer. The resulting catalyst for engine cleanup is excellent in the property of combustive removal of harmful components, such as unburnt hydrocanbon and carbon monoxide, other than carbonaceous particulates from low temp. and is reduced in the oxidizing power of sulfur dioxide.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ディーゼルエンジン排ガス浄化用触媒に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a catalyst for purifying diesel engine exhaust gas.

(従来の技術) 近年、特にディーゼルエンジン排ガス中の微粒子物質で
主として、固体状炭素微粒子、硫酸塩などの硫黄系微粒
子、液状ないし固体状の高分子炭化水素微粒子などから
なるものであり、以下、これらを「微粒子物質」と総称
する)か環境衛生」二問題となっている。その理由は、
これら微粒子物質は、その粒子径がほとんと1ミクロン
以下であるため、大気中に浮遊しやすく呼吸により人体
内に取り込まれやすいためである。従って、これら微粒
子物質のディーゼルエンジンからの排出に関する規制を
厳しくしていく方向で検討が進められている。
(Prior Art) In recent years, particulate matter particularly in diesel engine exhaust gas mainly consists of solid carbon particles, sulfur-based particles such as sulfates, liquid or solid polymer hydrocarbon particles, etc. These are collectively referred to as ``fine particulate matter'') and environmental health. The reason is,
This is because these particulate substances have particle diameters of approximately 1 micron or less, and therefore are easily suspended in the atmosphere and easily taken into the human body through breathing. Therefore, studies are underway to tighten regulations regarding the emission of these particulate matter from diesel engines.

一方、ディーゼルエンジンの燃利噴羽の高圧化、燃利噴
羽タイミンクの制御なとの改良にともない、ディーゼル
エンジンから排出される微粒子物質の量はある程度低減
された。しかし、その低減化は来た十分とはいえず、ま
た微粒子物質に含まれる、主として液状の高分子量炭化
水素からなる有機溶媒tこ可溶な成分(S OF)は、
」二記のようなエンジンの改良によって(よ除去できず
、微粒子物質中のSOF割合は増加する結果となってい
る。このSOFは発カン性物質なとの有害成分な舎イ1
することから、微粒子物質とともにSOFの除去が重要
な問題となっている。
On the other hand, improvements such as increasing the pressure of the fuel jets of diesel engines and controlling the timing of the fuel jets have reduced the amount of particulate matter emitted from diesel engines to some extent. However, the reduction has not been sufficient, and organic solvent soluble components (SOF), which mainly consist of liquid high molecular weight hydrocarbons, are contained in particulate matter.
Improvements in engines such as those described in Section 2 have resulted in an increase in the proportion of SOF in particulate matter.
Therefore, removal of SOF along with particulate matter has become an important issue.

微粒子物質の除去方法としては、セラミックフオーム、
ワイヤーメツシュ、金属発泡体、目利しタイプのセラミ
ックハニカム、オープンフロータイブのセラミックハニ
カム、メタルハニカムなとの附火性三次元構造体に炭素
系微粒子を燃焼させうる触媒物質な担持させた触媒を使
用し、ディーゼルエンジン排ガス中の微粒子物質を捕捉
するとともに、通常のデイ−セルエンジンの走行条件下
て得られる排ガスの排出条件(ガス組成および温度)下
に、あるいは電気ヒーターなとの加熱手段を用いて炭素
系微粒子を除去する触媒方式が検3Jされている。
Ceramic foam,
Catalysts supported on combustible three-dimensional structures such as wire mesh, metal foam, graded ceramic honeycombs, open flow type ceramic honeycombs, and metal honeycombs, which are capable of burning carbon-based fine particles. is used to capture particulate matter in the diesel engine exhaust gas, and under the exhaust gas emission conditions (gas composition and temperature) obtained under normal day-cell engine running conditions, or by means of heating such as an electric heater. A catalytic method for removing carbon-based particulates using carbon dioxide has been investigated.

一般に、デイ−セルエンジンの排ガス浄化用触媒として
は、 (イ)炭素系微粒子のほか未燃焼炭化水素、−酸
化炭素などの有害成分の低温からの燃焼除去効率か高い
、 ([ニア)燃トドとして用いる軽油中に多量に含ま
れる硫黄成分から発生ずる二酸(ヒ硫黄C3O2)の三
酸化硫黄(SO3)への酸化能が低く、ザルフエ−1・
(二酸化硫黄が酸化されて三酸化硫黄や硫酸ミスI・に
なったもの)の生成を抑制できる、また(ハ)高負荷で
の連続運転下でも耐える、いわゆる高温耐久性が高いと
いう性能を有する触媒が望まれている。
In general, catalysts for purifying exhaust gas from day-cell engines have the following characteristics: (a) high efficiency in combustion removal of harmful components such as carbon-based particulates, unburned hydrocarbons, and carbon oxides from low temperatures; It has a low ability to oxidize diacid (Hisulfur C3O2), which is generated from the sulfur component contained in a large amount in light oil used as a gas oil, to sulfur trioxide (SO3).
(3) It has the ability to suppress the formation of sulfur dioxide (oxidized to sulfur trioxide and sulfuric acid), and (3) it has the ability to withstand continuous operation under high loads, so-called high temperature durability. Catalysts are desired.

従来より、炭素系微粒子の燃焼除去効率を高める目的で
種々の提案かなされている。
Conventionally, various proposals have been made for the purpose of increasing the combustion removal efficiency of carbon-based particulates.

例えは、特開昭55−24!397号公報には、白金族
元素系触媒として、ロジウム(7,5%)白金合金、白
金/パラジウム(50/ 50 )混合物、酸化タンタ
ルまたは酸化セリウム」−にパラジウムを担持したもの
、さらにはパラジウムと75重量%以下の白金とからな
る合金などが開示されている。これら触媒はまたSOF
の除去にも効果的であるとされている。
For example, JP-A-55-24!397 discloses that platinum group element catalysts include rhodium (7.5%) platinum alloy, platinum/palladium (50/50) mixture, tantalum oxide, or cerium oxide. Also disclosed are alloys containing palladium and 75% by weight or less of platinum. These catalysts are also SOF
It is also said to be effective in removing.

その他、特開昭61−129030号、同61−14.
9222号および同61−146314号各公報には、
パラジウムとロジウムとを主な活性成分とし、ざらにア
ルカリ金属、アルカリ土類金属、銅、ランタン、亜鉛お
よびマンカンなどを添加した触媒組成物が、また特開昭
59−82944号公報には、銅、アルカリ金属、モリ
ブデンおよびバナジウムから選ばれる少なくとも1種と
白金、ロジウムおよびパラジウムから選ばれる少なくと
も1種とを矧み合わぜた触媒組成物が開示されている。
In addition, JP-A-61-129030, JP-A No. 61-14.
9222 and 61-146314,
A catalyst composition containing palladium and rhodium as the main active ingredients, with the addition of alkali metals, alkaline earth metals, copper, lanthanum, zinc, mankan, etc. is also disclosed in JP-A-59-82944. , alkali metals, molybdenum, and vanadium and at least one selected from platinum, rhodium, and palladium are disclosed.

ざらごこ、ディーゼルエンジン排ガス中のSOFを除去
する触媒として、ガス流れに対し平行に貫通孔を有する
オーブン式のハニカム状貴金属系酸化触媒が報告されて
いる(SA、E  Paper、810263)。
An oven-type honeycomb-shaped noble metal oxidation catalyst having through holes parallel to the gas flow has been reported as a catalyst for removing SOF from diesel engine exhaust gas (SA, E Paper, 810263).

(発明か解決しようとする課題) しかし、上記従来の触媒は、いずれも萩素系微粒子の燃
焼除去またはSOFの除去にはある程度効果的であるが
、二酸化硫黄の酸化能が高いため、→ノルフェートの生
成量が増加し、かえって微粒子物質全体の除去率は低下
し、またこのサルフェートが新たな環境問題を生しると
いう欠点かあった。
(Problem to be solved by the invention) However, although the above-mentioned conventional catalysts are all effective to some extent in the combustion removal of Hagi-based fine particles or the removal of SOF, they have a high ability to oxidize sulfur dioxide. The production amount of sulfate increases, and the overall removal rate of particulate matter decreases, and this sulfate also poses a new environmental problem.

すなわち、前記した(イ)〜(ハ)のディーゼルニンジ
ン排ガス浄化用の触媒に要求される性能、ざらにSOF
の除去性能を十分倫えた触媒?i来た見出されていない
In other words, the performance required for the catalyst for purifying diesel carrot exhaust gas in (a) to (c) above, roughly speaking, the SOF
A catalyst with sufficient removal performance? i have not been found.

従って、本発明の一つの目的は、ディーゼルニンジン排
ガス中の微粒子物質を効率よく除去できるディーゼルエ
ンジン11ガス浄化用触媒を提供することである。
Therefore, one object of the present invention is to provide a catalyst for purifying diesel engine 11 gas that can efficiently remove particulate matter from diesel carrot exhaust gas.

本発明の他の目的は、ディーゼルエンジン排ガス中の炭
素系微粒子のほか未燃焼炭化水素、−酸化炭素なとの有
害成分も低温から燃焼除去できる性能を有し、しかも二
酸化硫黄の酸化能が低くサルフェートの生成を抑制した
ディーゼルエンジン浄化用触媒を提供することである。
Another object of the present invention is to have the ability to burn off harmful components such as unburned hydrocarbons and carbon oxides in addition to carbon-based particulates in diesel engine exhaust gas at low temperatures, and to have a low oxidizing ability for sulfur dioxide. An object of the present invention is to provide a catalyst for purifying a diesel engine that suppresses the generation of sulfate.

本発明の他の目的は、ディーゼルエンジン排ガス中のS
OFを効率よく除去できるデイーセルコーンシン排ガス
浄化用触媒を提供することである。
Another object of the present invention is to reduce the amount of S in diesel engine exhaust gas.
An object of the present invention is to provide a catalyst for purifying diesel exhaust gas that can efficiently remove OF.

本発明の他の目的は、高温耐久性か良好てあフた、実用
」二問題を生しることなくディーゼル車に搭載できるデ
イ−セルエンジン浄化用触媒を提供することである。
Another object of the present invention is to provide a day-cell engine purifying catalyst that can be installed in a diesel vehicle without causing problems such as high temperature durability, good after-effects, and practical use.

(課題を解決するための手段) 本発明者らは、」二記目的を達成するために鋭意検L」
シた結果、 (a ) 1rtiJ火性無機酸化物、 
(1))パラジウムおよび/または白金、ならびに(c
)ロジウムを含有する触媒成分を耐火性三次元構造体に
担持した触媒であって、ロジウムを触媒成分担持層の上
層部に選択的に含有する触媒か炭素系微粒子のほか未燃
焼炭化水素、−酸化炭素なとの有害成分を低温から燃焼
除去する性能に優れ、また二酸化硫黄の酸化能か低く、
さらにはSOFの除去にも効果的であることを知り、こ
の知見に基ついて本発明を完成するに至った。
(Means for Solving the Problems) The inventors have made extensive efforts to achieve the objects stated in section 2.
As a result, (a) 1rtiJ flammable inorganic oxide,
(1)) palladium and/or platinum, and (c
) A catalyst in which a catalyst component containing rhodium is supported on a refractory three-dimensional structure, which selectively contains rhodium in the upper layer of the catalyst component support layer, or in addition to carbon-based fine particles, unburned hydrocarbons, - It has excellent performance in burning and removing harmful components such as carbon oxide at low temperatures, and has a low ability to oxidize sulfur dioxide.
Furthermore, they found that it is effective in removing SOF, and based on this knowledge, they completed the present invention.

すなわち、本発明は、 (a)耐火性無N酸化物、(l
〕)パラジウムおよび白金から選ばれる少なくとも1種
の貴金属、ならびに(c)ロジウムを含有する触媒成分
を耐火性三次元構造体に担持したディーゼルエンジン排
ガス浄化用触媒であって、触媒成分担持層の厚さの80
%以下に相当する厚さの上層部分のみにロジウムか含有
されていることを特徴とするディーゼルエンジン排ガス
浄化用触媒に関する。
That is, the present invention provides (a) a refractory N-free oxide, (l
]) A catalyst for diesel engine exhaust gas purification in which a fire-resistant three-dimensional structure supports a catalyst component containing at least one noble metal selected from palladium and platinum, and (c) rhodium, the catalyst component supporting layer having a thickness of Sano 80
The present invention relates to a catalyst for purifying diesel engine exhaust gas, characterized in that rhodium is contained only in the upper layer portion with a thickness corresponding to % or less.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

耐火性無機酸化物(a)としては、活性アルミナ、シリ
カ、チタニア、ジルコニア、シリカ−アルミナ、アルミ
ナ−ジルコニア、アルミナ−チタニア、シリカ−チタニ
ア、シリカ−ジルコニア、チタニア−ジルコニア、ゼオ
ライトなどが用いられる。これらのうぢ、ジルコニアか
サルフェ−トの生成を抑制し、優れた選択酸化能を発現
する好適な基材として挙げることかできる。
As the refractory inorganic oxide (a), activated alumina, silica, titania, zirconia, silica-alumina, alumina-zirconia, alumina-titania, silica-titania, silica-zirconia, titania-zirconia, zeolite, etc. are used. Zirconia can be cited as a suitable base material that suppresses the formation of sulfate and exhibits excellent selective oxidation ability.

成分(b)の−っである白金の出発原料としては、塩化
白金酸、ジニトロジアミノ白金、白金テトラミンクロラ
イド、白金スルフィト錯塩などを掌げることかできる。
As the starting material for platinum, which is component (b), chloroplatinic acid, dinitrodiaminoplatinum, platinum tetramine chloride, platinum sulfite complex salts, etc. can be used.

また、パラジウムの出発原料としては、硝酸パラジウム
、塩化パラジウム、バラシラノ、テトラミンクIJライ
ト、パラジウムスルフィト銘塩なとを挙りることかてき
る。
In addition, starting materials for palladium include palladium nitrate, palladium chloride, balacillano, tetramink IJ light, and palladium sulfite salt.

成分(c)としてのロジウムの出発原料としては、硝酸
ロジウム、J\キサアンミンロジウムクロライド、ロジ
ウムスルフィI−錯塩なとを挙げることかできる。
Examples of the starting material for rhodium as component (c) include rhodium nitrate, J\xaammine rhodium chloride, and rhodium sulfi I-complex salt.

また、耐火性三次元構造体としては、セラミックフオー
ム、オーブラフ1コーのセラミックハニカム、ウォール
フロータイプのハニカムモノリス、オープンフローのメ
タルハニカム、金属発泡体またはメタルメツシュなどを
用いることかできる。
Further, as the refractory three-dimensional structure, ceramic foam, ceramic honeycomb of one orb rough type, wall flow type honeycomb monolith, open flow metal honeycomb, metal foam, metal mesh, etc. can be used.

特に、ディーゼルエンジン排ガスが排ガス1工η3あた
り100mg以下の微粒子物質を含み、またこの微粒子
物質中のSOF含有率が20%以上である場合、面・]
火性三次元υ4造体としてはオープンフロータイブのセ
ラミックハニカムJ:たはメタルハニカムか好適に使用
される。
In particular, if the diesel engine exhaust gas contains 100 mg or less of particulate matter per 1 hour of exhaust gas, and the SOF content in this particulate matter is 20% or more,
As the flammable three-dimensional υ4 structure, open flow type ceramic honeycomb or metal honeycomb is suitably used.

本発明の触媒は、上記耐火性三次元構造体に」―記成分
(a)〜(c)を含有する触媒成分を担持したものであ
り、触媒成分担持層の厚さの80%以下(なお、ロジウ
ムか存在しないことになる0%は除外される)に相当す
る厚さの]−層部分のみにロジウムか含有されているこ
とを特徴とするものである。すなわち、本発明の触媒に
おいては、ロジウムか触媒成分担持層の表面から厚さ方
向に、この触媒成分担持層の厚さの0%より大きく80
%以下に相当する上層部分のみに含有されている。
The catalyst of the present invention has a catalyst component containing the components (a) to (c) listed above supported on the above-mentioned refractory three-dimensional structure, and has a thickness of 80% or less of the thickness of the catalyst component supporting layer. It is characterized in that rhodium is contained only in the layer portion with a thickness corresponding to 0% (excluding 0% where no rhodium is present). That is, in the catalyst of the present invention, rhodium is larger than 80% of the thickness of the catalyst component support layer in the thickness direction from the surface of the catalyst component support layer.
% or less is contained only in the upper layer portion.

上記のようにロジウムを触媒成分担持層の上層部分のみ
に含有させる方法については特に制限はなく、−例とし
て次のものを挙げることができる。
As mentioned above, there is no particular restriction on the method of containing rhodium only in the upper layer of the catalyst component supporting layer, and examples include the following.

すなわち、耐火性無機酸化物(a)および白金および/
またはパラジウム(1))を含有する触媒成分を耐火性
三次元構造体上に担持して第1層を形成し、次いて耐火
性無機酸化物(a)およびロジウム(c)を含有する触
媒成分をに記第1層」−に担持して第2層を形成し、こ
れにより上層部分としての第2層のみにITラジウムC
)が含有された触媒成分担持層か形成される。
That is, refractory inorganic oxide (a) and platinum and/or
Alternatively, a catalyst component containing palladium (1) is supported on a refractory three-dimensional structure to form a first layer, and then a catalyst component containing a refractory inorganic oxide (a) and rhodium (c) is formed. The second layer is formed by supporting IT radium C on the first layer.
) is formed.

」二記第2層にざらに白金および/またはバラシラノ、
(b)を含有させることもてきるか、第1層に白金およ
び/またはパラジウム(b)を、第2層にロジウム(c
)を選択的に含有させるほうが貴金属の使用形態として
は最も効果的である。
” 2. In the second layer, platinum and/or rose silano,
Platinum and/or palladium (b) may be included in the first layer and rhodium (c) in the second layer.
) is the most effective way to use precious metals.

本発明の触媒は、上記耐火性無n酸化物(a)、白金お
よび/またはパラジウム(1))およびロジウム(c)
のほか!こ、ランタン、セリウム、プラセオジム、ネオ
ジム、1ノマリウムなどの希土類元素から選ばれる少な
くとも1種の元素を含有していてもよい。
The catalyst of the present invention comprises the above refractory n-free oxide (a), platinum and/or palladium (1)) and rhodium (c).
Besides! It may contain at least one element selected from rare earth elements such as lanthanum, cerium, praseodymium, neodymium, and monomarium.

本発明の触媒において、触媒成分担持層な構成する耐火
性無機酸化物(a)、白金および/また(よパラジウム
(1))、およびロジウム(c)の担持量は、耐火性三
次元構造体1g当りそれぞれ3〜300g、0より太き
く6g以下、0より太きく3g以下、および0.01〜
1gの範囲にあるのか好ましい。
In the catalyst of the present invention, the amount of the refractory inorganic oxide (a), platinum and/or palladium (1), and rhodium (c) constituting the catalyst component support layer is determined by the amount of the refractory three-dimensional structure. 3 to 300g per 1g, thicker than 0 and 6g or less, thicker than 0 and 3g or less, and 0.01 to
It is preferable that the amount is in the range of 1 g.

なお、必要に応じて添加する上記希土類元素のノリ持量
は、耐火性三次元構造体1g当り1〜5゜gの範囲にあ
るのが好ましい。
The amount of the rare earth element added as necessary is preferably in the range of 1 to 5 g per 1 g of the refractory three-dimensional structure.

前記のとおり、本発明の触媒においてシL、ロジウム(
c)か必須成分として含有され、しかもこのロジウム(
c)を含有する上層部分が全触媒成分担持層の厚さの少
なくとも80%を占めることが必要であり、ロジウム(
c)か含まれていないか、またにを含まれていたにして
も、それを含有する上層部分か全触媒成分担1..j層
の厚さの80%を超えると微粒子物質の除去能か低下し
て本発明の目的を達成することかできない。
As mentioned above, in the catalyst of the present invention, SiL, Rhodium (
c) is contained as an essential component, and this rhodium (
c) It is necessary that the upper layer portion containing rhodium (
c) or not, or even if it does, the upper layer containing it or the entire catalyst component carrier 1. .. If the thickness exceeds 80% of the thickness of layer j, the ability to remove particulate matter will decrease, making it impossible to achieve the object of the present invention.

本発明の触媒の調製方法については、特に制限はなく、
具体例を挙げれは次のとおりである。
There are no particular restrictions on the method for preparing the catalyst of the present invention.
Specific examples are as follows.

(1) 耐火性無機酸化物の粉体を湿式粉砕してスラリ
ー化し、このスラリーに耐火性三次元構造体を浸漬し、
余分なスラリーを取り除いた後、80〜250°Cで乾
燥し、次いて300〜850°Cて夕尭成する。
(1) A refractory inorganic oxide powder is wet-pulverized into a slurry, a refractory three-dimensional structure is immersed in this slurry,
After removing excess slurry, it is dried at 80-250°C, and then heated at 300-850°C.

次に、上記耐火性三次元構造体を所定f(’zの「Iシ
ウム化合物を含有する水溶液中に浸漬し、ロジウム化合
物を吸着担持した後、余分な溶液を取り除き、80〜2
50°Cて乾燥し、次いて300〜850°Cて焼成す
る。
Next, the above refractory three-dimensional structure is immersed in an aqueous solution containing a sium compound of a predetermined f('z) to adsorb and support the rhodium compound, and then the excess solution is removed and the 80-2
Dry at 50°C and then bake at 300-850°C.

最後に、上記耐火性三次元構造体を白金および/または
パラジウムの化合物の所定量を含有する水溶液中に浸漬
−余分なM i’fりを取り除いた後、80〜250°
Cで乾燥し、次いて300〜850°Cて焼成して目的
とする触媒を得る。
Finally, the refractory three-dimensional structure is immersed in an aqueous solution containing a predetermined amount of platinum and/or palladium compounds - after removing excess M i'f
The catalyst is dried at C and then calcined at 300 to 850 C to obtain the desired catalyst.

(2)  1Tli’l火性三次元構造体を、白金およ
び/またはパラジウムの化合物と耐火性無機酸化物とを
含有するスラリー中に浸漬し、余分なスラリーを取り除
いた後、80〜250°Cで+2燥し、次いて300〜
800°Cて焼成して第1層を形成する。
(2) The 1Tli'l refractory three-dimensional structure is immersed in a slurry containing a platinum and/or palladium compound and a refractory inorganic oxide, and after removing excess slurry, the temperature is 80 to 250°C. +2 drying, then 300~
The first layer is formed by firing at 800°C.

次に、」−記第1層を形成した耐火性三次元構造体をロ
ジウム化合物と耐火性11I+′機酸化物とを含有する
スラリー中に浸漬し、余分なスラリーを取り除いた後、
80〜250℃で乾燥し、次いて300〜800°Cて
焼成して第2層を形成して、目的とする触媒を得る。
Next, the refractory three-dimensional structure with the first layer formed thereon is immersed in a slurry containing a rhodium compound and a refractory 11I+' organic oxide, and after removing excess slurry,
It is dried at 80-250°C and then calcined at 300-800°C to form a second layer to obtain the desired catalyst.

(発明の効果) 本発明の触媒jよ、炭素系微粒子のほか未燃焼炭化水素
、−・酸化炭素なとの有害成分の低温からの燃頬除去性
能に優れ、しかも二酸化硫黄の酸化能か低いことからザ
ルフエー)・の生成を抑制することができる。従って、
本発明の触媒は、ディーゼルエンジン排ガス中の微粒子
物質の低減化に優れ、本発明の触媒を使用することによ
りディーゼルエンジン排ガスを効率よく浄化することか
できる。
(Effects of the Invention) The catalyst of the present invention has excellent performance in removing harmful components such as carbon-based fine particles, unburned hydrocarbons, and carbon oxides from low temperatures, and has a low ability to oxidize sulfur dioxide. Therefore, it is possible to suppress the production of Zarphae). Therefore,
The catalyst of the present invention is excellent in reducing particulate matter in diesel engine exhaust gas, and by using the catalyst of the present invention, diesel engine exhaust gas can be efficiently purified.

本発明の触媒は、SOFの除去能ごこおいても優れてい
ることから、ディーゼルエンジン排ガスの浄化にきわめ
て効果的である。
Since the catalyst of the present invention has excellent SOF removal ability, it is extremely effective in purifying diesel engine exhaust gas.

ざらに、本発明の触媒は、高温面l久性にも優れている
ことから実用」二問題を生しることなくティーセル車に
搭載することができる。
In general, the catalyst of the present invention also has excellent high-temperature surface durability, so it can be installed in a Tea Cell vehicle without causing any practical problems.

上記のように、本発明の触媒は、ディーゼルエンジン排
ガス浄化用触媒としてきわめて有用なものである。
As described above, the catalyst of the present invention is extremely useful as a catalyst for purifying diesel engine exhaust gas.

(実施例) 以下、実施例を挙けて本発明をざらに具体的に説明する
(Examples) Hereinafter, the present invention will be roughly and specifically explained with reference to Examples.

なお、触媒成分担持層におけるロジウムの分布状>y1
7こついてはEPMA(Electron Probe
 Micr。
In addition, the distribution shape of rhodium in the catalyst component supporting layer>y1
7 If you get stuck, use EPMA (Electron Probe).
Micr.

analyzer) (品性製作所(株)製)を用いて
測定した。
analyzer) (manufactured by Kinsei Seisakusho Co., Ltd.).

実施例1 比表面積90m2/gのアルミナ1kgを、パラジウム
として12.5gを含有する硝酸パラジウム(以下、硝
酸パラジウム12.5g(パラジウム換算)のように表
記する)を脱イオン水に溶解した水溶液に投入し、十分
かきまぜた後、150°Cて3時間乾燥上 ざらに50
0℃で2時間焼成してアルミナ−パラジウム粉体をマH
た。
Example 1 1 kg of alumina with a specific surface area of 90 m2/g was added to an aqueous solution in which palladium nitrate (hereinafter referred to as 12.5 g of palladium nitrate (palladium equivalent)) containing 12.5 g of palladium was dissolved in deionized water. Pour in, stir thoroughly, and dry at 150°C for 3 hours.
The alumina-palladium powder is macerated by firing at 0℃ for 2 hours.
Ta.

この粉体11(gを湿式粉砕してスラリー化した。This powder 11 (g) was wet-pulverized to form a slurry.

このスラリーに横断面1平方インチ当り約300個のオ
ーブンフIコーのガス流通セルを有する5、66インチ
径X6.OOインチ長さの円筒状のコージュライト製ハ
ニカム担体を浸漬し、余分なスラリーを取り除いた後、
150°Cで2時間乾燥し、次いて500℃で1時間焼
成して、アルミナ−パラジウム粉体を構造体1g当り8
1g担持した構造体を得た。
This slurry has a 5.66 inch diameter x 6.5 mm diameter oven cell with approximately 300 oven cells per square inch of cross section. After soaking a 0 inch long cylindrical cordierite honeycomb carrier and removing the excess slurry,
The alumina-palladium powder was dried at 150°C for 2 hours and then calcined at 500°C for 1 hour to obtain a
A structure carrying 1 g was obtained.

次いで、比表面積90m、”/gのアルミナ11<gを
、硝酸ロジウム5g(ロジウム換算)を脱イオン水に溶
解した水溶液に投入し、十分かきまぜた後、150°C
て3時間乾燥し、次いて500°Cて2時間焼成してア
ルミナ−ロジウム粉体を得た。
Next, 11<g of alumina with a specific surface area of 90 m/g was added to an aqueous solution containing 5 g of rhodium nitrate (rhodium equivalent) dissolved in deionized water, stirred thoroughly, and heated at 150°C.
The powder was dried at 500°C for 3 hours, and then fired at 500°C for 2 hours to obtain alumina-rhodium powder.

このアルミナ−ロジウム粉体1kgを湿式粉砕してスラ
リー化し、この上記アルミナ−パラジウム担持構造体を
浸漬し、余分なスラリーを取り除いた後、150℃で3
時間乾燥し、次いて500°Cて1時間焼成して、この
アルミナ−ロジウム粉体を構造体IQ当り20.1g担
持した触媒を得た。
1 kg of this alumina-rhodium powder was wet-pulverized to form a slurry, and the above-mentioned alumina-palladium supporting structure was immersed, and after removing excess slurry, it was heated at 150°C for 30 minutes.
The catalyst was dried for an hour and then calcined at 500°C for an hour to obtain a catalyst in which 20.1 g of this alumina-rhodium powder was supported per structure IQ.

この触媒における、アルミナ、パラジウムおよびロジウ
ムの担持量は、構造体12当り100g、1gおよび0
.1 gであった。
The supported amounts of alumina, palladium, and rhodium in this catalyst were 100 g, 1 g, and 0 g per structure 12.
.. It was 1g.

また、ロジウムは触媒成分担持層の厚さの30%に相当
する厚さの上層部分のみに含有されていた。
Further, rhodium was contained only in the upper layer portion having a thickness corresponding to 30% of the thickness of the catalyst component supporting layer.

実施例2 比表面積150m2/gのアルミナ1kgを、ジニトロ
ジアミノ白金20g(白金換算)を脱イオン水に溶解し
た水溶液に投入し、十分かきまぜた後、150°Cて3
時間乾燥し、次いて500℃て21稍開カ°ε成してア
ルミナ−白金粉体を得た。
Example 2 1 kg of alumina with a specific surface area of 150 m2/g was added to an aqueous solution in which 20 g of dinitrodiaminoplatinum (in terms of platinum) was dissolved in deionized water, stirred thoroughly, and heated at 150°C for 3 hours.
It was dried for an hour and then opened for 21 minutes at 500°C to obtain an alumina-platinum powder.

この粉体1kgを湿式粉砕してスラリー化し、このスラ
リーに実施例1て使用したと同しコージュライト製ハニ
カム担体を浸漬し、余分なスラリーを取り除いた後、1
50°Cて2時間乾燥し、次いて500°Cて1時間焼
成して、アルミナ−白金粉体を構造体1g当り51g担
持した構造体を得た。
1 kg of this powder was wet-pulverized to form a slurry, and the same cordierite honeycomb carrier used in Example 1 was immersed in this slurry, and after removing excess slurry,
It was dried at 50°C for 2 hours and then fired at 500°C for 1 hour to obtain a structure in which 51 g of alumina-platinum powder was supported per 1 g of the structure.

次いて、比表面積90m2/gのアルミナIkgを、硝
酸ロジウム10g(ロジウム換算)を脱イオン水に溶解
した水溶液に投入し、十分かきまぜた後、150°Cて
3時間乾燥し、次いて500℃で2時間焼成してアルミ
ナ−ロジウム粉体を得た。
Next, Ikg of alumina with a specific surface area of 90 m2/g was poured into an aqueous solution of 10 g of rhodium nitrate (rhodium equivalent) dissolved in deionized water, thoroughly stirred, dried at 150°C for 3 hours, and then heated to 500°C. The mixture was fired for 2 hours to obtain alumina-rhodium powder.

このアルミナ−ロジウム粉体1kgを湿式粉砕してスラ
リー化し、このスラリーに上記アルミナ白金担持構造体
を浸漬し、余分なスラリーを取り除いた後、150’C
て3時間乾燥し、次いて500°Cて1時間焼成して、
アルミナ−白金粉体な構遺体1Ω当り50.5 g担持
した触媒を得た。
1 kg of this alumina-rhodium powder was wet-pulverized to form a slurry, the alumina platinum supporting structure was immersed in this slurry, excess slurry was removed, and the mixture was heated to 150°C.
dried for 3 hours, then baked at 500°C for 1 hour,
A catalyst was obtained in which 50.5 g of alumina-platinum powder was supported per 1Ω of the structure.

この触媒における、アルミナ、白金およびロジウムの担
持量は、構造体1g当りそれぞれ100g−1gおよび
0.5gであった。
The supported amounts of alumina, platinum, and rhodium in this catalyst were 100 g-1 g and 0.5 g, respectively, per 1 g of the structure.

また、ロジウムは触媒成分担持層の厚さの60%に相当
する厚さの北層部分のみに含有されていた。
Further, rhodium was contained only in the northern layer portion whose thickness corresponded to 60% of the thickness of the catalyst component supporting layer.

実施例3 比表面積150 m2/ gのアルミナ11Kgを、硝
酸パラジウム16.7g(パラジウム換算)および塩化
白金酸8.3g(白金換rF−)を脱イオン水に溶解し
た水溶液ζこ投入し、十分かきまぜた後、150°Cて
3時間乾燥し、ついて750′Cて1時間焼成してアル
ミナ−パラジウム−白金粉体を得た。
Example 3 11 kg of alumina with a specific surface area of 150 m2/g was charged into an aqueous solution ζ in which 16.7 g of palladium nitrate (in terms of palladium) and 8.3 g of chloroplatinic acid (rF- in terms of platinum) were dissolved in deionized water. After stirring, the mixture was dried at 150°C for 3 hours and then calcined at 750'C for 1 hour to obtain alumina-palladium-platinum powder.

この粉体1kgを湿式粉砕してスラリー化し、このスラ
リーごこ実施例1て使用したと同しコージュライト製ハ
ニカム担体を浸漬し、余分なスラリーを取り除いた後、
150’Cて2時間乾燥腰 次いて500℃で1時間焼
成して、このアルミナパラジウム−白金粉体を構造体1
2当り62g担持した構造体を得た。
1 kg of this powder was wet-pulverized into a slurry, and the same cordierite honeycomb carrier used in Example 1 was immersed in the slurry, and the excess slurry was removed.
The alumina palladium-platinum powder was dried for 2 hours at 150°C, then fired at 500°C for 1 hour.
A structure was obtained in which 62 g was supported per 2 pieces.

次いて、比表面積120 m2/ gのアルミナ1kg
を、ヘキサアンミンロジウムクロライド12.5g(ロ
ジウム換算)を脱イオン水に溶解した水溶液に投入し、
十分かきまぜた後、180 ’Cで3時間乾燥し、次い
て500℃で1時間焼成してアルミナ−ロジウム粉体を
得た。このアルミナ−ロジウム粉体1kgを湿式粉砕し
てスラリー化し、このスラリーに上記アルミナ−パラジ
ウム−白金担持構造体を浸漬し、余分なスラリーを取り
除いた後、150℃で2時間乾燥し、次いて500 ’
Cて1時間焼成して、アルミナ−ロジウム粉体を構造体
1g当り40.5g担持したM;媒をtHか。
Next, 1 kg of alumina with a specific surface area of 120 m2/g
was added to an aqueous solution of 12.5 g (rhodium equivalent) of hexaammine rhodium chloride dissolved in deionized water,
After thorough stirring, the mixture was dried at 180'C for 3 hours, and then calcined at 500C for 1 hour to obtain alumina-rhodium powder. 1 kg of this alumina-rhodium powder was wet-pulverized to form a slurry, and the above-mentioned alumina-palladium-platinum supporting structure was immersed in this slurry, and after removing excess slurry, it was dried at 150°C for 2 hours, and then '
The structure was calcined for 1 hour at C and tH to support 40.5 g of alumina-rhodium powder per 1 g of the structure.

この触媒における、アルミナ、パラジウム、白金および
ロジウムの担持量は、構造体1g当りそれぞれ100g
、1g、0,5gおよび0.5gてあフた。
The amount of alumina, palladium, platinum and rhodium supported in this catalyst is 100g each per 1g of structure.
, 1g, 0.5g and 0.5g tea.

また、ロジウムは触媒成分担持層の厚さの50%に相当
する厚さの」−層部分のみに含有されてぃ実施例4 比表面積80m2/gのジルコニアIkgを、硝酸パラ
ジウム20g(パラジウム換算)を脱イオン水に溶解し
た水溶液に投入し、十分かきまぜた後、150℃で6時
間乾燥し、次いて700°Cて1時間焼成してジルコニ
ア−パラジウム粉体を得た。
In addition, rhodium is contained only in the layer portion with a thickness corresponding to 50% of the thickness of the catalyst component supporting layer. was added to an aqueous solution of deionized water, thoroughly stirred, dried at 150°C for 6 hours, and then calcined at 700°C for 1 hour to obtain zirconia-palladium powder.

この粉体1kgを湿式粉砕してスラリー化し、このスラ
リーを実施例1で使用したと同じコーシュライト製ハニ
カム担体に浸漬し、余分なスラリーを取り除いた後、1
50℃で3時間乾燥し、吹いて500°Cて1時間焼成
して、ジルコニア−パラジウム粉体を構造体12当り5
1g担持した構造体を得た。
1 kg of this powder was wet-pulverized to form a slurry, and this slurry was immersed in the same caushlite honeycomb carrier used in Example 1. After removing excess slurry,
The zirconia-palladium powder was dried at 50°C for 3 hours, blown and fired at 500°C for 1 hour to form a powder of zirconia-palladium powder of 50% per 12 structures.
A structure carrying 1 g was obtained.

次いて、比表面積80rn2/gのジルコニアIJ< 
gを、硝酸ロジウム20g(ロジウム換算)を脱イオン
水に溶解した水溶液に投入し、十分かきまぜた後、15
0°Cで3時間乾燥し、次いて500°Cで1時間焼成
してジルコニア−ロジウム粉体をj8た。
Next, zirconia IJ with a specific surface area of 80rn2/g<
g was added to an aqueous solution of 20 g of rhodium nitrate (rhodium equivalent) dissolved in deionized water, and after stirring thoroughly,
It was dried at 0°C for 3 hours and then fired at 500°C for 1 hour to obtain a zirconia-rhodium powder.

このジルコニア−ロジウム粉体を湿式粉砕してスラリー
化し、このスラリーに上記ジルコニア−パラジウム担持
構造体を浸漬し、余分なスラリーを取り除いた後、18
0℃で2時間乾燥し、次いて700°Cて2時間焼成し
て、ジルコニア−ロジウム粉体を構造体1g当り5.1
g担持した触媒を得た。
This zirconia-rhodium powder was wet-pulverized to form a slurry, and the zirconia-palladium supporting structure was immersed in this slurry, and after removing excess slurry,
The zirconia-rhodium powder was dried at 0°C for 2 hours and then fired at 700°C for 2 hours to obtain a powder of zirconia-rhodium powder of 5.1
A supported catalyst was obtained.

この触媒におげろ、ジルコニア、パラジウムおよびロジ
ウムの担持量は構造体12当りそれぞれ55g、Igお
よび0,1gであった。
The amounts of zirconia, palladium and rhodium supported on this catalyst were 55 g, Ig and 0.1 g, respectively, per 12 structures.

また、ロジウムは触媒成分担持層の厚さの20%に相当
する厚さの上層部分のみに含有されていた。
Further, rhodium was contained only in the upper layer portion having a thickness corresponding to 20% of the thickness of the catalyst component supporting layer.

実施例5 比表面積60m2/gのジルコニア11(gを、塩化パ
ラジウム25g(パラジウム換算)および硝酸プラセオ
ジム165gを脱イオン水に溶解した水溶液に投入腰 
十分かきまぜた後、150’Cて6時間乾燥腰次いて5
00 ’Cで2時間焼成してアルミナ−パラジウム−酸
化プラセオジム粉体を得た。
Example 5 Zirconia 11 (g) with a specific surface area of 60 m2/g was poured into an aqueous solution in which 25 g of palladium chloride (palladium equivalent) and 165 g of praseodymium nitrate were dissolved in deionized water.
After stirring thoroughly, dry at 150'C for 6 hours.
The powder was calcined at 00'C for 2 hours to obtain alumina-palladium-praseodymium oxide powder.

この粉体1kgを湿式粉砕してスラリー化し、このスラ
リーに横断面1平方インチ当り約300個のオープンフ
ローのガス流通セルを有する5゜66インチ径×6.0
インチ長さの円筒状のステンレス製ハニカム担体を浸漬
し、余分なスラリーを取り除いた後、180°Cで2時
間乾燥し、次いて650℃で3時間焼成してアルミナ−
パラジウム−酸化プラセオジム粉体を構造体1g当り8
7g担持した構造体を得た。
1 kg of this powder is wet-milled into a slurry, and this slurry is made into a 5° 66 inch diameter x 6.
After soaking an inch-long cylindrical stainless steel honeycomb carrier and removing excess slurry, it was dried at 180°C for 2 hours, and then calcined at 650°C for 3 hours to remove the alumina.
Palladium-praseodymium oxide powder per gram of structure
A structure carrying 7g was obtained.

次いて、比表面積90m2/gのジルコニア1kgを、
硝酸ロジウム5g(ロジウム換算)を脱イオン水に溶解
した水溶液に投入し、十分かきまぜた後、1508Cで
3時間乾燥し、次いて500°Cて2時間焼成してシル
コニアーロシウJ1粉体な得た。
Next, 1 kg of zirconia with a specific surface area of 90 m2/g,
5 g of rhodium nitrate (rhodium equivalent) was added to an aqueous solution of deionized water, thoroughly stirred, dried at 1508 C for 3 hours, and then calcined at 500 C for 2 hours to obtain Silconia Rhosi J1 powder. Ta.

この粉体1kgを湿式粉砕してスラリー化し、このスラ
リーに上記パラシ1クムー酸化プラセオジム担持構造体
を浸漬し、余分なスラリーを取り除いた後、]、 50
 ’Cて6時間乾燥し、次いて400°Cて1時間焼成
して、ジルコニア−ロジウム粉体を構造体12当り20
.1g担持した触媒を得た。
1 kg of this powder was wet-pulverized to form a slurry, the above parasicum praseodymium oxide supporting structure was immersed in the slurry, and the excess slurry was removed.], 50
The zirconia-rhodium powder was dried at 400°C for 6 hours and then fired at 400°C for 1 hour to form a zirconia-rhodium powder of 20
.. 1g of supported catalyst was obtained.

この触媒におりる、ジルコニア、パラジウム、ロジウム
および酸化プラセオジムの担持量は、構造体1g当りそ
れぞれ100g、2g、0.1gおよび5gてあフた。
The supported amounts of zirconia, palladium, rhodium, and praseodymium oxide in this catalyst were 100 g, 2 g, 0.1 g, and 5 g, respectively, per 1 g of the structure.

また、ロジウムは触媒成分担持層の厚さの30%に相当
する厚さの上層部分のみに含有されていた。
Further, rhodium was contained only in the upper layer portion having a thickness corresponding to 30% of the thickness of the catalyst component supporting layer.

実施例6 比表面積150m”/gのアルミナIkgを、ジニトロ
ジアミノ白金20g(白金換算)および硝酸セリウム1
510gを脱イオン水に溶解した水溶液に投入し、十分
かきまぜた後、150℃で6時間乾燥し、次いて500
℃で2時間焼成してアルミナ−白金−七リア粉体を得た
Example 6 I kg of alumina with a specific surface area of 150 m"/g was mixed with 20 g of dinitrodiaminoplatinum (in terms of platinum) and 1 kg of cerium nitrate.
510g was added to an aqueous solution dissolved in deionized water, thoroughly stirred, and then dried at 150°C for 6 hours.
It was calcined for 2 hours at ℃ to obtain an alumina-platinum-sevenia powder.

この粉体1kgを湿式粉砕してスラリー化し、このスラ
リーに横断面1平方インチ当り約200個のオープンフ
ローのガス流通セルを有する5゜66インチ径X6.0
0インチ長さの円筒状のコーシエライ]・製ハニカム担
体を浸漬腰余分なスラリーを取り除いた後、150°C
て3時間乾燥し、次いて400℃で2時間焼成してアル
ミナ−は金セリア粉体を構造体IQ当り81g担持した
構造体を得た。
1 kg of this powder is wet-milled to form a slurry, and this slurry is made into a 5° 66 inch diameter x 6.
A cylindrical honeycomb carrier of 0 inch length was soaked at 150°C after removing excess slurry.
The structure was then dried at 400 DEG C. for 2 hours to obtain a structure in which 81 g of alumina and gold ceria powder was supported per structure IQ.

次いで、比表面積150m2/gのアルミナ1kgを、
硝酸ロジウム5g(ロジウム換算)および硝酸ランタン
266gを脱イオン水に溶解した水溶液に投入し、十分
かきまぜた後、150°Cて3時間乾燥し、次いて50
0°Cて1時間焼成してアルミナ−〇ジウムー酸化ラン
タン粉体を得た。
Next, 1 kg of alumina with a specific surface area of 150 m2/g,
5 g of rhodium nitrate (rhodium equivalent) and 266 g of lanthanum nitrate were dissolved in deionized water, stirred thoroughly, and then dried at 150°C for 3 hours.
The mixture was fired at 0°C for 1 hour to obtain alumina-〇dium-lanthanum oxide powder.

この扮K l k gを湿式粉砕してスラリー化し、こ
のスラリーに上記アルミナ−白金−七リア担持構造体を
浸漬し、余分なスラリーを取り除いた後、150°Cて
3時間乾燥し、次いて600°Cて1時間焼成してアル
ミナ−ロジウム−酸化ランタン粉体を構造体IQ当り1
10.5g担持した触媒を得た。
This Klkg was wet-pulverized to form a slurry, and the alumina-platinum-septalia support structure was immersed in this slurry, excess slurry was removed, and then dried at 150°C for 3 hours. After firing at 600°C for 1 hour, the alumina-rhodium-lanthanum oxide powder was produced at 1 per structure IQ.
10.5g of supported catalyst was obtained.

この触媒において、アルミナ、白金、ロジウム、セリア
および酸化ランタンの担持量は、構造体12当りそれぞ
れ150g、1g、0.5g、30gおよび10gであ
った。
In this catalyst, the supported amounts of alumina, platinum, rhodium, ceria, and lanthanum oxide were 150 g, 1 g, 0.5 g, 30 g, and 10 g per structure 12, respectively.

また、ロジウムは触媒成分担持層の厚さの70%に相当
する厚さの上層部分のみに含有されていた。
Further, rhodium was contained only in the upper layer portion, which corresponded to 70% of the thickness of the catalyst component supporting layer.

実施例7 比表面積55m2/gのシリカ1kgを、塩化パラジウ
ム20g(パラジウム換算)および塩化白金酸6g(白
金換算)を脱イオン水に溶解した水溶液に投入し、十分
かきまぜた後、150°Cて3時間乾燥上 次いて60
0°Cて2時間焼成してシリカ−パラジウム−白金粉体
を得た。
Example 7 1 kg of silica with a specific surface area of 55 m2/g was added to an aqueous solution in which 20 g of palladium chloride (in terms of palladium) and 6 g of chloroplatinic acid (in terms of platinum) were dissolved in deionized water, stirred thoroughly, and then heated at 150°C. Dry for 3 hours, then 60
The mixture was calcined at 0°C for 2 hours to obtain silica-palladium-platinum powder.

この粉体1kgを湿式粉砕してスラリーイヒし、このス
ラリーに実施例5て使用したと同じステンレス製ハニカ
ム担体を浸漬し、余分なスラリーを取り除いた後、15
0°Cて3時間乾燥し、次いて500℃で1時間焼成し
て、シリカ−パラジウム白金粉体を構造体1g当り51
.3担持した構造体を得た。
1 kg of this powder was wet-pulverized to form a slurry, and the same stainless steel honeycomb carrier as used in Example 5 was immersed in this slurry, and after removing excess slurry,
The silica-palladium platinum powder was dried at 0°C for 3 hours and then calcined at 500°C for 1 hour to obtain a
.. A structure carrying 3 was obtained.

次いて、比表面積65rn2/gのチタニア11りgを
、硝酸ロジウム50g(ロジウム換算)を脱イオン水に
溶解した水溶液に投入し、十分かきまぜた後、150°
Cて3時間乾燥し 次いて400°Cで1時間焼成して
チタニア−ロジウム粉体を14だ。
Next, 11 g of titania with a specific surface area of 65 rn2/g was added to an aqueous solution containing 50 g of rhodium nitrate (rhodium equivalent) dissolved in deionized water, stirred thoroughly, and heated to 150°
The titania-rhodium powder was dried at 400°C for 3 hours and then fired at 400°C for 1 hour.

この粉体11(gを湿式粉砕してスラリー化し、このス
ラリーに上層シリカーパラジウムー白金担持構造体を浸
漬し、余分なスラリーを取り除いた後、1500Cで3
時間乾燥上次いて500°Cて1時間焼成してナタニア
ーロシウム粉体を構造体1g当り10.5g担持した触
媒を得た。
This powder 11 (g) was wet-pulverized to form a slurry, the upper layer silica palladium-platinum supporting structure was immersed in this slurry, and the excess slurry was removed.
After drying for a period of time, the structure was then calcined at 500° C. for 1 hour to obtain a catalyst in which 10.5 g of natania arosium powder was supported per 1 g of the structure.

この触媒における、シリカ、チタニア、パラジウム、白
金およびロジウムの担持量は、構造体12当りそれぞれ
50g、10g、Ig、0.3gおよび0.5gであっ
た。
The supported amounts of silica, titania, palladium, platinum, and rhodium in this catalyst were 50 g, 10 g, Ig, 0.3 g, and 0.5 g per 12 structures, respectively.

また、ロジウムは触媒成分担持層の厚さの25%に相当
する厚さの上層部分のみに含有されていた。
Further, rhodium was contained only in the upper layer portion having a thickness corresponding to 25% of the thickness of the catalyst component supporting layer.

実施例8 比表面積150m2/gのアルミナ1kgを、バラシウ
ムスルフイト錯塩25g(パラジウム換算)および白金
スルフィI・錯塩12.5g(白金換算)を脱イオン水
に溶解した水溶液に投入し、十分かきませた後、150
°Cて3時間乾燥上 次いて800°Cて5時間焼成し
てアルミナ−パラジウム−白金粉体を得た。
Example 8 1 kg of alumina with a specific surface area of 150 m2/g was poured into an aqueous solution in which 25 g of baracium sulfite complex salt (in terms of palladium) and 12.5 g of platinum sulfite complex salt (in terms of platinum) were dissolved in deionized water. After stirring, 150
It was dried at 800°C for 3 hours and then fired at 800°C for 5 hours to obtain alumina-palladium-platinum powder.

この粉体11(gを湿式粉砕してスラリー化し、このス
ラリーに実施例1て使用したと同しコーシエライI−製
ハニカ11担体を浸漬し、余分なスラリーを取り除いた
後、150’Cて6時間乾燥し、次いて500℃で1時
間焼成してアルミナ−パラジウム−白金粉体を構造体1
g当り4.1.5g担持した構造体を得た。
This powder 11 (g) was wet-pulverized to form a slurry, and the same Kosierai I-made Honey 11 carrier used in Example 1 was immersed in the slurry, and after removing the excess slurry, the mixture was heated at 150°C for 6 hours. Structure 1
A structure carrying 4.1.5 g/g was obtained.

次いて、比表面積40m2/gのジルコニア1kgを、
ジニトロジアミ、)白金8.3g(白金1象算)および
硝酸ロジウム8.3g(ロジウム換算)を脱イオン水に
溶解した水溶液ζこ投入し、十分かきJ5せた後、15
0°Cて6時間乾燥し、次いて750°Cて4時間焼成
して、ジルコニア−白金−ロジム粉体を得た。
Next, 1 kg of zirconia with a specific surface area of 40 m2/g,
dinitrodiamycin,) 8.3 g of platinum (1 quadrant of platinum) and 8.3 g of rhodium nitrate (converted to rhodium) were dissolved in deionized water.
It was dried at 0°C for 6 hours and then fired at 750°C for 4 hours to obtain zirconia-platinum-rhodium powder.

この粉体11(gを湿式粉砕してスラリー化し、このス
ラリーに上記アルミナ−パラジウム−白金担持構造体を
浸漬し、余分なスラリーを取り除いた後、150℃で3
時間乾燥し、次いて400°Cて2時間焼成してジルコ
ニア−パラジウム−白金粉体を構造体1g当り61.0
g担持した触媒を得た。
This powder 11 (g) was wet-pulverized to form a slurry, the alumina-palladium-platinum supporting structure was immersed in this slurry, excess slurry was removed, and the mixture was heated at 150°C for 30 minutes.
The zirconia-palladium-platinum powder was dried for 2 hours at 400°C and then baked at 400°C for 61.0 hours per gram of the structure.
A supported catalyst was obtained.

この触媒における、アルミナ、ジルコニア、パラジウム
、白金およびロシウJ1の担持量は構造体1!II当り
それぞれ40g、60g、Ig、Igおよび0.5gで
あった。
The amount of alumina, zirconia, palladium, platinum, and Rossiu J1 supported in this catalyst is 1! 40g, 60g, Ig, Ig and 0.5g per II, respectively.

また、ロジウムは触媒成分担持層の厚さの70%に相当
する厚さの上層部分のみに含有されていた。
Further, rhodium was contained only in the upper layer portion, which corresponded to 70% of the thickness of the catalyst component supporting layer.

実施例9 比表面積150m2/gのアルミナ1kgを秤取り、水
と湿式粉砕してスラリー化した。このスラリーに横断面
1平方インチ当り約400個のオープンフローのガス流
通セルを有する5、66インチ径X6.OOインチ長さ
の円筒状コージェライト製ハニカム担体を浸漬し、余分
なスラリーを取り除いた後、150℃で3時間乾燥し、
次いて500°Cて1時間焼成してアルミナを担持した
構造体を得た。
Example 9 1 kg of alumina having a specific surface area of 150 m2/g was weighed and wet-pulverized with water to form a slurry. This slurry has a 5.66 inch diameter x 6.5 mm diameter with approximately 400 open flow gas flow cells per square inch of cross section. A cylindrical cordierite honeycomb carrier with a length of OO inches was immersed, excess slurry was removed, and then dried at 150°C for 3 hours.
Next, it was fired at 500°C for 1 hour to obtain a structure supporting alumina.

この構造体を、ロジウムとして0.4g含有する80°
Cの硝酸ロジウム水溶液2,5Qに浸漬し、ロジウムを
吸着させ、余分な溶液を取り除いた後、150℃で3時
間乾燥し、ついて700℃で1時間焼成してロジウムを
上記アルミナ担持構造体上に担持させた。
This structure is 80° containing 0.4g of rhodium.
It was immersed in a rhodium nitrate aqueous solution 2.5Q of C to adsorb rhodium, and after removing the excess solution, it was dried at 150°C for 3 hours, and then calcined at 700°C for 1 hour to transfer rhodium onto the alumina support structure. It was carried by

次いて、塩仕臼金酸3.8g(白金換算)および塩化パ
ラジウム38.5g(パラジウム換算)を脱イオン水ζ
こ溶解した水溶液2.59に上層アルミナーロジウム担
持構造体を浸漬し、余分な溶液を取り除いた後、150
°Cて3時間乾燥し、次いて500°Cて2時間焼成し
て触媒を得た。
Next, 3.8 g of salt-milled auric acid (in terms of platinum) and 38.5 g of palladium chloride (in terms of palladium) were added to deionized water ζ
The upper layer alumina rhodium supporting structure was immersed in an aqueous solution containing 2.5% of this solution, and after removing excess solution, 150% of the aqueous solution was dissolved.
The catalyst was dried at 500°C for 3 hours and then calcined at 500°C for 2 hours.

この触媒における、アルミナ、パラジウム、白金および
ロジウムの担持量は、構造体1g当り50g、2g、0
.2gおよび0.2gであった。
The supported amounts of alumina, palladium, platinum, and rhodium in this catalyst are 50 g, 2 g, and 0 g per 1 g of the structure.
.. 2g and 0.2g.

また、ロジウムは触媒成分担持層の厚さの20%に相当
する厚さの上層部分のみに含有されていた。
Further, rhodium was contained only in the upper layer portion having a thickness corresponding to 20% of the thickness of the catalyst component supporting layer.

実施例10 セラミックの骨格で形成される気泡の数か1インチ間に
約12個であるセル数を有し、空孔率か約90%である
5、66インチ径X 6 、00インチ長さの円筒状の
コージェライト製セラミックフオームを用いた以外乙よ
実施例4と同様にして触媒を得た。
Example 10 Ceramic skeleton formed with a cell count of about 12 per inch and a porosity of about 90% 5.66 inch diameter x 6.00 inch length A catalyst was obtained in the same manner as in Example 4, except that a cylindrical cordierite ceramic foam was used.

この触媒における、ジルコニア、パラジウムおよびロジ
ウムの担持量は、構造体Ig当りそれぞれ55g、1g
および0.1 gであった。
The supported amounts of zirconia, palladium, and rhodium in this catalyst are 55 g and 1 g, respectively, per Ig of structure.
and 0.1 g.

また、ロジウムは触媒成分担持層の厚さの20%に相当
する厚さの上層部分のみに含有されていた。
Further, rhodium was contained only in the upper layer portion having a thickness corresponding to 20% of the thickness of the catalyst component supporting layer.

比較例1 比表面積150m2/gのアルミナIkgを、硝酸パラ
ジウム10g(パラジウム換算)を脱イオン水に溶解し
た水溶液に投入し、十分かきまぜた後、150℃で3時
間乾燥し、次いて500″C31、− て1時間焼成してアルミナ−パラジウム粉体を得た。
Comparative Example 1 Ikg of alumina with a specific surface area of 150 m2/g was poured into an aqueous solution in which 10 g of palladium nitrate (in terms of palladium) was dissolved in deionized water, stirred thoroughly, and dried at 150°C for 3 hours. , - and calcined for 1 hour to obtain alumina-palladium powder.

この粉体1kgを湿式粉砕してスラリー化上このスラリ
ーに実施例1で使用したと同しコージエライ(・製ハニ
カム担体を浸漬し、余分なスラリーを取り除いた後、1
50°Cて3詩間乾燥し、次いて500 ’Cて1時間
焼成して触媒を得た。
1 kg of this powder was wet-pulverized to form a slurry. A honeycomb carrier manufactured by Corzierai (.
The catalyst was dried at 50°C for 3 hours and then calcined at 500°C for 1 hour.

この触媒における、アルミナおよびパラジウムの担持量
は、構造体Ig当りそれぞれ100gおよび1gであっ
た。
The amounts of alumina and palladium supported in this catalyst were 100 g and 1 g, respectively, per Ig of structure.

比較例2 比較例1において、硝酸パラジウムの代わりにジニトロ
アミノ白金を用いた以外は比較例1と同様しこして触媒
を得た。
Comparative Example 2 A catalyst was obtained in the same manner as in Comparative Example 1 except that dinitroaminoplatinum was used instead of palladium nitrate.

この触媒における、アルミナおよび白金の担持量は、構
造体1g当りそれぞれ100gおよび1gであった。
The supported amounts of alumina and platinum in this catalyst were 100 g and 1 g, respectively, per 1 g of the structure.

比較例3 比表面積J50rrr2/gのアルミナ1kgを、硝酸
パラジウム10g(パラジウム換算)および塩化白金酸
10g(白金換算)を脱イオン水に溶解した水溶液に投
入し、十分かきまぜた後、150℃で3時間乾燥し、次
いて750℃で1時間焼成してアルミナ−パラジウム−
白金粉体を得た。
Comparative Example 3 1 kg of alumina with a specific surface area J50rrr2/g was added to an aqueous solution in which 10 g of palladium nitrate (palladium equivalent) and chloroplatinic acid 10 g (platinum equivalent) were dissolved in deionized water, stirred thoroughly, and heated to 150°C for 30 minutes. The alumina-palladium-
A platinum powder was obtained.

以下、比較例1と同様にして触媒を得た。Thereafter, a catalyst was obtained in the same manner as in Comparative Example 1.

この触媒における、アルミナ、パラジウムおよび白金の
担持量は、構造体Ig当りそれぞれ100、g、Igお
よび1gであった。
The supported amounts of alumina, palladium, and platinum in this catalyst were 100 g, Ig, and 1 g, respectively, per Ig of the structure.

比較例4 比表面積90m2/gのアルミナIkgを、硝酸パラジ
ウム10g(パラジウム換算)および硝酸ロジウム0.
1 g (tffジウム換算)を脱イオン水に溶解した
水溶液に投入し、十分かきまぜた後、150°Cで3時
間乾燥し、次いで500°Cて2時間焼成してアルミナ
−パラジウム−ロジウム粉体を得た。
Comparative Example 4 I kg of alumina with a specific surface area of 90 m2/g was mixed with 10 g of palladium nitrate (palladium equivalent) and 0.0 g of rhodium nitrate.
1 g (TFF dium equivalent) was added to an aqueous solution dissolved in deionized water, thoroughly stirred, dried at 150°C for 3 hours, and then calcined at 500°C for 2 hours to form alumina-palladium-rhodium powder. I got it.

以下、比較例1と同様にして触媒を得た。Thereafter, a catalyst was obtained in the same manner as in Comparative Example 1.

この触媒における、アルミナ、パラジウムおよびロジウ
ムの担持量は、構造体1g当りそれぞれ100g、Ig
および0.1gであった。
The supported amounts of alumina, palladium, and rhodium in this catalyst are 100 g each per 1 g of the structure, and Ig
and 0.1 g.

比較例5 比表面積150 m2/ gのアルミナ1kgを、ジニ
トロジアミノ白金10g(白金換算)および硝酸ロジウ
ム5g(ロジウム換算)を脱イオン水に溶解した水溶液
に投入し、十分かきまぜた後、150℃で3時間乾燥し
、次いて500℃で1時間焼成してアルミナ−白金−ロ
ジウム粉体を得た。
Comparative Example 5 1 kg of alumina with a specific surface area of 150 m2/g was added to an aqueous solution containing 10 g of dinitrodiaminoplatinum (in terms of platinum) and 5 g of rhodium nitrate (in terms of rhodium) dissolved in deionized water, stirred thoroughly, and then heated at 150°C. It was dried for 3 hours and then calcined at 500°C for 1 hour to obtain alumina-platinum-rhodium powder.

以下、比較例1と同様にして触媒を得た。Thereafter, a catalyst was obtained in the same manner as in Comparative Example 1.

この触媒における、アルミナ、白金およびロジウムの担
持量は構造体Ig当りそれぞれ100g、1gおよび0
.5gであった。
The supported amounts of alumina, platinum, and rhodium in this catalyst were 100 g, 1 g, and 0 g, respectively, per Ig of the structure.
.. It was 5g.

比較例6 比表面積150m2/gのアルミナ1kgを、硝酸パラ
ジウム10g(パラジウム換算)、塩化白金酸5g(白
金換算)およびヘギザアンミンロジウムクロライト5g
(ロジウム換算)を脱イオン水に溶解した水溶液に投入
腰 十分かきませた後、150°Cて3時間乾燥し、次
いて750℃で11侍間す尭成してアルミナ−パラジウ
ム−白金−ロジウム粉体を得た。
Comparative Example 6 1 kg of alumina with a specific surface area of 150 m2/g was mixed with 10 g of palladium nitrate (in terms of palladium), 5 g of chloroplatinic acid (in terms of platinum), and 5 g of hegizaammine rhodium chlorite.
(rhodium equivalent) was added to an aqueous solution of deionized water, stirred thoroughly, and dried at 150°C for 3 hours. A powder was obtained.

以下、比較例1と同様にして触媒を得た。Thereafter, a catalyst was obtained in the same manner as in Comparative Example 1.

この触媒における、アルミナ、パラジウム、白金および
ロジウムの担持量は、構造体1g当りそれぞれ100g
、Ig、0.5gおよび0.5gであった。
The amount of alumina, palladium, platinum and rhodium supported in this catalyst is 100g each per 1g of structure.
, Ig, 0.5 g and 0.5 g.

上記実施例1〜11および比較例1〜6で得られた触媒
のおける各成分の担持量、ならびにロジウムが存在する
上層部分の触媒成分担持層に対する割合をまとめて表1
に示す。 (以下余白)参考例 実施例1〜10および比較例1〜6で得られた触媒のデ
ィーゼルエンジン排ガス浄化性能を評価した。
Table 1 summarizes the supported amounts of each component in the catalysts obtained in Examples 1 to 11 and Comparative Examples 1 to 6, and the ratio of the upper layer where rhodium exists to the catalyst component supported layer.
Shown below. (Left below) Reference Examples The diesel engine exhaust gas purification performance of the catalysts obtained in Examples 1 to 10 and Comparative Examples 1 to 6 was evaluated.

過給直噴式デイ−セルエンジン(4気筒、2800cc
)および燃料として硫黄含有量が0.47重量%である
軽油を用いて下記試験を行った。
Supercharged direct injection day cell engine (4 cylinders, 2800cc
) and light oil with a sulfur content of 0.47% by weight as fuel.

各触媒を上層エンジンからの排ガス管に取りイ1け、エ
ンジン回転数250.Orpmの全負荷および触媒入口
温度600°Cの条件下で300時間の耐久試験を実施
した。
Each catalyst is installed in the exhaust gas pipe from the upper engine, and the engine speed is 250. A 300 hour durability test was conducted under the conditions of full ORPM load and catalyst inlet temperature of 600°C.

その後、エンジン回転数2000rpm、)ルク8.5
kg−mおよび触媒入口温度300°Cの条件下で触媒
床に入る前(人口)および触媒床を出た後(出口)での
排ガス中の微粒子物質の含有量を通常のダイリューショ
ン]・ンネル法を用いて測定し、微粒子物質の除去の程
度、すなわち浄化率(%)を求めた。また、触媒床に入
る前の排ガスおよび触媒床を通過後の排ガス中の二酸化
硫黄、ガス状炭化水素および一酸化炭素の分析も同時に
行い、その転化率を求めた。
After that, the engine speed is 2000 rpm,) Luk 8.5
kg-m and the catalyst inlet temperature of 300 °C, the content of particulate matter in the exhaust gas before entering the catalyst bed (population) and after leaving the catalyst bed (outlet) is determined by conventional dilution]. The degree of removal of particulate matter, that is, the purification rate (%), was determined using the tunnel method. In addition, sulfur dioxide, gaseous hydrocarbons, and carbon monoxide in the exhaust gas before entering the catalyst bed and in the exhaust gas after passing through the catalyst bed were analyzed at the same time to determine the conversion rate.

結果を表2に示す。 (以下余白)The results are shown in Table 2. (Margin below)

Claims (6)

【特許請求の範囲】[Claims] (1)(a)耐火性無機酸化物、 (b)パラジウムおよび白金から選ばれる少なくとも1
種の貴金属、ならびに (c)ロジウムを含有する触媒成分を耐火性三次元構造
体に担持したディーゼルエンジン排ガス浄化用触媒であ
って、触媒成分担持層の厚さの80%以下に相当する厚
さの上層部分のみにロジウムが含有されていることを特
徴とするディーゼルエンジン排ガス浄化用触媒。
(1) At least one selected from (a) refractory inorganic oxide, (b) palladium and platinum
A diesel engine exhaust gas purification catalyst in which a catalyst component containing various noble metals and (c) rhodium is supported on a refractory three-dimensional structure, the thickness being equivalent to 80% or less of the thickness of the catalyst component supporting layer. A diesel engine exhaust gas purification catalyst characterized by containing rhodium only in the upper layer.
(2)触媒成分担持層が2層からなり、耐火性三次元構
造体に接する第1層が (a)耐火性無機酸化物、ならびに (b)パラジウムおよび白金から選ばれる少なくとも1
種の貴金属を含有する触媒成分からなり、また上記第1
層上の第2層が(a)耐火性無機酸化物および(c)ロ
ジウムを含有する触媒成分からなる請求項(1)に記載
のディーゼルエンジン排ガス浄化用触媒。
(2) The catalyst component supporting layer consists of two layers, and the first layer in contact with the refractory three-dimensional structure is made of (a) a refractory inorganic oxide, and (b) at least one layer selected from palladium and platinum.
catalytic component containing the above-mentioned noble metal;
The catalyst for purifying diesel engine exhaust gas according to claim 1, wherein the second layer on the layer comprises a catalyst component containing (a) a refractory inorganic oxide and (c) rhodium.
(3)耐火性無機酸化物が活性アルミナ、シリカ、チタ
ニア、ジルコニア、シリカ−アルミナ、アルミナ−ジル
コニア、アルミナ−チタニア、シリカ−チタニア、シリ
カ−ジルコニア、チタニア−ジルコニアおよびゼオライ
トよりなる群から選ばれる少なくとも1種である請求項
(1)に記載のディーゼルエンジン排ガス浄化用触媒。
(3) At least the refractory inorganic oxide is selected from the group consisting of activated alumina, silica, titania, zirconia, silica-alumina, alumina-zirconia, alumina-titania, silica-titania, silica-zirconia, titania-zirconia, and zeolite. The catalyst for purifying diesel engine exhaust gas according to claim 1, which is one type of catalyst.
(4)耐火性無機酸化物がジルコニアである請求項(1
)に記載のディーゼルエンジン排ガス浄化用触媒。
(4) Claim (1) wherein the refractory inorganic oxide is zirconia.
) The catalyst for purifying diesel engine exhaust gas described in ).
(5)耐火性三次元構造体がセラミックフォーム、オー
プンフローのセラミックハニカム、ウォールフロータイ
プのハニカムモノリス、オープンフローのメタルハニカ
ム、金属発泡体またはメタルメッシュである請求項(1
)に記載のディーゼルエンジン排ガス用浄化触媒。
(5) Claim (1) wherein the fire-resistant three-dimensional structure is a ceramic foam, an open-flow ceramic honeycomb, a wall-flow type honeycomb monolith, an open-flow metal honeycomb, a metal foam, or a metal mesh.
) The diesel engine exhaust gas purification catalyst described in ).
(6)耐火性三次元構造体がオープンフローのセラミッ
クハニカムまたはオープンフローのメタルハニカムであ
る請求項(1)に記載のディーゼルエンジン排ガス用触
媒。
(6) The diesel engine exhaust gas catalyst according to claim 1, wherein the refractory three-dimensional structure is an open-flow ceramic honeycomb or an open-flow metal honeycomb.
JP2159922A 1990-06-20 1990-06-20 Diesel engine exhaust gas purification catalyst and purification method Expired - Lifetime JP3061399B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2159922A JP3061399B2 (en) 1990-06-20 1990-06-20 Diesel engine exhaust gas purification catalyst and purification method
EP91110066A EP0462593B1 (en) 1990-06-20 1991-06-19 Use of a specific catalyst for purifying exhaust gases from Diesel engines
CA002044984A CA2044984C (en) 1990-06-20 1991-06-19 Catalyst for purifying exhaust gas from diesel engines
DE69105366T DE69105366T2 (en) 1990-06-20 1991-06-19 Use of a specific catalyst for cleaning exhaust gases from diesel engines.
KR1019910010220A KR950010783B1 (en) 1990-06-20 1991-06-19 Use of a specific catalyst for purifying exhaust gases from disel engines
US07/718,261 US5177041A (en) 1990-06-20 1991-06-20 Catalyst for purifying exhaust gas from diesel engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2159922A JP3061399B2 (en) 1990-06-20 1990-06-20 Diesel engine exhaust gas purification catalyst and purification method

Publications (2)

Publication Number Publication Date
JPH0459049A true JPH0459049A (en) 1992-02-25
JP3061399B2 JP3061399B2 (en) 2000-07-10

Family

ID=15704090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2159922A Expired - Lifetime JP3061399B2 (en) 1990-06-20 1990-06-20 Diesel engine exhaust gas purification catalyst and purification method

Country Status (6)

Country Link
US (1) US5177041A (en)
EP (1) EP0462593B1 (en)
JP (1) JP3061399B2 (en)
KR (1) KR950010783B1 (en)
CA (1) CA2044984C (en)
DE (1) DE69105366T2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286462A (en) * 1997-04-11 1998-10-27 Nissan Motor Co Ltd Catalyst of purifying exhaust gas
JP2002519181A (en) * 1998-06-30 2002-07-02 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Catalytic partial oxidation using two catalytically active metals
JP2005537132A (en) * 2002-08-26 2005-12-08 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Multilayer catalyst for self-heat exchange steam reforming of hydrocarbons and process using said catalyst
JP2007090254A (en) * 2005-09-29 2007-04-12 Toyota Motor Corp Double layered structure catalyst for cleaning exhaust gas and control method of internal combustion engine
US7223716B1 (en) 1999-04-09 2007-05-29 Nippon Soken, Inc. Ceramic support capable of supporting a catalyst, a catalyst-ceramic body and processes for producing same
US7358210B2 (en) 2001-03-22 2008-04-15 Denso Corporation Ceramic body and ceramic catalyst body
US7371689B2 (en) 2004-01-06 2008-05-13 International Business Machines Corporation Backside unlayering of MOSFET devices for electrical and physical characterization
JP2012217934A (en) * 2011-04-08 2012-11-12 Toyota Motor Corp Exhaust gas purification catalyst
JP2013220401A (en) * 2012-04-18 2013-10-28 Mazda Motor Corp Exhaust gas purification catalyst
JP2013220400A (en) * 2012-04-18 2013-10-28 Mazda Motor Corp Catalyst for purifying exhaust gas
JP2014100662A (en) * 2012-11-20 2014-06-05 Mazda Motor Corp Particulate filter with catalyst
US9404406B2 (en) 1995-12-06 2016-08-02 Umicore Shokubai Japan Co., Ltd. Catalyst for use in a process for purifying exhaust gas from gasoline engines of a fuel-direct-injection type

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2736099B2 (en) * 1989-02-06 1998-04-02 株式会社日本触媒 Diesel engine exhaust gas purification catalyst
DE4105534C2 (en) * 1991-02-22 1994-12-22 Bayer Ag Use of a catalyst to reduce the amount and / or size of particles in the diesel exhaust
US5145825A (en) * 1991-04-08 1992-09-08 Engelhard Corporation Oxidation catalyst resistant to sulfation
US5212142A (en) * 1991-11-04 1993-05-18 Engelhard Corporation High performance thermally stable catalyst
DE69230758T2 (en) * 1991-11-26 2000-07-13 Engelhard Corp., Iselin OXIDATION CATALYST AND METHOD FOR USE
DE4206699C2 (en) * 1992-03-04 1996-02-01 Degussa NO¶x¶ reduction in the lean exhaust of automotive engines
US5376610A (en) * 1992-04-15 1994-12-27 Nissan Motor Co., Ltd. Catalyst for exhaust gas purification and method for exhaust gas purification
DE4226111A1 (en) * 1992-08-07 1994-02-10 Bayer Ag Use of a catalyst contg. acidic zeolite and precious metals - to reduce amt. of carbon and particle compsn. and size in diesel engine exhaust gas.
US5314854A (en) * 1992-11-12 1994-05-24 Uop Stable, high-yield reforming catalyst
EP0681870B1 (en) * 1992-11-12 1999-07-28 Uop Multimetallic and multigradient reforming catalyst for converting paraffins to aromatics
US6248684B1 (en) 1992-11-19 2001-06-19 Englehard Corporation Zeolite-containing oxidation catalyst and method of use
EP0600442A1 (en) * 1992-11-30 1994-06-08 Nippon Shokubai Co., Ltd. Catalyst for purification of Diesel engine exhaust gas
EP0622107B1 (en) * 1993-04-28 2000-02-09 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst in diesel engines
JP3391878B2 (en) * 1994-02-23 2003-03-31 トヨタ自動車株式会社 Exhaust gas purification catalyst
US6004521A (en) * 1994-02-23 1999-12-21 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases
US5580535A (en) * 1994-07-07 1996-12-03 Engelhard Corporation System and method for abatement of food cooking fumes
JP3589763B2 (en) * 1995-12-06 2004-11-17 株式会社アイシーティー Exhaust gas purification method for gasoline engine
JPH09276703A (en) * 1996-04-19 1997-10-28 Honda Motor Co Ltd Catalyst for clening of exhaust gas
ES2131980T3 (en) * 1996-11-11 1999-08-01 Degussa EXHAUST GAS PURIFYING CATALYST WITH BETTER CONVERSION CAPACITY FOR HYDROCARBONS
JP3377382B2 (en) * 1996-11-19 2003-02-17 トヨタ自動車株式会社 Exhaust gas purification catalyst for diesel engines
JPH11104462A (en) * 1997-09-30 1999-04-20 Ngk Insulators Ltd Catalyst-adsorber for purification of exhaust gas and purification of exhaust gas
JP4012320B2 (en) * 1998-10-15 2007-11-21 株式会社アイシーティー Exhaust gas purification catalyst for lean combustion engine
US6436363B1 (en) * 2000-08-31 2002-08-20 Engelhard Corporation Process for generating hydrogen-rich gas
KR100382051B1 (en) * 2000-12-29 2003-05-09 한국전력기술 주식회사 Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
EP1222961A3 (en) * 2001-01-10 2002-08-28 Abb Research Ltd. Method of forming a zeolite layer on a substrate
US20030091504A1 (en) * 2001-11-15 2003-05-15 Gary Pasquale Method for controlling synthesis conditions during molecular sieve synthesis using combinations of quaternary ammonium hydroxides and halides
DE10209529A1 (en) * 2002-03-04 2003-09-25 Hte Ag The High Throughput Exp Catalysts rich in rhodium and doped with rare earth oxides
US7214331B2 (en) 2004-02-26 2007-05-08 The Boc Group, Inc. Catalyst configuration and methods for syngas production
DE102004024026A1 (en) * 2004-03-11 2005-09-29 W.C. Heraeus Gmbh Catalyst for decomposition of nitrous oxide under conditions of Ostwald process, comprises carrier material, and coating of rhodium, rhodium oxide, or palladium-rhodium alloy
US20050202966A1 (en) * 2004-03-11 2005-09-15 W.C. Heraeus Gmbh Catalyst for the decomposition of N2O in the Ostwald process
JP4669322B2 (en) * 2005-05-24 2011-04-13 株式会社キャタラー Exhaust gas purification catalyst
US8168560B2 (en) 2005-10-05 2012-05-01 Cataler Corporation Exhaust gas purifying catalyst
KR100801880B1 (en) * 2006-07-25 2008-02-12 오덱(주) Catalyst for purifying waste gas of automobile
KR101283308B1 (en) * 2006-08-21 2013-07-12 현대자동차주식회사 Uneven catalyst distribution multilayer elder brother filter
DE102009024158A1 (en) * 2009-06-08 2010-12-09 Süd-Chemie AG A process for preparing a three-way catalyst with rhodium and platinum supported on separate oxide supports with only one coating step and calcining step
US8668877B2 (en) 2010-11-24 2014-03-11 Basf Corporation Diesel oxidation catalyst articles and methods of making and using
JP5807782B2 (en) * 2011-12-28 2015-11-10 トヨタ自動車株式会社 Exhaust gas purification catalyst
CN116899628A (en) * 2018-02-21 2023-10-20 株式会社 科特拉 Exhaust gas purifying catalyst device
JP6968972B2 (en) 2018-02-21 2021-11-24 株式会社キャタラー Exhaust gas purification catalyst device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914376A (en) * 1973-02-08 1975-10-21 Monsanto Co Layered rhodium and nickel catalyst for NO{HD x {b reduction
US3965040A (en) * 1974-09-25 1976-06-22 Gulf Research & Development Company Process for preparing catalyst
US4128506A (en) * 1978-01-23 1978-12-05 General Motors Corporation Platinum-rhodium catalyst for automotive emission control
CA1098105A (en) * 1977-07-15 1981-03-24 Jack C. Summers Catalyst for automotive emission control and method for making same
US4172047A (en) * 1978-09-18 1979-10-23 Ford Motor Company Catalyst of rhodium on alpha alumina-coated substrate
JPS6388040A (en) * 1986-09-30 1988-04-19 Nippon Engeruharudo Kk Catalyst for purifying exhaust gas for vehicle and its preparation

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9404406B2 (en) 1995-12-06 2016-08-02 Umicore Shokubai Japan Co., Ltd. Catalyst for use in a process for purifying exhaust gas from gasoline engines of a fuel-direct-injection type
JPH10286462A (en) * 1997-04-11 1998-10-27 Nissan Motor Co Ltd Catalyst of purifying exhaust gas
JP2002519181A (en) * 1998-06-30 2002-07-02 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Catalytic partial oxidation using two catalytically active metals
US7223716B1 (en) 1999-04-09 2007-05-29 Nippon Soken, Inc. Ceramic support capable of supporting a catalyst, a catalyst-ceramic body and processes for producing same
US7723263B2 (en) 1999-04-09 2010-05-25 Nippon Soken, Inc. Ceramic support capable of supporting a catalyst, a catalyst-ceramic body and processes for producing same
US7358210B2 (en) 2001-03-22 2008-04-15 Denso Corporation Ceramic body and ceramic catalyst body
JP2005537132A (en) * 2002-08-26 2005-12-08 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Multilayer catalyst for self-heat exchange steam reforming of hydrocarbons and process using said catalyst
US7371689B2 (en) 2004-01-06 2008-05-13 International Business Machines Corporation Backside unlayering of MOSFET devices for electrical and physical characterization
JP2007090254A (en) * 2005-09-29 2007-04-12 Toyota Motor Corp Double layered structure catalyst for cleaning exhaust gas and control method of internal combustion engine
US8828900B2 (en) 2011-04-08 2014-09-09 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
JP2012217934A (en) * 2011-04-08 2012-11-12 Toyota Motor Corp Exhaust gas purification catalyst
JP2013220401A (en) * 2012-04-18 2013-10-28 Mazda Motor Corp Exhaust gas purification catalyst
JP2013220400A (en) * 2012-04-18 2013-10-28 Mazda Motor Corp Catalyst for purifying exhaust gas
JP2014100662A (en) * 2012-11-20 2014-06-05 Mazda Motor Corp Particulate filter with catalyst

Also Published As

Publication number Publication date
DE69105366D1 (en) 1995-01-12
KR950010783B1 (en) 1995-09-23
CA2044984A1 (en) 1991-12-21
JP3061399B2 (en) 2000-07-10
EP0462593A1 (en) 1991-12-27
DE69105366T2 (en) 1995-05-18
US5177041A (en) 1993-01-05
KR920000377A (en) 1992-01-29
CA2044984C (en) 1996-04-02
EP0462593B1 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
JPH0459049A (en) Catalyst for diesel engine exhaust gas cleanup
JP2821033B2 (en) Diesel engine exhaust gas purification catalyst
JP2863567B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JP2891609B2 (en) Diesel engine exhaust gas purification catalyst
JPH02293047A (en) Catalyst for purification of exhaust gas
JP4703818B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
KR100289675B1 (en) Catalysts for exhaust gas purification of diesel engines
JPH1033985A (en) Catalyst for purifying exhaust gas from diesel engine
JPH04200637A (en) Catalyst for cleaning exhausted gas of diesel engine
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
JP2825420B2 (en) Diesel engine exhaust gas purification catalyst
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JP2577757B2 (en) Diesel exhaust gas purification catalyst
JP3503073B2 (en) Catalyst for purifying diesel engine exhaust gas
JP2005342604A (en) Combustion catalyst and treating method for exhaust gas from diesel engine
JPH01254251A (en) Catalyst for purifying exhaust gas
JP4696392B2 (en) Exhaust gas purification catalyst and exhaust gas purification material using the same
KR100389900B1 (en) Catalyst for the purification of diesel exhaust gas
JP3436765B2 (en) Diesel engine exhaust gas purification catalyst
JP3337081B2 (en) Diesel engine exhaust gas purification catalyst
JP2002177788A (en) Exhaust gas cleaning catalyst and its manufacturing method
JPH05138026A (en) Catalyst for purifying exhaust gas of diesel engine
JPH08229350A (en) Catalyst for decomposing nitrogen oxide and purifying method of diesel engine exhaust gas using the same
JPH09173841A (en) Catalyst for cleaning exhaust gas from diesel engine
JP3284312B2 (en) Three-way catalyst for combustion exhaust gas of methane main gas

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11