JPH1033985A - Catalyst for purifying exhaust gas from diesel engine - Google Patents
Catalyst for purifying exhaust gas from diesel engineInfo
- Publication number
- JPH1033985A JPH1033985A JP8191229A JP19122996A JPH1033985A JP H1033985 A JPH1033985 A JP H1033985A JP 8191229 A JP8191229 A JP 8191229A JP 19122996 A JP19122996 A JP 19122996A JP H1033985 A JPH1033985 A JP H1033985A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- diesel engine
- catalyst
- superacid
- platinum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 92
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 98
- 239000002253 acid Substances 0.000 claims abstract description 88
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 81
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 56
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 52
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 49
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 28
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 22
- 239000010948 rhodium Substances 0.000 claims abstract description 22
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims abstract description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052809 inorganic oxide Inorganic materials 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 16
- 238000000746 purification Methods 0.000 claims abstract description 12
- 239000007787 solid Substances 0.000 claims abstract description 10
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 9
- 239000003930 superacid Substances 0.000 claims description 62
- 239000011148 porous material Substances 0.000 claims description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 17
- 229910000510 noble metal Inorganic materials 0.000 claims description 15
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 10
- 239000011593 sulfur Substances 0.000 claims description 10
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052718 tin Inorganic materials 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 6
- 239000011733 molybdenum Substances 0.000 claims description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 abstract description 18
- 229930195733 hydrocarbon Natural products 0.000 abstract description 11
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 11
- 239000000919 ceramic Substances 0.000 abstract description 8
- 230000003647 oxidation Effects 0.000 abstract description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 5
- 230000001590 oxidative effect Effects 0.000 abstract description 4
- 239000006260 foam Substances 0.000 abstract description 3
- 239000010970 precious metal Substances 0.000 abstract 2
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 239000011859 microparticle Substances 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 30
- 239000013618 particulate matter Substances 0.000 description 21
- 239000002002 slurry Substances 0.000 description 19
- 239000000243 solution Substances 0.000 description 19
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 239000000779 smoke Substances 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 229910052878 cordierite Inorganic materials 0.000 description 8
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 8
- 239000010419 fine particle Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 7
- FCUFAHVIZMPWGD-UHFFFAOYSA-N [O-][N+](=O)[Pt](N)(N)[N+]([O-])=O Chemical compound [O-][N+](=O)[Pt](N)(N)[N+]([O-])=O FCUFAHVIZMPWGD-UHFFFAOYSA-N 0.000 description 7
- 229910002091 carbon monoxide Inorganic materials 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 238000010908 decantation Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- DFIPXJGORSQQQD-UHFFFAOYSA-N hafnium;tetrahydrate Chemical compound O.O.O.O.[Hf] DFIPXJGORSQQQD-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 4
- CVNKFOIOZXAFBO-UHFFFAOYSA-J tin(4+);tetrahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[Sn+4] CVNKFOIOZXAFBO-UHFFFAOYSA-J 0.000 description 4
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 3
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 3
- 235000011130 ammonium sulphate Nutrition 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 235000014413 iron hydroxide Nutrition 0.000 description 3
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 3
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 230000009970 fire resistant effect Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000006262 metallic foam Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 2
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 1
- 229910002060 Fe-Cr-Al alloy Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005183 environmental health Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- ZADYMNAVLSWLEQ-UHFFFAOYSA-N magnesium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[Mg+2].[Si+4] ZADYMNAVLSWLEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- NRUVOKMCGYWODZ-UHFFFAOYSA-N sulfanylidenepalladium Chemical compound [Pd]=S NRUVOKMCGYWODZ-UHFFFAOYSA-N 0.000 description 1
- JOKPITBUODAHEN-UHFFFAOYSA-N sulfanylideneplatinum Chemical compound [Pt]=S JOKPITBUODAHEN-UHFFFAOYSA-N 0.000 description 1
- BVJAAVMKGRODCT-UHFFFAOYSA-N sulfanylidenerhodium Chemical compound [Rh]=S BVJAAVMKGRODCT-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- JUWGUJSXVOBPHP-UHFFFAOYSA-B titanium(4+);tetraphosphate Chemical compound [Ti+4].[Ti+4].[Ti+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O JUWGUJSXVOBPHP-UHFFFAOYSA-B 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- -1 wire mesh Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ディーゼルエンジ
ン排ガス浄化用触媒に関するものである。The present invention relates to a catalyst for purifying exhaust gas of a diesel engine.
【0002】[0002]
【従来の技術】近年、特にディーゼルエンジン排ガス中
の微粒子物質(主として、固体状炭素微粒子、硫酸塩な
どの硫黄系微粒子、液状ないし固体状の高分子炭化水素
微粒子などからなるものであり、以下、これらを「微粒
子物質」と総称する)が、環境衛生上問題となってい
る。2. Description of the Related Art In recent years, in particular, particulate matter in diesel engine exhaust gas (mainly solid carbon fine particles, sulfur-based fine particles such as sulfates, liquid or solid high-molecular hydrocarbon fine particles, etc.) These are collectively referred to as “particulate matter”), which poses a problem in environmental health.
【0003】その理由は、これら微粒子物質の粒子径が
ほとんど1μm以下であるため、上記微粒子物質が大気
中に浮遊し易く、呼吸により人体内に取り込まれ易く、
そのような微粒子物質が、気管支や肺などの呼吸気系の
疾患の原因にもなると考えられているためである。した
がって、これら微粒子物質のディーゼルエンジンからの
排出に関する規制を厳しくしていく方向で検討が進めら
れている。[0003] The reason is that, since the particle diameter of these fine particles is almost 1 μm or less, the fine particles easily float in the air and are easily taken into the human body by respiration.
This is because such particulate matter is considered to cause respiratory diseases such as bronchi and lungs. Therefore, studies are under way to tighten regulations on the emission of these particulate matter from diesel engines.
【0004】一方、ディーゼルエンジンの燃料噴射の高
圧化、燃料噴射タイミングの制御などの改良にともな
い、ディーゼルエンジンから排出される微粒子物質の量
はある程度低減された。[0004] On the other hand, with the improvement in the pressure of the fuel injection and the control of the fuel injection timing of the diesel engine, the amount of particulate matter discharged from the diesel engine has been reduced to some extent.
【0005】しかしながら、上記のようなエンジンの改
良によっても、微粒子物質の低減化はまだ十分とはいえ
ず、また、微粒子物質に含まれるSOFは、上記のよう
なエンジンの改良によっては除去できず、よって、微粒
子物質中のSOF割合は増加する結果となっている。However, even with the above-described engine improvement, reduction of the particulate matter cannot be said to be sufficient yet, and SOF contained in the particulate matter cannot be removed by the above-described engine improvement. Therefore, the SOF ratio in the particulate matter is increased.
【0006】このSOFは発ガン性物質などの有害成分
を含有することから、微粒子物質とともにSOFの除去
が重要な問題となっている。SOFとは、常温(25
℃)で、主として液体状の高分子量炭化水素からなる、
ジクロロロメタン等の有機溶媒に可溶な成分のことであ
る。[0006] Since this SOF contains harmful components such as carcinogenic substances, removal of SOF together with particulate matter has become an important problem. SOF means room temperature (25
° C), consisting primarily of liquid high molecular weight hydrocarbons,
A component that is soluble in an organic solvent such as dichloromethane.
【0007】さらに、微粒子物質の除去方法としては、
セラミックフォーム、ワイヤーメッシュ、金属発泡体、
目封じタイプのセラミックハニカム、オープンフロータ
イプのセラミックハニカム、メタルハニカム等の耐火性
三次元構造体に対して、炭素系微粒子を燃焼させうる触
媒物質を担持させた触媒を使用し、ディーゼルエンジン
排ガス中の微粒子物質を捕捉して低減するとともに、通
常のディーゼルエンジンの走行条件下で得られる排ガス
の排出条件(ガス組成および温度)下において、さらに
は電気ヒータ等の加熱手段を用いて炭素系微粒子を除去
する触媒方式が検討されている。Further, as a method for removing particulate matter,
Ceramic foam, wire mesh, metal foam,
For a refractory three-dimensional structure such as a plugged-type ceramic honeycomb, an open-flow-type ceramic honeycomb, or a metal honeycomb, a catalyst supporting a catalytic substance capable of burning carbon-based particles is used. Under the exhaust gas emission conditions (gas composition and temperature) obtained under normal diesel engine running conditions, and further, by using heating means such as an electric heater, the carbon-based particles are reduced. Catalyst systems for removal are being studied.
【0008】一般に、ディーゼルエンジンの排ガス浄化
用触媒としては、(イ)炭素系微粒子のほか未燃焼炭化
水素、一酸化炭素などの有害成分における、低温からの
燃焼除去効率が高い、(ロ)燃料として用いる軽油中に
多量に含まれる硫黄成分から発生する二酸化硫黄(SO
2 )の三酸化硫黄(SO3 )への酸化能が低く、サルフ
ェート(二酸化硫黄が酸化されて三酸化硫黄や硫酸ミス
トになったもの)の生成を抑制でき、また(ハ)高負荷
での連続運転下でも耐える、いわゆる高温耐久性が高い
という性能を有する触媒が望まれている。In general, as a catalyst for purifying exhaust gas of a diesel engine, (a) a fuel having a high efficiency of removing and burning harmful components such as unburned hydrocarbons and carbon monoxide from a low temperature in addition to carbon-based fine particles; Dioxide (SO 2) generated from sulfur components contained in gas oil in large quantities
2 ) has a low ability to oxidize sulfur trioxide (SO 3 ), and can suppress the production of sulfate (sulfur dioxide is oxidized to sulfur trioxide or sulfuric acid mist). There is a demand for a catalyst that can withstand continuous operation, that is, has high so-called high-temperature durability.
【0009】従来より、炭素系微粒子の燃焼除去効率を
高める目的で種々の提案がなされている。例えば、特開
昭55−24597号公報には、白金族元素系触媒とし
て、ロジウム(7.5%)白金合金、白金/パラジウム
(50/50)混合物、酸化タンタルまたは酸化セリウ
ム上にパラジウムを担持したもの、さらにはパラジウム
と75重量%以下の白金とからなる合金等が開示されて
いる。これら触媒はまたSOFの除去にも効果的である
とされている。Hitherto, various proposals have been made for the purpose of increasing the efficiency of burning and removing carbon-based fine particles. For example, JP-A-55-24597 discloses that as a platinum group element-based catalyst, palladium is supported on a rhodium (7.5%) platinum alloy, a platinum / palladium (50/50) mixture, tantalum oxide or cerium oxide. And alloys comprising palladium and 75% by weight or less of platinum are disclosed. These catalysts are also said to be effective in removing SOF.
【0010】その他、特開昭61−129030号、同
61−149222号および同61−146314号公
報には、パラジウムとロジウムとを主な活性成分とし、
さらにアルカリ金属、アルカリ土類金属、銅、ランタ
ン、亜鉛およびマンガン等を添加した触媒組成物が、ま
た特開昭59−82944号公報には、銅、アルカリ金
属、モリブテンおよびバナジウムから選ばれる少なくと
も1種と、白金、ロジウムおよびパラジウムから選ばれ
る少なくとも1種とを組み合わせた触媒組成物が開示さ
れている。In addition, JP-A-61-129030, JP-A-61-149222 and JP-A-61-146314 disclose palladium and rhodium as main active components.
Further, a catalyst composition to which an alkali metal, an alkaline earth metal, copper, lanthanum, zinc, manganese and the like are added, and JP-A-59-82944 discloses at least one catalyst selected from copper, alkali metal, molybdenum and vanadium. A catalyst composition combining a species with at least one selected from platinum, rhodium and palladium is disclosed.
【0011】さらに、ディーゼルエンジン排ガス中のS
OFを除去する触媒として、排ガス流れに対し平行とな
る貫通孔を有するオープン式のハニカム状貴金属系酸化
触媒が報告されている(SAE Paper、8102
63)。Further, S in the exhaust gas of a diesel engine
As a catalyst for removing OF, an open type honeycomb-shaped noble metal-based oxidation catalyst having a through hole parallel to an exhaust gas flow has been reported (SAE Paper, 8102).
63).
【0012】[0012]
【発明が解決しようとする課題】しかしながら、上記従
来の各触媒は、いずれも炭素系微粒子の燃焼除去または
SOFの除去にはある程度効率的であるが、二酸化硫黄
に対する酸化能が高いため、サルフェートの生成量が増
加して、かえって微粒子物質全体の除去率は低下し、ま
た、このサルフェートが新たな環境問題を生じるという
欠点があった。However, each of the above-mentioned conventional catalysts is somewhat effective in removing carbon-based particles or removing SOF to some extent. There is a disadvantage that the production amount increases, the removal rate of the entire particulate matter decreases, and this sulfate causes a new environmental problem.
【0013】また、上記従来の触媒は、アイドル等の低
温の排ガス雰囲気に長時間さらされた後、エンジン運転
条件が高負荷、高回転となり排ガスの温度が上昇した
時、短時間に多量の白煙を排出するという欠点を有する
ものであった。Further, when the conventional catalyst is exposed to a low-temperature exhaust gas atmosphere such as idling for a long time, and the engine operating conditions become high load and high revolution, the temperature of the exhaust gas rises, a large amount of white It had the drawback of emitting smoke.
【0014】現在のところ、上記欠点を解決する触媒は
未だ見出されていない。したがって、本発明の一つの目
的は、ディーゼルエンジン排ガス中の微粒子物質を効率
よく除去できるディーゼルエンジン排ガス浄化用触媒を
提供することである。At present, no catalyst has been found which solves the above-mentioned disadvantages. Therefore, one object of the present invention is to provide a diesel engine exhaust gas purification catalyst that can efficiently remove particulate matter in diesel engine exhaust gas.
【0015】本発明の他の目的は、ディーゼルエンジン
排ガス中の炭素系微粒子のほか未燃炭化水素、一酸化炭
素などの有害成分も、低温から燃焼除去できる性能を有
し、しかも二酸化硫黄の酸化能が低くサルフェートの生
成を抑制できるディーゼルエンジン浄化用触媒を提供す
ることである。Another object of the present invention is to have the ability to burn and remove harmful components such as unburned hydrocarbons and carbon monoxide in addition to carbon-based fine particles in diesel engine exhaust gas from a low temperature, and to oxidize sulfur dioxide. An object of the present invention is to provide a catalyst for purifying a diesel engine, which has low performance and can suppress generation of sulfate.
【0016】本発明のさらに他の目的は、ディーゼルエ
ンジン排ガス中のSOFを効率よく除去できるディーゼ
ルエンジン排ガス浄化用触媒を提供することである。Still another object of the present invention is to provide a diesel engine exhaust gas purifying catalyst which can efficiently remove SOF in diesel engine exhaust gas.
【0017】本発明のさらに他の目的は、高温耐久性が
良好であって、実用上問題を生じることなくディーゼル
車に搭載できるディーゼルエンジン浄化用触媒を提供す
ることである。Still another object of the present invention is to provide a catalyst for purifying a diesel engine which has good durability at high temperatures and can be mounted on a diesel vehicle without causing practical problems.
【0018】本発明のさらに他の目的は、アイドル等の
低温雰囲気に長時間さらされた後、エンジン運転条件を
高負荷、高回転としても、白煙の排出をよく抑制できる
ディーゼルエンジン排ガス浄化用触媒を提供することで
ある。Still another object of the present invention is to purify the exhaust gas of a diesel engine which can well suppress the emission of white smoke even when the engine is operated under a high load and a high speed after being exposed to a low-temperature atmosphere such as an idle for a long time. It is to provide a catalyst.
【0019】[0019]
【課題を解決するための手段】本発明者らは、上記目的
を達成するためにディーゼルエンジン排ガス浄化用触媒
について鋭意研究した結果、白金、パラジウムおよびロ
ジウムから選ばれる少なくとも1種の貴金属が、超強酸
に担持されてなる貴金属担持超強酸を、耐火性三次元構
造体に担持してなるディーゼルエンジン排ガス浄化用触
媒が、ディーゼルエンジン排ガス中においてSOF、未
燃焼炭化水素などを低温域からよく浄化し、高温域にお
いても二酸化硫黄の酸化抑制効果を示し、かつアイドル
等の低温雰囲気に長時間さらされた後、エンジン運転条
件を高負荷、高回転としても、白煙の排出を非常に良く
抑制することを見出し本発明に至ったものである。Means for Solving the Problems The present inventors have conducted intensive studies on a catalyst for purifying exhaust gas of a diesel engine in order to achieve the above object, and as a result, at least one noble metal selected from platinum, palladium and rhodium has an ultra-high purity. A diesel engine exhaust gas purification catalyst that supports a noble metal-supported super-strong acid supported by a strong acid on a refractory three-dimensional structure efficiently purifies SOF, unburned hydrocarbons, etc. from the low-temperature range in diesel engine exhaust gas. Suppresses the emission of white smoke even when the engine is operated at high load and high speed after prolonged exposure to low-temperature atmosphere such as idle, showing the effect of suppressing sulfur dioxide oxidation even in high temperature range. This led to the present invention.
【0020】すなわち、本発明のディーゼルエンジン排
ガス浄化用触媒は、白金、パラジウムおよびロジウムか
ら選ばれる少なくとも1種の貴金属と、固体の超強酸と
を有することを特徴としている。That is, the catalyst for purifying diesel engine exhaust gas of the present invention is characterized by having at least one noble metal selected from platinum, palladium and rhodium, and a solid superacid.
【0021】また、本発明のディーゼルエンジン排ガス
浄化用触媒は、白金、パラジウムおよびロジウムから選
ばれる少なくとも1種の貴金属を超強酸に担持した貴金
属担持超強酸、および耐火性無機酸化物が、耐火性三次
元構造体に担持されたものでもよい。Further, the catalyst for purifying diesel engine exhaust gas of the present invention is characterized in that a super-noble metal-supported super-strong acid in which at least one noble metal selected from platinum, palladium and rhodium is supported by a super-strong acid, and a refractory inorganic oxide are used. It may be carried on a three-dimensional structure.
【0022】さらに、本発明のディーゼルエンジン排ガ
ス浄化用触媒は、前記超強酸が、ジルコニア超強酸、チ
タニア超強酸、スズ超強酸、アルミナ超強酸、鉄超強
酸、シリカ超強酸、およびハフニウム超強酸からなる群
から選択される少なくとも一つであることが好ましい。Further, in the catalyst for purifying diesel engine exhaust gas of the present invention, the super strong acid is selected from zirconia super strong acid, titania super strong acid, tin super strong acid, alumina super strong acid, iron super strong acid, silica super strong acid and hafnium super strong acid. Preferably, at least one selected from the group consisting of:
【0023】さらに、本発明のディーゼルエンジン排ガ
ス浄化用触媒は、超強酸は、硫黄、タングステン
(W)、およびモリブデン(Mo)からなる群から選択
される少なくとも一つの元素を含むものであることが望
ましい。Further, in the diesel engine exhaust gas purifying catalyst of the present invention, it is desirable that the super strong acid contains at least one element selected from the group consisting of sulfur, tungsten (W), and molybdenum (Mo).
【0024】前記超強酸は、この超強酸が硫黄を含む場
合、上記超強酸の硫黄含有量が、SO3 換算で0.01
〜30重量%であることが好ましく、超強酸がタングス
テンを含む場合、上記超強酸のタングステン含有量が金
属換算で0.01〜30重量%が好ましく、また、超強
酸がモリブデンを含む場合、上記超強酸のモリブデン含
有量が金属換算で0.01〜30重量%であることが好
ましい。When the super strong acid contains sulfur, the sulfur content of the super strong acid is 0.01% in terms of SO 3.
When the super-strong acid contains tungsten, the tungsten content of the super-strong acid is preferably 0.01 to 30% by weight in terms of metal, and when the super-strong acid contains molybdenum, It is preferable that the molybdenum content of the superacid is 0.01 to 30% by weight in terms of metal.
【0025】さらに、本発明のディーゼルエンジン排ガ
ス浄化用触媒は、前記耐火性無機酸化物の細孔径が1×
10-3〜0.1μmで、上記耐火性無機酸化物の酸強度
が5以下のものであることが望ましい。Further, in the catalyst for purifying diesel engine exhaust gas of the present invention, the refractory inorganic oxide has a pore diameter of 1 ×.
It is desirable that the acid strength of the refractory inorganic oxide is 10 −3 to 0.1 μm and 5 or less.
【0026】[0026]
【発明の実施の形態】以下に、本発明のディーゼルエン
ジン排ガス浄化用触媒についてさらに詳しく説明する。
本発明のディーゼルエンジン排ガス浄化用触媒は、白
金、パラジウムおよびロジウムから選ばれる少なくとも
1種の貴金属と、固体の超強酸とを有するものである。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a catalyst for purifying exhaust gas of a diesel engine according to the present invention will be described in more detail.
The diesel engine exhaust gas purifying catalyst of the present invention has at least one noble metal selected from platinum, palladium and rhodium, and a solid superacid.
【0027】本発明において超強酸とは、100%硫酸
よりも強い酸強度を有し、ハメット(Hammett)の酸度関
数H0 (酸強度の尺度)が、−11.93未満のもの
で、かつ、ハロゲンを含まず常温(25℃)で固体状の
多孔質体であるものをいう。In the present invention, a super-strong acid has an acid strength stronger than 100% sulfuric acid, has a Hammett acidity function H 0 (a measure of acid strength) of less than -11.93, and , A porous body that does not contain halogen and is solid at room temperature (25 ° C.).
【0028】ハロゲンを含まない固体の超強酸は、液体
の超強酸と比べて、反応容器を腐食しない、廃棄に伴う
公害問題が少ない(液体の超強酸の場合、廃棄の際の水
処理などのコストが大きい)、反応生成物との分離が容
易、繰り返し使用が可能、反応に対する選択性が高い等
の利点を有している。Solid superacids containing no halogen do not corrode the reaction vessel and have less pollution problems associated with disposal than liquid superacids (in the case of liquid superacids, such as water treatment during disposal, etc.). (High cost), easy separation from reaction products, repetitive use, and high selectivity to the reaction.
【0029】ハロゲンを含まない超強酸としては、ジル
コニア、チタニア、鉄等にSO4 2-、W、Mo処理等を
して得られるものが知られている。本発明においては、
ジルコニアにSO4 2- 処理を行って得られたジルコニア
超強酸が特に好適に使用される。As the halogen-free superacid, those obtained by subjecting zirconia, titania, iron or the like to SO 4 2− , W, Mo treatment or the like are known. In the present invention,
Zirconia superacid obtained by subjecting zirconia to SO 4 2- treatment is particularly preferably used.
【0030】これらの超強酸の出発原料としては、硝酸
塩や塩化物等の水溶性のものを加水分解して得た水酸化
物でも、無定形の酸化物でもよい。この水酸化物または
無定形の酸化物に硫酸、硫酸アンモニウム等の硫黄源や
W源、Mo源の水溶液を含浸し、乾燥、焼成して、上記
超強酸を得ることができる。或いは、硫酸アンモニウム
と、例えば、タングステン酸(H2 WO4 )とを混練
後、焼成することによっても上記超強酸を得ることがで
きる。The starting materials for these superacids may be hydroxides obtained by hydrolyzing water-soluble substances such as nitrates and chlorides, or amorphous oxides. The hydroxide or amorphous oxide is impregnated with an aqueous solution of a sulfur source such as sulfuric acid or ammonium sulfate, or a W source or an Mo source, and dried and calcined to obtain the super strong acid. Alternatively, the super strong acid can also be obtained by kneading ammonium sulfate and, for example, tungstic acid (H 2 WO 4 ) and then baking the mixture.
【0031】超強酸における硫黄の含有量は、SO3 換
算で0.01〜30重量%、より好ましくは0.5〜1
0重量%がよい。超強酸におけるW、Moの含有量は金
属換算で0.01〜30重量%が好ましい。超強酸の生
成は、無色の粉体であればハメット指示薬により、有色
の粉体であればブタンの異性化反応等やNH3 TPD
(Temperature Programmed Desorption)、ピリジンTP
Dを用いて確認することができる。The sulfur content in the super strong acid is 0.01 to 30% by weight in terms of SO 3 , more preferably 0.5 to 1%.
0% by weight is good. The content of W and Mo in the super strong acid is preferably 0.01 to 30% by weight in terms of metal. The generation of a super strong acid is carried out by a Hammett indicator in the case of a colorless powder, by an isomerization reaction of butane, or by NH 3 TPD in the case of a colored powder.
(Temperature Programmed Desorption), pyridine TP
D can be used for confirmation.
【0032】本発明のディーゼルエンジン排ガス浄化用
触媒においては、まず白金、パラジウムおよびロジウム
から選ばれる少なくとも1種の貴金属を、前記の超強酸
に担持した貴金属担持超強酸と、耐火性無機酸化物と
を、耐火性三次元構造体に担持させて用いることが好ま
しい。In the catalyst for purifying diesel engine exhaust gas of the present invention, first, a noble metal-supported super-strong acid in which at least one noble metal selected from platinum, palladium and rhodium is supported on the super-strong acid, and a refractory inorganic oxide are used. Is preferably supported on a refractory three-dimensional structure.
【0033】白金、パラジウムおよびロジウムの担持量
は、耐火性三次元構造体1リットル当たり0.01〜1
0gであることが好ましく、さらに好ましくは0.1〜
5gである。この担持量が0.01g未満である場合、
SOF等の有害成分の低温からの酸化能が著しく低下す
るので好ましくなく、一方、担持量が10gを越える場
合は、もはや酸化能の向上が見られず、また経済的に好
ましくない。The supported amount of platinum, palladium and rhodium is 0.01 to 1 per liter of the refractory three-dimensional structure.
It is preferably 0 g, more preferably 0.1 to
5 g. When the supported amount is less than 0.01 g,
Since the oxidizing ability of harmful components such as SOF from low temperature is remarkably reduced, it is not preferable. On the other hand, if the amount exceeds 10 g, the oxidizing ability is no longer improved and is not economically preferable.
【0034】白金、パラジウムおよびロジウムから選ば
れる少なくとも1種の貴金属を担持する貴金属担持超強
酸の担持量は、耐火性三次元構造体1リットル当たり1
〜300gであることが好ましく、より好ましくは10
〜200gである。すなわち、この担持量が1g未満で
ある場合には、触媒活性が低く、担持量が300gを越
える場合には、その担持量に見合う活性の向上効果が見
られない。The amount of the supported noble metal-supported superacid supporting at least one noble metal selected from platinum, palladium and rhodium is 1 per liter of the refractory three-dimensional structure.
To 300 g, more preferably 10 g
~ 200 g. That is, when the supported amount is less than 1 g, the catalytic activity is low, and when the supported amount exceeds 300 g, the effect of improving the activity corresponding to the supported amount is not seen.
【0035】本発明の触媒調製において、白金の出発原
料としては塩化白金酸、ジニトロジアミノ白金、白金テ
トラミンクロライド、白金スルフィド錯塩などを使用す
ることができる。パラジウムの出発原料としては、硝酸
パラジウム、塩化パラジウム、パラジウムテトラミンク
ロライド、、パラジウムスルフィド錯塩等を使用するこ
とができる。また、ロジウムの出発原料としては、硝酸
ロジウム、塩化ロジウム、ヘキサアンミンロジウムクロ
ライド、ロジウムスルフィド錯塩等を使用することがで
きる。In the preparation of the catalyst of the present invention, chloroplatinic acid, dinitrodiaminoplatinum, platinum tetramine chloride, platinum sulfide complex salt and the like can be used as starting materials for platinum. As a starting material of palladium, palladium nitrate, palladium chloride, palladium tetramine chloride, palladium sulfide complex salt and the like can be used. Further, as a starting material of rhodium, rhodium nitrate, rhodium chloride, hexaammine rhodium chloride, rhodium sulfide complex salt and the like can be used.
【0036】本発明で使用される耐火性無機酸化物は、
γ−アルミナ、δ−アルミナ、η−アルミナ、θ−アル
ミナ等の活性アルミナ、シリカ、チタニア、ジルコニ
ア、シリカ−アルミナ、アルミナ−ジルコニア、アルミ
ナ−チタニア、シリカ−チタニア、シリカ−ジルコニ
ア、チタニア−ジルコニア、および前述の超強酸よりな
る群から選ばれる少なくとも1種である。これらの中で
もチタニア、ジルコニア、および超強酸が特に好適に使
用される。The refractory inorganic oxide used in the present invention includes:
activated alumina such as γ-alumina, δ-alumina, η-alumina, θ-alumina, silica, titania, zirconia, silica-alumina, alumina-zirconia, alumina-titania, silica-titania, silica-zirconia, titania-zirconia, And at least one selected from the group consisting of the above-mentioned super strong acids. Among these, titania, zirconia, and super strong acids are particularly preferably used.
【0037】これらの耐火性無機酸化物は、通常、粉末
状の多孔質体で用いられ、またそのBrunauer−
Emmett−Teller(以下、BETという)表
面積が1〜400m2 /g、好ましくは1〜300m2
/gであるものがよく、その平均粒径が0.1〜150
μm、さらに好ましくは0.1〜100μmであるもの
がよい。また、耐火性無機酸化物の細孔径は1×10-3
〜0.1μm、より好ましくは、3×10-3〜0.03
μmであるものがよく、また、耐火性無機酸化物の酸強
度(ハメットの酸度関数H0 )は5以下、より好ましく
は、−8以下であるものがよい。These refractory inorganic oxides are usually used in the form of a powdery porous material.
Emmett-Teller (hereinafter, referred to as BET) surface area is 1 to 400 m 2 / g, preferably 1 to 300 m 2.
/ G having an average particle size of 0.1 to 150 g / g.
μm, more preferably 0.1 to 100 μm. The pore size of the refractory inorganic oxide is 1 × 10 −3.
0.1 μm, more preferably 3 × 10 −3 to 0.03
μm, and the acid strength (Hammet acidity function H 0 ) of the refractory inorganic oxide is 5 or less, more preferably -8 or less.
【0038】前記貴金属担持超強酸および耐火性無機酸
化物が耐火性三次元構造体に担持された場合の担持量
は、該耐火性三次元構造体1リットル当たり、1〜30
0gであることが好ましく、より好ましくは10〜20
0gである。すなわち、この担持量が1g未満である場
合には、触媒活性が低く、担持量が300gを越える場
合には、その担持量に見合う活性の向上効果が見られな
い。When the noble metal-supported superacid and the refractory inorganic oxide are supported on the refractory three-dimensional structure, the loading amount is 1 to 30 per liter of the refractory three-dimensional structure.
0 g, more preferably 10 to 20 g.
0 g. That is, when the supported amount is less than 1 g, the catalytic activity is low, and when the supported amount exceeds 300 g, the effect of improving the activity corresponding to the supported amount is not seen.
【0039】耐火性三次元構造体としては、セラミック
フォーム、オープンフローのセラミックハニカム、ウォ
ールフロータイプのハニカムモノリス、オープンフロー
のメタルハニカム、金属発泡体またはメタルメッシュ等
を担体として用いることができる。As the refractory three-dimensional structure, ceramic foam, open flow ceramic honeycomb, wall flow type honeycomb monolith, open flow metal honeycomb, metal foam, metal mesh or the like can be used as a carrier.
【0040】特に、ディーゼルエンジン排ガス1m3 当
たり100mg以下の微粒子物質を含み、かつ、この微
粒子物質中のSOF含有率が20重量%以上である場
合、耐火性三次元構造体としてはオープンフロータイプ
のセラミックハニカムまたはオープンフロータイプのメ
タルハニカムが、担体として好適に使用される。In particular, when a particulate matter of 100 mg or less per 1 m 3 of diesel engine exhaust gas is contained and the content of SOF in the particulate matter is 20% by weight or more, an open-flow type fire-resistant three-dimensional structure is used. A ceramic honeycomb or an open flow type metal honeycomb is suitably used as the carrier.
【0041】セラミックハニカム担体としては、特にコ
ージェライト、ムライト、α−アルミナ、ジルコニア、
チタニア、リン酸チタン、アルミニウムチタネート、マ
グネシウムシリケート等を材料とするものが特に好まし
く、中でもコージェライト質のものが特に好ましい。Examples of the ceramic honeycomb carrier include cordierite, mullite, α-alumina, zirconia, and the like.
Materials made of titania, titanium phosphate, aluminum titanate, magnesium silicate and the like are particularly preferable, and cordierite materials are particularly preferable.
【0042】また、メタルハニカム担体としては、ステ
ンレス鋼、Fe−Cr−Al合金等のごとき酸化抵抗性
の耐熱金属を用いて一体構造としたものが好適に使用さ
れる。これらのモノリス担体は、押出成型法やシート状
素子を巻き固める方法等で製造される。そのガス通過口
(セル形状)の形は、6角形、4角形、3角形またはコ
ルゲーション形のいずれであってもよい。セル密度(セ
ル数/単位断面積)は150〜600個/平方インチで
あり、より好ましくは200〜500個/平方インチが
よい。As the metal honeycomb carrier, one having an integral structure using an oxidation-resistant heat-resistant metal such as stainless steel or an Fe—Cr—Al alloy is preferably used. These monolithic carriers are manufactured by an extrusion molding method, a method of winding a sheet-shaped element, and the like. The shape of the gas passage (cell shape) may be any of a hexagon, a quadrangle, a triangle, and a corrugation. The cell density (number of cells / unit cross-sectional area) is 150 to 600 cells / square inch, and more preferably 200 to 500 cells / square inch.
【0043】触媒を調製する方法としては、例えば次の
方法がある。まず、所定量の白金、パラジウムおよびロ
ジウムから選ばれる少なくとも1種の貴金属を含有する
水溶液中に、超強酸を混入した後、80〜250℃、よ
り好ましくは80〜150℃の温度で乾燥し、ついで、
300〜850℃、より好ましくは400〜800℃の
温度で0.5〜4時間焼成することにより白金、パラジ
ウムおよびロジウムから選ばれる少なくとも1種の貴金
属が、表面にほぼ均一に分散された貴金属担持超強酸が
得られる。As a method for preparing the catalyst, for example, there is the following method. First, a predetermined amount of platinum, an aqueous solution containing at least one noble metal selected from palladium and rhodium, after mixing a super strong acid, dried at a temperature of 80 ~ 250 ℃, more preferably 80 ~ 150 ℃, Then
Noble metal support in which at least one noble metal selected from platinum, palladium and rhodium is substantially uniformly dispersed on the surface by baking at a temperature of 300 to 850 ° C, more preferably 400 to 800 ° C for 0.5 to 4 hours. A super strong acid is obtained.
【0044】次に、該貴金属担持超強酸と耐火性無機酸
化物を混練し、湿式粉砕してスラリー化し、この触媒組
成物のスラリーに耐火性三次元構造体を浸漬し、余分の
スラリーを除去した後、80〜250℃、好ましくは8
0〜150℃の温度で乾燥し、ついで、300〜850
℃、好ましくは400〜800℃の温度で0.5〜4時
間焼成することにより、目的とするディーゼルエンジン
排ガス浄化用触媒を得ることが可能となる。Next, the noble metal-carrying superacid and the refractory inorganic oxide are kneaded, wet-pulverized to form a slurry, and the refractory three-dimensional structure is immersed in the catalyst composition slurry to remove excess slurry. After that, 80-250 ° C, preferably 8
Dry at a temperature of 0-150 ° C, then 300-850
By calcination at a temperature of 400C, preferably 400 to 800C for 0.5 to 4 hours, it becomes possible to obtain a target catalyst for purifying diesel engine exhaust gas.
【0045】[0045]
【実施例】以下、実施例により本発明を具体的に説明す
る。 〔実施例1〕硫酸アンモニウム665gを脱イオン水1
0リットルに溶解して調製した水溶液に、水酸化ジルコ
ニウム1000gを投入し、1時間攪拌した後、濾過し
120℃で1時間乾燥後、600℃で3時間焼成し、比
表面積100m2 /g、細孔径3×10-3μm、酸強度
−16のジルコニア超強酸ZrO2 −SO4 5重量%
(SO3 換算で)の多孔質体である粉体を得た。上記ジ
ルコニア超強酸ZrO2−SO4 5重量%は、ハメット
指示薬を用いて超強酸となっていることが確認された。The present invention will be described below in detail with reference to examples. [Example 1] 665 g of ammonium sulfate was added to deionized water 1
To an aqueous solution prepared by dissolving in 0 liter, 1000 g of zirconium hydroxide was added, stirred for 1 hour, filtered, dried at 120 ° C. for 1 hour, and calcined at 600 ° C. for 3 hours to obtain a specific surface area of 100 m 2 / g. ZrO 2 —SO 4 5% by weight of super strong zirconia acid having a pore diameter of 3 × 10 −3 μm and an acid strength of -16
A powder which was a porous body (in terms of SO 3 ) was obtained. The zirconia superacid ZrO 2 -SO 4 5 wt%, it was confirmed that by using a Hammett indicator has a superacid.
【0046】このジルコニア超強酸ZrO2 −SO4 5
重量%の粉体200gを、白金20g含有するジニトロ
ジアミノ白金水溶液中に投入し、十分かき混ぜた後、1
20℃で2時間乾燥し、更に600℃で3時間焼成して
白金を、多孔質体の表面にほぼ均一に分散担持させた白
金担持ジルコニア超強酸粉体を得た。[0046] The zirconia super acid ZrO 2 -SO 4 5
200 g of a powder of 20% by weight was put into an aqueous dinitrodiaminoplatinum solution containing 20 g of platinum, and the mixture was thoroughly stirred.
The resultant was dried at 20 ° C. for 2 hours and further calcined at 600 ° C. for 3 hours to obtain a platinum-supported zirconia superstrong acid powder in which platinum was dispersed and supported almost uniformly on the surface of the porous body.
【0047】次に、この白金担持ジルコニア超強酸粉体
176gと、比表面積10m2 /g、細孔径0.08μ
m、酸強度1であるチタニア粉体720g、および前記
ジルコニア超強酸粉体ZrO2 −SO4 5重量%(SO
3 換算で)1280gを湿式粉砕してスラリー化した。Next, 176 g of the platinum-supported zirconia super-strong acid powder, a specific surface area of 10 m 2 / g and a pore diameter of 0.08 μm
m, 720 g of titania powder having an acid strength of 1, and 5% by weight of the zirconia super-strong acid powder ZrO 2 —SO 4 (SO
1280 g (in terms of 3 ) was wet-pulverized to form a slurry.
【0048】このようにして得られたスラリーに、横断
面1平方インチ当たり約400個のオープンフローのガ
ス流通セルを有する5.66インチ径×6.00インチ
長さの円筒状のコージェライト製ハニカム担体(耐火性
三次元構造体)を浸漬し、余分なスラリーを取り除いた
後120℃で3時間乾燥し、次いで600℃で2時間焼
成して、本実施例1のディーゼルエンジン排ガス浄化用
触媒を得た。The slurry obtained in this manner is made of 5.66 inch diameter × 6.00 inch length cylindrical cordierite having about 400 open flow gas flow cells per square inch of cross section. A honeycomb carrier (refractory three-dimensional structure) was immersed, excess slurry was removed, dried at 120 ° C. for 3 hours, and then calcined at 600 ° C. for 2 hours. I got
【0049】このディーゼルエンジン排ガス浄化用触媒
における白金、それを担持するジルコニア超強酸、チタ
ニアおよびジルコニア超強酸の担持量は、それぞれ耐火
性三次元構造体1リットル当たり1.0g、10g、4
5g、80gであった。The platinum, the zirconia superacid, the titania and the zirconia superacid carrying the platinum in the diesel engine exhaust gas purifying catalyst were 1.0 g, 10 g, 4 g, and 10 g, respectively, per liter of the refractory three-dimensional structure.
5 g and 80 g.
【0050】〔実施例2〕硫酸494gを脱イオン水1
0リットルに混合して調製した水溶液に、無定形の酸化
ジルコニウム1000gを投入し、1時間攪拌した後、
濾過し150℃で2時間乾燥後、500℃で1時間焼成
し、比表面積100m2 /g、細孔径5×10-3μm、
酸強度−15のジルコニア超強酸ZrO2 −SO4 5重
量%(SO3 換算で)の多孔質体である粉体を得た。上
記ジルコニア超強酸ZrO2 −SO4 5重量%はハメッ
ト指示薬を用いて超強酸となっていることが確認され
た。Example 2 494 g of sulfuric acid was added to deionized water 1
To an aqueous solution prepared by mixing with 0 liter, 1000 g of amorphous zirconium oxide was added and stirred for 1 hour.
After filtration and drying at 150 ° C. for 2 hours, baking at 500 ° C. for 1 hour, specific surface area 100 m 2 / g, pore diameter 5 × 10 −3 μm,
A powder of a porous body of 5 wt% (in terms of SO 3 ) of zirconia super strong acid ZrO 2 —SO 4 having an acid strength of −15 was obtained. It was confirmed that 5% by weight of the above-mentioned zirconia super-strong acid ZrO 2 —SO 4 was turned into a super-strong acid using a Hammett indicator.
【0051】このジルコニア超強酸ZrO2 −SO4 5
重量%の粉体200gを、白金20g含有するジニトロ
ジアミノ白金水溶液中に投入し、十分かき混ぜた後、1
00℃で3時間乾燥し、更に500℃で3時間焼成して
白金を、多孔質体の表面にほぼ均一に分散担持させた白
金担持ジルコニア超強酸粉体を得た。[0051] The zirconia super acid ZrO 2 -SO 4 5
200 g of a powder of 20% by weight was put into an aqueous dinitrodiaminoplatinum solution containing 20 g of platinum, and the mixture was thoroughly stirred.
The resultant was dried at 00 ° C. for 3 hours and further calcined at 500 ° C. for 3 hours to obtain a platinum-supported zirconia superacid powder in which platinum was dispersed and supported almost uniformly on the surface of the porous body.
【0052】次に、この白金担持ジルコニア超強酸粉体
176gと、比表面積100m2 /g、細孔径5×10
-3μm、酸強度0であるチタニア粉体1280gと、比
表面積20m2 /g、細孔径0.03μm、酸強度3で
あるアルミナ粉体720gとを湿式粉砕してスラリー化
した。Next, 176 g of the platinum-supported zirconia super-strong acid powder, a specific surface area of 100 m 2 / g and a pore diameter of 5 × 10
1280 g of titania powder having an acid strength of −3 μm and 720 g of alumina powder having a specific surface area of 20 m 2 / g, a pore size of 0.03 μm and an acid strength of 3 were wet-pulverized to form a slurry.
【0053】このようにして得られたスラリーに、横断
面1平方インチ当たり約400個のオープンフローのガ
ス流通セルを有する5.66インチ径×6.00インチ
長さの円筒状のコージェライト製ハニカム担体(耐火性
三次元構造体)を浸漬し、余分なスラリーを取り除いた
後100℃で3時間乾燥し、次いで500℃で2時間焼
成して本実施例2のディーゼルエンジン排ガス浄化用触
媒を得た。The slurry thus obtained was made of 5.66 inch diameter × 6.00 inch long cylindrical cordierite having about 400 open flow gas flow cells per square inch cross section. A honeycomb carrier (a refractory three-dimensional structure) was immersed, excess slurry was removed, dried at 100 ° C. for 3 hours, and calcined at 500 ° C. for 2 hours to obtain a diesel engine exhaust gas purifying catalyst of Example 2. Obtained.
【0054】このディーゼルエンジン排ガス浄化用触媒
における白金、ジルコニア超強酸、チタニアおよびアル
ミナの担持量は、それぞれ耐火性三次元構造体1リット
ル当たり1.0g、10g、80g、45gであった。The supported amounts of platinum, zirconia superacid, titania and alumina in this diesel engine exhaust gas purifying catalyst were 1.0 g, 10 g, 80 g and 45 g per liter of the refractory three-dimensional structure, respectively.
【0055】〔実施例3〕硫酸に代えて、(NH4 )6
(H2 W12O40)を739gを用い、800℃で3時間
焼成した以外は実施例2と同様にして比表面積120m
2 /g、細孔径5×10-2μm、酸強度−13のジルコ
ニア超強酸ZrO2 −W15重量%(Wの金属換算で)
を得た。上記ジルコニア超強酸ZrO2 −W15重量%
は、ハメット指示薬を用いて超強酸であることが確認さ
れた。Example 3 (NH 4 ) 6 instead of sulfuric acid
A specific surface area of 120 m was obtained in the same manner as in Example 2 except that 739 g of (H 2 W 12 O 40 ) was used and calcined at 800 ° C. for 3 hours.
2 / g, pore size 5 × 10 -2 μm, acid strength -13, zirconia superacid ZrO 2 -W 15% by weight (in terms of W metal)
I got The above zirconia superacid ZrO 2 -W 15% by weight
Was confirmed to be a super strong acid using a Hammett indicator.
【0056】以下、ZrO2 −SO4 をZrO2 −W
に、耐火性無機酸化物をチタニアとアルミナから比表面
積80m2 /g、細孔径5×10-2μm、酸強度2のジ
ルコニア粉体800gと比表面積10m2 /g、細孔径
0.1μm、酸強度0のチタニア粉体800gに、そし
て担体を横断面1平方インチ当たり約300個のオープ
ンフローのガス流通セルを有する5.66インチ径×
6.00インチ長さの円筒状のコージェライト製ハニカ
ム担体(耐火性三次元構造体)に代えた以外は実施例2
と同様にして本実施例3のディーゼルエンジン排ガス浄
化用触媒を得た。Hereinafter, ZrO 2 -SO 4 will be referred to as ZrO 2 -W
In addition, a refractory inorganic oxide was prepared from titania and alumina by a specific surface area of 80 m 2 / g, a pore diameter of 5 × 10 −2 μm, a zirconia powder having an acid strength of 800 g and a specific surface area of 10 m 2 / g, a pore diameter of 0.1 μm. 800 g of titania powder with zero acid strength and the carrier was 5.66 inches diameter × about 300 open flow gas flow cells per square inch cross section.
Example 2 except that a cylindrical cordierite honeycomb carrier (refractory three-dimensional structure) having a length of 6.00 inches was used.
In the same manner as in Example 1, a catalyst for purifying exhaust gas of a diesel engine of Example 3 was obtained.
【0057】このディーゼルエンジン排ガス浄化用触媒
における白金、ジルコニア超強酸、ジルコニア、チタニ
アの担持量は、それぞれ耐火性三次元構造体1リットル
当たり0.5g、5g、50g、50gであった。The supported amounts of platinum, zirconia superacid, zirconia, and titania in this diesel engine exhaust gas purifying catalyst were 0.5 g, 5 g, 50 g, and 50 g, respectively, per liter of the refractory three-dimensional structure.
【0058】〔実施例4〕硫酸の代えて、アンモニア水
中に溶解させたH2 MoO4 を227gを用い、700
℃で2時間焼成した以外は実施例2と同様にして比表面
積80m2 /g、細孔径1×10-2μm、酸強度−1
3.5のジルコニア超強酸ZrO2 −Mo7重量%(M
oの金属換算で)を得た。上記ジルコニア超強酸ZrO
2 −Mo7重量%は、ハメット指示薬を用いて超強酸で
あることが確認された。Example 4 700 g of H 2 MoO 4 dissolved in aqueous ammonia was used instead of sulfuric acid.
Except for baking at 2 ° C. for 2 hours, a specific surface area of 80 m 2 / g, a pore diameter of 1 × 10 −2 μm, and an acid strength of −1 were conducted in the same manner as in Example 2.
3.5% zirconia superacid ZrO 2 -Mo 7% by weight (M
o in terms of metal). Zirconia superacid ZrO
It was confirmed that 7% by weight of 2- Mo was a super strong acid using a Hammett indicator.
【0059】以下、ZrO2 −SO4 をZrO2 −Mo
に、耐火性無機酸化物をチタニアとアルミナから、比表
面積120m2 /g、細孔径1×10-2μm、酸強度
1.5のジルコニア粉体800gと比表面積20m2 /
g、細孔径0.08μm、酸強度2.5のアルミナ粉体
800gに、そして担体を横断面1平方インチ当たり約
400個のオープンフローのガス流通セルを有する5.
66インチ径×6.00インチ長さの円筒状のメタル製
ハニカム担体(耐火性三次元構造体)に代えた以外は実
施例2と同様にして、本実施例4のディーゼルエンジン
排ガス浄化用触媒を得た。Hereinafter, ZrO 2 -SO 4 is converted to ZrO 2 -Mo
A refractory inorganic oxide was prepared from titania and alumina by using 800 g of zirconia powder having a specific surface area of 120 m 2 / g, a pore diameter of 1 × 10 -2 μm, and an acid strength of 1.5, and a specific surface area of 20 m 2 / g.
4.g, 0.08 μm pore size, 800 g of alumina powder with acid strength of 2.5, and about 400 open flow gas flow cells per square inch cross section of the carrier.5.
Example 4 A diesel engine exhaust gas purifying catalyst of Example 4 was prepared in the same manner as in Example 2 except that a cylindrical metal honeycomb carrier (refractory three-dimensional structure) having a diameter of 66 inches × 6.00 inches was replaced. I got
【0060】このディーゼルエンジン排ガス浄化用触媒
における白金、ジルコニア超強酸、ジルコニア、アルミ
ナの担持量は、それぞれ耐火性三次元構造体1リットル
当たり1.0g、20g、50g、50gであった。The supported amounts of platinum, zirconia superacid, zirconia and alumina in this diesel engine exhaust gas purifying catalyst were 1.0 g, 20 g, 50 g and 50 g per liter of the refractory three-dimensional structure, respectively.
【0061】〔実施例5〕TiCl4 1000gを10
リットルの脱イオン水に溶解後、その溶液を十分に攪拌
しながらpH7〜8となるまでアンモニア水を上記溶液
に滴下し、上記TiCl4 を加水分解して、水酸化チタ
ンを溶液中に生成させて析出させた。上記水酸化チタン
の沈澱を、デカンテーションにて十分に洗浄後、吸引ろ
過し120℃で一晩乾燥させ水酸化チタンを得た。Example 5 1000 g of TiCl 4 was added to 10
After dissolving in 1 liter of deionized water, the aqueous solution was added dropwise to the above solution while sufficiently stirring the solution until the pH became 7 to 8, and the TiCl 4 was hydrolyzed to form titanium hydroxide in the solution. And deposited. The precipitate of titanium hydroxide was sufficiently washed by decantation, suction filtered, and dried at 120 ° C. overnight to obtain titanium hydroxide.
【0062】この水酸化チタン500gを、水酸化ジル
コニウムに代えて用いた以外は実施例1と同様にして比
表面積110m2 /g、細孔径5×10-3μm、酸強度
−15のチタニア超強酸TiO2 −SO4 3重量%(S
O3 換算で)を得た。上記チタニア超強酸TiO2 −S
O4 3重量%はハメット指示薬を用いて超強酸であるこ
とが確認された。Except that 500 g of this titanium hydroxide was used in place of zirconium hydroxide, the same procedure as in Example 1 was carried out to obtain a titania having a specific surface area of 110 m 2 / g, a pore diameter of 5 × 10 −3 μm, and an acid strength of −15. Strong acid TiO 2 —SO 4 3% by weight (S
(In terms of O 3 ). The above titania super strong acid TiO 2 -S
3% by weight of O 4 was confirmed to be a super strong acid using a Hammett indicator.
【0063】このチタニア超強酸TiO2 −SO4 3重
量%の粉体200gを、白金20g含有するジニトロジ
アミノ白金水溶液、およびパラジウム20gを含有する
硝酸パラジウム水溶液中に投入し、十分かき混ぜた後、
120℃で2時間乾燥し、更に600℃で3時間焼成し
て白金およびパラジウムを、多孔質体の表面にほぼ均一
に分散担持させた白金およびパラジウム担持チタニア超
強酸粉体を得た。200 g of a 3 wt% titania superacid TiO 2 —SO 4 powder was poured into an aqueous dinitrodiaminoplatinum solution containing 20 g of platinum and an aqueous palladium nitrate solution containing 20 g of palladium, and thoroughly stirred.
It was dried at 120 ° C. for 2 hours, and further calcined at 600 ° C. for 3 hours to obtain platinum and palladium-supported titania super-strong acid powder in which platinum and palladium were almost uniformly dispersed and supported on the surface of the porous body.
【0064】次に、この白金およびパラジウム担持チタ
ニア超強酸粉体192gと、比表面積160m2 /g、
細孔径8×10-3μm、酸強度−12であるシリカアル
ミナ2400gを湿式粉砕してスラリー化した。Then, 192 g of the titania super-strong acid powder carrying platinum and palladium was added to the powder, and the specific surface area was 160 m 2 / g.
2400 g of silica alumina having a pore diameter of 8 × 10 −3 μm and an acid strength of −12 was wet-pulverized to form a slurry.
【0065】このようにして得られたスラリーに、横断
面1平方インチ当たり約200個のオープンフローのガ
ス流通セルを有する5.66インチ径×6.00インチ
長さの円筒状のコージェライト製ハニカム担体(耐火性
三次元構造体)を浸潰し、余分なスラリーを取り除いた
後120℃で3時間乾燥し、次いで600℃で2時間焼
成して、本実施例5のディーゼルエンジン排ガス浄化用
触媒を得た。The slurry thus obtained was added to a cylindrical cordierite 5.66 inch diameter × 6.00 inch long having about 200 open flow gas flow cells per square inch cross section. The honeycomb carrier (refractory three-dimensional structure) was crushed, excess slurry was removed, dried at 120 ° C. for 3 hours, and then calcined at 600 ° C. for 2 hours. I got
【0066】このディーゼルエンジン排ガス浄化用触媒
における白金、パラジウム、チタニア超強酸、シリカア
ルミナの担持量は、それぞれ耐火性三次元構造体1リッ
トル当たり1.0g、1.0g、10g、150gであ
った。The supported amounts of platinum, palladium, titania superacid and silica alumina in the diesel engine exhaust gas purifying catalyst were 1.0 g, 1.0 g, 10 g and 150 g per liter of the refractory three-dimensional structure, respectively. .
【0067】〔実施例6〕SnCl4 1000gを10
リットルの脱イオン水に溶解後、その溶液を十分に攪拌
しながらpH10となるまでアンモニア水を上記溶液に
対し滴下し加水分解して、上記溶液中に水酸化スズを析
出させた。上記水酸化スズの沈澱を、デカンテーション
にて十分に洗浄後、吸引ろ過し120℃で一晩乾燥させ
水酸化スズを得た。Example 6 1000 g of SnCl 4 was added to 10
After dissolving in 1 liter of deionized water, aqueous ammonia was added dropwise to the above solution while sufficiently stirring the solution until the pH of the solution reached pH 10, and the solution was hydrolyzed to precipitate tin hydroxide in the solution. The precipitate of tin hydroxide was sufficiently washed by decantation, suction filtered, and dried at 120 ° C. overnight to obtain tin hydroxide.
【0068】この水酸化スズ500gを水酸化ジルコニ
ウムに代えて用いた以外は実施例1と同様にして比表面
積80m2 /g、細孔径9×10-3μm、酸強度−16
のスズ超強酸SnO2 −SO4 5重量%(SO3 換算
で)を得た。上記スズ超強酸SnO2 −SO4 5重量%
はハメット指示薬を用いて超強酸であることが確認され
た。The specific surface area was 80 m 2 / g, the pore diameter was 9 × 10 −3 μm, and the acid strength was -16, in the same manner as in Example 1 except that 500 g of the tin hydroxide was used instead of zirconium hydroxide.
5% by weight of tin superacid SnO 2 —SO 4 (in terms of SO 3 ). The tin superacid SnO 2 -SO 4 5 wt%
Was confirmed to be a super strong acid using a Hammett indicator.
【0069】このスズ超強酸SnO2 −SO4 5重量%
の粉体200gを、白金10g含有するジニトロジアミ
ノ白金水溶液、およびロジウムを10g含有する硝酸ロ
ジウム水溶液中に投入し、十分かき混ぜた後、120℃
で2時間乾燥し、更に600℃で3時間焼成して白金お
よびロジウムを、多孔質体の表面にほぼ均一に分散担持
させた白金およびロジウム担持スズ超強酸粉体を得た。The tin superacid SnO 2 —SO 4 5% by weight
200 g of the powder was poured into an aqueous dinitrodiaminoplatinum solution containing 10 g of platinum and an aqueous rhodium nitrate solution containing 10 g of rhodium, and thoroughly stirred.
For 2 hours, and calcined at 600 ° C. for 3 hours to obtain platinum and rhodium-supported tin super-strong acid powder in which platinum and rhodium are dispersed and supported almost uniformly on the surface of the porous body.
【0070】次に、この白金およびロジウム担持スズ超
強酸粉体96gと、比表面積100m2 /g、細孔径3
×10-3μm、酸強度−15であるジルコニア超強酸粉
体ZrO2 −SO4 5重量%(SO3 換算で)1600
gとを湿式粉砕してスラリー化した。Next, 96 g of the tin super-strong acid powder supported on platinum and rhodium, a specific surface area of 100 m 2 / g and a pore diameter of 3
ZrO 2 —SO 4 5% by weight (in terms of SO 3 ) 1600 × 10 −3 μm, zirconia super strong acid powder having an acid strength of −15
g was wet-pulverized to form a slurry.
【0071】このようにして得られたスラリーに、横断
面1平方インチ当たり約400個のオープンフローのガ
ス流通セルを有する5.66インチ径×6.00インチ
長さの円筒状のコージェライト製ハニカム担体(耐火性
三次元構造体)を浸漬し、余分なスラリーを取り除いた
後120℃で3時間乾燥し、次いで600℃で2時間焼
成して、本実施例6のディーゼルエンジン排ガス浄化用
触媒を得た。The slurry thus obtained was added to a cylindrical cordierite 5.66 inch diameter × 6.00 inch long having about 400 open flow gas flow cells per square inch of cross section. A honeycomb carrier (refractory three-dimensional structure) was immersed, excess slurry was removed, dried at 120 ° C. for 3 hours, and then calcined at 600 ° C. for 2 hours. I got
【0072】このディーゼルエンジン排ガス浄化用触媒
における白金、ロジウム、スズ超強酸、ジルコニア超強
酸の担持量は、それぞれ耐火性三次元構造体1リットル
当たり0.5g、0.5g、5g、100gであった。The supported amounts of platinum, rhodium, tin superacid and zirconia superacid in this diesel engine exhaust gas purifying catalyst were 0.5 g, 0.5 g, 5 g and 100 g per liter of the refractory three-dimensional structure, respectively. Was.
【0073】〔実施例7〕水酸化ジルコニウムの代わり
にγ−Al2 O3 を用いた以外は実施例1と同様にして
比表面積90m2 /g、細孔径4×10-3μm、酸強度
−15のアルミナ超強酸Al2 O3 −SO4 20重量%
(SO3 換算で)を得た。上記アルミナ超強酸Al2 O
3 −SO4 20重量%はハメット指示薬を用いて超強酸
であることが確認された。Example 7 The specific surface area was 90 m 2 / g, the pore diameter was 4 × 10 −3 μm, and the acid strength was the same as in Example 1 except that γ-Al 2 O 3 was used instead of zirconium hydroxide. -15 alumina superacid Al 2 O 3 —SO 4 20% by weight
(In terms of SO 3 ). The above alumina super strong acid Al 2 O
3 -SO 4 20% by weight was confirmed to be a superacid with a Hammett indicator.
【0074】以下、ZrO2 −SO4 をAl2 O3 −S
O4 に、耐火性無機酸化物をゼオライトに代えた以外は
実施例1と同様にして、本実施例7のディーゼル排ガス
浄化用触媒を得た。このディーゼルエンジン排ガス浄化
用触媒における白金、アルミナ超強酸、ゼオライトの担
持量は耐火性三次元構造体1リットル当たり1.0g、
10g、125gであった。Hereinafter, ZrO 2 —SO 4 will be referred to as Al 2 O 3 —S
A diesel exhaust gas purifying catalyst of Example 7 was obtained in the same manner as in Example 1 except that zeolite was used instead of O 4 for the refractory inorganic oxide. The supported amount of platinum, alumina superacid, and zeolite in this diesel engine exhaust gas purification catalyst was 1.0 g per liter of the refractory three-dimensional structure,
10 g and 125 g.
【0075】〔実施例8〕硝酸鉄1000gを10リッ
トルの脱イオン水に溶解後、この溶液を十分に攪拌しな
がらPH7〜8となるまでアンモニア水を上記溶液に滴
下し、加水分解によって水酸化鉄を生成させて析出させ
た。上記水酸化鉄の沈澱を、デカンテーションにて十分
に洗浄後、吸引濾過し120℃で一晩乾燥させ水酸化鉄
を得た。Example 8 After dissolving 1000 g of iron nitrate in 10 liters of deionized water, ammonia water was added dropwise to the above solution until the pH became 7 to 8 while sufficiently stirring the solution, and the solution was hydrolyzed to give a hydroxide. Iron was generated and precipitated. The precipitate of iron hydroxide was sufficiently washed by decantation, filtered by suction, and dried at 120 ° C. overnight to obtain iron hydroxide.
【0076】この水酸化鉄500gを水酸化ジルコニウ
ムに代えて用いた以外は実施例1と同様にして比表面積
100m2 /g、細孔径3×10-3μm、酸強度−13
の鉄超強酸Fe2 O3 −SO4 10重量%(SO3 換算
で)を得た。上記鉄超強酸Fe2 O3 −SO4 10重量
%は、ハメット指示薬を用いて超強酸であることが確認
された。Except that 500 g of this iron hydroxide was used in place of zirconium hydroxide, a specific surface area of 100 m 2 / g, a pore diameter of 3 × 10 −3 μm, and an acid strength of −13 were used in the same manner as in Example 1.
Give iron superacid Fe 2 O 3 -SO 4 10 wt% (converted to SO 3). The iron superacid Fe 2 O 3 -SO 4 10 wt%, it was confirmed that the superacid using Hammett indicators.
【0077】以下、ZrO2 −SO4 をFe2 O3 −S
O4 に、そして担体をメタル製ハニカム担体に変えた以
外は実施例1と同様にして、本実施例8のディーゼルエ
ンジン排ガス浄化用触媒を得た。このディーゼルエンジ
ン排ガス浄化用触媒における白金、鉄超強酸、チタニ
ア、ジルコニア超強酸の担持量は、それぞれ耐火性三次
元構造体1リットル当たり1.0g、10g、45g、
80gであった。Hereinafter, ZrO 2 —SO 4 will be referred to as Fe 2 O 3 —S
Example 8 A diesel engine exhaust gas purifying catalyst of Example 8 was obtained in the same manner as in Example 1 except that O 4 and the carrier were changed to a metal honeycomb carrier. The supported amounts of platinum, iron superacid, titania, and zirconia superacid in the diesel engine exhaust gas purifying catalyst were 1.0 g, 10 g, 45 g, and 1 g per liter of the refractory three-dimensional structure, respectively.
It was 80 g.
【0078】〔実施例9〕Si(OC2 H5 )4 100
0gを10リットルの脱イオン水に溶解後、濃硝酸50
mlを加え攪拌して得たシリカゲルを100℃で一晩乾
燥した後、SO2Cl2 5gを含む水溶液に浸潰し40
0℃で3時間焼成して比表面積120m2/g、細孔径
1×10-3μm、酸強度−12.5のシリカ超強酸Si
O2 −SO4 10重量%(SO3 換算で)を得た。上記
シリカ超強酸SiO2 −SO4 10重量%は、ハメット
指示薬を用いて超強酸であることが確認された。Example 9 Si (OC 2 H 5 ) 4 100
After dissolving 0 g in 10 liters of deionized water, concentrated nitric acid 50
The resulting silica gel was dried overnight at 100 ° C., immersed in an aqueous solution containing 5 g of SO 2 Cl 2, and stirred at 40 ° C.
Baking at 0 ° C. for 3 hours, silica super strong acid Si having a specific surface area of 120 m 2 / g, a pore diameter of 1 × 10 −3 μm, and an acid strength of −12.5.
10% by weight of O 2 —SO 4 (in terms of SO 3 ) was obtained. The silica superacid SiO 2 -SO 4 10 wt%, it was confirmed that the superacid using Hammett indicators.
【0079】以下、ZrO2 −SO4 をSiO2 −SO
4 に代えた以外は実施例1と同様にして、本実施例9の
ディーゼルエンジン排ガス浄化用触媒を得た。このディ
ーゼルエンジン排ガス浄化用触媒における白金、シリカ
超強酸、チタニア、ジルコニア超強酸の担持量は、それ
ぞれ耐火性三次元構造体1リットル当たり1.0g、1
0g、45g、80gであった。Hereinafter, ZrO 2 —SO 4 will be referred to as SiO 2 —SO 4
It was replaced by 4 in the same manner as in Example 1 to obtain a diesel engine exhaust gas purifying catalyst of the present embodiment 9. The supported amounts of platinum, silica superacid, titania, and zirconia superacid in the diesel engine exhaust gas purifying catalyst were 1.0 g, 1 g, and 1 g, respectively, per liter of the refractory three-dimensional structure.
0 g, 45 g, and 80 g.
【0080】〔実施例10〕HfCl4 1000gを1
0リットルの脱イオン水に溶解後、その溶液を十分に攪
拌しながらpH10となるまでアンモニア水を滴下し、
加水分解によって、水酸化ハフニウムを生成させ、析出
させた。上記水酸化ハフニウムの沈澱を、デカンテーシ
ョンにて十分に洗浄後、吸引濾過し120℃で一晩乾燥
させ水酸化ハフニウムを得た。Example 10 1000 g of HfCl 4 was added to 1
After dissolving in 0 liter of deionized water, the aqueous solution is added dropwise while sufficiently stirring the solution to pH 10,
Hafnium hydroxide was produced and precipitated by hydrolysis. The precipitate of hafnium hydroxide was sufficiently washed by decantation, filtered by suction, and dried at 120 ° C. overnight to obtain hafnium hydroxide.
【0081】この水酸化ハフニウムを水酸化ジルコニウ
ムに代えて用いた以外は実施例1と同様にして比表面積
100m2 /g、細孔径5×10-3μm、酸強度−16
のハフニウム超強酸HfO2 −SO4 5重量%(SO3
換算で)を得た。上記ハフニウム超強酸HfO2 −SO
4 5重量%は、ハメット指示薬を用いて超強酸であるこ
とが確認された。Except that this hafnium hydroxide was used in place of zirconium hydroxide, the specific surface area was 100 m 2 / g, the pore diameter was 5 × 10 -3 μm, and the acid strength was -16 in the same manner as in Example 1.
Hafnium super strong acid HfO 2 —SO 4 5% by weight (SO 3
Conversion). The above hafnium superacid HfO 2 —SO
4 5 wt%, it was confirmed that the superacid using Hammett indicators.
【0082】以下、ZrO2 −SO4 をHfO2 −SO
4 に代えた以外は実施例1と同様にして本実施例10の
ディーゼルエンジン排ガス浄化用触媒を得た。このディ
ーゼルエンジン排ガス浄化用触媒における白金、ハフニ
ウム超強酸、チタニア、ジルコニア超強酸の担持量は、
それぞれ耐火性三次元構造体1リットル当たり1.0
g、10g、45g、80gであった。Hereinafter, ZrO 2 —SO 4 will be referred to as HfO 2 —SO 4
Except that instead of 4 was obtained diesel engine exhaust gas purifying catalyst of to the present embodiment 10 in the same manner as in Example 1. The supported amounts of platinum, hafnium superacid, titania, and zirconia superacid in this diesel engine exhaust gas purification catalyst are as follows:
1.0 for each liter of fire-resistant three-dimensional structure
g, 10 g, 45 g, and 80 g.
【0083】〔実施例11〕耐火性無機酸化物としての
チタニアを省いたこと以外は実施例1と同様にして、本
実施例11のディーゼルエンジン排ガス浄化用触媒を得
た。このディーゼルエンジン排ガス浄化用触媒における
白金、ジルコニア超強酸の担持量は、それぞれ耐火性三
次元構造体1リットル当たり1.0g、90gであっ
た。Example 11 A diesel engine exhaust gas purifying catalyst of Example 11 was obtained in the same manner as in Example 1 except that titania as a refractory inorganic oxide was omitted. The supported amounts of platinum and zirconia superacid in this diesel engine exhaust gas purifying catalyst were 1.0 g and 90 g per liter of the refractory three-dimensional structure, respectively.
【0084】〔比較例1〕比表面積150m2 /g、細
孔径5×10-4μm、酸強度10のアルミナ粉体100
0gを白金10g含有するジニトロジアミノ白金水溶液
に投入し、十分かき混ぜた後、150℃で2時間乾燥
し、更に500℃で1時間焼成して、白金を分散担持さ
せたアルミナ粉体を得た。Comparative Example 1 Alumina powder 100 having a specific surface area of 150 m 2 / g, a pore diameter of 5 × 10 −4 μm, and an acid strength of 10
0 g was added to an aqueous solution of dinitrodiaminoplatinum containing 10 g of platinum, mixed thoroughly, dried at 150 ° C. for 2 hours, and calcined at 500 ° C. for 1 hour to obtain an alumina powder having platinum dispersedly supported thereon.
【0085】この白金を分散担持させたアルミナ粉体1
000gを湿式粉砕してスラリー化した。このようにし
て得られたスラリーに、横断面1平方インチ当たり約4
00個のオープンフローのガス流通セルを有する5.6
6インチ径×6.00インチ長さの円筒状のコージェラ
イト製ハニカム担体(耐火性三次元構造体)を浸漬し、
余分なスラリーを取り除いた後、120℃で3時間乾燥
し、次いで600℃で2時間焼成して、本比較例1の触
媒を得た。この触媒における白金、アルミナの担持量は
耐火性三次元構造体1リットル当たり1.0g,100
gであった。Alumina powder 1 carrying this platinum dispersed therein
000 g was wet-milled to form a slurry. The slurry obtained in this manner contains about 4 square inches per square inch.
5.6 with 00 open flow gas flow cells
A cylindrical honeycomb carrier made of cordierite (refractory three-dimensional structure) having a diameter of 6 inches and a length of 6.00 inches is immersed therein.
After removing the excess slurry, the slurry was dried at 120 ° C. for 3 hours and then calcined at 600 ° C. for 2 hours to obtain a catalyst of Comparative Example 1. The supported amount of platinum and alumina in this catalyst was 1.0 g, 100 g per liter of the refractory three-dimensional structure.
g.
【0086】〔比較例2〕上記比較例1に記載のアルミ
ナ粉体を、白金10g含有するジニトロジアミノ白金水
溶液に投入することに代えて、パラジウム10gを含有
する硝酸パラジウム水溶液に投入した以外は、比較例1
と同様にして触媒を得た。この触媒におけるパラジウ
ム、アルミナの担持量は、それぞれ耐火性三次元構造体
1リットル当たり1.0g、100gであった。[Comparative Example 2] The alumina powder described in Comparative Example 1 was added to an aqueous solution of palladium nitrate containing 10 g of palladium instead of being added to an aqueous solution of dinitrodiaminoplatinum containing 10 g of platinum. Comparative Example 1
A catalyst was obtained in the same manner as described above. The supported amounts of palladium and alumina in this catalyst were 1.0 g and 100 g per liter of the refractory three-dimensional structure, respectively.
【0087】上記実施例1〜11および比較例1〜2で
得られた触媒における配分各組成の担持量を表1および
表2にもそれぞれ示した。The supported amounts of the respective compositions distributed in the catalysts obtained in Examples 1 to 11 and Comparative Examples 1 and 2 are also shown in Tables 1 and 2, respectively.
【0088】[0088]
【表1】 [Table 1]
【0089】[0089]
【表2】 [Table 2]
【0090】〔触媒の評価〕各実施例1〜11、および
比較例1〜2に記載の各触媒のディーゼルエンジン排ガ
ス浄化性能を下記方法により評価した。なお、この方法
においては過給直噴式ディーゼルエンジン(4気筒、排
気量2800cc)、および燃料として硫黄含有量が
0.06重量%である軽油を用いた。[Evaluation of Catalysts] The exhaust gas purification performance of each catalyst described in Examples 1 to 11 and Comparative Examples 1 and 2 was evaluated by the following method. In this method, a supercharged direct injection diesel engine (four cylinders, displacement 2800 cc) and light oil having a sulfur content of 0.06% by weight were used as fuel.
【0091】まず、各触媒を上記エンジンからの排ガス
管に取り付け、エンジン回転数2500rpmの全負荷
および触媒入口温度700℃の条件下で100時間の耐
久試験を実施した。First, each catalyst was attached to an exhaust gas pipe from the engine, and a 100-hour durability test was carried out under the conditions of a full load at an engine speed of 2500 rpm and a catalyst inlet temperature of 700 ° C.
【0092】次に、エンジン回転数2000rpm、ト
ルク3.0kg・mおよび触媒入口温度200℃の条件
下で1時間触媒を換気した後、運転条件をエンジン回転
数2000rpm、トルク11.0kg・mに変更し、
触媒入口温度が350℃にて安定した条件下で触媒床に
入る前(入口)および触媒床を出た後(出口)での排ガ
ス中の微粒子物質の含有量を通常のダイリューショント
ンネル(dilution tunnel)法により測定し、微粒子物質
の浄化率(%)を求めた。Next, after the catalyst was ventilated for 1 hour under the conditions of an engine speed of 2,000 rpm, a torque of 3.0 kg · m and a catalyst inlet temperature of 200 ° C., the operating conditions were changed to an engine speed of 2,000 rpm and a torque of 11.0 kg · m. change,
Under conditions where the catalyst inlet temperature is stable at 350 ° C., the content of the particulate matter in the exhaust gas before entering the catalyst bed (inlet) and after leaving the catalyst bed (outlet) is determined by a conventional dilution tunnel. tunnel) method, and the purification rate (%) of the particulate matter was determined.
【0093】さらに、ダイリューショントンネル法を用
いて捕捉された微粒子物質をジクロメタン溶液で抽出し
て、抽出前後の微粒子物質の重量変化からSOFの排出
量を測定し、SOFの浄化率(%)を求めた。また、触
媒床に入る前の排ガスおよび触媒床を通過後の排ガス中
の二酸化硫黄(SO2 )、ガス状炭化水素(HC)およ
び一酸化炭素(CO)の分析も同時に行い、それらの転
化率(%)をそれぞれ求めた。Further, the particulate matter trapped by the dilution tunnel method is extracted with a dichloromethane solution, and the SOF emission is measured from the weight change of the particulate matter before and after the extraction, and the SOF purification rate (%) I asked. In addition, sulfur dioxide (SO 2 ), gaseous hydrocarbons (HC) and carbon monoxide (CO) in the exhaust gas before entering the catalyst bed and in the exhaust gas after passing through the catalyst bed are simultaneously analyzed, and their conversion rates are measured. (%) Were determined.
【0094】〔アイドル運転後の白煙排出試験〕ディー
ゼルエンジン排ガス浄化用触媒を、アイドル運転(触媒
入口温度80℃)の排ガス雰囲気下に3時間曝露した
後、エンジン運転条件を回転数1200rpm、トルク
16.5kg・mの条件に変更して、変更後の触媒後方
の排出ガスの白煙濃度(%)を光透過型スモークメータ
ーを用いて測定した。[White Smoke Emission Test after Idle Operation] After the diesel engine exhaust gas purifying catalyst was exposed to an exhaust gas atmosphere during idle operation (catalyst inlet temperature 80 ° C.) for 3 hours, the engine operating conditions were changed to 1200 rpm and torque. The condition was changed to 16.5 kg · m, and the white smoke concentration (%) of the exhaust gas behind the catalyst after the change was measured using a light transmission type smoke meter.
【0095】上記のようにして求めた微粒子物質浄化
率、SOF浄化率、炭化水素転化率、一酸化炭素転化
率、二酸化硫黄転化率、および白煙濃度(%)の結果を
表3に示した。また、実施例1および比較例1の(アイ
ドル運転後の白煙排出試験)での測定結果を図1に示し
た。Table 3 shows the results of the particulate matter purification rate, SOF purification rate, hydrocarbon conversion rate, carbon monoxide conversion rate, sulfur dioxide conversion rate, and white smoke concentration (%) obtained as described above. . FIG. 1 shows the measurement results of Example 1 and Comparative Example 1 (white smoke emission test after idling operation).
【0096】[0096]
【表3】 [Table 3]
【0097】このように本発明のディーゼルエンジン排
ガス浄化用触媒は、比較例1および2の各触媒と比べ
て、表3から明らかなように、白金、パラジウムおよび
ロジウムから選ばれる少なくとも1種の貴金属と、固体
の超強酸とを有することによって、高温の排ガスによる
耐久試験後で、かつ、触媒入口温度が350℃というよ
うに比較的低温においても、排ガス中の一酸化炭素、炭
化水素を除去する浄化能に優れているので、環境への排
ガスの悪影響を低減できるものとなっている。As described above, the catalyst for purifying diesel engine exhaust gas of the present invention is different from the catalysts of Comparative Examples 1 and 2 in that at least one noble metal selected from platinum, palladium and rhodium is evident from Table 3. And a solid super-strong acid to remove carbon monoxide and hydrocarbons in the exhaust gas after a durability test using a high-temperature exhaust gas and at a relatively low temperature such as a catalyst inlet temperature of 350 ° C. Because of its excellent purification ability, it is possible to reduce the adverse effects of exhaust gas on the environment.
【0098】その上、本発明のディーゼルエンジン排ガ
ス浄化用触媒は、表3から明らかなように、比較例1の
触媒と比べて、高温の排ガスによる耐久試験後で、か
つ、触媒入口温度が350℃というように比較的低温に
おいても、酸化による二酸化硫黄のサルフェートへの転
化率を抑制できると共に、SOFを浄化する能力に優
れ、また、比較例2の触媒と比べて、SOFを浄化する
能力に優れることから、SOFやサルフェートに起因す
る微粒子物質の排出を軽減でき、環境への排ガスの悪影
響を低減できるものとなっている。Further, as is clear from Table 3, the catalyst for purifying exhaust gas of diesel engine of the present invention has a catalyst inlet temperature of 350 after the endurance test using high-temperature exhaust gas as compared with the catalyst of Comparative Example 1. Even at a relatively low temperature such as 0 ° C., the conversion of sulfur dioxide to sulfate by oxidation can be suppressed, and the ability to purify SOF is excellent. Also, compared to the catalyst of Comparative Example 2, the ability to purify SOF is improved. Because of its superiority, emission of particulate matter due to SOF and sulfate can be reduced, and the adverse effect of exhaust gas on the environment can be reduced.
【0099】さらに、本発明のディーゼルエンジン排ガ
ス浄化用触媒では、図1および表3に示すように、アイ
ドル時から、急発進したときのように、排ガスが低温状
態から高温状態に急変したときに生じる、排ガスの白煙
濃度を低減できるものとなっている。Further, in the diesel engine exhaust gas purifying catalyst of the present invention, as shown in FIG. 1 and Table 3, when the exhaust gas suddenly changes from a low temperature state to a high temperature state, for example, when the vehicle suddenly starts from idle. The generated white smoke concentration in the exhaust gas can be reduced.
【0100】[0100]
【発明の効果】本発明のディーゼルエンジン排ガス浄化
用触媒は、以上のように、白金、パラジウムおよびロジ
ウムから選ばれる少なくとも1種の貴金属と、固体の超
強酸とを有する構成である。As described above, the diesel engine exhaust gas purifying catalyst of the present invention has a structure comprising at least one noble metal selected from platinum, palladium and rhodium, and a solid superacid.
【0101】それゆえ、上記構成は、上記の貴金属と超
強酸とによって、ディーゼルエンジン排ガス中の微粒子
物質を効率よく除去でき、ディーゼルエンジン排ガス中
の炭素系微粒子のほか未燃炭化水素、一酸化炭素などの
有害成分も、低温から燃焼除去できる性能を有し、しか
も二酸化硫黄の酸化能が低くサルフェートの生成を抑制
できるものとなっている。Therefore, in the above-described structure, the noble metal and the super strong acid can efficiently remove the particulate matter in the exhaust gas of the diesel engine, and in addition to the carbon-based particulates in the exhaust gas of the diesel engine, unburned hydrocarbons and carbon monoxide. Harmful components such as these have the ability to be burned and removed from low temperatures, and also have a low sulfur dioxide oxidizing ability and can suppress the formation of sulfate.
【0102】さらに、上記構成は、ディーゼルエンジン
排ガス中のSOFを効率よく除去できると共に、高温耐
久性が良好であって、実用上問題を生じることなくディ
ーゼル車に搭載でき、かつ、アイドル等の低温雰囲気に
長時間さらされた後、エンジン運転条件を高負荷、高回
転としても、排ガスにおける白煙の排出を抑制できるも
のとなっているので、ディーゼル車に好適に用いられる
ものであるという効果を奏する。Further, the above configuration can efficiently remove SOF in the exhaust gas of a diesel engine, has good high-temperature durability, can be mounted on a diesel vehicle without causing a practical problem, and has a low temperature such as idling. After being exposed to the atmosphere for a long time, even if the engine operating conditions are set to high load and high rotation, the emission of white smoke in the exhaust gas can be suppressed. Play.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明のディーゼルエンジン排ガス浄化用触媒
の実施例1、および比較例1に記載の各々の触媒を用い
た、アイドル運転後の白煙排出試験での測定結果をそれ
ぞれ示すグラフである。FIG. 1 is a graph showing measurement results of a white smoke emission test after idling operation using each of the catalysts of Example 1 of the diesel engine exhaust gas purifying catalyst of the present invention and Comparative Example 1. .
───────────────────────────────────────────────────── フロントページの続き (71)出願人 395016659 65 CHALLENGER ROAD R IDGEFIELD PARK,NEW JERSEY 07660 U.S.A. (72)発明者 喜田 真史 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 (72)発明者 堀内 真 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 ──────────────────────────────────────────────────続 き Continuation of the front page (71) Applicant 395016659 65 CHALLENGER ROAD R IDGEFIELD PARK, NEW JERSEY 07660 U.S.A. S. A. (72) Inventor: Masashi Kita 992, Nishioki, Okihama-shi, Abashiri-ku, Himeji-shi, Hyogo Pref.
Claims (6)
れる少なくとも1種の貴金属と、固体の超強酸とを有す
ることを特徴とするディーゼルエンジン排ガス浄化用触
媒。1. A diesel engine exhaust gas purifying catalyst comprising at least one noble metal selected from platinum, palladium and rhodium and a solid superacid.
れる少なくとも1種の貴金属を超強酸に担持した貴金属
担持超強酸、および耐火性無機酸化物が、耐火性三次元
構造体に担持されていることを特徴とするディーゼルエ
ンジン排ガス浄化用触媒。2. A refractory three-dimensional structure comprising: a precious metal-supported superacid in which at least one noble metal selected from platinum, palladium and rhodium is supported in a superstrong acid; and a refractory inorganic oxide. Diesel engine exhaust gas purification catalyst.
強酸、スズ超強酸、アルミナ超強酸、鉄超強酸、シリカ
超強酸、およびハフニウム超強酸からなる群から選択さ
れる少なくとも一つであることを特徴とする請求項1ま
たは2記載のディーゼルエンジン排ガス浄化用触媒。3. The superacid is at least one selected from the group consisting of zirconia superacid, titania superacid, tin superacid, alumina superacid, iron superacid, silica superacid, and hafnium superacid. The catalyst for purifying exhaust gas of a diesel engine according to claim 1 or 2, wherein:
リブデンからなる群から選択される少なくとも一つを含
むものであることを特徴とする請求項1、2または3記
載のディーゼルエンジン排ガス浄化用触媒。4. The diesel engine exhaust gas purifying catalyst according to claim 1, wherein the super strong acid contains at least one selected from the group consisting of sulfur, tungsten, and molybdenum.
0.01〜30重量%、タングステン含有量が金属換算
で0.01〜30重量%、またはモリブデン含有量が金
属換算で0.01〜30重量%であることを特徴とする
請求項1、2、3または4記載のディーゼルエンジン排
ガス浄化用触媒。5. The superacid has a sulfur content of 0.01 to 30% by weight in terms of SO 3 , a tungsten content of 0.01 to 30% by weight in terms of metal, or a molybdenum content of 0 to 30% in terms of metal. 5. The catalyst for purifying exhaust gas of a diesel engine according to claim 1, wherein the content is 0.01 to 30% by weight.
物の細孔径が1×10-3〜0.1μmで、酸強度が5以
下のものであることを特徴とする請求項2記載のディー
ゼルエンジン排ガス浄化用触媒。6. The refractory inorganic oxide according to claim 2, wherein said refractory inorganic oxide has a pore diameter of 1 × 10 −3 to 0.1 μm and an acid strength of 5 or less. The catalyst for purifying exhaust gas of a diesel engine according to the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8191229A JPH1033985A (en) | 1996-07-19 | 1996-07-19 | Catalyst for purifying exhaust gas from diesel engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8191229A JPH1033985A (en) | 1996-07-19 | 1996-07-19 | Catalyst for purifying exhaust gas from diesel engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1033985A true JPH1033985A (en) | 1998-02-10 |
Family
ID=16271052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8191229A Pending JPH1033985A (en) | 1996-07-19 | 1996-07-19 | Catalyst for purifying exhaust gas from diesel engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1033985A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999046040A1 (en) * | 1998-03-09 | 1999-09-16 | Osaka Gas Company Limited | Catalyst for removing hydrocarbons in exhaust gas and method for clarification of exhaust gas |
JP2000061308A (en) * | 1998-06-08 | 2000-02-29 | Osaka Gas Co Ltd | Catalyst and method for cleaning exhaust gas |
JP2000342972A (en) * | 1999-06-02 | 2000-12-12 | Osaka Gas Co Ltd | Catalyst for purifying exhaust gas and exhaust gas purifying method |
JP2002513670A (en) * | 1998-05-06 | 2002-05-14 | シーメンス アクチエンゲゼルシヤフト | Oxidation catalyst and catalyst oxidation method |
JP2002177788A (en) * | 2000-12-06 | 2002-06-25 | Nissan Motor Co Ltd | Exhaust gas cleaning catalyst and its manufacturing method |
JP2005262038A (en) * | 2004-03-17 | 2005-09-29 | Osaka Gas Co Ltd | Catalyst for removing hydrocarbon and hydrocarbon removal method |
JP2006289175A (en) * | 2005-04-06 | 2006-10-26 | Japan Energy Corp | Diesel particulate filter and exhaust gas cleaning method using this |
JP2007237171A (en) * | 2006-03-09 | 2007-09-20 | Haldor Topsoe As | Cleaning method of sulfur-containing exhaust gas |
JP2008535656A (en) * | 2005-04-08 | 2008-09-04 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Method for forming noble metal alloy to improve stability |
JP2010506713A (en) * | 2006-10-20 | 2010-03-04 | ロデイア・オペラシヨン | High acidity composition containing zirconium oxide, titanium oxide and tungsten oxide, process for its preparation, and its use in the treatment of exhaust gases |
JP2010188224A (en) * | 2009-02-16 | 2010-09-02 | Mazda Motor Corp | Catalyst for cleaning exhaust gas |
WO2013005852A1 (en) | 2011-07-01 | 2013-01-10 | Toyota Jidosha Kabushiki Kaisha | Particulate Filter |
WO2013005340A1 (en) * | 2011-07-01 | 2013-01-10 | トヨタ自動車株式会社 | Exhaust purification apparatus for internal combustion engine |
WO2013005338A1 (en) * | 2011-07-01 | 2013-01-10 | トヨタ自動車株式会社 | Exhaust purification apparatus for internal combustion engine |
EP2620199A1 (en) * | 2012-01-27 | 2013-07-31 | Vaillant GmbH | Hot Air Filter |
JP2014510218A (en) * | 2011-07-01 | 2014-04-24 | トヨタ自動車株式会社 | How to remove ash from particulate filters |
JP2014523333A (en) * | 2011-07-01 | 2014-09-11 | トヨタ自動車株式会社 | Particulate filter |
-
1996
- 1996-07-19 JP JP8191229A patent/JPH1033985A/en active Pending
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7371706B2 (en) | 1998-03-09 | 2008-05-13 | Osaka Gas Company Limited | Catalyst for removing hydrocarbons from exhaust gas and method for purification of exhaust gas |
US6602481B1 (en) | 1998-03-09 | 2003-08-05 | Osaka Gas Company Limited | Catalyst for removing hydrocarbons from exhaust gas and method for clarification of exhaust gas |
US6887446B2 (en) | 1998-03-09 | 2005-05-03 | Osaka Gas Company Limited | Catalyst for removing hydrocarbons from exhaust gas and method for purification of exhaust gas |
WO1999046040A1 (en) * | 1998-03-09 | 1999-09-16 | Osaka Gas Company Limited | Catalyst for removing hydrocarbons in exhaust gas and method for clarification of exhaust gas |
JP2002513670A (en) * | 1998-05-06 | 2002-05-14 | シーメンス アクチエンゲゼルシヤフト | Oxidation catalyst and catalyst oxidation method |
JP2000061308A (en) * | 1998-06-08 | 2000-02-29 | Osaka Gas Co Ltd | Catalyst and method for cleaning exhaust gas |
JP2000342972A (en) * | 1999-06-02 | 2000-12-12 | Osaka Gas Co Ltd | Catalyst for purifying exhaust gas and exhaust gas purifying method |
JP2002177788A (en) * | 2000-12-06 | 2002-06-25 | Nissan Motor Co Ltd | Exhaust gas cleaning catalyst and its manufacturing method |
JP4600710B2 (en) * | 2000-12-06 | 2010-12-15 | 日産自動車株式会社 | Exhaust gas purification catalyst |
JP2005262038A (en) * | 2004-03-17 | 2005-09-29 | Osaka Gas Co Ltd | Catalyst for removing hydrocarbon and hydrocarbon removal method |
JP2006289175A (en) * | 2005-04-06 | 2006-10-26 | Japan Energy Corp | Diesel particulate filter and exhaust gas cleaning method using this |
JP2008535656A (en) * | 2005-04-08 | 2008-09-04 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Method for forming noble metal alloy to improve stability |
JP2007237171A (en) * | 2006-03-09 | 2007-09-20 | Haldor Topsoe As | Cleaning method of sulfur-containing exhaust gas |
JP2010506713A (en) * | 2006-10-20 | 2010-03-04 | ロデイア・オペラシヨン | High acidity composition containing zirconium oxide, titanium oxide and tungsten oxide, process for its preparation, and its use in the treatment of exhaust gases |
JP2010188224A (en) * | 2009-02-16 | 2010-09-02 | Mazda Motor Corp | Catalyst for cleaning exhaust gas |
WO2013005849A1 (en) | 2011-07-01 | 2013-01-10 | Toyota Jidosha Kabushiki Kaisha | Exhaust Purification System for Internal Combustion Engine |
JP2014523333A (en) * | 2011-07-01 | 2014-09-11 | トヨタ自動車株式会社 | Particulate filter |
WO2013005850A2 (en) | 2011-07-01 | 2013-01-10 | Toyota Jidosha Kabushiki Kaisha | Exhaust Purification System for Internal Combustion Engine |
WO2013005338A1 (en) * | 2011-07-01 | 2013-01-10 | トヨタ自動車株式会社 | Exhaust purification apparatus for internal combustion engine |
WO2013005851A2 (en) | 2011-07-01 | 2013-01-10 | Toyota Jidosha Kabushiki Kaisha | Exhaust Purification System for Internal Combustion Engine |
WO2013005852A1 (en) | 2011-07-01 | 2013-01-10 | Toyota Jidosha Kabushiki Kaisha | Particulate Filter |
WO2013005853A2 (en) | 2011-07-01 | 2013-01-10 | Toyota Jidosha Kabushiki Kaisha | Method of Removing Ash from Particulate Filter |
US9080480B2 (en) | 2011-07-01 | 2015-07-14 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system for internal combustion engine |
JP2014510218A (en) * | 2011-07-01 | 2014-04-24 | トヨタ自動車株式会社 | How to remove ash from particulate filters |
US8778053B2 (en) | 2011-07-01 | 2014-07-15 | Toyota Jidosha Kabushiki Kaisha | Method of removing ash from particulate filter |
WO2013005340A1 (en) * | 2011-07-01 | 2013-01-10 | トヨタ自動車株式会社 | Exhaust purification apparatus for internal combustion engine |
US9011569B2 (en) | 2011-07-01 | 2015-04-21 | Toyota Jidosha Kabushiki Kaisha | Particulate filter |
US9057298B2 (en) | 2011-07-01 | 2015-06-16 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system for internal combustion engine |
US9057299B2 (en) | 2011-07-01 | 2015-06-16 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system for internal combustion engine |
EP2620199A1 (en) * | 2012-01-27 | 2013-07-31 | Vaillant GmbH | Hot Air Filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3061399B2 (en) | Diesel engine exhaust gas purification catalyst and purification method | |
JP2821033B2 (en) | Diesel engine exhaust gas purification catalyst | |
EP0174495B1 (en) | Catalyst for purifying diesel engine exhaust gases | |
JP2891609B2 (en) | Diesel engine exhaust gas purification catalyst | |
JPH1033985A (en) | Catalyst for purifying exhaust gas from diesel engine | |
JPH09500570A (en) | Layered catalyst composite | |
JP2002535135A (en) | Catalyst composition containing oxygen storage component | |
JPH0653229B2 (en) | Exhaust gas purification catalyst | |
JPH0899034A (en) | Catalyst for purifying exhaust gas | |
JPH0884911A (en) | Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same | |
JP2001079402A (en) | Exhaust gas cleaning catalyst and its production | |
JP2825420B2 (en) | Diesel engine exhaust gas purification catalyst | |
JPH08281106A (en) | Catalyst for purifying exhaust gas and its production | |
JPH0462778B2 (en) | ||
JP2577757B2 (en) | Diesel exhaust gas purification catalyst | |
JP3503073B2 (en) | Catalyst for purifying diesel engine exhaust gas | |
JP4301348B2 (en) | Nitrogen oxide decomposition catalyst and diesel engine exhaust gas purification method using the same | |
JPS61120640A (en) | Catalyst for purifying carbon monoxide and gaseous hydrocarbon in diesel exhaust gas | |
KR0184718B1 (en) | Preparation of catalyst for purifying diesel engine exhaust gas | |
JP3436765B2 (en) | Diesel engine exhaust gas purification catalyst | |
JPH01254251A (en) | Catalyst for purifying exhaust gas | |
JP3337081B2 (en) | Diesel engine exhaust gas purification catalyst | |
JP3559372B2 (en) | Diesel engine exhaust gas purification catalyst | |
JPH0214744A (en) | Exhaust gas purification catalyst | |
JPH08257405A (en) | Catalyst for decomposition of nitrogen oxide and method for removing nitrogen oxide in exhaust gas from diesel engine by using the same |