JPH08257405A - Catalyst for decomposition of nitrogen oxide and method for removing nitrogen oxide in exhaust gas from diesel engine by using the same - Google Patents

Catalyst for decomposition of nitrogen oxide and method for removing nitrogen oxide in exhaust gas from diesel engine by using the same

Info

Publication number
JPH08257405A
JPH08257405A JP7064083A JP6408395A JPH08257405A JP H08257405 A JPH08257405 A JP H08257405A JP 7064083 A JP7064083 A JP 7064083A JP 6408395 A JP6408395 A JP 6408395A JP H08257405 A JPH08257405 A JP H08257405A
Authority
JP
Japan
Prior art keywords
catalyst
platinum
refractory inorganic
oxide powder
inorganic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7064083A
Other languages
Japanese (ja)
Inventor
Norimasa Okuda
典正 奥田
Makoto Horiuchi
真 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I C T KK
Original Assignee
I C T KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I C T KK filed Critical I C T KK
Priority to JP7064083A priority Critical patent/JPH08257405A/en
Publication of JPH08257405A publication Critical patent/JPH08257405A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To decrease NOx and to burn and remove carbonaceous particulates, unburned hydrocarbon and carbon monoxide or the like, by using a catalyst for decomposition of nitrogen oxide, made by combining a catalyst layer containing platinum and a catalyst layer containing copper. CONSTITUTION: At first, a refractory inorganic oxide powder carrying platinum is formed by making carry a catalytically active oxide of at least one metal selected from the group consisting of tungsten, antimony, molybdenum, nickel, vanadium, manganese, iron, bismuth, cobalt, zinc and alkaline earth metals together with platinum into a 1st refractory inorganic oxide powder. A 1st catalytic composition consisting of the refractory inorganic oxide powder carrying platinum and the 2nd refractory inorganic oxide powder is coated on a refractory three dimensional structure. Thus, the catalyst for decomposing nitrogen oxide is obtained by applying coating of a 2nd catalytic composition carrying copper and rhodium to a 3rd refractory inorganic oxide powder onto the layer carrying a catalytic component thus formed. This catalyst suppresses a particulate substance and is excellent in durability at high temperatures.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒素酸化物分解用触媒
およびこれを用いたディーゼルエンジン排ガスの浄化方
法に関するものである。詳しく述べると、ディーゼルエ
ンジン排ガス中の有害成分のうち、特に窒素酸化物(N
)を分解、低減し、かつ炭素系微粒子、未燃焼炭化
水素、一酸化炭素等を燃焼除去し得る触媒およびこれを
用いたディーゼルエンジン排ガスの浄化方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for decomposing nitrogen oxides and a method for purifying diesel engine exhaust gas using the same. More specifically, among harmful components in diesel engine exhaust gas, especially nitrogen oxides (N
The present invention relates to a catalyst capable of decomposing and reducing O x ) and burning and removing carbonaceous fine particles, unburned hydrocarbons, carbon monoxide and the like, and a method for purifying diesel engine exhaust gas using the same.

【0002】[0002]

【従来の技術】ディーゼルエンジン排ガス中の窒素酸化
物(以下、NOともいう)は、光化学スモッグや酸性
雨の原因となる。近年、特に都市部におけるディーゼル
エンジンからのNOの排出が社会的な問題となってい
るため、その排出量を削減することが重要であり、この
ため排ガス処理用触媒の研究が行なわれている。また、
ディーゼルエンジン排ガス中には、健康上有害な微粒子
物質が含まれているため、このような排ガス処理触媒と
しては、NO分解能とともに微粒子物質をも抑制する
性能を持つものが望まれている。
2. Description of the Related Art Nitrogen oxides (hereinafter, also referred to as NO x ) in exhaust gas of diesel engines cause photochemical smog and acid rain. In recent years, particularly in urban areas, the emission of NO x from a diesel engine has become a social problem, and it is important to reduce the emission amount. Therefore, research on exhaust gas treatment catalysts is being conducted. . Also,
Since diesel engine exhaust gas contains particulate matter that is harmful to health, it is desired that such an exhaust gas treatment catalyst has a capability of suppressing particulate matter as well as NO x decomposing ability.

【0003】自動車の排ガスを浄化するためには、従
来、三元触媒が用いられている。しかしながら、ディー
ゼルエンジンの排ガスにおいては、酸素が過剰であるた
めに、通常の三元触媒ではNOを十分低減することは
できない。
Conventionally, a three-way catalyst has been used to purify the exhaust gas of an automobile. However, in the exhaust gas of the diesel engine, NO x cannot be sufficiently reduced by the ordinary three-way catalyst because of excess oxygen.

【0004】ディーゼルエンジンの排ガスやガソリンリ
ーンバーンエンジンの排ガスのように、酸素を多く含む
排ガス中のNOを除去するのにも有効な触媒として
は、例えば特開昭63−100919号に記載されてい
るように、銅をゼオライト、アルミナ、シリカ等の多孔
質担体に担持させてなる触媒が提案されている。しかし
ながら、このような触媒は耐熱性に劣り、しかも硫黄酸
化物により被毒されやすいという問題がある。
A catalyst effective for removing NO x in exhaust gas containing a large amount of oxygen, such as exhaust gas of a diesel engine or exhaust gas of a gasoline lean burn engine, is described in, for example, JP-A-63-100919. As described above, a catalyst in which copper is supported on a porous carrier such as zeolite, alumina or silica has been proposed. However, such a catalyst has a problem that it has poor heat resistance and is easily poisoned by sulfur oxides.

【0005】また、例えば、特開平5−137963号
に記載のように、白金を主触媒として用いかつ硫黄酸化
物を共存させることによりNOを除去する方法も提案
されている。しかしながら、このような白金含有触媒
は、SO2 を酸化する活性が高いため、ディーゼルエン
ジン排ガスの処理に用いると、SO2 の酸化によって硫
酸根を増加させるため、微粒子物質の低減には不利であ
り、むしろ増加させるおそれさえある。
Further, for example, as described in JP-A-5-137963, there has been proposed a method of removing NO x by using platinum as a main catalyst and coexisting with a sulfur oxide. However, since such a platinum-containing catalyst has a high activity of oxidizing SO 2 , when it is used for treating diesel engine exhaust gas, it increases sulfate radicals due to the oxidation of SO 2 , which is disadvantageous in reducing particulate matter. , But it may even increase it.

【0006】このように、これまでに提案されている窒
素酸化物除去用触媒は、ディーゼルエンジンの排ガスを
浄化するためには、実用上問題が残されているのが現状
である。
As described above, the nitrogen oxide removing catalysts proposed so far have a problem in practical use for purifying exhaust gas of a diesel engine.

【0007】[0007]

【発明が解決しようとする課題】したがって、本発明の
目的は、新規な窒素酸化物分解用触媒およびこれを用い
たディーゼルエンジン排ガスの浄化方法を提供すること
にある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a novel catalyst for decomposing nitrogen oxides and a method for purifying diesel engine exhaust gas using the same.

【0008】本発明の他の目的は、白金を含有する触媒
層と銅を含有する触媒層とを組合わせて用いることによ
り、実際の排ガスの温度変化に対応すべく幅広い温度領
域でNOの分解性能を有した触媒を提供することにあ
る。
Another object of the present invention is to use a catalyst layer containing platinum and a catalyst layer containing copper in combination so that NO x in a wide temperature range can be accommodated in order to cope with the actual temperature change of exhaust gas. It is to provide a catalyst having a decomposition performance.

【0009】本発明のさらに他の目的は、未燃焼炭化水
素、一酸化炭素等の有害成分をも燃焼除去すると同時に
SO2 の酸化による硫酸根の生成を抑制し、かつ微粒子
物質をも低減し得る触媒を提供することにある。
Still another object of the present invention is to burn and remove harmful components such as unburned hydrocarbons and carbon monoxide, and at the same time suppress the formation of sulfate radicals due to the oxidation of SO 2 and reduce the particulate matter. It is to provide a catalyst to be obtained.

【0010】[0010]

【課題を解決するための手段】上記諸目的は、(A)白
金と、タングステン、アンチモン、モリブデン、ニッケ
ル、バナジウム、マンガン、鉄、ビスマス、コバルト、
亜鉛およびアルカリ土類金属よりなる群から選ばれた少
なくとも1種の金属の触媒活性酸化物とを第1の耐火性
無機酸化物粉末に担持してなる白金担持耐火性無機酸化
物粉末および(B)第2の耐火性無機酸化物粉末よりな
る第1の触媒組成物を耐火性三次元構造体に被覆し、こ
のようにして形成される触媒成分担持層上に、(C)銅
およびロジウムを第3の耐火性無機酸化物粉末に担持し
てなる第2の触媒組成物を被覆してなる窒素酸化物分解
用触媒により達成される。
The above-mentioned various purposes are (A) platinum, tungsten, antimony, molybdenum, nickel, vanadium, manganese, iron, bismuth, cobalt,
A platinum-supported refractory inorganic oxide powder, comprising a first refractory inorganic oxide powder and a catalytically active oxide of at least one metal selected from the group consisting of zinc and alkaline earth metals, and (B ) A refractory three-dimensional structure is coated with a first catalyst composition comprising a second refractory inorganic oxide powder, and (C) copper and rhodium are deposited on the catalyst component-supporting layer thus formed. This is achieved by a catalyst for decomposing nitrogen oxides, which is obtained by coating a second catalyst composition supported on a third refractory inorganic oxide powder.

【0011】本発明はまた、該耐火性三次元構造体1リ
ットル当り該白金担持耐火性無機酸化物粉末中に白金を
0.01〜3g、該触媒活性酸化物を0.01〜4gお
よび第1の耐火性無機酸化物粉末を0.02〜25g担
持してなる前記の窒素酸化物分解用触媒である。本発明
はさらに、該第1の触媒組成物に対して該白金担持耐火
性無機酸化物粉末(A)が0.1〜50重量%使用され
てなる前記窒素酸化物分解用触媒である。本発明は、該
耐火性三次元構造体1リットル当りロジウム0.01〜
0.5gおよび銅4〜50gを含有し、ロジウムの使用
量が白金の0.1〜10重量倍かつ銅の0.01〜0.
2重量倍である前記窒素酸化物分解用触媒である。本発
明はまた、第1の触媒組成物および第2の触媒組成物よ
りなる群から選ばれた少なくとも1種の触媒組成物の担
持層中に該耐火性三次元構造体1リットル当り酸化ガリ
ウムを0.1〜15g含有してなる前記窒素酸化物分解
用触媒である。本発明は、該第1および第2の耐火性無
機酸化物粉末がアルミナ、ジルコニア、チタニア、シリ
カ、アルミナ−ジルコニアおよびシリカ−アルミナより
なる群から選ばれた少なくとも1種のものである前記窒
素酸化物分解用触媒である。本発明はまた、該耐火性三
次元構造体がオープンフローのセラミックハニカムまた
はメタルハニカムである前記窒素酸化物分解用触媒であ
る。
The present invention also provides 0.01 to 3 g of platinum, 0.01 to 4 g of the catalytically active oxide and 0.01 to 4 g of platinum in the platinum-supported refractory inorganic oxide powder per liter of the refractory three-dimensional structure. The above-mentioned catalyst for decomposing nitrogen oxides, which carries 0.02 to 25 g of the refractory inorganic oxide powder of No. 1. The present invention is also the catalyst for decomposing nitrogen oxide, wherein the platinum-carrying refractory inorganic oxide powder (A) is used in an amount of 0.1 to 50% by weight with respect to the first catalyst composition. The present invention provides 0.01 to 10 parts of rhodium per liter of the refractory three-dimensional structure.
0.5 g and 4 to 50 g of copper, the amount of rhodium used was 0.1 to 10 times that of platinum and 0.01 to 0.
The catalyst for decomposing nitrogen oxide is 2 times by weight. The present invention also provides gallium oxide per liter of the refractory three-dimensional structure in a carrier layer of at least one catalyst composition selected from the group consisting of a first catalyst composition and a second catalyst composition. The catalyst for decomposing nitrogen oxides is contained in an amount of 0.1 to 15 g. The present invention provides the nitrogen oxidation, wherein the first and second refractory inorganic oxide powders are at least one selected from the group consisting of alumina, zirconia, titania, silica, alumina-zirconia and silica-alumina. It is a catalyst for material decomposition. The present invention is also the catalyst for decomposing nitrogen oxides, wherein the refractory three-dimensional structure is an open-flow ceramic honeycomb or metal honeycomb.

【0012】上記諸目的は、排ガス中のHC/NO
がモル比で0.5〜20(HCはメタン換算濃度)であ
るディーゼルエンジン排ガスを前記触媒に接触させるこ
とを特徴とするディーゼルエンジンの排ガス中の窒素酸
化物除去方法によっても達成される。
The above-mentioned objects are to contact a diesel engine exhaust gas in which the HC / NO x ratio in the exhaust gas is 0.5 to 20 (HC is a methane equivalent concentration) in a molar ratio with the catalyst. It is also achieved by the method for removing nitrogen oxides in exhaust gas.

【0013】本発明はまた、該還元剤を注入する排ガス
の温度が200〜500℃である前記窒素酸化物の除去
方法である。本発明はさらに、該還元剤が軽油である前
記窒素酸化物の除去方法である。
The present invention is also the method for removing nitrogen oxides, wherein the temperature of the exhaust gas into which the reducing agent is injected is 200 to 500 ° C. The present invention is also the method for removing nitrogen oxides, wherein the reducing agent is gas oil.

【0014】[0014]

【作用】本発明による窒素酸化物分解用触媒は、(A)
白金と、タングステン、アンチモン、モリブデン、ニッ
ケル、バナジウム、マンガン、鉄、ビスマス、コバル
ト、亜鉛およびアルカリ土類金属よりなる群から選ばれ
た少なくとも1種の金属の触媒活性酸化物とを第1の耐
火性無機酸化物粉末に担持してなる白金担持耐火性無機
酸化物粉末および(B)第2の耐火性無機酸化物粉末よ
りなる第1の触媒組成物を耐火性三次元構造体に被覆
し、このようにして形成される触媒成分担持層上に、
(C)銅およびロジウムを第3の耐火性無機酸化物粉末
に担持してなる第2の触媒組成物を被覆してなるもので
ある。
The catalyst for decomposing nitrogen oxides according to the present invention is (A)
A first refractory material containing platinum and a catalytically active oxide of at least one metal selected from the group consisting of tungsten, antimony, molybdenum, nickel, vanadium, manganese, iron, bismuth, cobalt, zinc and alkaline earth metals. A refractory three-dimensional structure is coated with a first catalyst composition composed of a platinum-supported refractory inorganic oxide powder supported on a refractory inorganic oxide powder and (B) a second refractory inorganic oxide powder, On the catalyst component-supporting layer thus formed,
(C) A second catalyst composition in which copper and rhodium are supported on a third refractory inorganic oxide powder and coated.

【0015】まず、本発明で使用される触媒活性酸化物
は、タングステン、アンチモン、モリブデン、ニッケ
ル、バナジウム、マンガン、鉄、ビスマス、コバルト、
亜鉛およびアルカリ土類金属よりなる群から選ばれた少
なくとも1種の金属の酸化物、好ましくはアルカリ土類
金属、アンチモン、バナジウム、コバルト、タングステ
ン等の酸化物である。またアルカリ土類金属としては、
カルシウム、マグネシウム、ストロンチウム、バリウム
等がある。
First, the catalytically active oxides used in the present invention are tungsten, antimony, molybdenum, nickel, vanadium, manganese, iron, bismuth, cobalt,
It is an oxide of at least one metal selected from the group consisting of zinc and alkaline earth metals, preferably oxides of alkaline earth metals, antimony, vanadium, cobalt, tungsten and the like. As alkaline earth metal,
Examples include calcium, magnesium, strontium, and barium.

【0016】該触媒活性酸化物は、白金とともに第1の
耐火性無機酸化物粉末に担持されて白金担持耐火性無機
酸化粉末(A)を形成する。
The catalytically active oxide is supported together with platinum on the first refractory inorganic oxide powder to form platinum-supported refractory inorganic oxide powder (A).

【0017】該白金担持耐火性無機酸化物粉末(A)
は、第2の耐火性無機酸化物粉末(B)とともに第1の
触媒組成物を形成し、耐火性三次元構造体に被覆され
る。
The platinum-supported refractory inorganic oxide powder (A)
Forms the first catalyst composition with the second refractory inorganic oxide powder (B) and is coated on the refractory three-dimensional structure.

【0018】白金の担持量は、該耐火性三次元構造体1
リットル当り、0.01〜3g、好ましくは0.1〜2
gである。すなわち、白金の担持量が0.01g/リッ
トル未満である場合には、NO分解活性が低いので好
ましくなく、一方、該担持量が3g/リットルを越える
場合には、もはや担持量に見合うNO分解活性の向上
はなく、経済的に不利である。白金の出発原料として
は、白金の硝酸塩、硫酸塩、塩化物等の無機塩やアンミ
ン錯塩等の有機酸塩等があり、例えば塩化白金酸、ジニ
トロジアミノ白金、塩化白金酸カリウム、塩化白金酸ナ
トリウム、白金テトラミンクロライド、白金スルフィド
錯塩等を使用することができる。
The amount of platinum supported is the refractory three-dimensional structure 1
0.01 to 3 g, preferably 0.1 to 2 per liter
g. That is, when the supported amount of platinum is less than 0.01 g / l, the NO x decomposition activity is low, which is not preferable. On the other hand, when the supported amount of platinum exceeds 3 g / l, NO is no longer commensurate with the supported amount. There is no improvement in x- degrading activity, which is economically disadvantageous. As a starting material of platinum, there are inorganic salts such as platinum nitrate, sulfate, chloride, etc., and organic acid salts such as ammine complex salts, etc., for example, chloroplatinic acid, dinitrodiaminoplatinum, potassium chloroplatinate, sodium chloroplatinate. , Platinum tetramine chloride, platinum sulfide complex salt and the like can be used.

【0019】白金とともに担持される少なくとも1種の
金属の触媒活性酸化物の担持量は、耐火性三次元構造体
1リットル当り0.01〜4g、好ましくは0.1〜2
gである。すなわち、該触媒活性酸化物の担持量が0.
1g/リットル未満では、SO2 の酸化を抑制する効果
が不十分であり、硫酸根が生成する傾向ががあるために
不利であり、一方、4g/リットルを越えると、それ以
上増やしても該触媒活性酸化物の効果は向上せず、NO
分解をむしろ阻害する場合があり、好ましくない。該
触媒活性酸化物の出発原料としては、前記金属の硝酸
塩、硫酸塩、炭酸塩、リン酸塩、塩化物、水酸化物、酸
化物等の無機酸塩や酢酸塩等の有機酸塩等がある。
The amount of the catalytically active oxide of at least one metal supported together with platinum is 0.01 to 4 g, preferably 0.1 to 2 per liter of the refractory three-dimensional structure.
g. That is, the supported amount of the catalytically active oxide was 0.
If it is less than 1 g / liter, the effect of suppressing the oxidation of SO 2 is insufficient, and there is a tendency that sulfate radicals tend to be generated, which is disadvantageous. The effect of catalytically active oxides did not improve and NO
X decomposition may be rather inhibited, which is not preferable. As the starting material of the catalytically active oxide, there are inorganic acid salts such as nitrates, sulfates, carbonates, phosphates, chlorides, hydroxides and oxides of the above metals, and organic acid salts such as acetates. is there.

【0020】第1の耐火性無機酸化物粉末としては、γ
−アルミナ、δ−アルミナ、η−アルミナ、θ−アルミ
ナ等の活性アルミナ、α−アルミナ、チタニア、シリ
カ、ジルコニア、ガリア、これらの複合酸化物、例えば
アルミナ−チタニア、アルミナ−ジルコニア、チタニア
−ジルコニア等があるが、好ましくは活性アルミナ、チ
タニア、シリカ、ジルコニア、アルミナ−シリカおよび
シリカ−アルミナよりなる群から選ばれた少なくとも1
種のものである。該耐火性無機酸化物は、通常粉末状で
あり、またそのBrunauer−Emmett−Te
ller(以下、BETという)表面積は、5〜400
2 /g、好ましくは10〜300m2 /gである。そ
の平均粒径は、0.1〜150μm、好ましくは0.2
〜100μmである。
As the first refractory inorganic oxide powder, γ
-Alumina, δ-alumina, η-alumina, θ-alumina and other activated alumina, α-alumina, titania, silica, zirconia, garia, and their composite oxides such as alumina-titania, alumina-zirconia, titania-zirconia, etc. But preferably at least one selected from the group consisting of activated alumina, titania, silica, zirconia, alumina-silica and silica-alumina.
It is a seed. The refractory inorganic oxide is usually in the form of powder, and its Brunauer-Emmett-Te
Leller (hereinafter referred to as BET) surface area is 5 to 400
m 2 / g, preferably from 10 to 300 m 2 / g. The average particle size is 0.1 to 150 μm, preferably 0.2
˜100 μm.

【0021】該第1の耐火性無機酸化物粉末の使用量
は、該耐火性三次元構造体1リットル当り0.02〜2
5g、好ましくは0.1〜2gである。すなわち、0.
02g/リットル未満の場合は、十分な性能が得られな
いものであり、一方、25g/リットルを越える場合
は、使用量に見合った性能が得られない。
The amount of the first refractory inorganic oxide powder used is 0.02 to 2 per liter of the refractory three-dimensional structure.
It is 5 g, preferably 0.1 to 2 g. That is, 0.
If it is less than 02 g / liter, sufficient performance cannot be obtained, while if it exceeds 25 g / liter, performance commensurate with the amount used cannot be obtained.

【0022】該第2の耐火性無機酸化物粉末(B)の材
質、BET表面積および平均粒径は、前記第1の耐火性
無機酸化物の場合と同様である。
The material, BET surface area and average particle size of the second refractory inorganic oxide powder (B) are the same as those of the first refractory inorganic oxide.

【0023】該白金担持耐火性無機酸化物粉末(A)と
該第2の耐火性無機酸化物粉末(B)とよりなる第1の
触媒組成物に対する該白金担持耐火性無機酸化物粉末
(A)の比率は、0.1〜50重量%、好ましくは1〜
20重量%である。すなわち、該比率が0.1重量%未
満では、十分な活性を得るのに必要な白金量を用いた場
合、第2の耐火性無機酸化物(B)を必要以上に多量に
用いることになり、経済上および触媒調製の簡便さの理
由から不利である。一方、該比率が50重量%を越える
と、白金の持つNO分解能を発現し、しかもSO2
酸化能を抑制するというバランスを保つことが難しいの
で不利である。
The platinum-supported refractory inorganic oxide powder (A) for the first catalyst composition comprising the platinum-supported refractory inorganic oxide powder (A) and the second refractory inorganic oxide powder (B). ) Is 0.1 to 50% by weight, preferably 1 to
It is 20% by weight. That is, when the ratio is less than 0.1% by weight, the second refractory inorganic oxide (B) is used in an unnecessarily large amount when the amount of platinum required to obtain sufficient activity is used. However, it is disadvantageous for economic reasons and convenience of catalyst preparation. On the other hand, when the ratio exceeds 50% by weight, it is disadvantageous because it is difficult to maintain the balance of expressing the NO x decomposing ability of platinum and suppressing the SO 2 oxidizing ability.

【0024】本発明で使用される耐火性三次元構造体と
しては、ペレット状、モノリス担体等があるが、好まし
くは、モノリス担体である。モノリス担体としては、通
常、セラミックハニカム担体と称されるものであればよ
く、特にコージライト、ムライト、α−アルミナ、ジル
コニア、チタニア、リン酸チタン、アルミニウムチタネ
ート、ベタライト、スポジュメン、アルミノシリケー
ト、マグネシウムシリケート等を材料とするハニカム担
体が好ましく、なかでもコージェライト質のものが特に
好ましい。そのほか、ステンレス鋼、Fe−Cr−Al
合金等のごとき酸化抵抗性の耐熱金属を用いて一体構造
体としたものも使用される。
The refractory three-dimensional structure used in the present invention includes pellets, monolith carriers, etc., preferably monolith carriers. The monolithic carrier may be any one generally called a ceramic honeycomb carrier, and particularly cordierite, mullite, α-alumina, zirconia, titania, titanium phosphate, aluminum titanate, betalite, spodumene, aluminosilicate, magnesium silicate. Honeycomb carriers made of, for example, are preferable, and cordierite-based ones are particularly preferable. In addition, stainless steel, Fe-Cr-Al
An integrated structure made of a heat-resistant metal such as an alloy that is resistant to oxidation is also used.

【0025】これらモノリス担体は、押出成形法やシー
ト状素子を巻き固める方法等で製造される。そのガス通
過口(セル形状)の形は、6角形、4角形、3角形また
はコルゲーション形のいずれであってもよい。セル密度
(セル数/単位断面積)は150〜600セル/平方イ
ンチあれば十分に使用可能であり、好ましくは200〜
500セル/平方インチである。
These monolith carriers are manufactured by an extrusion molding method, a method of winding and solidifying a sheet-shaped element, or the like. The shape of the gas passage (cell shape) may be any of a hexagon, a quadrangle, a triangle and a corrugation shape. If the cell density (the number of cells / unit cross-sectional area) is 150 to 600 cells / square inch, it can be sufficiently used, and preferably 200 to
500 cells / square inch.

【0026】本発明による触媒においては、該第1の触
媒組成物は、前記耐火性三次元構造体に被覆されて触媒
成分担持層を形成する。この触媒成分担持層上には、銅
およびロジウムを第3の耐火性無機酸化物粉末(C)に
担持してなる第2の触媒組成物が被覆される。この第2
の触媒組成物の被覆層は、単一層であってもあるいは複
数層であってもよい。
In the catalyst according to the present invention, the first catalyst composition is coated on the refractory three-dimensional structure to form a catalyst component supporting layer. The catalyst component-supporting layer is coated with the second catalyst composition in which copper and rhodium are supported on the third refractory inorganic oxide powder (C). This second
The coating layer of the catalyst composition may be a single layer or a plurality of layers.

【0027】該第3の耐火性無機酸化物粉末(C)の材
質、BET表面積および平均粒径は、前記第1の耐火性
無機酸化物の場合と同様である。
The material, BET surface area and average particle size of the third refractory inorganic oxide powder (C) are the same as those of the first refractory inorganic oxide.

【0028】該第2の触媒組成物において、銅は通常酸
化物の形で存在し、またロジウムは金属の形で存在す
る。
In the second catalyst composition, copper is usually present in the oxide form and rhodium is present in the metal form.

【0029】該耐火性三次元構造体1リットル当りの銅
の使用量は、金属として換算して4〜50g、好ましく
は8〜25gである。またロジウムは金属として換算し
て0.01〜0.5g、好ましくは0.05〜0.3g
であり、白金の0.1〜10重量倍、好ましくは0.1
〜1重量倍であり、また銅の0.001〜0.1重量
倍、好ましくは0.005〜0.05重量倍である。す
なわち、銅およびロジウムの使用量がこれより少ない
と、効果が小さく、一方、該使用量がこれより多くて
も、使用量に見合う効果の向上はない。
The amount of copper used per liter of the refractory three-dimensional structure is 4 to 50 g, preferably 8 to 25 g as metal. Further, rhodium is 0.01 to 0.5 g, preferably 0.05 to 0.3 g as metal.
And 0.1 to 10 times by weight of platinum, preferably 0.1.
It is 1 to 1 times by weight, and 0.001 to 0.1 times by weight, and preferably 0.005 to 0.05 times by weight that of copper. That is, if the amount of copper and rhodium used is less than this, the effect is small, while if the amount of copper and rhodium is greater than this, the effect commensurate with the amount used is not improved.

【0030】銅の出発原料としては、硝酸銅、酢酸塩等
の水溶性の塩や酸化銅等を用いることができる。また、
ロジウムの出発原料としては、硝酸ロジウム、塩化ロジ
ウム、塩化ロジウムヘキサアンミンロジウムクロライ
ド、ロジウムスルフィド錯塩等の無機酸塩および有機酸
塩を用いることができる。
As a starting material for copper, water-soluble salts such as copper nitrate and acetate, copper oxide and the like can be used. Also,
As the starting material of rhodium, inorganic acid salts and organic acid salts such as rhodium nitrate, rhodium chloride, rhodium chloride hexaammine rhodium chloride and rhodium sulfide complex salts can be used.

【0031】該第2の触媒組成物は、銅含有触媒層であ
るので、特に比較的高い温度で、NOを効率よく分解
する性能を有している。
Since the second catalyst composition is a copper-containing catalyst layer, it has the ability to decompose NO x efficiently, especially at relatively high temperatures.

【0032】また、本発明においては、白金とともに担
持される少なくとも1種の金属の触媒活性酸化物および
ロジウムがサルフェートの生成を抑制するという効果を
有している。
Further, in the present invention, the catalytically active oxide of at least one metal and rhodium supported together with platinum have the effect of suppressing the formation of sulfate.

【0033】さらに、本発明においては、白金担持耐火
性無機酸化物中または第2または第3の耐火性無機酸化
物粉末中に酸化ガリウムを配合することもできる。酸化
ガリウムは、酸化ガリウム粉末あるいは硝酸ガリウムの
ごとき水溶性化合物として使用される。酸化ガリウムの
使用量は、該耐火性三次元構造体1リットル当り0.1
〜15g、好ましくは0.5〜5gである。これによっ
て、NO分解活性を向上させることができる。
Further, in the present invention, gallium oxide may be blended in the platinum-supported refractory inorganic oxide or the second or third refractory inorganic oxide powder. Gallium oxide is used as a water-soluble compound such as gallium oxide powder or gallium nitrate. The amount of gallium oxide used is 0.1 per liter of the refractory three-dimensional structure.
-15 g, preferably 0.5-5 g. Thereby, the NO x decomposition activity can be improved.

【0034】本発明において、触媒成分を担持させる方
法としては、特に限定されるものではないが、通常の含
浸法が好適に用いられる。
In the present invention, the method of supporting the catalyst component is not particularly limited, but a usual impregnation method is preferably used.

【0035】本発明による触媒は、例えば、つぎのよう
な方法によって調製することができる。
The catalyst according to the present invention can be prepared, for example, by the following method.

【0036】まず、所定量の白金および他の少なくとも
1種の金属の化合物を含有する水溶液中に、第1の耐火
性無機酸化物粉末を投入して含浸させたのち、80〜2
50℃、好ましくは100〜150℃の温度で乾燥し、
次いで300〜850℃、好ましくは400〜700℃
の温度で0.5〜5時間、好ましくは1〜2時間焼成す
ることにより白金および金属酸化物が分散された白金担
持耐火性無機酸化物粉末が得られる。
First, the first refractory inorganic oxide powder is added to and impregnated in an aqueous solution containing a predetermined amount of platinum and a compound of at least one other metal.
Drying at a temperature of 50 ° C, preferably 100-150 ° C,
Then 300-850 ° C, preferably 400-700 ° C
By firing at a temperature of 0.5 to 5 hours, preferably 1 to 2 hours, a platinum-supported refractory inorganic oxide powder in which platinum and a metal oxide are dispersed can be obtained.

【0037】つぎに、この白金担持耐火性無機酸化物粉
末(A)と、第2の耐火性無機酸化物粉末(B)とを混
合して湿式粉砕してスラリー化し、このようにして得ら
れた第1の触媒組成物のスラリーに耐火性三次元構造体
を浸漬し、余分なスラリーを除去したのち、80〜25
0℃、好ましくは100〜150℃の温度で乾燥し、次
いで300〜800℃、好ましくは400〜700℃で
0.5〜3時間、好ましくは1〜2時間焼成することに
より該第1の触媒組成物を耐火性三次元構造体に被覆す
る。
Next, the platinum-supported refractory inorganic oxide powder (A) and the second refractory inorganic oxide powder (B) are mixed and wet pulverized to form a slurry, which is thus obtained. After immersing the refractory three-dimensional structure in the slurry of the first catalyst composition and removing the excess slurry, 80 to 25
Said first catalyst by drying at a temperature of 0 ° C., preferably 100-150 ° C. and then calcining at 300-800 ° C., preferably 400-700 ° C. for 0.5-3 hours, preferably 1-2 hours. The composition is coated on a refractory three-dimensional structure.

【0038】さらに、所定量の銅およびロジウムの化合
物を含有する水溶液中に第三の耐火性無機酸化物粉末
(C)を投入して含浸させたのち、80〜250℃、好
ましくは100〜150℃の温度で乾燥し、ついで30
0〜800℃、好ましくは400〜700℃の温度で
0.5〜5時間、好ましくは1〜2時間焼成することに
より、銅酸化物およびロジウムが第3の耐火性無機酸化
物粉末(C)に分散された第2の触媒組成物が得られ
る。
Further, after the third refractory inorganic oxide powder (C) is put into an aqueous solution containing a predetermined amount of a compound of copper and rhodium to impregnate it, the temperature is 80 to 250 ° C., preferably 100 to 150. Dry at a temperature of ℃, then 30
By firing at a temperature of 0 to 800 ° C., preferably 400 to 700 ° C. for 0.5 to 5 hours, preferably 1 to 2 hours, copper oxide and rhodium are the third refractory inorganic oxide powder (C). A second catalyst composition dispersed in is obtained.

【0039】つぎに、この第2の触媒組成物を湿式粉砕
してスラリー化し、得られたスラリーに、前記第1の触
媒組成物を耐火性三次元構造体に含浸、担持させ 焼成
した被覆耐火性三次元構造体を浸漬し、余分なスラリー
を除去したのち、80〜250℃、好ましくは100〜
150℃の温度で乾燥し、ついで300〜850℃,好
ましくは400〜700℃で0.5〜3時間、好ましく
は1〜2時間焼成することにより触媒を得る。
Next, the second catalyst composition is wet pulverized to form a slurry, and the slurry thus obtained is impregnated with the first catalyst composition in a refractory three-dimensional structure, supported and fired. The three-dimensional structure is dipped to remove excess slurry, and then 80 to 250 ° C., preferably 100 to
The catalyst is obtained by drying at a temperature of 150 ° C. and then calcining at 300 to 850 ° C., preferably 400 to 700 ° C. for 0.5 to 3 hours, preferably 1 to 2 hours.

【0040】本発明においては、HC/NO比のモル
比が0.5〜20(ただし、HCはメタン換算の全炭素
濃度)、好ましくは1〜10であるディーゼルエンジン
排ガスを前記触媒に接触させることにより該排ガス中の
窒素酸化物が除去される。すなわち、HC/NO比が
上記範囲より低いと、NOの分解活性が十分得られ
ず、一方、HC/NO比が上記範囲を越えると、もは
や活性の向上は得られず、またHCが完全に燃焼せずに
排出されるので好ましくない。
In the present invention, a diesel engine exhaust gas having a molar ratio of HC / NO x of 0.5 to 20 (where HC is the total carbon concentration in terms of methane), preferably 1 to 10 is contacted with the catalyst. By doing so, nitrogen oxides in the exhaust gas are removed. That is, if the HC / NO x ratio is lower than the above range, sufficient NO x decomposing activity cannot be obtained, while if the HC / NO x ratio exceeds the above range, no further improvement in activity can be obtained. Is not preferable because it is exhausted without being completely burned.

【0041】また、本発明においては、排ガス中にHC
が少なく、そのままではNO分解活性が十分得られな
い場合、温度が200〜500℃、好ましくは220〜
450℃である排ガス中の触媒の上流側に還元剤を注入
することによってHC/NO比を適切な値にして反応
させることができる。
Further, in the present invention, HC is contained in the exhaust gas.
When the NO x decomposing activity is not sufficiently obtained as it is, the temperature is 200 to 500 ° C., preferably 220 to 500 ° C.
By injecting a reducing agent on the upstream side of the catalyst in the exhaust gas at 450 ° C., the HC / NO x ratio can be adjusted to an appropriate value for the reaction.

【0042】窒素酸化物を還元するための還元剤として
は、アンモニア、水素、種々の炭化水素類等が知られて
いるが、自動車に搭載して用いるには、軽油がシステム
の簡便さと経済性とから実用的であり、本発明において
は軽油が好適に用いられる。軽油の注入方法としては、
特に限定されるものではないが、例えば単管を用いて液
状で導入する方法や空気とともに噴射して霧状で加える
方法が好適に用いられる。
Ammonia, hydrogen, various hydrocarbons, etc. are known as reducing agents for reducing nitrogen oxides. However, when mounted on an automobile, diesel oil is a simple and economical system. Therefore, light oil is preferably used in the present invention. As a method of injecting light oil,
Although not particularly limited, for example, a method of introducing in a liquid state by using a single tube or a method of spraying with air and adding in a mist state is suitably used.

【0043】[0043]

【実施例】以下、実施例を挙げて本発明をさらに詳細に
説明する。
EXAMPLES The present invention will be described in more detail with reference to examples.

【0044】実施例1 BET比表面積が10m2 /gであるチタニア粉末10
0gを、硝酸カルシウム42.2g、白金10.0gを
含有する塩化白金酸水溶液中に投入し、十分混合したの
ち、150℃の温度で2時間乾燥し、さらに500℃の
温度で1時間焼成して白金、酸化カルシウムを分散担持
したチタニア粉末を得た。
Example 1 Titania powder 10 having a BET specific surface area of 10 m 2 / g
0 g was put into a chloroplatinic acid aqueous solution containing 42.2 g of calcium nitrate and 10.0 g of platinum, thoroughly mixed, dried at a temperature of 150 ° C. for 2 hours, and further baked at a temperature of 500 ° C. for 1 hour. As a result, titania powder carrying platinum and calcium oxide dispersed therein was obtained.

【0045】つぎに、この粉末120gと、上で用いた
のと同じチタニア粉末1000gおよびBET比表面積
が145m2 /gであるアルミナ400gおよび酸化ガ
リウム20gとを、一緒に湿式粉砕してスラリー化し
た。このスラリーに横断面1平方インチ当り約400個
のオープンフローガス流通セルを有する5.66インチ
径×6.00インチ長の円筒状のコージエライト製ハニ
カム担体を浸漬し、余分なスラリーを取除いたのち、1
50℃で2時間乾燥し、ついで500℃で1時間焼成す
ることにより、白金含有触媒層で被覆した三次元構造体
を得た。
Next, 120 g of this powder, 1000 g of the same titania powder as used above, 400 g of alumina having a BET specific surface area of 145 m 2 / g and 20 g of gallium oxide were wet-milled together to form a slurry. . A cylindrical honeycomb carrier made of cordierite having a diameter of 5.66 inches and a length of 6.00 inches and having about 400 open flow gas flow cells per square inch in cross section was immersed in this slurry to remove excess slurry. Later, 1
By drying at 50 ° C. for 2 hours and then baking at 500 ° C. for 1 hour, a three-dimensional structure coated with a platinum-containing catalyst layer was obtained.

【0046】つぎに、ロジウムを1.0g含有する硝酸
ロジウムおよび硝酸銅608gを脱イオン水に溶解した
水溶液中に、比表面積が110m2 /gのジルコニア粉
末900gを投入して十分かきまぜた後、150℃で2
時間乾燥し、ついで500℃で1時間焼成してロジウム
および銅を分散担持させたジルコニア粉末を得た。この
粉末を湿式粉砕してスラリー化した。
Next, 900 g of zirconia powder having a specific surface area of 110 m 2 / g was added to an aqueous solution prepared by dissolving 608 g of rhodium nitrate containing 1.0 g of rhodium and copper nitrate in deionized water and thoroughly stirred. 2 at 150 ° C
It was dried for an hour and then calcined at 500 ° C. for 1 hour to obtain a zirconia powder in which rhodium and copper were dispersed and supported. This powder was wet pulverized into a slurry.

【0047】このようにして得られたスラリーに、上記
のように調製した三次元構造体を浸漬し、余分なスラリ
ーを取り除いた後、150℃で1時間乾燥し、ついで5
00℃で1時間焼成して触媒を得た。
The three-dimensional structure prepared as described above is dipped in the thus obtained slurry to remove excess slurry, and then dried at 150 ° C. for 1 hour and then 5
The catalyst was obtained by calcining at 00 ° C. for 1 hour.

【0048】実施例2 硝酸銅304gおよびジルコニア600gを用いた以外
は、実施例1と同様にして触媒を調製した。
Example 2 A catalyst was prepared in the same manner as in Example 1 except that 304 g of copper nitrate and 600 g of zirconia were used.

【0049】実施例3 実施例1の硝酸カルシウム42.2gの代りに三酸化ア
ンチモン粉末10.0gを用い、また、ハニカム担体へ
のスラリーの含浸量を変えた以外は実施例1と同様にし
て触媒を調製した。
Example 3 In the same manner as in Example 1 except that 10.0 g of antimony trioxide powder was used instead of 42.2 g of calcium nitrate in Example 1 and the amount of slurry impregnated in the honeycomb carrier was changed. A catalyst was prepared.

【0050】実施例4 実施例1の硝酸カルシウム42.2gの代りに五酸化バ
ナジウム8.0gを用いた以外は実施例1と同様にして
触媒を調製した。
Example 4 A catalyst was prepared in the same manner as in Example 1 except that vanadium pentoxide (8.0 g) was used instead of calcium nitrate (42.2 g).

【0051】実施例5 比表面積が10m2 /gであるチタニア粉末140g
を、硝酸コバルト29.0gおよび白金10gを含有す
るジニトロジアミノ白金を脱イオン水に溶解して調製し
た水溶液中に投入し、十分混合した後150℃の温度で
3時間乾燥し、さらに500℃で2時間焼成して白金お
よび酸化コバルトを分散担持したチタニア粉末を得た。
つぎに、得られた粉末158g、チタニア粉末800g
および比表面積が83m2 /gであるジルコニア200
gを混合して湿式粉砕し、スラリー化した。得られたス
ラリーに、横断面積1平方インチ当り約400個のオー
プンフローガス流通セルを有する5.66インチ径×
6.00インチ長の円筒状コージエライト製ハニカム担
体を浸漬し、余分なスラリーを取り除いた後150℃で
2時間乾燥し、ついで500℃で1時間焼成することに
より、白金含有触媒層で被覆した三次元構造体を得た。
Example 5 140 g of titania powder having a specific surface area of 10 m 2 / g
Was added to an aqueous solution prepared by dissolving dinitrodiaminoplatinum containing 29.0 g of cobalt nitrate and 10 g of platinum in deionized water, thoroughly mixed, and then dried at a temperature of 150 ° C. for 3 hours, and further at 500 ° C. It was fired for 2 hours to obtain a titania powder carrying platinum and cobalt oxide in a dispersed manner.
Next, 158 g of the obtained powder and 800 g of titania powder
And zirconia 200 having a specific surface area of 83 m 2 / g
g was mixed, wet-milled, and made into a slurry. 5.66 inch diameter with about 400 open flow gas flow cells per square inch cross section in the resulting slurry x
A 6.00-inch long cylindrical cordierite honeycomb carrier was dipped, excess slurry was removed, dried at 150 ° C. for 2 hours, and then calcined at 500 ° C. for 1 hour to form a tertiary coating coated with a platinum-containing catalyst layer. The original structure is obtained.

【0052】一方、ロジウムを1.0g含有する硝酸ロ
ジウムおよび硝酸銅608gを脱イオン水に溶解した水
溶液中に比表面積が110m2 /gのジルコニア粉末9
00gと酸化ガリウム20gを投入して十分混合した
後、150℃で2時間乾燥し、ついで500℃で1時間
焼成してロジウムおよび銅を分散担持させたジルコニア
粉末を得た。この粉末を湿式粉砕してスラリー化した。
得られたスラリーに、上記のように調製した三次元構造
体を浸漬し、余分なスラリーを取除いたのち、150℃
で2時間乾燥し、ついで500℃で1時間焼成すること
により、白金含有触媒層で被覆した三次元構造体を調製
した。
On the other hand, zirconia powder 9 having a specific surface area of 110 m 2 / g in an aqueous solution of rhodium nitrate containing 1.0 g of rhodium and 608 g of copper nitrate in deionized water.
00 g and 20 g of gallium oxide were added and mixed sufficiently, dried at 150 ° C. for 2 hours, and then calcined at 500 ° C. for 1 hour to obtain zirconia powder in which rhodium and copper were dispersed and supported. This powder was wet pulverized into a slurry.
The three-dimensional structure prepared as described above is dipped in the obtained slurry to remove excess slurry, and then at 150 ° C.
Then, the three-dimensional structure covered with the platinum-containing catalyst layer was prepared by drying for 2 hours and then firing at 500 ° C. for 1 hour.

【0053】実施例6 実施例1における硝酸カルシウム42.2gの代りに硝
酸鉄202gを用いた以外は実施例1と同様にして白金
および酸化鉄を分散担持したチタニア粉末を得た。
Example 6 A titania powder carrying platinum and iron oxide dispersed therein was obtained in the same manner as in Example 1 except that 202 g of iron nitrate was used instead of 42.2 g of calcium nitrate in Example 1.

【0054】つぎに、この粉末150gと、アルミナ4
00gおよびジルコニア800gを混合して湿式粉砕
し、スラリー化した。得られたスラリーに、横断面積1
平方インチ当り約400個のオープンフローガス流通セ
ルを有する5.66インチ径×6.00インチ長の円筒
状のコージエライト製ハニカム担体を浸漬し、余分なス
ラリーを取除いたのち、150℃で2時間乾燥し、つい
で500℃で1時間焼成することにより、白金含有触媒
層で被覆した三次元構造体を調製した。
Next, 150 g of this powder and alumina 4
00 g and zirconia 800 g were mixed and wet-milled to form a slurry. The resulting slurry has a cross-sectional area of 1
A cylindrical cordierite honeycomb carrier having a diameter of 5.66 inches and a length of 6.00 inches having approximately 400 open flow gas flow cells per square inch was immersed in the honeycomb carrier to remove excess slurry, and then at 2 ° C at 150 ° C. A three-dimensional structure coated with a platinum-containing catalyst layer was prepared by drying for an hour and then firing at 500 ° C. for 1 hour.

【0055】つぎに、実施例5と同様にして2段目の触
媒層を調製した。
Then, a second stage catalyst layer was prepared in the same manner as in Example 5.

【0056】比較例1 実施例1と同様にして、白金と酸化カルシウムを分散担
持したチタニア粉末を得た。つぎに、ロジウムを1.0
g含有する硝酸ロジウムを脱イオン水に溶解した水溶液
中にアルミナ400gを投入して十分かきまぜた後、1
50℃で2時間乾燥し、ついで500℃で1時間焼成し
てロジウムを分散担持させたアルミナ粉末を得た。
Comparative Example 1 In the same manner as in Example 1, a titania powder carrying platinum and calcium oxide dispersed therein was obtained. Next, add rhodium to 1.0
After adding 400 g of alumina to an aqueous solution of rhodium nitrate containing g in deionized water and thoroughly stirring, 1
It was dried at 50 ° C. for 2 hours and then calcined at 500 ° C. for 1 hour to obtain an alumina powder carrying rhodium dispersed therein.

【0057】白金と酸化カルシウムを分散担持したチタ
ニア粉末120g、ロジウムを分散したアルミナ粉末4
01g、チタニア粉末1000gおよび酸化ガリウム2
0gを混合して湿式粉砕してスラリー化した。得られた
スラリーに、横断面積1平方インチ当り約400個のオ
ープンフローガス流通セルを有する5.66インチ径×
6.00インチ長の円筒状のコージエライト製ハニカム
担体を浸漬し、余分なスラリーを取除いたのち、150
℃で2時間乾燥し、ついで500℃で1時間焼成するこ
とにより触媒を調製した。
120 g of titania powder carrying platinum and calcium oxide dispersed therein, and alumina powder 4 carrying rhodium dispersed therein
01 g, titania powder 1000 g and gallium oxide 2
0 g was mixed and wet pulverized to form a slurry. 5.66 inch diameter with about 400 open flow gas flow cells per square inch cross section in the resulting slurry x
After immersing a 6.00 inch long cylindrical cordierite honeycomb carrier to remove excess slurry, 150
A catalyst was prepared by drying at 2 ° C. for 2 hours and then calcining at 500 ° C. for 1 hour.

【0058】比較例2 比表面積が110m2 /gのジルコニア粉末800g
を、硝酸銅540gを脱イオン水に溶解して調製した水
溶液に投入して十分攪拌した後、150℃で2時間乾燥
し、さらに500℃で1時間焼成し、銅を分散担持した
ジルコニア粉末を得た。このようにして得られた粉末を
湿式粉砕してスラリー化した。
Comparative Example 2 800 g of zirconia powder having a specific surface area of 110 m 2 / g
Was added to an aqueous solution prepared by dissolving 540 g of copper nitrate in deionized water, thoroughly stirred, dried at 150 ° C. for 2 hours, and further calcined at 500 ° C. for 1 hour to obtain a zirconia powder carrying copper dispersed therein. Obtained. The powder thus obtained was wet pulverized into a slurry.

【0059】このスラリーに横断面1平方インチ当たり
約400個のオープンフローのガス流通セルを有する
5.66インチ径×6.00インチ長の円筒状のコージ
ェライト製ハニカム担体を浸漬して余分なスラリーを取
り除いた後、150℃で2時間乾燥し、ついで500℃
で1時間焼成して触媒を得た。
A cylindrical honeycomb carrier made of cordierite having a diameter of 5.66 inches and a length of 6.00 inches having approximately 400 open-flow gas flow cells per square inch in cross section was dipped in this slurry to make an excess. After removing the slurry, it was dried at 150 ° C for 2 hours and then 500 ° C.
It was calcined for 1 hour to obtain a catalyst.

【0060】比較例3 カルシウム、ガリウムおよびロジウムを用いない以外は
実施例1と同様にして触媒を調製した。
Comparative Example 3 A catalyst was prepared in the same manner as in Example 1 except that calcium, gallium and rhodium were not used.

【0061】比較例4 ジルコニア、硝酸銅の他に白金8.9gを含む塩化白金
酸水溶液を用い、他は比較例2と同様にして触媒を調製
した。
Comparative Example 4 A catalyst was prepared in the same manner as in Comparative Example 2 except that an aqueous chloroplatinic acid solution containing 8.9 g of platinum was used in addition to zirconia and copper nitrate.

【0062】以上の実施例1〜6および比較1〜4で得
られた触媒の組成を表1および表2に示す。なお、表1
および表2中の数値は、三次元構造体1リットル当りの
使用量(g)を表わす。
The compositions of the catalysts obtained in the above Examples 1 to 6 and Comparatives 1 to 4 are shown in Tables 1 and 2. In addition, Table 1
The numerical values in Table 2 represent the amount used (g) per liter of the three-dimensional structure.

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【表2】 [Table 2]

【0065】実施例7 (触媒の評価)実施例1〜6および比較例1〜4で得ら
れた触媒のディーゼルエンジン排ガス浄化性能を下記方
法により評価した。この方法においては、過給直噴式デ
ィーゼルエンジン(4気筒、2800cc)および燃料
として硫黄含有量が0.06重量%である軽油を用い
た。
Example 7 (Evaluation of catalyst) The diesel engine exhaust gas purification performance of the catalysts obtained in Examples 1 to 6 and Comparative Examples 1 to 4 was evaluated by the following method. In this method, a supercharged direct injection diesel engine (4 cylinders, 2800 cc) and diesel fuel having a sulfur content of 0.06 wt% were used as fuel.

【0066】触媒を、上記エンジンからの排ガス管に取
り付けエンジン回転数2500rpm全負荷および触媒
入口温度700℃の条件下で100時間の耐久試験を実
施した。
The catalyst was attached to the exhaust gas pipe from the above engine, and a durability test was carried out for 100 hours under the conditions of an engine speed of 2500 rpm full load and a catalyst inlet temperature of 700 ° C.

【0067】つぎに、エンジン回転数2000rpm、
触媒入口200℃の条件下で1時間触媒を換気した後、
トルクを変更し、エンジン回転数2000rpm、触媒
入口温度が250℃、300℃、350℃、400℃お
よび450℃で触媒床に入る前(入口)および触媒床を
出た後(出口)での排ガス中のNOおよび微粒子物質
の含有量を測定しそれぞれの浄化率を求めた。
Next, the engine speed is 2000 rpm,
After ventilating the catalyst for 1 hour under the condition of the catalyst inlet 200 ° C.,
Exhaust gas before entering the catalyst bed (inlet) and after exiting the catalyst bed (outlet) when the engine speed is 2000 rpm and the catalyst inlet temperature is 250 ° C, 300 ° C, 350 ° C, 400 ° C and 450 ° C by changing the torque. The contents of NO x and fine particles in the powder were measured and the respective purification rates were obtained.

【0068】なお、NOの還元剤として用いる軽油
を、燃料として消費する量の3%になる割合で触媒の入
口に注入した。NOおよび微粒子物質の浄化率は、こ
のようにして軽油を添加しない場合の入口濃度を基にし
て実際の出口濃度との比から求めた。
Light oil used as a NO x reducing agent was injected into the catalyst inlet at a rate of 3% of the amount consumed as fuel. The purification rates of NO x and particulate matter were obtained from the ratio with the actual outlet concentration based on the inlet concentration in the case where light oil was not added in this way.

【0069】以上の結果を表3〜4および図1〜4に示
す。
The above results are shown in Tables 3 to 4 and FIGS.

【0070】[0070]

【表3】 [Table 3]

【0071】[0071]

【表4】 [Table 4]

【0072】[0072]

【発明の効果】発明においては、白金含有触媒層と銅含
有触媒層とを組合わせて用いることにより、図1〜4に
示すように、広い温度領域でNOを効率よく分解、低
減するという効果があるので、実用上有利である。しか
も、これらの触媒は、微粒子物質を抑制し、また高温で
の耐久性にも優れているため、ディーゼルエンジン排ガ
ス浄化用触媒として極めて有用である。
INDUSTRIAL APPLICABILITY In the present invention, by using a platinum-containing catalyst layer and a copper-containing catalyst layer in combination, NO x can be efficiently decomposed and reduced in a wide temperature range as shown in FIGS. Since it has an effect, it is practically advantageous. Moreover, since these catalysts suppress particulate matter and have excellent durability at high temperatures, they are extremely useful as catalysts for purifying diesel engine exhaust gas.

【0073】比較例1の触媒では、銅含有層がないが、
その場合、高温側でのNO浄化能が低い。
The catalyst of Comparative Example 1 has no copper-containing layer,
In that case, the NO x purification capacity on the high temperature side is low.

【0074】比較例2の触媒では、白金含有層を用いて
おらず、そのため低温側でのNO浄化能が低い。
The catalyst of Comparative Example 2 does not use the platinum-containing layer, and therefore has a low NO x purification ability on the low temperature side.

【0075】比較例3の触媒では、白金とともに用いる
添加成分およびロジウムを用いていない。そのため、硫
酸根の生成が抑制されず、微粒子物質の浄化率が低い。
In the catalyst of Comparative Example 3, the additive component used with platinum and rhodium were not used. Therefore, the generation of sulfate is not suppressed, and the purification rate of the particulate matter is low.

【0076】比較例4の触媒では、白金と銅を同一の触
媒層中に含有させて用いるが、NO浄化率は低い。
In the catalyst of Comparative Example 4, platinum and copper are contained in the same catalyst layer and used, but the NO x purification rate is low.

【0077】このように、本発明者らは、これまでに得
た知見において、白金と銅が互いに近傍に存在すると、
NO分解活性が低下することを見出したため、本発明
では、白金含有層と銅含有層を分解して用いている。
As described above, the inventors of the present invention have found that when platinum and copper are present in the vicinity of each other,
Since it has been found that the NO x decomposition activity decreases, the platinum-containing layer and the copper-containing layer are decomposed and used in the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明の実施例および比較例の触媒におけ
る触媒入口温度とNO浄化率との関係を示すグラフで
ある。
FIG. 1 is a graph showing the relationship between the catalyst inlet temperature and the NO x purification rate in the catalysts of Examples and Comparative Examples of the present invention.

【図2】は、本発明の実施例および比較例の触媒におけ
る触媒入口温度と微粒子物質浄化率との関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the catalyst inlet temperature and the particulate matter purification rate in the catalysts of Examples and Comparative Examples of the present invention.

【図3】は、本発明の他の実施例および比較例の触媒に
おける触媒入口温度とNO浄化率との関係を示すグラ
フである。
FIG. 3 is a graph showing the relationship between the catalyst inlet temperature and the NO x purification rate in the catalysts of other examples and comparative examples of the present invention.

【図4】は、本発明の他の実施例および比較例の触媒に
おける触媒入口温度と微粒子物質浄化率との関係を示す
グラフである。
FIG. 4 is a graph showing the relationship between the catalyst inlet temperature and the particulate matter purification rate in the catalysts of other examples and comparative examples of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/60 ZAB B01J 37/02 ZAB 23/64 ZAB 301L 37/02 ZAB B01D 53/36 ZAB 301 102B 102A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location B01J 23/60 ZAB B01J 37/02 ZAB 23/64 ZAB 301L 37/02 ZAB B01D 53/36 ZAB 301 102B 102A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 (A)白金と、タングステン、アンチモ
ン、モリブデン、ニッケル、バナジウム、マンガン、
鉄、ビスマス、コバルト、亜鉛およびアルカリ土類金属
よりなる群から選ばれた少なくとも1種の金属の触媒活
性酸化物とを第1の耐火性無機酸化物粉末に担持してな
る白金担持耐火性無機酸化物粉末および(B)第2の耐
火性無機酸化物粉末よりなる第1の触媒組成物を耐火性
三次元構造体に被覆し、このようにして形成される触媒
成分担持層上に、(C)銅およびロジウムを第3の耐火
性無機酸化物粉末に担持してなる第2の触媒組成物を被
覆してなる窒素酸化物分解用触媒。
1. (A) platinum and tungsten, antimony, molybdenum, nickel, vanadium, manganese,
Platinum-supported refractory inorganic material comprising a first refractory inorganic oxide powder and a catalytically active oxide of at least one metal selected from the group consisting of iron, bismuth, cobalt, zinc and alkaline earth metals. A first catalyst composition comprising an oxide powder and (B) a second refractory inorganic oxide powder is coated on a refractory three-dimensional structure, and a catalyst component-supporting layer thus formed is C) A catalyst for decomposing nitrogen oxides, which is obtained by coating a second catalyst composition in which copper and rhodium are supported on a third refractory inorganic oxide powder.
【請求項2】 該第1の触媒組成物に対して該白金担持
耐火性無機酸化物粉末(A)が0.1〜50重量%使用
されてなる請求項1に記載の窒素酸化物分解用触媒。
2. The decomposition of nitrogen oxides according to claim 1, wherein the platinum-supported refractory inorganic oxide powder (A) is used in an amount of 0.1 to 50% by weight based on the first catalyst composition. catalyst.
【請求項3】 第1の触媒組成物および第2の触媒組成
物よりなる群から選ばれた少なくとも1種の触媒組成物
の担持層中に該耐火性三次元構造体1リットル当り酸化
ガリウムを0.1〜15g含有してなる請求項1または
2に記載の窒素酸化物分解用触媒。
3. Gallium oxide per liter of the refractory three-dimensional structure in a carrier layer of at least one catalyst composition selected from the group consisting of a first catalyst composition and a second catalyst composition. The catalyst for decomposing nitrogen oxides according to claim 1 or 2, which comprises 0.1 to 15 g.
【請求項4】 排ガス中のHC/NO比がモル比で
0.5〜20(HCはメタン換算濃度)であるディーゼ
ルエンジン排ガスを請求項1〜3のいずれか一つに記載
の触媒に接触させることを特徴とするディーゼルエンジ
ン排ガス中の窒素酸化物の除去方法。
4. The catalyst according to claim 1, wherein a diesel engine exhaust gas having a molar ratio of HC / NO x in the exhaust gas of 0.5 to 20 (HC is a methane conversion concentration) is used. A method for removing nitrogen oxides from exhaust gas of a diesel engine, which is characterized by bringing them into contact with each other.
【請求項5】 ディーゼルエンジン排ガス中に還元剤を
注入し、該排ガスを請求項1〜3のいずれか一つに記載
の触媒と接触させることを特徴とする窒素酸化物の除去
方法。
5. A method for removing nitrogen oxides, which comprises injecting a reducing agent into the exhaust gas of a diesel engine and bringing the exhaust gas into contact with the catalyst according to any one of claims 1 to 3.
【請求項6】 該還元剤を注入する排ガスの温度が20
0〜500℃である請求項5に記載の窒素酸化物の除去
方法。
6. The temperature of the exhaust gas injected with the reducing agent is 20.
The method for removing nitrogen oxides according to claim 5, which is 0 to 500 ° C.
【請求項7】 該還元剤が軽油である請求項4〜6のい
ずれか一つに記載の窒素酸化物の除去方法。
7. The method for removing nitrogen oxides according to claim 4, wherein the reducing agent is light oil.
JP7064083A 1995-03-23 1995-03-23 Catalyst for decomposition of nitrogen oxide and method for removing nitrogen oxide in exhaust gas from diesel engine by using the same Pending JPH08257405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7064083A JPH08257405A (en) 1995-03-23 1995-03-23 Catalyst for decomposition of nitrogen oxide and method for removing nitrogen oxide in exhaust gas from diesel engine by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7064083A JPH08257405A (en) 1995-03-23 1995-03-23 Catalyst for decomposition of nitrogen oxide and method for removing nitrogen oxide in exhaust gas from diesel engine by using the same

Publications (1)

Publication Number Publication Date
JPH08257405A true JPH08257405A (en) 1996-10-08

Family

ID=13247843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7064083A Pending JPH08257405A (en) 1995-03-23 1995-03-23 Catalyst for decomposition of nitrogen oxide and method for removing nitrogen oxide in exhaust gas from diesel engine by using the same

Country Status (1)

Country Link
JP (1) JPH08257405A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002513670A (en) * 1998-05-06 2002-05-14 シーメンス アクチエンゲゼルシヤフト Oxidation catalyst and catalyst oxidation method
WO2015005423A1 (en) * 2013-07-10 2015-01-15 株式会社キャタラー Catalyst for exhaust gas purification
EP2085139A4 (en) * 2006-10-31 2017-04-05 Cataler Corporation Exhaust gas purifying catalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002513670A (en) * 1998-05-06 2002-05-14 シーメンス アクチエンゲゼルシヤフト Oxidation catalyst and catalyst oxidation method
EP2085139A4 (en) * 2006-10-31 2017-04-05 Cataler Corporation Exhaust gas purifying catalyst
WO2015005423A1 (en) * 2013-07-10 2015-01-15 株式会社キャタラー Catalyst for exhaust gas purification
CN105377421A (en) * 2013-07-10 2016-03-02 株式会社科特拉 Catalyst for exhaust gas purification
JP6041988B2 (en) * 2013-07-10 2016-12-14 株式会社キャタラー Exhaust gas purification catalyst
US9616410B2 (en) 2013-07-10 2017-04-11 Cataler Corporation Exhaust gas purifying catalyst
CN105377421B (en) * 2013-07-10 2018-08-24 株式会社科特拉 Exhaust gas purification catalyst

Similar Documents

Publication Publication Date Title
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
CA2223458C (en) Catalyst for purifying exhaust gas and a process for purifying exhaust gas
JPH0653229B2 (en) Exhaust gas purification catalyst
JP2891609B2 (en) Diesel engine exhaust gas purification catalyst
JPH1033985A (en) Catalyst for purifying exhaust gas from diesel engine
EP0701859B1 (en) Catalyst for decomposition of nitrogen oxides and method for purifying diesel engine exhaust gas by the use of the catalyst
JP2001079402A (en) Exhaust gas cleaning catalyst and its production
JPH08131830A (en) Catalyst for purification of exhaust gas
JP2825420B2 (en) Diesel engine exhaust gas purification catalyst
JP3227074B2 (en) Exhaust gas purification catalyst and exhaust gas purification method for lean burn and stoichiometric internal combustion engines
JP4301348B2 (en) Nitrogen oxide decomposition catalyst and diesel engine exhaust gas purification method using the same
JP2577757B2 (en) Diesel exhaust gas purification catalyst
JPH08257405A (en) Catalyst for decomposition of nitrogen oxide and method for removing nitrogen oxide in exhaust gas from diesel engine by using the same
JP3764760B2 (en) Catalyst for purifying exhaust gas from lean burn engine and purification method
JP3408905B2 (en) Diesel engine exhaust gas purification catalyst and diesel engine exhaust gas purification method
JPH06198178A (en) Catalyst for purification of exhaust gas
JPH11123331A (en) Catalyst for cleaning exhaust gas
JP3805079B2 (en) Diesel engine exhaust gas purification catalyst and purification method
JP3771608B2 (en) Diesel engine exhaust gas purification catalyst and diesel engine exhaust gas purification method using the same
JP2002177788A (en) Exhaust gas cleaning catalyst and its manufacturing method
JP4106762B2 (en) Exhaust gas purification catalyst device and purification method
JP3503073B2 (en) Catalyst for purifying diesel engine exhaust gas
JP3854325B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH05115789A (en) Member for cleaning exhaust gas and method for cleaning exhaust gas
JPH0910585A (en) Catalyst for exhaust gas purification