JP4600710B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP4600710B2
JP4600710B2 JP2000372119A JP2000372119A JP4600710B2 JP 4600710 B2 JP4600710 B2 JP 4600710B2 JP 2000372119 A JP2000372119 A JP 2000372119A JP 2000372119 A JP2000372119 A JP 2000372119A JP 4600710 B2 JP4600710 B2 JP 4600710B2
Authority
JP
Japan
Prior art keywords
noble metal
catalyst
exhaust gas
powder
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000372119A
Other languages
Japanese (ja)
Other versions
JP2002177788A (en
Inventor
伸司 山本
広憲 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000372119A priority Critical patent/JP4600710B2/en
Publication of JP2002177788A publication Critical patent/JP2002177788A/en
Application granted granted Critical
Publication of JP4600710B2 publication Critical patent/JP4600710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排気ガス浄化用触媒に係り、更に詳細には、内燃機関のエンジン始動直後から350℃以下の酸素過剰雰囲気下において、排気ガスを浄化し、特に排気ガス中の炭化水素、一酸化炭素及び有機溶媒可溶成分を高効率で浄化する排気ガス浄化用触媒に関するものである。
【0002】
【従来の技術】
従来から、内燃機関の排気ガス中の炭化水素(HC)、一酸化炭素(CO)等の浄化を目的に、貴金属を浄化成分に用いた排気ガス浄化用触媒が開発されている。特に、ディーゼルエンジン排気ガス中のHC、CO及び有機溶媒可溶成分(SOF)の浄化を目的として、ガソリン車で使われているような通常のモノリス型触媒の開発が進められている。
【0003】
一般に、ディーゼルエンジン排気ガス浄化用触媒としては、(1)HC、COのほかSOFなどの有害成分の低温からの浄化除去効率が高いこと、(2)燃料として用いる軽油中に多量に含まれる硫黄成分から発生する二酸化硫黄(SO)の三酸化硫黄(SO)への酸化能が低く、且つサルフェート(二酸化硫黄が酸化されて三酸化硫黄や硫酸ミストになったもの)の生成が抑制できること、(3)活性成分の硫黄成分による性能低下が小さいこと、(4)触媒表面に粒子状物質が付着した場合でも性能低下が小さいこと、(5)高負荷での連続運転下でも耐えられる、いわゆる高温耐久性が高いこと、という性能を有する触媒が望まれている。
【0004】
また、従来から、HC、CO及びSOF、炭素系粒子状物質などの燃焼除去効率を高める目的で種々の提案がなされている。例えば、特開昭55−24597号公報には、白金族元素系触媒として、ロジウム(7.5%)白金合金、白金/パラジウム(50/50)混合物、酸化タンタルまたは酸化セリウム上にパラジウムを担持したもの、更にはパラジウムと75%以下の白金とから成る合金等が開示されている。
【0005】
その他に、特開昭61−129030号公報、特開昭61−149222号公報及び特開昭61−146314号公報には、パラジウムとロジウムとを主な活性成分とし、さらに、アルカリ金属、アルカリ土類金属、銅、ランタン、亜鉛及びマンガンなどを添加した触媒組成物が開示され、また、特開昭59−82944号公報には、銅、アルカリ金属、モリブデン又はバナジウム及びこれらの任意の組み合せに係る金属とを組合せた触媒組成物が開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、上述のような従来の触媒は、ディーゼルエンジン排気ガスの低温・酸素過剰雰囲気下におけるHC、CO及びSOFの除去、低温域で微粒子状物質が付着した際の活性低下の抑制、又は硫黄による活性成分の性能低下抑制などが不十分であるという課題があった。即ち、ディーゼルエンジン排気ガス浄化用触媒として、HC、CO及びSOFを高効率で浄化できる触媒は未だ見出されていない。
【0007】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、ディーゼルエンジン排気ガスを始めとする内燃機関の排気ガス中のHC、CO及びSOFを効率良く浄化できる排気ガス浄化用触媒を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を行った結果、特定の耐熱性無機酸化物担体上に、異なる粒径の貴金属粒子を混在させることにより、上記課題が解決できることを見出し、本発明を完成するに至った。
【0009】
即ち、本発明の排気ガス浄化用触媒は、一体構造型担体上に触媒成分を被覆して成る排気ガス浄化用触媒であって、上記触媒成分が、HC吸着材と、耐熱性無機酸化物担体に担持された貴金属とを含有し、上記耐熱性無機酸化物担体が、式:W Zr 1−X (式中のWはタングステン、Xは0.05〜0.25を示す)及び式:S Zr 1−X (式中のSは硫黄、Xは0.05〜0.25を示す)で表されるジルコニウム酸化物、並びにアナターゼ型構造を含む100nm以下の粒径を有するチタニウム酸化物から成る群から選ばれる少なくとも1種の酸化物を含有して成り、上記貴金属は、貴金属塩の水溶液にクエン酸、酢酸及び蓚酸から成る群より選ばれた少なくとも1種の有機酸を含有させ、貴金属と有機酸のモル比(有機酸の総モル数/貴金属のモル数)を0.25〜2.0として耐熱性無機酸化物担体に担持されていると共に、粒径の異なる貴金属粒子が混在していることを特徴とする。
【0010】
また、本発明の排気ガス浄化用触媒の好適形態は、上記貴金属の粒径が、直径1nm以上5nm未満である小粒子と、5nm以上20nm以下である大粒子を含むことを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明について詳細に説明する。なお、「%」は特記しない限り、質量百分率を示す。
本発明の排気ガス浄化用触媒は、一体構造型担体上に触媒成分を被覆して成る。
この触媒成分は、HC吸着材と、耐熱性無機酸化物担体に担持された貴金属とを含有し、この貴金属としては、白金(Pt)、パラジウム(Pd)やロジウム(Rh)等が挙げられ、これら貴金属は、排気ガス中のCO、HC、窒素酸化物(NOx)やSOF成分等の酸化還元反応を促進する。特に、ディーゼルエンジン排気ガス浄化用触媒においては、Ptを用いることが好ましい。
【0013】
上記貴金属は、微粒子の形で上記耐熱性無機酸化物に担持されているが、この粒子には異なる粒径のものが混在しており、小粒子(DS)と大粒子(DL)に分けることができる。透過型電子顕微鏡(TEM)による測定で、粒径が1nm以上5nm未満の粒子をDS、5nm以上20nm以下の粒子をDLとし、これらが分散担持されていることが好ましい。
このように、上記耐熱性無機酸化物担体上にDSとDLを共存させることにより、DS上では、COの酸化反応が起こりやすく、DLでは未燃焼HCの酸化反応が起こりやすくなる。
【0014】
また、上記耐熱性無機酸化物担体にDSとDLが担持された状態で、TEMでDSとDLによって占められる面積を測定したときに、DSの総面積/DLの総面積=1/4〜4/1であることが好ましい。即ち、上記耐熱性無機酸化物担体を上から見て平面上に貴金属粒子を投影した場合のDSとDLの総面積比、更に言い換えれば、DSとDLを球冠状に切断した場合のDSとDLの総断面積比が1/4〜4/1であることが好ましい。DSとDLとの面積比が上記範囲をはずれると、低温・酸素過剰雰囲気下におけるHC、CO及びSOFの除去効率が低下してしまうことがある。
具体的には、DS/DLが1/4未満では、DSが少ないため、HC・CO浄化は主にDL上で行われると推察され、十分なHC・CO浄化性能が発揮されない。DS/DLが1/1では、DS上とDL上の両方でHC・CO浄化が行われ、且つDLがヒートスポットとなり、排気ガスが低温で触媒が暖まりにくくても、浄化活性を保つことができる。また、DS/DLが4/1を超えると、DLに対しDSが多すぎて、DLのヒートスポット効果が薄れてしまい、触媒が暖まりにくく、十分なHC・CO浄化性能が得られないことがある。
【0015】
また、上記触媒成分は、上述の如く、HC吸着材も含有し、エンジン始動直後から200℃以下の低温域では、このHC吸着材に優先的に液状のSOFが捕捉される。また、上記触媒成分中にこのHC吸着材と上記貴金属粒子が共存することにより、上記貴金属粒子上にSOFが吸着してしまうのを防止して貴金属粒子の活性開始の悪化を抑制することができるとともに、上記Pt等の貴金属と未燃焼HC及びCOとの浄化反応の発現を促進することができる。
更に、未燃焼のHCの酸化反応が起こるDLは、ヒートスポットとなり、上記HC吸着材に捕捉されたSOFの酸化反応を促進することができると推測される。 このように、触媒中にHC、CO及びSOFの酸化反応が発現しやすい反応場を設けることにより、低温・酸素過剰雰囲気下においてもHC、CO及びSOFを効率良く除去できる。
【0016】
また、上記HC吸着材は、ZSM5、モルデナイト、USY又はβ−ゼオライト及びこれらの任意の組み合わせに係るゼオライトであることが好ましい。エンジン始動直後から200℃以下の低温域でも、液状のSOFを優先的にHC吸着材に捕捉させることができる。
更に、上記ゼオライトの含有率は、該触媒成分の50%〜90%であることが好ましい。含有率が50%未満ではHC吸着材としての効果が十分に発現せず、90%を越えるとHC吸着材としての効果が飽和し、これ以上増量しても効果が上がらないことがある。また、該含有率の範囲内にあれば、SOFの捕捉効率を上げ、上記Pt等の貴金属粒子上へのSOFを吸着を抑制し、上記貴金属とCO・未燃焼HCとの浄化反応を促進することができる。
【0017】
また、上記触媒成分に含有される該耐熱性無機酸化物担体は、ジルコニウム酸化物及び/又は後述するようなチタニウム酸化物を含有して成るものが用いられる。具体的には、次式(1)
Zr1−X ・・・ (1)
(式中のWはタングステン、Xは0.05〜0.25を示す)
で表されるジルコニウム酸化物とすることができる。Xは0.05〜0.25が好ましく、0.05未満ではWの効果が十分に発現せず、逆に、0.25を越えるとWの効果が飽和してしまうことがある。
更に、上記耐熱性無機酸化物担体は、次式(2)
Zr1−X ・・・ (2)
(式中のSは硫黄、Xは0.05〜0.25を示す)
で表されるジルコニウム酸化物を用いることもでき、これらのジルコニウム酸化物を混合して用いてもかまわない。Xは式(1)のジルコニウム酸化物と同様、0.05〜0.25が好ましく、0.05未満ではSの効果が十分に発現せず、逆に、0.25を越えるとSの効果が飽和してしまうことがある。
上記耐熱性無機酸化物担体にこれらのジルコニウム酸化物を用いることにより、低温・酸素過剰雰囲気下であっても、活性点であるPt等の貴金属粒子上に吸着し難いHC成分を、優先的に吸着させ、酸化除去することができる。
【0018】
更に、上記耐熱性無機酸化物担体は、アナターゼ型構造を含む粒径100nm以下のチタニウム酸化物(二酸化チタン)を用いることもでき、該チタニウム酸化物の50%以上がアナターゼ型構造であることが好ましい。チタニウム酸化物を用いることにより、低温・酸素過剰雰囲気下において、活性点であるPt等の貴金属粒子上でCOの低温酸化・除去できる。また、粒径が100nmを越えると酸化チタンの低温CO酸化反応の促進効果が低下し、アナターゼ型構造の含有率が50%未満になると低温CO酸化反応の促進効果が低下してしまうことがある。
【0019】
本発明の排気ガス浄化用触媒を製造するに当たり、上記耐火性無機酸化物担体に上記貴金属を担持する際に、水溶性貴金属塩の水溶液に、クエン酸、酢酸又は蓚酸及びこれらの任意の組み合わせに係る有機酸を含有させ、上記貴金属と該有機酸のモル比が、有機酸の総モル数/貴金属のモル数=0.25〜2.0であることが好ましい。
上記耐火性無機酸化物担体に貴金属粒子を担持させるには、通常、貴金属の水溶液を作り、それを上記耐火性無機酸化物担体にしみ込ませてから乾燥、焼成し、貴金属だけを残す方法が採られる。上記モル比で上記貴金属水溶液に該有機酸を含有させると、上述のDSとDLの面積比が1/4〜4/1になるように貴金属の担持をコントロールできる。上記モル比が2.0を越えると有機酸の分解燃焼時の発熱が大きく、貴金属粒子径の分布が所定の範囲に設定できず、0.25未満では有機酸の効果が十分に発現せず、同様に貴金属粒子径の分布が所定の範囲に設定できないことがある。
【0020】
また、上記触媒成分の総担持量は、耐火性モノリス担体1リットル当たり、10〜350g/Lが好ましく、さらに、上記HC吸着材の担持量は5〜200g/L、上記耐熱性無機酸化物担体の担持量は1〜200g/L、上記貴金属の担持量は0.1〜10g/Lであることが好ましい。
【0021】
なお、上記一体構造型担体には、耐熱性材料から成る担体構造体が好ましく、例えばセラミック製のオープンフロー又はウォールフローの担体構造体、SiC製担体やメタル製担体でも使用できる。
【0022】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0023】
(実施例1)
平均粒子径が30nmの酸化チタン(アナターゼ型構造が80%以上)粉末に、ジニトロジアンミン酸白金とクエン酸を溶解した水溶液(有機酸の総モル数/白金モル数=1.0)を含浸し、150℃で24時間乾燥した後、300℃で1時間、次いで、600℃で1時間焼成し、Pt担持酸化チタン粉末(粉末a)を得た。この粉末aのPt濃度は15.0%であった。
上記Pt担持酸化チタン粉末(粉末a)267g、β−ゼオライト粉末1000g、活性アルミナ粉末483g、硝酸酸性アルミナゾル50g(ベーマイトアルミナ10%に10%の硝酸を添加することによって得られたゾル)及び純水2000gを磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このスラリー液をコージェライト質モノリス担体(400セル/8ミル、1.3L)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて乾燥し、400℃で1時間焼成し、コート層重量180g/Lになるまでコーティング作業を繰り返し、本例の触媒−aを得た。
【0024】
(実施例2)
平均粒子径が30nmの酸化チタン(アナターゼ型構造が80%以上)粉末に、ジニトロジアンミン酸白金とクエン酸を溶解した水溶液(有機酸の総モル数/白金モル数=1.0)を含浸し、150℃で24時間乾燥した後、300℃で1時間、次いで、600℃で1時間焼成し、Pt担持酸化チタン粉末(粉末b)を得た。この粉末bのPt濃度は5.0%であった。
上記Pt担持酸化チタン粉末(粉末b)800g、β−ゼオライト粉末980g、硝酸酸性アルミナゾル20g(ベーマイトアルミナ10%に10%の硝酸を添加することによって得られたゾル)及び純水2000gを磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このスラリー液をコージェライト質モノリス担体(400セル/8ミル、1.3L)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて乾燥し、400℃で1時間焼成し、コート層重量180g/Lになるまでコーティング作業を繰り返し、本例の触媒−bを得た。
【0025】
(実施例3)
有機酸の総モル数/白金モル数=1.5とした以外は、実施例1と同様の操作を繰り返し、本例の触媒−cを得た。
【0026】
(実施例4)
有機酸の総モル数/白金モル数=2.0とした以外は、実施例1と同様の操作を繰り返し、本例の触媒−dを得た。
【0027】
(実施例5)
有機酸の総モル数/白金モル数=0.5とした以外は、実施例1と同様の操作を繰り返し、本例の触媒−eを得た。
【0028】
(実施例6)
平均粒子径が30nmの酸化チタン(アナターゼ型構造が80%以上)粉末の代わりに、W0.1Zr0.9粉末を用い、ジニトロジアンミン酸白金とクエン酸を溶解した水溶液(有機酸の総モル数/白金モル数=1.0)を含浸し、150℃で24時間乾燥した後、300℃で1時間、次いで、600℃で1時間焼成し、Pt担持酸化ジルコニウム粉末(粉末c)を得た。この粉末cのPt濃度は15.0%であった。
上記Pt担持酸化ジルコニウム粉末(粉末c)267g、β−ゼオライト粉末1000g、活性アルミナ粉末483g、硝酸酸性アルミナゾル50g(ベーマイトアルミナ10%に10%の硝酸を添加することによって得られたゾル)及び純水2000gを磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このスラリー液をコージェライト質モノリス担体(400セル/8ミル、1.3L)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて乾燥し、400℃で1時間焼成し、コート層重量180g/Lになるまでコーティング作業を繰り返し、本例の触媒−fを得た。
【0029】
(実施例7)
0.1Zr0.9粉末の代わりに、S0.1Zr0.9粉末を用いた以外は、実施例6と同様の操作を繰り返して、本例の触媒−gを得た。
【0030】
(実施例8)
β−ゼオライト粉末1000gの代わりに、β−ゼオライト粉末700g、ZSM5粉末300gを用いた以外は、実施例1と同様の操作を繰り返して、本例の触媒−hを得た。
【0031】
(実施例9)
β−ゼオライト粉末1000gの代わりに、β−ゼオライト粉末400g、モルデナイト粉末200g、ZSM5粉末200g、USY粉末200gを用いた以外は、実施例1と同様の操作を行い、本例の触媒−iを得た。
【0032】
(実施例10)
粉末a267gの代わりに、粉末a134gとPt15.0%担持ZrO粉末134gを用いた以外は、実施例1と同様の操作を行い、本例の触媒−jを得た。
【0033】
(実施例11)
粉末a267gの代わりに、粉末a134gとPt15.0%担持W0.1Zr0.9粉末134gを用いた以外は、実施例1と同様の操作を行い、本例の触媒−kを得た。
【0034】
(実施例12)
粉末a267gの代わりに、粉末a134gとPt15.0%担持S0.1Zr0.9粉末134gを用いた以外は、実施例1と同様の操作を行い、本例の触媒−lを得た。
【0035】
(実施例13)
粉末aの代わりに、粉末a220g、Pt1.0%担持β−ゼオライト粉末700gを用いた以外は、実施例1と同様の操作を行い、本例の触媒−mを得た。
【0036】
(実施例14)
β−ゼオライト粉末1000gの代わりに、β−ゼオライト粉末700gを用いた以外は、実施例1と同様の操作を行い、本例の触媒−nを得た。
【0037】
(実施例15)
β−ゼオライト粉末1000gの代わりに、β−ゼオライト粉末1500gを用いた以外は、実施例1と同様の操作を行い、本例の触媒−oを得た。
【0038】
(実施例16)
クエン酸の代わりに酢酸を用いた以外は、実施例1と同様の操作を行い、本例の触媒−pを得た。
【0039】
(実施例17)
クエン酸の代わりに蓚酸を用いた以外は、実施例1と同様の操作を行い、本例の触媒−qを得た。
【0040】
(実施例18)
平均粒径100nmの酸化チタンを用いた以外は、実施例1と同様の操作を行い、本例の触媒−rを得た。
【0041】
(比較例1)
β−ゼオライトを用いなかった以外は、実施例1と同様の操作を行い、本例の触媒−aaを得た。
【0042】
(比較例2)
粉末a267gの代わりにPt15%担持β−ゼオライト267gを用いた以外は、実施例1と同様の操作を行い、本例の触媒−bbを得た。
【0043】
(比較例3)
有機酸を用いなかった以外は、実施例1と同様の操作を行い、本例の触媒−ccを得た。
【0044】
(比較例4)
有機酸の総モル数/白金モル数=10とした以外は、実施例1と同様の操作を行い、本例の触媒−ddを得た。
【0045】
(比較例5)
平均粒径100nm、ルチル型構造の酸化チタンを用いた以外は、実施例1と同様の操作を行い、本例の触媒−eeを得た。
【0046】
上記各実施例及び比較例の排気ガス浄化用触媒の仕様を表1に示した。
【0047】
【表1】

Figure 0004600710
【0048】
上記各実施例及び比較例について、図1の評価システムを用いて、下記評価条件でHC、COの浄化特性評価(欧州のECE+EUDC)を行った。
【0049】
<耐久条件>
エンジン排気量 2500cc
燃料 JIS2号軽油
触媒入口ガス温度 600℃
耐久時間 100時間
【0050】
<性能評価条件>
触媒容量 触媒1.3L
評価車両 日産自動車株式会社製 V型6気筒 2.5Lディーゼルエンジン
【0051】
また、HC及びCOの浄化率については、次式▲3▼及び▲4▼
HC浄化率(%)
=([触媒入口HC濃度]−[触媒出口HC濃度])/[触媒入口HC濃度]×100…▲3▼
CO浄化率(%)
=([触媒入口CO濃度]−[触媒出口CO濃度])/[触媒入口CO濃度]×100…▲4▼
で示される式で求め、その結果を表2に示した。
【0052】
【表2】
Figure 0004600710
【0053】
上記各実施例は、上記各比較例と比べて、いずれも触媒活性が高く、未燃焼HC、CO及びSOFの低温からの浄化性能に優れ、ディーゼルエンジン排気ガス浄化用触媒として、HC、CO及びSOFを高効率で浄化することができることが確認できた。
【0054】
【発明の効果】
本発明の触媒は、特定の耐熱性無機酸化物担体上に、異なる粒径の貴金属粒子を混在させることとしたため、ディーゼルエンジン排気ガスを始めとする内燃機関の排気ガス中のHC、CO及びSOFを効率良く浄化できる触媒を提供することができる。
【図面の簡単な説明】
【図1】排気ガス浄化用触媒の評価システムを示すシステム構成図である。
【符号の説明】
1 エンジン
2 触媒[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purifying catalyst, and more particularly, purifies exhaust gas in an oxygen-excess atmosphere of 350 ° C. or less immediately after engine startup of an internal combustion engine, particularly hydrocarbons and monoxide in the exhaust gas. The present invention relates to an exhaust gas purifying catalyst that purifies carbon and organic solvent soluble components with high efficiency.
[0002]
[Prior art]
Conventionally, exhaust gas purification catalysts using precious metals as purification components have been developed for the purpose of purifying hydrocarbons (HC), carbon monoxide (CO), and the like in exhaust gas of internal combustion engines. In particular, for the purpose of purifying HC, CO and organic solvent soluble components (SOF) in diesel engine exhaust gas, development of a normal monolith type catalyst used in a gasoline vehicle is underway.
[0003]
In general, the diesel engine exhaust gas purification catalyst has (1) high purification and removal efficiency of toxic components such as SOF as well as HC and CO from low temperature, and (2) sulfur contained in a large amount in light oil used as fuel. The ability of sulfur dioxide (SO 2 ) generated from the components to be oxidized to sulfur trioxide (SO 3 ) is low, and the generation of sulfate (sulfur dioxide oxidized to sulfur trioxide or sulfuric acid mist) can be suppressed. (3) The performance degradation due to the sulfur component of the active component is small, (4) The performance degradation is small even when particulate matter adheres to the catalyst surface, (5) It can withstand even under continuous operation at high load, A catalyst having the performance of so-called high-temperature durability is desired.
[0004]
Conventionally, various proposals have been made for the purpose of improving the combustion removal efficiency of HC, CO and SOF, carbon-based particulate matter, and the like. For example, in Japanese Patent Application Laid-Open No. 55-24597, palladium is supported on a rhodium (7.5%) platinum alloy, a platinum / palladium (50/50) mixture, tantalum oxide or cerium oxide as a platinum group element-based catalyst. And alloys made of palladium and 75% or less of platinum are disclosed.
[0005]
In addition, JP-A-61-129030, JP-A-61-149222, and JP-A-61-146314 contain palladium and rhodium as main active ingredients, and further, alkali metals, alkaline earths. A catalyst composition to which a metal, copper, lanthanum, zinc, manganese and the like are added is disclosed, and JP-A-59-82944 relates to copper, alkali metal, molybdenum or vanadium and any combination thereof. A catalyst composition in combination with a metal is disclosed.
[0006]
[Problems to be solved by the invention]
However, conventional catalysts such as those described above remove HC, CO, and SOF from diesel engine exhaust gas in a low-temperature, oxygen-excess atmosphere, suppress the decrease in activity when particulate matter adheres in a low-temperature region, or are due to sulfur. There was a problem that the performance degradation of the active ingredient was insufficiently suppressed. That is, as a diesel engine exhaust gas purifying catalyst, a catalyst capable of purifying HC, CO and SOF with high efficiency has not been found yet.
[0007]
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to efficiently use HC, CO, and SOF in exhaust gas of an internal combustion engine such as diesel engine exhaust gas. An object of the present invention is to provide an exhaust gas purification catalyst that can be well purified.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by mixing noble metal particles having different particle diameters on a specific heat-resistant inorganic oxide support, The present invention has been completed.
[0009]
That is, the exhaust gas purification catalyst of the present invention is an exhaust gas purification catalyst obtained by coating a catalyst component on a monolithic structure type carrier, and the catalyst component includes an HC adsorbent, a heat-resistant inorganic oxide carrier, and the like. And the above heat-resistant inorganic oxide support has the formula: W X Zr 1-X O 2 (W is tungsten, X is 0.05 to 0.25) and A particle size of 100 nm or less including a zirconium oxide represented by the formula: S X Zr 1-X O 2 (wherein S represents sulfur and X represents 0.05 to 0.25) and an anatase type structure. And at least one organic acid selected from the group consisting of citric acid, acetic acid and oxalic acid in an aqueous solution of a noble metal salt. The molar ratio of noble metal to organic acid The total number of moles of organic acid / noble metal molar number) as 0.25 to 2.0 with being supported on heat-resistant inorganic oxide support, characterized in that the different particle sizes noble metal particles are mixed .
[0010]
In addition, a preferred embodiment of the exhaust gas purifying catalyst of the present invention is characterized in that the particle size of the noble metal includes small particles having a diameter of 1 nm to less than 5 nm and large particles having a diameter of 5 nm to 20 nm.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. “%” Indicates a mass percentage unless otherwise specified.
The exhaust gas purifying catalyst of the present invention is formed by coating a catalyst component on an integral structure type carrier.
This catalyst component contains an HC adsorbent and a noble metal supported on a heat-resistant inorganic oxide carrier. Examples of the noble metal include platinum (Pt), palladium (Pd), rhodium (Rh), and the like. These noble metals promote redox reactions such as CO, HC, nitrogen oxides (NOx) and SOF components in the exhaust gas. In particular, it is preferable to use Pt in a diesel engine exhaust gas purification catalyst.
[0013]
The precious metal is supported on the heat-resistant inorganic oxide in the form of fine particles, but these particles have different particle sizes and are divided into small particles (DS) and large particles (DL). Can do. As measured by a transmission electron microscope (TEM), it is preferable that particles having a particle diameter of 1 nm or more and less than 5 nm are represented by DS, and particles having a particle diameter of 5 nm or more and 20 nm or less are represented by DL, and these are dispersedly supported.
Thus, by allowing DS and DL to coexist on the above heat-resistant inorganic oxide carrier, an oxidation reaction of CO easily occurs on DS, and an oxidation reaction of unburned HC easily occurs on DL.
[0014]
Further, when the area occupied by DS and DL is measured by TEM in a state where DS and DL are supported on the heat-resistant inorganic oxide support, the total area of DS / total area of DL = 1/4 to 4 / 1 is preferable. That is, the total area ratio of DS and DL when the noble metal particles are projected on a plane when the heat-resistant inorganic oxide support is viewed from above, more specifically, DS and DL when DS and DL are cut into a spherical crown shape. The total cross-sectional area ratio is preferably ¼ to 4/1. If the area ratio of DS and DL is out of the above range, the removal efficiency of HC, CO, and SOF in a low temperature / oxygen excess atmosphere may decrease.
Specifically, when DS / DL is less than 1/4, since DS is small, it is assumed that HC / CO purification is mainly performed on DL, and sufficient HC / CO purification performance is not exhibited. When DS / DL is 1/1, HC / CO purification is performed on both DS and DL, and DL becomes a heat spot, and even if the exhaust gas is low temperature and the catalyst is difficult to warm, the purification activity can be maintained. it can. Further, when DS / DL exceeds 4/1, there are too many DSs with respect to DL, the heat spot effect of DL is diminished, the catalyst is difficult to warm, and sufficient HC / CO purification performance cannot be obtained. is there.
[0015]
Further, as described above, the catalyst component also contains an HC adsorbent, and liquid SOF is preferentially captured by the HC adsorbent in a low temperature range of 200 ° C. or less immediately after the engine is started. Further, the coexistence of the HC adsorbent and the noble metal particles in the catalyst component can prevent the SOF from adsorbing on the noble metal particles and suppress the deterioration of the activation start of the noble metal particles. At the same time, it is possible to promote the expression of the purification reaction between the noble metal such as Pt and the unburned HC and CO.
Furthermore, it is presumed that DL in which oxidation reaction of unburned HC occurs becomes a heat spot and can promote the oxidation reaction of SOF trapped in the HC adsorbent. As described above, by providing a reaction field in the catalyst in which an oxidation reaction of HC, CO, and SOF easily occurs, HC, CO, and SOF can be efficiently removed even in a low temperature / oxygen excess atmosphere.
[0016]
The HC adsorbent is preferably ZSM5, mordenite, USY or β-zeolite and a zeolite related to any combination thereof. Even in a low temperature range of 200 ° C. or less immediately after the engine is started, liquid SOF can be preferentially captured by the HC adsorbent.
Furthermore, the content of the zeolite is preferably 50% to 90% of the catalyst component. When the content is less than 50%, the effect as an HC adsorbent is not sufficiently exhibited. When the content exceeds 90%, the effect as an HC adsorbent is saturated, and even if the amount is increased further, the effect may not be improved. If the content is within the range, the SOF trapping efficiency is increased, the adsorption of SOF onto noble metal particles such as Pt is suppressed, and the purification reaction between the noble metal and CO / unburned HC is promoted. be able to.
[0017]
Further, the heat-resistant inorganic oxide carrier contained in the catalyst component is one containing zirconium oxide and / or titanium oxide as described later. Specifically, the following formula (1)
W X Zr 1-X O 2 (1)
(W in the formula represents tungsten, and X represents 0.05 to 0.25)
It can be set as the zirconium oxide represented by these. X is preferably 0.05 to 0.25. If W is less than 0.05, the effect of W is not sufficiently exhibited. Conversely, if it exceeds 0.25, the effect of W may be saturated.
Further, the heat-resistant inorganic oxide carrier has the following formula (2)
S X Zr 1-X O 2 (2)
(In the formula, S represents sulfur and X represents 0.05 to 0.25)
Or a mixture of these zirconium oxides may be used. X is preferably 0.05 to 0.25 as in the case of the zirconium oxide of formula (1), and if it is less than 0.05, the effect of S is not sufficiently exhibited. May become saturated.
By using these zirconium oxides in the heat-resistant inorganic oxide support, HC components that are difficult to adsorb on precious metal particles such as Pt, which are active sites, are preferentially used even in a low temperature / oxygen-rich atmosphere. It can be adsorbed and removed by oxidation.
[0018]
Furthermore, the heat-resistant inorganic oxide support, can also be used a particle diameter 100nm or less of titanium oxide containing anatase structure (titanium dioxide), that over 50% of the titanium oxide is anatase structure preferable. By using titanium oxide, CO can be oxidized and removed at low temperature on noble metal particles such as Pt which are active sites in a low temperature / oxygen-rich atmosphere. Further, when the particle size exceeds 100 nm, the promotion effect of the low temperature CO oxidation reaction of titanium oxide is lowered, and when the content of the anatase structure is less than 50%, the promotion effect of the low temperature CO oxidation reaction may be lowered. .
[0019]
In producing the exhaust gas purifying catalyst of the present invention, when the noble metal is supported on the refractory inorganic oxide support, an aqueous solution of a water-soluble noble metal salt is added to citric acid, acetic acid or oxalic acid and any combination thereof. The organic acid is contained, and the molar ratio of the noble metal to the organic acid is preferably the total number of moles of organic acid / number of moles of noble metal = 0.25 to 2.0.
In order to support the noble metal particles on the refractory inorganic oxide support, a method is generally employed in which an aqueous solution of noble metal is prepared, soaked in the refractory inorganic oxide support, dried and fired to leave only the noble metal. It is done. When the organic acid is contained in the noble metal aqueous solution at the molar ratio, the loading of the noble metal can be controlled so that the area ratio of DS and DL is 1/4 to 4/1. If the molar ratio exceeds 2.0, heat generation during decomposition and combustion of the organic acid is large, the distribution of the noble metal particle diameter cannot be set within a predetermined range, and if it is less than 0.25, the effect of the organic acid is not sufficiently exhibited. Similarly, the noble metal particle size distribution may not be set within a predetermined range.
[0020]
The total supported amount of the catalyst component is preferably 10 to 350 g / L per liter of the refractory monolith support, and the supported amount of the HC adsorbent is 5 to 200 g / L. The supported amount of is preferably 1 to 200 g / L, and the supported amount of the noble metal is preferably 0.1 to 10 g / L.
[0021]
The monolithic structure type carrier is preferably a carrier structure made of a heat-resistant material. For example, a ceramic open flow or wall flow carrier structure, a SiC carrier, or a metal carrier can be used.
[0022]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.
[0023]
Example 1
Titanium oxide powder with an average particle size of 30 nm (anatase structure is 80% or more) is impregnated with an aqueous solution (total number of organic acids / number of platinum moles = 1.0) in which platinum dinitrodiamminate and citric acid are dissolved. , Dried at 150 ° C. for 24 hours, then calcined at 300 ° C. for 1 hour and then at 600 ° C. for 1 hour to obtain Pt-supported titanium oxide powder (powder a). The Pt concentration of this powder a was 15.0%.
267 g of the above-mentioned Pt-supported titanium oxide powder (powder a), 1000 g of β-zeolite powder, 483 g of activated alumina powder, 50 g of nitric acid acidic alumina sol (a sol obtained by adding 10% nitric acid to 10% boehmite alumina) and pure water 2000 g was put into a magnetic ball mill, mixed and pulverized to obtain a slurry liquid. This slurry liquid is attached to a cordierite monolith carrier (400 cell / 8 mil, 1.3 L), excess slurry in the cell is removed by air flow, dried, and baked at 400 ° C. for 1 hour. The coating operation was repeated until the weight reached 180 g / L to obtain Catalyst-a of this example.
[0024]
(Example 2)
Titanium oxide powder with an average particle size of 30 nm (anatase structure is 80% or more) is impregnated with an aqueous solution (total number of organic acids / number of platinum moles = 1.0) in which platinum dinitrodiamminate and citric acid are dissolved. , Dried at 150 ° C. for 24 hours, then calcined at 300 ° C. for 1 hour and then at 600 ° C. for 1 hour to obtain a Pt-supported titanium oxide powder (powder b). The Pt concentration of this powder b was 5.0%.
800 g of the above-mentioned Pt-supported titanium oxide powder (powder b), 980 g of β-zeolite powder, 20 g of nitric acid acidic alumina sol (a sol obtained by adding 10% nitric acid to 10% boehmite alumina) and 2000 g of pure water in a magnetic ball mill The slurry was added and mixed and ground to obtain a slurry. This slurry liquid is attached to a cordierite monolith carrier (400 cell / 8 mil, 1.3 L), excess slurry in the cell is removed by air flow, dried, and baked at 400 ° C. for 1 hour. The coating operation was repeated until the weight reached 180 g / L to obtain catalyst-b of this example.
[0025]
(Example 3)
Except that the total number of moles of organic acid / the number of moles of platinum = 1.5, the same operation as in Example 1 was repeated to obtain catalyst-c of this example.
[0026]
Example 4
Except that the total number of moles of organic acid / the number of moles of platinum was 2.0, the same operation as in Example 1 was repeated to obtain catalyst-d of this example.
[0027]
(Example 5)
Except that the total number of moles of organic acid / the number of moles of platinum = 0.5, the same operation as in Example 1 was repeated to obtain catalyst-e of this example.
[0028]
(Example 6)
An aqueous solution (organic acid) in which W 0.1 Zr 0.9 O 2 powder is used instead of titanium oxide powder having an average particle size of 30 nm (anatase structure is 80% or more) and platinum dinitrodiamminate and citric acid are dissolved. And then dried at 150 ° C. for 24 hours, calcined at 300 ° C. for 1 hour and then at 600 ° C. for 1 hour to obtain a Pt-supported zirconium oxide powder (powder c) ) The Pt concentration of this powder c was 15.0%.
267 g of Pt-supported zirconium oxide powder (powder c), 1000 g of β-zeolite powder, 483 g of activated alumina powder, 50 g of nitric acid acidic alumina sol (a sol obtained by adding 10% nitric acid to 10% boehmite alumina) and pure water 2000 g was put into a magnetic ball mill, mixed and pulverized to obtain a slurry liquid. This slurry liquid is attached to a cordierite monolith carrier (400 cell / 8 mil, 1.3 L), excess slurry in the cell is removed by air flow, dried, and baked at 400 ° C. for 1 hour. The coating operation was repeated until the weight reached 180 g / L to obtain Catalyst-f of this example.
[0029]
(Example 7)
Except that S 0.1 Zr 0.9 O 2 powder was used instead of W 0.1 Zr 0.9 O 2 powder, the same operation as in Example 6 was repeated to obtain catalyst-g of this example. Obtained.
[0030]
(Example 8)
The same operation as in Example 1 was repeated except that 700 g of β-zeolite powder and 300 g of ZSM5 powder were used instead of 1000 g of β-zeolite powder to obtain catalyst-h of this example.
[0031]
Example 9
Except for using β-zeolite powder 1000 g, β-zeolite powder 400 g, mordenite powder 200 g, ZSM5 powder 200 g, and USY powder 200 g were used in the same manner as in Example 1 to obtain catalyst-i of this example. It was.
[0032]
(Example 10)
A catalyst-j of this example was obtained in the same manner as in Example 1 except that 134 g of powder a and 134 g of Pt 15.0% supported ZrO 2 were used instead of powder a267 g.
[0033]
(Example 11)
The same procedure as in Example 1 was carried out except that powder a134 g and Pt 15.0% supported W 0.1 Zr 0.9 O 2 powder 134 g were used instead of powder a267 g to obtain catalyst-k of this example. It was.
[0034]
(Example 12)
Obtained in place of the powder A267g, except for using a powder a134g and Pt15.0% supported S 0.1 Zr 0.9 O 2 powder 134g performs the same operation as in Example 1, the catalyst -l of this example It was.
[0035]
(Example 13)
A catalyst-m of this example was obtained in the same manner as in Example 1 except that 220 g of powder a and 700 g of Pt 1.0% supported β-zeolite powder were used instead of powder a.
[0036]
(Example 14)
A catalyst-n of this example was obtained in the same manner as in Example 1 except that 700 g of β-zeolite powder was used instead of 1000 g of β-zeolite powder.
[0037]
(Example 15)
A catalyst-o of this example was obtained in the same manner as in Example 1 except that 1500 g of β-zeolite powder was used instead of 1000 g of β-zeolite powder.
[0038]
(Example 16)
Except that acetic acid was used instead of citric acid, the same operation as in Example 1 was performed to obtain catalyst-p of this example.
[0039]
(Example 17)
Except that succinic acid was used instead of citric acid, the same operation as in Example 1 was performed to obtain catalyst-q of this example.
[0040]
(Example 18)
Except for using titanium oxide having an average particle diameter of 100 nm, the same operation as in Example 1 was performed to obtain catalyst-r of this example.
[0041]
(Comparative Example 1)
Except for not using β-zeolite, the same operation as in Example 1 was performed to obtain catalyst-aa of this example.
[0042]
(Comparative Example 2)
Except for using 267 g of Pt 15% -supported β-zeolite in place of the powder a267 g, the same operation as in Example 1 was performed to obtain catalyst-bb of this example.
[0043]
(Comparative Example 3)
Except not using organic acid, operation similar to Example 1 was performed and the catalyst-cc of this example was obtained.
[0044]
(Comparative Example 4)
Except that the total number of moles of organic acid / the number of moles of platinum = 10, the same operation as in Example 1 was performed to obtain catalyst-dd of this example.
[0045]
(Comparative Example 5)
Except for using titanium oxide having an average particle size of 100 nm and a rutile structure, the same operation as in Example 1 was performed to obtain catalyst-ee of this example.
[0046]
Table 1 shows the specifications of the exhaust gas purifying catalysts of the above Examples and Comparative Examples.
[0047]
[Table 1]
Figure 0004600710
[0048]
About each said Example and comparative example, the purification characteristic evaluation (ECE + EUDC of Europe) of HC and CO was performed on the following evaluation conditions using the evaluation system of FIG.
[0049]
<Durability conditions>
Engine displacement 2500cc
Fuel JIS No. 2 gas oil catalyst inlet gas temperature 600 ℃
Endurance time 100 hours [0050]
<Performance evaluation conditions>
Catalyst capacity Catalyst 1.3L
Evaluation vehicle Nissan Motor Co., Ltd. V type 6 cylinder 2.5L diesel engine
Moreover, about the purification rate of HC and CO, following formula (3) and (4)
HC purification rate (%)
= ([Catalyst inlet HC concentration] − [Catalyst outlet HC concentration]) / [Catalyst inlet HC concentration] × 100 (3)
CO purification rate (%)
= ([Catalyst inlet CO concentration]-[catalyst outlet CO concentration]) / [catalyst inlet CO concentration] × 100 (4)
The results are shown in Table 2.
[0052]
[Table 2]
Figure 0004600710
[0053]
Each of the above examples has higher catalytic activity than the above comparative examples, and is excellent in purification performance of unburned HC, CO and SOF from low temperatures. As a diesel engine exhaust gas purification catalyst, HC, CO and It was confirmed that SOF can be purified with high efficiency.
[0054]
【The invention's effect】
In the catalyst of the present invention, since noble metal particles having different particle diameters are mixed on a specific heat-resistant inorganic oxide support, HC, CO and SOF in exhaust gas of an internal combustion engine including diesel engine exhaust gas are used. The catalyst which can purify | clean efficiently can be provided.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing an evaluation system for an exhaust gas purifying catalyst.
[Explanation of symbols]
1 Engine 2 Catalyst

Claims (5)

一体構造型担体上に触媒成分を被覆して成る排気ガス浄化用触媒であって、
上記触媒成分が、HC吸着材と、耐熱性無機酸化物担体に担持された貴金属とを含有し、
上記耐熱性無機酸化物担体が、次式(1)及び(2)で表されるジルコニウム酸化物、並びにアナターゼ型構造を含む100nm以下の粒径を有するチタニウム酸化物から成る群から選ばれる少なくとも1種の酸化物を含有して成り、
上記貴金属は、貴金属塩の水溶液にクエン酸、酢酸及び蓚酸から成る群より選ばれた少なくとも1種の有機酸を含有させ、貴金属と有機酸のモル比(有機酸の総モル数/貴金属のモル数)を0.25〜2.0として耐熱性無機酸化物担体に担持されていると共に、粒径の異なる貴金属粒子が混在していることを特徴とする排気ガス浄化用触媒。
Zr1−X ・・・ (1)
(式中のWはタングステン、Xは0.05〜0.25を示す)
Zr1−X ・・・ (2)
(式中のSは硫黄、Xは0.05〜0.25を示す)
An exhaust gas purifying catalyst comprising a monolithic support coated with a catalyst component,
The catalyst component contains an HC adsorbent and a noble metal supported on a heat-resistant inorganic oxide carrier,
The heat-resistant inorganic oxide support is at least one selected from the group consisting of zirconium oxides represented by the following formulas (1) and (2) and titanium oxide having a particle size of 100 nm or less including an anatase type structure. Containing seed oxides,
The noble metal contains at least one organic acid selected from the group consisting of citric acid, acetic acid and oxalic acid in an aqueous solution of a noble metal salt, and a molar ratio of the noble metal to the organic acid (total number of organic acids / mol of noble metal). The exhaust gas purifying catalyst is characterized in that it is supported on a heat-resistant inorganic oxide carrier with a number) of 0.25 to 2.0 and precious metal particles having different particle sizes are mixed.
W X Zr 1-X O 2 (1)
(W in the formula represents tungsten, and X represents 0.05 to 0.25)
S X Zr 1-X O 2 (2)
(In the formula, S represents sulfur and X represents 0.05 to 0.25)
上記貴金属の粒径が、直径1nm以上5nm未満である小粒子と、5nm以上20nm以下である大粒子を含むことを特徴とする請求項1記載の排気ガス浄化用触媒。 2. The exhaust gas purifying catalyst according to claim 1, wherein the precious metal has a particle size of small particles having a diameter of 1 nm or more and less than 5 nm and large particles of 5 nm or more and 20 nm or less. 上記耐熱性無機酸化物担体に担持された貴金属の小粒子と大粒子の総断面積比が、1/4〜4/1であることを特徴とする請求項1又は2記載の排気ガス浄化用触媒。 The exhaust gas purifying apparatus according to claim 1 or 2, wherein the total cross-sectional area ratio of the small particles and the large particles of the noble metal supported on the heat-resistant inorganic oxide support is 1/4 to 4/1. catalyst. 上記貴金属が、白金、パラジウム及びロジウムから成る群より選ばれた少なくとも1種の貴金属であることを特徴とする請求項1〜3のいずれか1つの項に記載の排気ガス浄化用触媒。 The exhaust gas purification catalyst according to any one of claims 1 to 3, wherein the noble metal is at least one kind of noble metal selected from the group consisting of platinum, palladium, and rhodium. 上記HC吸着材が、ZSM5、モルデナイト、USY及びβ−ゼオライトから成る群より選ばれた少なくとも1種のゼオライトであり、且つ上記HC吸着材の含有率が、触媒成分の50〜90%であることを特徴とする請求項1〜のいずれか1つの項に記載の排気ガス浄化用触媒。The HC adsorbent is at least one zeolite selected from the group consisting of ZSM5, mordenite, USY and β-zeolite, and the content of the HC adsorbent is 50 to 90% of the catalyst component. The exhaust gas purifying catalyst according to any one of claims 1 to 4 , wherein:
JP2000372119A 2000-12-06 2000-12-06 Exhaust gas purification catalyst Expired - Fee Related JP4600710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000372119A JP4600710B2 (en) 2000-12-06 2000-12-06 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000372119A JP4600710B2 (en) 2000-12-06 2000-12-06 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2002177788A JP2002177788A (en) 2002-06-25
JP4600710B2 true JP4600710B2 (en) 2010-12-15

Family

ID=18841714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000372119A Expired - Fee Related JP4600710B2 (en) 2000-12-06 2000-12-06 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4600710B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5237616B2 (en) * 2007-11-27 2013-07-17 石福金属興業株式会社 Method for producing a titanium oxide carrier comprising a platinum group metal or an alloy of a platinum group metal and another metal supported thereon
JP6087362B2 (en) * 2012-09-26 2017-03-01 エヌ・イーケムキャット株式会社 Platinum-based oxidation catalyst and exhaust gas purification method using the same
CA2892683A1 (en) 2012-12-12 2014-06-19 Basf Corporation Catalyst compositions, catalytic articles, systems and processes using large particle molecular sieves
US8980209B2 (en) 2012-12-12 2015-03-17 Basf Corporation Catalyst compositions, catalytic articles, systems and processes using protected molecular sieves
JP6511304B2 (en) * 2015-03-16 2019-05-15 株式会社Soken Particulate matter detection sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180639A (en) * 1989-01-06 1990-07-13 N E Chemcat Corp Exhaust gas purifying catalyst for reducing generation of hydrogen sulfide and its manufacture
JPH05293380A (en) * 1992-04-15 1993-11-09 Toyota Central Res & Dev Lab Inc Catalyst for purification of exhaust gas, production of this catalyst, and purifying method of exhaust gas
JPH09103679A (en) * 1995-10-11 1997-04-22 Toyota Motor Corp Exhaust gas-purifying catalyst for diesel engine
JPH1033985A (en) * 1996-07-19 1998-02-10 Ict:Kk Catalyst for purifying exhaust gas from diesel engine
JP2001058131A (en) * 1999-08-20 2001-03-06 Toyota Central Res & Dev Lab Inc Catalyst for exhaust gas treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180639A (en) * 1989-01-06 1990-07-13 N E Chemcat Corp Exhaust gas purifying catalyst for reducing generation of hydrogen sulfide and its manufacture
JPH05293380A (en) * 1992-04-15 1993-11-09 Toyota Central Res & Dev Lab Inc Catalyst for purification of exhaust gas, production of this catalyst, and purifying method of exhaust gas
JPH09103679A (en) * 1995-10-11 1997-04-22 Toyota Motor Corp Exhaust gas-purifying catalyst for diesel engine
JPH1033985A (en) * 1996-07-19 1998-02-10 Ict:Kk Catalyst for purifying exhaust gas from diesel engine
JP2001058131A (en) * 1999-08-20 2001-03-06 Toyota Central Res & Dev Lab Inc Catalyst for exhaust gas treatment

Also Published As

Publication number Publication date
JP2002177788A (en) 2002-06-25

Similar Documents

Publication Publication Date Title
JP4092441B2 (en) Exhaust gas purification catalyst
JP5826285B2 (en) NOx absorption catalyst
JP3741303B2 (en) Exhaust gas purification catalyst
US5177041A (en) Catalyst for purifying exhaust gas from diesel engines
JP4075292B2 (en) Particulate purification catalyst
JP5855116B2 (en) Diesel oxidation catalyst
JPH0631173A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
JP2002001124A (en) Catalyst for purification of exhaust gas and method for purification of exhaust gas
JP4831753B2 (en) Exhaust gas purification catalyst
JP3798727B2 (en) Exhaust gas purification catalyst
JP2001079402A (en) Exhaust gas cleaning catalyst and its production
JP3640130B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
JP3289879B2 (en) Exhaust gas purification equipment for diesel engines
JP4600710B2 (en) Exhaust gas purification catalyst
JP2006346605A (en) Exhaust gas cleaning filter and exhaust gas cleaning device for internal engine
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JP3821357B2 (en) Molten salt catalyst
JPH0768176A (en) Catalyst for purification of exhaust gas from diesel engine
JP3977883B2 (en) Exhaust gas purification catalyst for internal combustion engine
JP4794834B2 (en) Exhaust gas purification catalyst
WO2022249847A1 (en) Exhaust gas purification catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3835436B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JP3764760B2 (en) Catalyst for purifying exhaust gas from lean burn engine and purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees