JP5237616B2 - Method for producing a titanium oxide carrier comprising a platinum group metal or an alloy of a platinum group metal and another metal supported thereon - Google Patents

Method for producing a titanium oxide carrier comprising a platinum group metal or an alloy of a platinum group metal and another metal supported thereon Download PDF

Info

Publication number
JP5237616B2
JP5237616B2 JP2007305674A JP2007305674A JP5237616B2 JP 5237616 B2 JP5237616 B2 JP 5237616B2 JP 2007305674 A JP2007305674 A JP 2007305674A JP 2007305674 A JP2007305674 A JP 2007305674A JP 5237616 B2 JP5237616 B2 JP 5237616B2
Authority
JP
Japan
Prior art keywords
titanium oxide
platinum
metal
platinum group
group metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007305674A
Other languages
Japanese (ja)
Other versions
JP2009125705A (en
Inventor
秀男 井上
雅之 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2007305674A priority Critical patent/JP5237616B2/en
Publication of JP2009125705A publication Critical patent/JP2009125705A/en
Application granted granted Critical
Publication of JP5237616B2 publication Critical patent/JP5237616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、白金族金属又は白金族金属とそれ以外の他の金属との合金を微細且つ均一に高分散状態で担持してなる酸化チタン担体の製造方法に関する。   The present invention relates to a method for producing a titanium oxide support comprising a platinum group metal or an alloy of a platinum group metal and another metal supported in a finely and uniformly highly dispersed state.

工場などで排出させる排ガスや家庭で発生する種々の揮発性有機化合物を触媒によって分解し、環境を浄化する研究が盛んに行われている。   Active research is being conducted to purify the environment by decomposing exhaust gases discharged from factories and various volatile organic compounds generated at home using catalysts.

これらの研究では、種々の担体に白金族金属を担持させた触媒、例えば、白金担持酸化チタンやパラジウム担持酸化チタン、ロジウム担持アルミナ、白金担持カーボンなどが用いられている。   In these studies, catalysts in which a platinum group metal is supported on various carriers, for example, platinum-supported titanium oxide, palladium-supported titanium oxide, rhodium-supported alumina, platinum-supported carbon and the like are used.

これら白金族金属担持触媒は、担体上の白金族金属の担持状態によって大きく性能が変化し、性能を向上させるために様々な検討がなされている。例えば、特許文献1及び2には、担体表面積の大きいカーボン担体に微細な白金族金属を担持させる方法が提案されている、しかし、この方法によっては、担体表面積を大きくし難い酸化チタン担体に微細で均一に白金族金属又は白金族金属合金粒子を高分散で担持することは困難である。   The performance of these platinum group metal supported catalysts varies greatly depending on the supported state of the platinum group metal on the support, and various studies have been made to improve the performance. For example, Patent Documents 1 and 2 propose a method in which a fine platinum group metal is supported on a carbon support having a large support surface area. However, according to this method, a fine titanium oxide support is difficult to increase. It is difficult to uniformly support platinum group metal or platinum group metal alloy particles with high dispersion.

また、特許文献3には、白金酸を光触媒上に担持させた後、紫外線により還元する光電析法を適用して光触媒上に白金を担持させることが開示されている。しかし、この光電析法は長時間を要し、大量処理は困難である。   Patent Document 3 discloses that platinum is supported on a photocatalyst by applying a photodeposition method in which platinum acid is supported on a photocatalyst and then reduced by ultraviolet rays. However, this photodeposition method requires a long time and is difficult to process in large quantities.

さらに、特許文献4及び5には、光触媒を塩化パラジウムや硝酸パラジウムの水溶液に浸漬し、ギ酸やヒドラジン、水素化ホウ素ナトリウムなどの還元剤により還元して複合光触媒を得る方法が開示されている。しかしながら、この方法では、金属粒子の凝集し、金属粒子を酸化チタン担体上に高分散状態で担持させることは困難である。   Further, Patent Documents 4 and 5 disclose a method in which a photocatalyst is immersed in an aqueous solution of palladium chloride or palladium nitrate and reduced with a reducing agent such as formic acid, hydrazine, or sodium borohydride to obtain a composite photocatalyst. However, with this method, it is difficult to agglomerate the metal particles and to support the metal particles on the titanium oxide support in a highly dispersed state.

特開平9−153366号公報JP-A-9-153366 特開平11−47595号公報JP 11-47595 A 特開2000−157874号公報JP 2000-157874 A 特開2003−210984号公報JP 2003-210984 A 特開平10−296082号公報Japanese Patent Laid-Open No. 10-296082

上記特許文献に記載の方法は、白金族金属を酸化チタン担体に担持する方法として最適とは言えず、白金族金属粒子を微細且つ均一に高分散状態で酸化チタン担体に担持してなる高活性な触媒を得ることができない。   The method described in the above patent document is not optimal as a method for supporting a platinum group metal on a titanium oxide carrier, and has a high activity in which platinum group metal particles are supported finely and uniformly in a highly dispersed state on a titanium oxide carrier. A new catalyst cannot be obtained.

一方、塩化パラジウム、硝酸パラジウムのような無機金属化合物を原料として用い、それを雰囲気ガス下で熱処理する方法では、塩素、塩化水素、窒素酸化物ガスなどが発生して人体への安全面での影響や環境面への影響が問題となり、また、還元によって発生するガスを処理するためのガス処理施設を製造設備に備える必要があり、設備費の増大を引き起こす。   On the other hand, in the method of using an inorganic metal compound such as palladium chloride or palladium nitrate as a raw material and heat-treating it under an atmospheric gas, chlorine, hydrogen chloride, nitrogen oxide gas, etc. are generated, which is safe for the human body. The influence on the environment and the influence on the environment becomes a problem, and it is necessary to provide the manufacturing equipment with a gas processing facility for processing the gas generated by the reduction, resulting in an increase in equipment costs.

本発明の目的は、白金族金属又は白金族金属とそれ以外の他の金属との合金を微細且つ
均一に高分散状態で酸化チタン担体に担持させることができ、しかも、安全性、環境面でも問題のない、白金族金属又は白金族金属とそれ以外の他の金属との合金を担持してなる高活性な酸化チタン担体の製造方法を提供することである。
An object of the present invention is to support a platinum group metal or an alloy of a platinum group metal and other metal finely and uniformly on a titanium oxide carrier in a highly dispersed state, and also in terms of safety and environment. It is an object of the present invention to provide a highly active method for producing a highly active titanium oxide support that supports a platinum group metal or an alloy of a platinum group metal and other metals.

本発明者らは、種々検討した結果、今回、白金族金属を特定の有機カルボン酸の塩の形態で酸化チタン担体に吸着させた後、白金族金属に還元することにより、上記の目的を達成することができることを見出し、本発明を完成するに至った。   As a result of various studies, the present inventors have achieved the above object by adsorbing a platinum group metal to a titanium oxide support in the form of a salt of a specific organic carboxylic acid and then reducing it to a platinum group metal. As a result, the present invention has been completed.

かくして、本発明は、ギ酸、酢酸、プロピオン酸、乳酸、シュウ酸、マロン酸及びマレイン酸よりなる群から選ばれる有機カルボン酸と白金族金属(a)との塩及び場合によりさらに、該有機カルボン酸と白金族金属(a)以外の他の金属(b)との塩を含有する溶液を酸化チタン担体と接触させ、該酸化チタン担体に金属塩を吸着させた後、還元処理して、該金属塩を金属に転換することを特徴とする、白金族金属(a)又は白金族金属(a)とそれ以外の他の金属(b)との合金を担持してなる酸化チタン担体の製造方法を提供するものである。   Thus, the present invention provides a salt of an organic carboxylic acid selected from the group consisting of formic acid, acetic acid, propionic acid, lactic acid, oxalic acid, malonic acid and maleic acid and a platinum group metal (a), and optionally further, the organic carboxylic acid. A solution containing a salt of an acid and a metal (b) other than the platinum group metal (a) is brought into contact with the titanium oxide carrier, and after the metal salt is adsorbed on the titanium oxide carrier, the reduction treatment is performed, A method for producing a titanium oxide support comprising a platinum group metal (a) or an alloy of a platinum group metal (a) and another metal (b) supported by converting a metal salt into a metal Is to provide.

本発明の方法によって製造される白金族金属(a)又は白金族金属(a)とそれ以外の他の金属(b)との合金を担持してなる酸化チタン担体は、従来の方法により製造される白金族金属(a)又は白金族金属(a)とそれ以外の他の金属(b)との合金を担持してなる酸化チタン担体よりも、白金族金属(a)又は白金族金属(a)とそれ以外の他の金属(b)との合金がより高分散状態で担持されているため、高い触媒活性を発揮することができる。   A titanium oxide carrier that carries a platinum group metal (a) or an alloy of a platinum group metal (a) and another metal (b) produced by the method of the present invention is produced by a conventional method. Platinum group metal (a) or platinum group metal (a) or platinum group metal (a) or platinum group metal (a) ) And other metal (b) other than that are supported in a highly dispersed state, and therefore, high catalytic activity can be exhibited.

しかも、本発明の方法によれば、従来の方法と異なり、塩素ガス、塩化水素ガス、NOxなどの有害なガスの発生がなく安全であり、触媒の製造設備コストを節減することができ、量産も可能である。   Moreover, according to the method of the present invention, unlike the conventional method, there is no generation of harmful gas such as chlorine gas, hydrogen chloride gas, NOx, and the production cost of the catalyst can be reduced. Is also possible.

以下、本発明の方法についてさらに詳細に説明する。   Hereinafter, the method of the present invention will be described in more detail.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明は、白金族金属(a)又は白金族金属(a)とそれ以外の他の金属(b)との合金を微細且つ均一に高分散状態で酸化チタン担体上に担持させるために、ギ酸、酢酸、プロピオン酸、乳酸、シュウ酸、マロン酸及びマレイン酸よりなる群から選ばれる有機カルボン酸と白金族金属(a)との塩(A)及び場合によりさらに、該有機カルボン酸と白金族金属(a)以外の他の金属(b)との塩(B)を含有する溶液(以下、「担持溶液」という)を使用する点に本質的特徴を有するものである。   The present invention provides formic acid for supporting a platinum group metal (a) or an alloy of a platinum group metal (a) and another metal (b) on a titanium oxide support in a finely and uniformly highly dispersed state. A salt (A) of an organic carboxylic acid and a platinum group metal (a) selected from the group consisting of acetic acid, propionic acid, lactic acid, oxalic acid, malonic acid and maleic acid, and optionally further, the organic carboxylic acid and the platinum group It has an essential feature in that a solution containing a salt (B) with a metal (b) other than the metal (a) (hereinafter referred to as “supporting solution”) is used.

本発明において使用される上記の有機カルボン酸と白金族金属(a)との塩(A)及び該有機カルボン酸と白金族金属(a)以外の他の金属(b)との塩(B)(これらを総称して、以下、「有機カルボン酸金属塩」という)は、塩化パラジウム、硝酸パラジウムのような無機金属化合物と比較して低温で分解するため、簡単な加熱装置で容易に金属へと還元分解することでき、しかも、還元分解時には、二酸化炭素と水しか発生しないので、塩素や塩化水素、窒素酸化物が発生する場合のような排気処理設備を必要としないなどの工業的に優れた利点があり、酸化チタン担体の担持用材料として極めて有用である。   Salt (A) of the above organic carboxylic acid and platinum group metal (a) used in the present invention and salt (B) of the organic carboxylic acid and other metal (b) other than platinum group metal (a) (These are collectively referred to as “organic carboxylic acid metal salts” hereinafter) are decomposed at a lower temperature than inorganic metal compounds such as palladium chloride and palladium nitrate. In addition, since only carbon dioxide and water are generated during reductive decomposition, there is no need for an exhaust treatment facility such as when chlorine, hydrogen chloride, or nitrogen oxide is generated. It is extremely useful as a material for supporting a titanium oxide carrier.

本発明において上記有機カルボン酸と塩(A)を形成するための白金族金属(a)としては、各種の有機物又は無機物(例えば、揮発性有機物質、臭気成分、窒素酸化物など)の酸化分解反応に対して高い触媒作用を発揮するものが使用され、本発明では、特に、白
金(Pt)、パラジウム(Pd)及びルテニウム(Ru)の3種が挙げられ、これらはそれぞれ単独で又は2種もしくはそれ以上組み合わせて使用することができる。白金族金属(a)として、中でも、特に白金が好適である。
In the present invention, the platinum group metal (a) for forming the salt (A) with the organic carboxylic acid in the present invention is an oxidative decomposition of various organic substances or inorganic substances (for example, volatile organic substances, odor components, nitrogen oxides, etc.). Those exhibiting a high catalytic action for the reaction are used, and in the present invention, platinum (Pt), palladium (Pd) and ruthenium (Ru) are particularly mentioned, and these may be used alone or in combination. Or it can be used in combination. Of these, platinum is particularly preferred as the platinum group metal (a).

本発明において、有機カルボン酸と白金族金属(a)との塩(A)は、必要に応じて、該有機カルボン酸と白金族金属(a)以外の他の金属(b)との塩(B)と併用することができ、それによって、酸化チタン担体上に、白金族金属(a)とそれ以外の他の金属(b)との合金を担持せしめることができる。塩(B)を形成するための白金族金属(a)以外の他の金属(b)としては、それ自体各種の有機物又は無機物の酸化分解反応に対して触媒作用を示すもの、或いは白金族金属(a)と組み合わせて使用することにより、各種の有機物又は無機物の酸化分解反応に対する白金族金属(a)の触媒作用を向上させるのものなどを使用することができ、塩(A)を形成するために使用される白金(Pt)、パラジウム(Pd)及びルテニウム(Ru)の3種以外の白金族金属も包含される。具体的には、例えば、ロジウム(Rh)、イリジウム(Ir)、金(Au)、銀(Ag)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)などが挙げられ、これらはそれぞれ単独で又は2種もしくはそれ以上組み合わせて使用することができる。白金族金属(a)以外の他の金属(b)としては、特に、銀(Ag)、コバルト(Co)及びニッケル(Ni)が好適である。   In the present invention, a salt (A) of an organic carboxylic acid and a platinum group metal (a) may be a salt of another metal (b) other than the organic carboxylic acid and the platinum group metal (a), if necessary. It can be used in combination with B), whereby an alloy of platinum group metal (a) and other metal (b) can be supported on the titanium oxide support. As the metal (b) other than the platinum group metal (a) for forming the salt (B), a metal having a catalytic action on the oxidative decomposition reaction of various organic substances or inorganic substances, or a platinum group metal By using in combination with (a), one that improves the catalytic action of platinum group metal (a) for the oxidative decomposition reaction of various organic or inorganic substances can be used, and salt (A) is formed. Platinum group metals other than the three types of platinum (Pt), palladium (Pd) and ruthenium (Ru) used for the purpose are also included. Specific examples include rhodium (Rh), iridium (Ir), gold (Au), silver (Ag), iron (Fe), cobalt (Co), nickel (Ni), and the like. Or in combination of two or more. As the metal (b) other than the platinum group metal (a), silver (Ag), cobalt (Co) and nickel (Ni) are particularly suitable.

有機カルボン酸と白金族金属(a)との塩(A)を該有機カルボン酸と白金族金属(a)以外の他の金属(b)との塩(B)と併用する場合の両者の使用割合は、厳密に制限されるものではなく、最終的に得られる担持酸化チタン担体の用途などに応じて適宜変えることができるが、白金族金属(a)と白金族金属(a)以外の金属(b)との合計量を基準にして、白金族金属(a)が一般に少なくとも40mol%、特に50〜90mol%、さらに特に50〜70mol%の範囲内となるようなにすることが好ましい。   Use of both when a salt (A) of an organic carboxylic acid and a platinum group metal (a) is used in combination with a salt (B) of another metal (b) other than the organic carboxylic acid and the platinum group metal (a) The ratio is not strictly limited and can be appropriately changed depending on the use of the finally obtained supported titanium oxide carrier, but a metal other than the platinum group metal (a) and the platinum group metal (a). It is preferred that the platinum group metal (a) is generally at least 40 mol%, in particular 50 to 90 mol%, more particularly 50 to 70 mol%, based on the total amount with (b).

有機カルボン酸金属塩は、水性媒体、特に脱イオン水、蒸留水などに溶解又は分散させて担持溶液を調製する。担持溶液中における有機カルボン酸金属塩の濃度は、通常1重量%から飽和濃度の範囲内、特に4〜10重量%の範囲内が好適である。また、担持溶液は、遊離の有機カルボン酸を含有していてもよいが、その量が多くなると、金属イオンが凝集し析出するおそれがあるので、担持溶液中の遊離有機カルボン酸の濃度は通常10重量%以下、特に5重量%以下に留めることが望ましい。   The organic carboxylic acid metal salt is dissolved or dispersed in an aqueous medium, particularly deionized water or distilled water, to prepare a supported solution. The concentration of the organic carboxylic acid metal salt in the supporting solution is usually preferably in the range of 1% by weight to the saturation concentration, particularly in the range of 4 to 10% by weight. Further, the supporting solution may contain free organic carboxylic acid, but if the amount increases, metal ions may aggregate and precipitate, so the concentration of free organic carboxylic acid in the supporting solution is usually It is desirable to keep it at 10% by weight or less, particularly 5% by weight or less.

また、担持溶液には、必要に応じて、界面活性剤を添加することができる。添加することができる界面活性剤としては、例えば、ポリオキシエチレントリデシルエーテル、エチレングリコール、N、N-ジメチルエタノールアミンなどの非イオン界面活性剤;アルキルトリメチルアンモニウム塩などの陽イオン界面活性剤;アルキルベンゼンスルホン酸アンモニウム塩などの陰イオン界面活性剤;アルキルベンジルアンモニウム塩などの両性界面活性剤が挙げられる。   In addition, a surfactant can be added to the supporting solution as necessary. Examples of the surfactant that can be added include nonionic surfactants such as polyoxyethylene tridecyl ether, ethylene glycol, and N, N-dimethylethanolamine; cationic surfactants such as alkyltrimethylammonium salts; Anionic surfactants such as alkylbenzenesulfonic acid ammonium salts; amphoteric surfactants such as alkylbenzylammonium salts.

一方、酸化チタン担体は、実質的に酸化チタンからなるものであってもよく、或いは導電性カーボンや金属酸化物などの基材表面を酸化チタンで被覆したものであってもよい。該金属酸化物としては、例えば、アルミナ、ジルコニア、シリカ、酸化イリジウム、酸化ルテニウムなどが挙げられる。酸化チタン担体は用途に応じて任意の形状をとりうることができ、例えば、粉末、粒状、ペレット状、ハニカム状、プリーツ状、波形板状などの形状であることができる。   On the other hand, the titanium oxide carrier may be substantially composed of titanium oxide, or may be one in which the surface of a base material such as conductive carbon or metal oxide is coated with titanium oxide. Examples of the metal oxide include alumina, zirconia, silica, iridium oxide, and ruthenium oxide. The titanium oxide carrier can take any shape depending on the application, and can be, for example, a powder, a granular shape, a pellet shape, a honeycomb shape, a pleated shape, or a corrugated plate shape.

これらの酸化チタン担体への白金族金属(a)又は白金族金属(a)とそれ以外の他の金属(b)との合金の担持は、酸化チタン担体を前述の如き担持溶液と接触させ、該酸化チタン担体に金属塩(A)、(B)を吸着させた後、還元処理して、該金属塩を金属に転
換することにより行うことができる。酸化チタン担体と担持溶液との接触は、例えば、担持溶液に浸漬するか、酸化チタン担体に担持溶液を噴霧するなどの方法により行うことができ、これによって、酸化チタン担体に担持溶液を十分に吸着させる。
The support of the platinum group metal (a) or the alloy of the platinum group metal (a) and other metal (b) on these titanium oxide supports is obtained by bringing the titanium oxide support into contact with the support solution as described above. After the metal salts (A) and (B) are adsorbed on the titanium oxide support, reduction treatment is performed to convert the metal salt into a metal. The contact between the titanium oxide support and the support solution can be performed by, for example, a method of immersing in the support solution or spraying the support solution onto the titanium oxide support, thereby sufficiently supporting the support solution on the titanium oxide support. Adsorb.

酸化チタン担体は、担持溶液と接触させた後、必要に応じて、余分な担持溶液を除去し、乾燥する。乾燥は、通常、大気中で常温に放置するか、約80℃までの温度に加温することにより行うことができる。これにより金属塩が吸着した酸化チタン担体が得られる。   The titanium oxide carrier is brought into contact with the supporting solution, and then the excess supporting solution is removed and dried as necessary. Drying can usually be carried out by leaving it in the atmosphere at room temperature or heating it to a temperature up to about 80 ° C. As a result, a titanium oxide carrier on which a metal salt is adsorbed is obtained.

次いで、この金属塩(A)、(B)が吸着した酸化チタン担体を還元処理することにより、白金族金属(a)又は白金族金属(a)とそれ以外の他の金属(b)との合金を微細且つ均一に高分散状態で担持してなる酸化チタン担体が得られる。上記還元処理は、例えば、還元性ガス(水素など)雰囲気下で約40〜約400℃、好ましくは約40〜約300℃の温度に加熱するか、又は不活性ガス(窒素など)雰囲気下で約300〜約800℃、好ましくは約300〜約400℃の温度に加熱し、担持された金属塩(A)、(B)を金属に分解することにより行うことができる。特に、有機カルボン酸と白金族金属(a)との塩(A)と該有機カルボン酸と白金族金属(a)以外の金属(b)との塩(B)の両者が担持された酸化チタン担体の場合、窒素などの不活性雰囲気下で400〜800℃の温度で加熱処理することによって、白金族金属(a)とそれ以外の他の金属(b)が互いに固溶した合金状態で担持された酸化チタン担体を得ることができる。   Next, by reducing the titanium oxide carrier on which the metal salts (A) and (B) are adsorbed, the platinum group metal (a) or the platinum group metal (a) and other metal (b) A titanium oxide support in which the alloy is finely and uniformly supported in a highly dispersed state can be obtained. The reduction treatment is performed, for example, by heating to a temperature of about 40 to about 400 ° C., preferably about 40 to about 300 ° C. in a reducing gas (such as hydrogen) atmosphere, or in an inert gas (such as nitrogen) atmosphere. It can be carried out by heating to a temperature of about 300 to about 800 ° C., preferably about 300 to about 400 ° C., and decomposing the supported metal salts (A) and (B) into metals. In particular, titanium oxide carrying both a salt (A) of an organic carboxylic acid and a platinum group metal (a) and a salt (B) of the organic carboxylic acid and a metal (b) other than the platinum group metal (a). In the case of the carrier, it is supported in an alloy state in which the platinum group metal (a) and the other metal (b) are in solid solution with each other by heat treatment at a temperature of 400 to 800 ° C. in an inert atmosphere such as nitrogen. The obtained titanium oxide support can be obtained.

上記還元処理は、また、メタノール、エタノールなどのアルコール類;ホルムアルデヒド(ホルマリン)のようなアルデヒド類;アセトンのようなケトン類;ギ酸のようなカルボン酸;メチルエチルエーテルのようなエーテル類;ヒドラジン、水素化ホウ素ナトリウムなどの還元剤を用いて行うこともできる。   The above reduction treatment also includes alcohols such as methanol and ethanol; aldehydes such as formaldehyde (formalin); ketones such as acetone; carboxylic acids such as formic acid; ethers such as methyl ethyl ether; hydrazine, It can also be performed using a reducing agent such as sodium borohydride.

かくして得られる白金族金属(a)又は白金族金属(a)とそれ以外の他の金属(b)との合金を担持してなる酸化チタン担体は、酸化チタンの光触媒作用と白金族金属(a)の酸化作用との相乗的な高い触媒作用を有しており、例えば、アセトアルデヒド、ホルムアルデヒドなどの揮発性有機物質の分解用、アンモニアなどの臭気物質の脱臭用として有利に使用することができる。   The titanium oxide carrier formed by supporting the platinum group metal (a) or the alloy of the platinum group metal (a) and the other metal (b) obtained in this way is a photocatalytic action of titanium oxide and the platinum group metal (a It has a high catalytic action synergistically with the oxidizing action of), and can be advantageously used, for example, for decomposing volatile organic substances such as acetaldehyde and formaldehyde and deodorizing odorous substances such as ammonia.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

実施例1
白金換算で12gの白金を含むシュウ酸白金を1000mLの脱イオン水に溶解し、白金濃度が12g/Lの白金担持溶液を得た。この白金担持溶液1000mLに990gのペレット状の酸化チタンを25℃で49時間浸漬後、濾過し、100℃で乾燥し、シュウ酸白金担持酸化チタンを得た。このシュウ酸白金担持酸化チタンを窒素雰囲気下に300℃で2.5時間加熱した後さらに水素雰囲気下に40℃で2.5時間還元し、1mass%白金担持酸化チタンを得た。
Example 1
Platinum oxalate containing 12 g of platinum in terms of platinum was dissolved in 1000 mL of deionized water to obtain a platinum carrying solution with a platinum concentration of 12 g / L. After 990 g of pelleted titanium oxide was immersed in 1000 mL of this platinum-supported solution at 25 ° C. for 49 hours, it was filtered and dried at 100 ° C. to obtain platinum oxalate-supported titanium oxide. This platinum oxalate-supported titanium oxide was heated at 300 ° C. for 2.5 hours in a nitrogen atmosphere and then further reduced at 40 ° C. for 2.5 hours in a hydrogen atmosphere to obtain 1 mass% platinum-supported titanium oxide.

実施例2
実施例1で得られたシュウ酸白金担持酸化チタンを還元剤であるエタノール中に浸漬し、エタノールの沸点まで加熱し、18時間還流させることによりシュウ酸白金を白金に還元して1mass%白金担持酸化チタンを得た。
Example 2
The platinum oxalate-supported titanium oxide obtained in Example 1 is immersed in ethanol as a reducing agent, heated to the boiling point of ethanol, and refluxed for 18 hours to reduce platinum oxalate to platinum and to support 1 mass% platinum. Titanium oxide was obtained.

実施例3
パラジウム換算で12gのパラジウムを含むマレイン酸パラジウムを1000mLの脱
イオン水に溶解し、得られた水溶液に非イオン界面活性剤(ポリオキシエチレントリデシルエーテル)を0.1g加え、パラジウム濃度が12g/Lのパラジウム担持用溶液を得た。このパラジウム担持溶液100mLに999gの粉末状酸化チタンを25℃で49時間浸漬した後、濾過し、100℃で乾燥し、マレイン酸パラジウム担持酸化チタンを得た。このマレイン酸パラジウム担持酸化チタンを水素雰囲気下に300℃で2.5時間還元し、0.1mass%パラジウム担持酸化チタンを得た。
Example 3
Palladium maleate containing 12 g of palladium in terms of palladium is dissolved in 1000 mL of deionized water, 0.1 g of nonionic surfactant (polyoxyethylene tridecyl ether) is added to the resulting aqueous solution, and the palladium concentration is 12 g / A solution for supporting palladium of L was obtained. After 999 g of powdered titanium oxide was immersed in 100 mL of this palladium-supported solution at 25 ° C. for 49 hours, it was filtered and dried at 100 ° C. to obtain palladium maleate-supported titanium oxide. This palladium maleate-supported titanium oxide was reduced in a hydrogen atmosphere at 300 ° C. for 2.5 hours to obtain 0.1 mass% palladium-supported titanium oxide.

実施例4
白金換算で12gの白金を含むシュウ酸白金及びルテニウム換算で6.2gのルテニウムを含むシュウ酸ルテニウムを1000mLの脱イオン水に溶解し、白金濃度が12g/L且つ溶液中の全金属に対する白金濃度が50mol%の白金−ルテニウム合金担持溶液を得た。この白金−ルテニウム合金担持用溶液500mLに992.4gの粉末状酸化チタンを25℃で49時間浸漬した後、濾過し、100℃で乾燥し、シュウ酸白金及びシュウ酸ルテニウム担持酸化チタンを得た。このシュウ酸白金及びシュウ酸ルテニウム担持酸化チタンを窒素雰囲気下に800℃で2.5時間還元し、1mass%白金−0.52mass%ルテニウム合金担持酸化チタンを得た。
Example 4
Platinum oxalate containing 12 g of platinum in terms of platinum and ruthenium oxalate containing 6.2 g of ruthenium in terms of ruthenium are dissolved in 1000 mL of deionized water, the platinum concentration is 12 g / L, and the platinum concentration relative to all metals in the solution As a result, a platinum-ruthenium alloy-supported solution having a concentration of 50 mol% was obtained. 992.4 g of powdered titanium oxide was immersed in 500 mL of the platinum-ruthenium alloy supporting solution at 25 ° C. for 49 hours, filtered, and dried at 100 ° C. to obtain platinum oxalate and ruthenium oxalate-supported titanium oxide. . This platinum oxalate and ruthenium oxalate-supported titanium oxide were reduced at 800 ° C. for 2.5 hours in a nitrogen atmosphere to obtain 1 mass% platinum-0.52 mass% ruthenium alloy-supported titanium oxide.

実施例5
白金換算で12gの白金を含むシュウ酸白金及びコバルト換算で3.6gのコバルトを含む酢酸コバルトを1000mLの脱イオン水に溶解し、白金濃度が12g/L且つ溶液中の全金属に対する白金濃度が50mol%の白金−コバルト合金担持溶液を得た。この白金−コバルト合金担持用溶液1000mLに987gの粉末状酸化チタンを25℃で49時間浸漬した後、濾過し、100℃で乾燥し、シュウ酸白金及び酢酸コバルト担持酸化チタンを得た。このシュウ酸白金及び酢酸コバルト担持酸化チタンを窒素雰囲気下に800℃で2.5時間還元し、1mass%白金−0.3mass%コバルト合金担持酸化チタンを得た。
Example 5
Platinum oxalate containing 12 g of platinum in terms of platinum and cobalt acetate containing 3.6 g of cobalt in terms of cobalt are dissolved in 1000 mL of deionized water, the platinum concentration is 12 g / L, and the platinum concentration relative to all metals in the solution is A 50 mol% platinum-cobalt alloy supporting solution was obtained. After 987 g of powdered titanium oxide was immersed in 1000 mL of this platinum-cobalt alloy supporting solution at 25 ° C. for 49 hours, it was filtered and dried at 100 ° C. to obtain platinum oxalate and cobalt acetate supporting titanium oxide. The platinum oxalate and cobalt acetate-supported titanium oxide were reduced at 800 ° C. for 2.5 hours in a nitrogen atmosphere to obtain 1 mass% platinum-0.3 mass% cobalt alloy-supported titanium oxide.

実施例6
白金換算で12gの白金を含むシュウ酸白金、金換算で12.1gの金を含むシュウ酸金及び銀換算で6.1gの銀を含むシュウ酸銀を1000mLの脱イオン水に溶解し、溶液中の白金濃度が12g/Lで且つ溶液中の全金属に対する白金濃度が50mol%で、金及び銀の溶液中の全金属に対する各濃度が25mol%の白金−金−銀合金担持溶液を得た。この白金−金−銀合金担持用溶液を実施例4と同様に処理することにより1mass%白金−1.01mass%金−0.51mass%銀合金担持酸化チタンを得た。
Example 6
Platinum oxalate containing 12 g of platinum in terms of platinum, gold oxalate containing 12.1 g of gold in terms of gold and silver oxalate containing 6.1 g of silver in terms of silver are dissolved in 1000 mL of deionized water, A platinum-gold-silver alloy-supported solution having a platinum concentration of 12 g / L and a platinum concentration of 50 mol% with respect to all metals in the solution and a concentration of 25 mol% with respect to all metals in the gold and silver solution was obtained. . The platinum-gold-silver alloy supporting solution was treated in the same manner as in Example 4 to obtain 1 mass% platinum-1.01 mass% gold-0.51 mass% silver alloy-supporting titanium oxide.

実施例7
890gの粉末状酸化アルミニウムを1000mLのエタノール中に分散させて、酸化チタン換算で100gのチタンを含むチタンアルコキシドを加え加水分解させて水酸化チタン被覆酸化アルミニウムを得た。この水酸化チタン被覆酸化アルミニウムを大気中において800℃で2.5時間熱処理することにより、酸化チタン被覆酸化アルミニウムを得た。この酸化チタン被覆酸化アルミニウムを酸化チタンの代わりに使って実施例1と同様に処理することにより1mass%白金担持酸化チタン被覆酸化アルミニウムを得た。
Example 7
890 g of powdered aluminum oxide was dispersed in 1000 mL of ethanol, and titanium alkoxide containing 100 g of titanium in terms of titanium oxide was added and hydrolyzed to obtain titanium hydroxide-coated aluminum oxide. This titanium hydroxide-coated aluminum oxide was heat-treated at 800 ° C. for 2.5 hours in the air to obtain titanium oxide-coated aluminum oxide. This titanium oxide-coated aluminum oxide was treated in the same manner as in Example 1 using titanium oxide instead of titanium oxide to obtain 1 mass% platinum-supported titanium oxide-coated aluminum oxide.

比較例1
白金換算で10gの白金を含む塩化白金酸を1000mLの脱イオン水に溶解し、白金濃度が10g/Lの白金担持溶液を得た。この白金担持溶液1000mLに990gのペレット状の酸化チタンを浸漬し、100℃で乾燥することによって塩化白金担持酸化チタンを得た。この塩化白金担持酸化チタンを窒素雰囲気下に500℃で2.5時間加熱し、1mass%白金担持酸化チタンを得た。
Comparative Example 1
Chloroplatinic acid containing 10 g of platinum in terms of platinum was dissolved in 1000 mL of deionized water to obtain a platinum carrying solution with a platinum concentration of 10 g / L. 990 g of pellet-shaped titanium oxide was immersed in 1000 mL of this platinum-supported solution and dried at 100 ° C. to obtain platinum chloride-supported titanium oxide. This platinum chloride-supported titanium oxide was heated at 500 ° C. for 2.5 hours in a nitrogen atmosphere to obtain 1 mass% platinum-supported titanium oxide.

比較例2
比較例1で得た白金担持溶液を1000mLにコバルト換算で3gのコバルトを含む硝酸コバルトを加え、常温で攪拌して溶解させ、白金−コバルト合金担持溶液を得た。この白金−コバルト合金担持溶液1000mLに987gのペレット状の酸化チタンを浸漬し、100℃で乾燥することによって、塩化白金及び硝酸コバルト担持酸化チタンを得た。この塩化白金及び硝酸コバルト担持酸化チタンを窒素雰囲気下に800℃で2.5時間加熱し、1mass%白金−0.3mass%コバルト合金担持酸化チタンを得た。
Comparative Example 2
To 1000 mL of the platinum-supported solution obtained in Comparative Example 1, cobalt nitrate containing 3 g of cobalt in terms of cobalt was added and dissolved by stirring at room temperature to obtain a platinum-cobalt alloy-supported solution. 987 g of pelleted titanium oxide was immersed in 1000 mL of this platinum-cobalt alloy supporting solution, and dried at 100 ° C. to obtain platinum chloride and cobalt nitrate supporting titanium oxide. The platinum chloride and cobalt nitrate-supported titanium oxide were heated at 800 ° C. for 2.5 hours in a nitrogen atmosphere to obtain 1 mass% platinum-0.3 mass% cobalt alloy-supported titanium oxide.

比較例3
白金換算で10gの白金を含み且つ白金濃度が10g/Lのジニトロジアンミン白金エタノール溶液を1000mLを用い、比較例1と同様に処理することにより1mass%白金担持酸化チタンを得た。
Comparative Example 3
1000 mass of dinitrodiammine platinum ethanol solution containing 10 g of platinum in terms of platinum and having a platinum concentration of 10 g / L was treated in the same manner as in Comparative Example 1 to obtain 1 mass% platinum-supported titanium oxide.

上記実施例1〜7及び比較例1〜3で得られた金属担持酸化チタン担体の金属比表面積を、高精度全自動ガス吸着測定装置「BELSORP28SA」(日本ベル株式会社製、商品名)を使用し、一酸化炭素の不可逆吸着量より求めた。その結果を下記表1に示す。実施例1〜7の金属担持酸化チタン担体は、比較例1〜3の金属担持酸化チタン担体と比較して金属表面積が明らかに大きくなっていることがわかる。   For the metal specific surface area of the metal-supported titanium oxide supports obtained in Examples 1 to 7 and Comparative Examples 1 to 3, a highly accurate fully automatic gas adsorption measuring device “BELSORP28SA” (trade name, manufactured by Nippon Bell Co., Ltd.) is used. And obtained from the amount of irreversible adsorption of carbon monoxide. The results are shown in Table 1 below. It can be seen that the metal-supported titanium oxide supports of Examples 1 to 7 clearly have a larger metal surface area than the metal-supported titanium oxide supports of Comparative Examples 1 to 3.

図1は、実施例1で作製したペレット状の白金担持酸化チタンを乳鉢で粉砕して粉末状にした白金担持酸化チタンのTEM写真である。50nmの巨大な粒子が酸化チタンの粒子であり、酸化チタン表面の約1nmの粒子が白金粒子である。この写真から明らかなように、非常に微細な白金粒子が酸化チタン表面に高分散状態で担持されていることがわかる。   FIG. 1 is a TEM photograph of platinum-supported titanium oxide prepared by pulverizing the pellet-shaped platinum-supported titanium oxide prepared in Example 1 with a mortar. Giant particles of 50 nm are titanium oxide particles, and particles of about 1 nm on the surface of titanium oxide are platinum particles. As is clear from this photograph, it can be seen that very fine platinum particles are supported in a highly dispersed state on the titanium oxide surface.

図2は、実施例1及び比較例3で作製した白金担持酸化チタンの断面写真である。この写真から、実施例1の白金担持酸化チタンはペレット内部まで黒灰色に変化しており、酸化チタンペレット内部まで白金が担持されていることが確認できる。一方、比較例3の白金担持酸化チタンペレットはペレットの外周部分は黒灰色で白金が担持されているが、内部は酸化チタンと同じ白色であり白金が担持されていないことが確認できる。したがって、比較例3の白金担持酸化チタンペレットを例えば揮発性有機物質の分解に用いた場合、揮発性有機物質がペレット内部の酸化チタンに吸着し、分解されないまま残留する可能性
がある。
FIG. 2 is a cross-sectional photograph of platinum-supported titanium oxide produced in Example 1 and Comparative Example 3. From this photograph, it can be confirmed that the platinum-supported titanium oxide of Example 1 changed to black-gray to the inside of the pellet, and platinum was supported to the inside of the titanium oxide pellet. On the other hand, the platinum-supported titanium oxide pellet of Comparative Example 3 has a black-gray outer peripheral portion and platinum is supported, but the inside is the same white as titanium oxide and it can be confirmed that platinum is not supported. Therefore, when the platinum-supported titanium oxide pellet of Comparative Example 3 is used for, for example, decomposition of a volatile organic substance, the volatile organic substance may be adsorbed on the titanium oxide inside the pellet and remain without being decomposed.

図3は、実施例1の白金担持酸化チタンと無担持の酸化チタン担体のアセトアルデヒドの分解特性を示すグラフである。実施例1の白金担持酸化チタン又は酸化チタン担体を光触媒材料のNOx除去性能試験(JISR 1701「光触媒材料の空気浄化性能試験方法 第1部窒素酸化物」)で採用されている、窓板がホウ酸ガラス、その他はアクリル樹脂製の透明な連続ガス流通式装置に設置し、5ppmのアセトアルデヒドを含む空気を1L/minで流通させて、光の当たらない暗条件(紫外線照射なし)で90分間及びそれに続く紫外線照射のある明条件(放射照度10W/m2の紫外線をブラックライト(TOSHIBA FL20SBLB)を使用して照射)で90分間における測定容器出口のアセトアルデヒド濃度を測定した。図3から明らかなように、実施例1の白金担持酸化チタンは、暗条件でもアセトアルデヒドの分解が進んでおり、明条件でより一層分解が進行している。一方、酸化チタン担体は、暗条件ではじめのうちはアセトアルデヒドの吸着が進行するため、出口アセトアルデヒド濃度が低くなっているものの、時間の経過に伴って吸着が飽和に近づいていくため、出口アセトアルデヒド濃度が上昇する。したがって、酸化チタン担体は暗条件下でアセトアルデヒドの分解能力はないものと考えられる。したがって、実施例1の白金担持酸化チタンは、酸化チタン担体と比較してアセトアルデヒド除去触媒として高活性であることは明らかである。 FIG. 3 is a graph showing the decomposition characteristics of acetaldehyde of platinum-supported titanium oxide and non-supported titanium oxide support of Example 1. The plate-supported titanium oxide or titanium oxide support of Example 1 is used in the NOx removal performance test of the photocatalyst material (JISR 1701 “Testing method for air purification performance of photocatalyst material Part 1 Nitrogen oxide”). Acid glass and others are installed in a transparent continuous gas flow type apparatus made of acrylic resin, and air containing 5 ppm acetaldehyde is circulated at 1 L / min for 90 minutes under dark conditions (no UV irradiation) where no light is applied. The concentration of acetaldehyde at the outlet of the measuring vessel for 90 minutes was measured under bright conditions with subsequent ultraviolet irradiation (irradiation with ultraviolet light having an irradiance of 10 W / m 2 using a black light (TOSHIBA FL20SBLB)). As can be seen from FIG. 3, the platinum-supported titanium oxide of Example 1 has undergone acetaldehyde decomposition even under dark conditions, and further proceeds under light conditions. On the other hand, the adsorption of acetaldehyde progresses at first in the dark condition in the titanium oxide carrier, so although the outlet acetaldehyde concentration is low, the adsorption approaches saturation as time passes. Rises. Therefore, it is considered that the titanium oxide carrier has no ability to decompose acetaldehyde under dark conditions. Therefore, it is clear that the platinum-supported titanium oxide of Example 1 is more active as an acetaldehyde removal catalyst than the titanium oxide support.

は、実施例1で作製したペレット状の白金担持酸化チタンを乳鉢で粉砕して粉末状にした白金担持酸化チタンのTEM写真である。These are TEM photographs of platinum-supported titanium oxide prepared by pulverizing the pellet-shaped platinum-supported titanium oxide prepared in Example 1 with a mortar. は、実施例1及び比較例3で作製した白金担持酸化チタンの断面写真である。These are cross-sectional photographs of platinum-supported titanium oxide produced in Example 1 and Comparative Example 3. は、実施例1の白金担持酸化チタンと無担持の酸化チタン担体のアセトアルデヒドの分解特性を示すグラフである。These are the graphs which show the decomposition characteristics of acetaldehyde of platinum-supported titanium oxide and non-supported titanium oxide support of Example 1.

Claims (3)

シュウ酸、マロン酸及びマレイン酸よりなる群から選ばれる有機カルボン酸と白金及びルテニウムから選ばれる少なくとも1種の白金族金属(a)との塩(A)、又は塩(A)及び酢酸コバルトを含有する溶液を酸化チタン担体と接触させ、該酸化チタン担体に金属塩を吸着させた後、還元処理して、該金属塩を金属に転換することを特徴とする、白金族金属(a)又は白金族金属(a)とコバルトとの合金を担持してなる酸化チタン担体の製造方法。 A salt (A) of an organic carboxylic acid selected from the group consisting of oxalic acid, malonic acid and maleic acid and at least one platinum group metal (a) selected from platinum and ruthenium, or salt (A) and cobalt acetate A platinum group metal (a) or a platinum group metal (a), wherein the solution containing the catalyst is brought into contact with a titanium oxide support, a metal salt is adsorbed on the titanium oxide support and then reduced to convert the metal salt into a metal. A method for producing a titanium oxide carrier carrying an alloy of a platinum group metal (a) and cobalt. 酸化チタン担体が酸化チタン又は酸化チタンで被覆された導電性カーボンもしくは金属酸化物である請求項1に記載の方法。 The method according to claim 1, wherein the titanium oxide support is a conductive carbon or metal oxide coated with titanium oxide or titanium oxide. 還元処理を不活性雰囲気下に300℃〜800℃の温度で熱処理することにより行う請求項1又は2に記載の方法。 A method according to claim 1 or 2 carried out by heat treatment to a reduction treatment at a temperature of 300 ° C. to 800 ° C. under an inert atmosphere.
JP2007305674A 2007-11-27 2007-11-27 Method for producing a titanium oxide carrier comprising a platinum group metal or an alloy of a platinum group metal and another metal supported thereon Active JP5237616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305674A JP5237616B2 (en) 2007-11-27 2007-11-27 Method for producing a titanium oxide carrier comprising a platinum group metal or an alloy of a platinum group metal and another metal supported thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305674A JP5237616B2 (en) 2007-11-27 2007-11-27 Method for producing a titanium oxide carrier comprising a platinum group metal or an alloy of a platinum group metal and another metal supported thereon

Publications (2)

Publication Number Publication Date
JP2009125705A JP2009125705A (en) 2009-06-11
JP5237616B2 true JP5237616B2 (en) 2013-07-17

Family

ID=40817162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305674A Active JP5237616B2 (en) 2007-11-27 2007-11-27 Method for producing a titanium oxide carrier comprising a platinum group metal or an alloy of a platinum group metal and another metal supported thereon

Country Status (1)

Country Link
JP (1) JP5237616B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104014329A (en) * 2014-05-09 2014-09-03 哈尔滨工程大学 Preparation method of vanadium-based denitration catalyst

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19914066A1 (en) * 1999-03-27 2000-10-05 Celanese Chem Europe Gmbh Catalysts for the gas phase oxidation of ethylene and acetic acid to vinyl acetate, process for their preparation and their use
RU2239626C2 (en) * 2000-05-19 2004-11-10 Селаниз Интернэшнл Корпорейшн Method for preparing vinyl acetate
JP2002018291A (en) * 2000-07-04 2002-01-22 Ngk Insulators Ltd Metal oxide catalyst and method for manufacturing the same
JP4600710B2 (en) * 2000-12-06 2010-12-15 日産自動車株式会社 Exhaust gas purification catalyst
TWI272250B (en) * 2004-06-30 2007-02-01 Ind Tech Res Inst Visible light-activated photocatalyst and method for producing the same
JP2006086037A (en) * 2004-09-16 2006-03-30 Nissan Motor Co Ltd Electrocatalyst for fuel cell and electrocatalyst layer for fuel cell using it

Also Published As

Publication number Publication date
JP2009125705A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
US7759281B2 (en) Photocatalyst containing metallic ultrafine particles and process for producing said photocatalyst
JP6486360B2 (en) Carbon monoxide and / or oxidation catalyst for volatile organic compounds
Gao et al. Titania supported Pd-Cu bimetallic catalyst for the reduction of nitrate in drinking water
Fang et al. Effect of redox state of Ag on indoor formaldehyde degradation over Ag/TiO2 catalyst at room temperature
CN104549368B (en) A kind of supported bi-metallic type Cu Pt/TiO2The preparation method of NBs catalyst and application
JP6160874B2 (en) Catalyst carrier comprising gold nanoparticles and method for producing the same
JP4801461B2 (en) Method for producing exhaust gas treatment catalyst
Silva et al. Catalytic and photocatalytic nitrate reduction over Pd-Cu loaded over hybrid materials of multi-walled carbon nanotubes and TiO2
JP4865250B2 (en) Method for producing exhaust gas treatment catalyst
JP5612050B2 (en) Method for producing metal particle supported catalyst
CN111495357A (en) Catalyst with ultralow noble metal content as well as preparation method and application thereof
JP5237616B2 (en) Method for producing a titanium oxide carrier comprising a platinum group metal or an alloy of a platinum group metal and another metal supported thereon
JP2009262049A (en) Photocatalytic structure and method for producing the same
JP2008280184A (en) Composite of ultrafine particle of cerium-containing mesoporous silica and noble metal, production method of the composite, oxidative exclusion method of minute amount of carbon monoxide by using the complex as catalyst, and synthetic method of ketone by oxidative dehydrogenation of alcohol
JP4591920B2 (en) Photocatalyst and method for producing the same
JP7145318B2 (en) Exhaust gas purification catalyst
CN114160148B (en) Cu-based catalyst for preparing hydrogen by reforming methanol and preparation method and application thereof
JP2000225321A (en) Catalyst for deodorization and deodorization apparatus using same catalyst
JP4365159B2 (en) Photocatalyst composite powder
JP2006281026A (en) Catalytic reduction catalyst for nitrogen oxide and method of treating nitrous oxide using it
CN109759057A (en) A kind of preparation method and its catalyst of noble metal-oxide composite catalyst
CN117797830A (en) Low-load Pt-based catalyst and preparation method and application thereof
JP4336121B2 (en) Catalyst and method for producing the same
Chen et al. Nanosized Au Catalysts Supported on Mg (OH) 2-CeO2 for Preferential Oxidation of CO in Hydrogen Stream
JP4411098B2 (en) Cleaning method for metal supported catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5237616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250