JP3821357B2 - Molten salt catalyst - Google Patents

Molten salt catalyst Download PDF

Info

Publication number
JP3821357B2
JP3821357B2 JP2001008792A JP2001008792A JP3821357B2 JP 3821357 B2 JP3821357 B2 JP 3821357B2 JP 2001008792 A JP2001008792 A JP 2001008792A JP 2001008792 A JP2001008792 A JP 2001008792A JP 3821357 B2 JP3821357 B2 JP 3821357B2
Authority
JP
Japan
Prior art keywords
catalyst
molten salt
nitrate
amount
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001008792A
Other languages
Japanese (ja)
Other versions
JP2002210368A (en
Inventor
智之 香山
博文 新庄
雄二 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2001008792A priority Critical patent/JP3821357B2/en
Priority to US10/033,920 priority patent/US6777368B2/en
Priority to EP02000414A priority patent/EP1224968A1/en
Publication of JP2002210368A publication Critical patent/JP2002210368A/en
Application granted granted Critical
Publication of JP3821357B2 publication Critical patent/JP3821357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/25Nitrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/27Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a liquid or molten state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンなどの排ガスに含まれるパティキュレート(以下PMという)を排ガス温度域で効率よく浄化できる溶融塩型触媒に関する。
【0002】
【従来の技術】
ディーゼルエンジンの排ガス中には、カーボン、 SOF(Soluble Organic Fraction)、高分子有機化合物、硫酸ミストなどからなるPMが含まれ、大気汚染及び人体への悪影響の面からPMの排出を抑制しようとする動きが高まっている。PMの排出を抑制するには、フィルタによってPMを捕捉する方法と、PMを燃焼除去する方法の2種類があり、それぞれのあるいは両方を組み合わせた技術開発が進められている。
【0003】
PMを燃焼するには、例えばPtなどの貴金属を担持した酸化触媒などを用いることが考えられる。しかしながらこの場合は固相どうしの接触となるために、PMと触媒成分との接触確率が低く、PMを効率よく燃焼して浄化することは困難であった。特にPM中のカーボン成分については、Ptなど貴金属の効果はほとんど認められない。
【0004】
そこで触媒を液相としてPMと接触させることが想起され、例えばAppl.Cat.B21(1999)35−49には、Cs2MoO4-V2O5,CsVO3-MoO3,Cs2SO4-V2O5 などの溶融塩型触媒について報告されている。このような溶融塩型触媒では、カーボンの酸化力が強いこと、触媒の蒸散が少ないこと、燃焼温度が低いことなどが好ましい条件であり、この文献にはCs2MoO4-V2O5及びCsVO3-MoO3が 620K( 347℃)以上で活性が高く、大気中で1025K( 752℃)まで安定であって、好ましい触媒であることが記載されている。
【0005】
また特開平9-144528号公報には、融点が 300〜 500℃であり、すすの燃焼において触媒活性を有するCs2O・V2O5, K2O・V2O5などの共融組成物をモノリス体などのキャリアーに担持した触媒装置が開示されている。
【0006】
そして国際公開WO00/43109号(PCT/JP00/00194)には、硝酸マグネシウムと炭酸マグネシウムを液溜に入れ、排ガスを約 185〜 270℃で接触させることによってPMを燃焼除去できることが記載されている。
【0007】
【発明が解決しようとする課題】
ディーゼルエンジンからの排ガスの温度は 300℃未満であるのが通常である。また始動時はさらに低い。そのため溶融塩型触媒の融点が 300℃以上では、ディーゼルエンジンからの排ガス中で液相とならないために、PMを効率よく燃焼除去することが困難である。
【0008】
溶融塩は液相となる必要があるが、液相であるがために排ガス流と接触すると下流側へ流されて凝縮する恐れがある。そのために、国際公開WO00/43109号に開示の技術では液溜という原始的な技術を用いている。しかし自動車に搭載する上においては、排気圧力が上昇したり、走行時の振動などによって液面が不安定になるなど、実用的でない。
【0009】
本発明はこのような事情に鑑みてなされたものであり、低温域でもPMを燃焼除去でき、かつ自動車の排気系に安定して配置できる実用的な溶融塩型触媒とすることを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決する本発明の溶融塩型触媒の特徴は、内燃機関からの排ガスに含まれるPMを浄化する触媒であって、塩基性担体からなる固体担体と、固体担体に担持される硝酸銀,アルカリ金属の硝酸塩,アルカリ土類金属の硝酸塩及び希土類元素の硝酸塩から選ばれる少なくとも一種を含む触媒成分と、からなることにある。
【0011】
触媒成分は少なくともアルカリ金属の硝酸塩を含むことが望ましく、酸化促進成分をさらに含むことも望ましい。
【0012】
【発明の実施の形態】
本発明の溶融塩型触媒では、溶融塩を含む触媒成分が固体担体に担持されている。したがって溶融塩が液相となっても、固体担体との相互作用によって固体担体に付着した状態が維持され、下流側へ流されるような不具合が生じない。また触媒成分は常温では固体であるので、触媒の取り扱いも容易であり、排気流路への搭載も従来の三元触媒などと同様に行うことができる。
【0013】
そして本発明の溶融塩型触媒は、自動車のディーゼルエンジンの排ガス温度で溶融塩が溶融して液相となるためPMとの接触確率が高まり、PMの燃焼反応が生じる。また液相であるためにPMが捕集されやすく、これによっても接触確率が高まる。したがってPMを効率よく燃焼除去することができる。そして硝酸リチウムなど特に低温で溶融する溶融塩を用いれば、低温域でPMと触媒との接触性が向上するため、低温域から高温域まで広い温度範囲でPMを燃焼除去することができる。
【0014】
さらに溶融塩として硝酸塩を用いているため、高温域で硝酸塩に分解が生じたとしても、排ガス中に含まれる窒素酸化物によって再び硝酸塩が生成する。これによって触媒が再生されるため耐久性に優れている。
【0015】
固体担体としては、マグネシアスピネル、ジルコニア、アルカリ金属の酸化物、マグネシアなどのアルカリ土類金属の酸化物、ランタナ,ネオジアなどの希土類元素の酸化物などの塩基性担体が特に好ましい。このような塩基性担体を用いることによって、触媒成分と担体との固相反応が抑制されるため耐久性が向上する。
【0016】
触媒成分は、硝酸銀,アルカリ金属の硝酸塩,アルカリ土類金属の硝酸塩及び希土類元素の硝酸塩から選ばれる少なくとも一種を含む。アルカリ金属の硝酸塩としては、KNO3, CsNO3, NaNO3, LiNO3などが例示される。またアルカリ土類金属の硝酸塩としては、Ba(NO3)2,Sr(NO3)2,Ca(NO3)2,Mg(NO3)2などが例示され、希土類元素の硝酸塩としては、Y2(NO3)3, La2(NO3)3, Nd2(NO3)3, Pr2(NO3)3などが例示される。このうち一種のみを用いてもよいし、複数種類が複合化した複合硝酸塩を担持することもできる。複合硝酸塩とすることにより、溶融温度が低下する場合が多い。
【0017】
この複合硝酸塩としては、 AgNO3-CsNO3,CsNO3-KNO3, CsNO3-NaNO3, CsNO3-LiNO3, KNO3-Mg(NO3)2, LiNO3-NaNO3,NaNO3-Ca(NO3)2,NaNO3-Mg(NO3)2,AgNO3-KNO3-NaNO3,AgNO3-NaNO3-Ba(NO3)2,KNO3-LiNO3-NaNO3, KNO3-NaNO3-Mg(NO3)2,KNO3-Ba(NO3)2-Ca(NO3)2,KNO3-Ba(NO3)2-Sr(NO3)2,KNO3-Ca(NO3)2-Sr(NO3)2,LiNO3-NaNO3-Ca(NO3)2, NaNO3-Ca(NO3)2-Mg(NO3)2, NaNO3-Ca(NO3)2-Sr(NO3)2,KNO3-NaNO3-Ca(NO3)2-Mg(NO3)2などが好ましい。これらの複合硝酸塩を用いれば、溶融温度を 200℃以下とすることができる。
【0018】
触媒成分中に含まれる硝酸塩としては、溶融温度が低く分解温度が高いものが望ましい。これにより広い温度範囲及び広い空間速度の排ガス中でPMを効率よく燃焼除去することができる。例えば上記した硝酸塩の中ではアルカリ金属の硝酸塩を含むものが好ましく、 LiNO3を含むものが最も好ましい。
【0019】
硝酸塩の担持量は、固体担体に対して1重量%以上とすることが望ましい。担持量がこれより少ないとPMの燃焼が困難となる。また硝酸塩の担持量が多くなるほどPMの燃焼温度が低くなる傾向にあるが、 120重量%以上担持すると担体上での安定性が不十分となり下流に流されて凝集する場合があるので 120重量%未満とすることが望ましい。
【0020】
触媒成分は、酸化促進成分をさらに含むことが望ましい。この酸化促進成分によりPM中の SOFの酸化などによってPMの燃焼が促進される。酸化促進成分としては、Pt,Pd,Rhなどの貴金属、あるいはCeO2,ZrO2,CeO2−ZrO2固溶体, BaO, CaO,V2O5, ZnO, WO3,MoO3, NiO, FeO, Fe3O4, Fe2O3,MnO2, Cr2O3, CuO, CoO, Co3O4などの各種酸化物を用いることができる。中でもPtを含むことが特に望ましい。Ptによって SOFの酸化とともに排ガス中のNOx を還元する作用が奏され、また硝酸塩の近傍にPtを担持すれば、高温時に分解した硝酸塩の再生が行われるため耐久性が向上する。
【0021】
この酸化促進成分の担持量は、固体担体に対して、貴金属の場合には 0.1〜10重量%、各種酸化物の場合には1〜50重量%の範囲が好ましい。この範囲より少ないと効果が発現されず、これ以上担持しても効果が飽和するとともに悪影響が現れる場合がある。
【0022】
固体担体に硝酸塩を担持するには、硝酸塩の水溶液を固体担体に含浸させ、それを乾燥すればよい。また酸化促進成分を担持するには、その金属化合物の水溶液を用いて担持し、それを焼成すればよい。
【0023】
本発明の溶融塩型触媒の形状は特に制限されず、ペレット形状、フィルタ形状、フォーム形状、フロースルー型のモノリス形状などとすることができる。例えばフィルタ形状、モノリス形状あるいはフォーム形状とする場合には、その形状の基材表面に固体担体をコートし、それに硝酸塩を担持して製造することができる。なお排ガスが乱流となる形状とするのが望ましく、フォーム形状とするのが特に望ましい。また基材の材質としては、従来の三元触媒などと同様に耐熱性セラミックス、メタルなどを用いることができる。
【0024】
また例えば、内部が流体通路を構成する筒体と、筒体の内径より小さな最大直径をもつ塊状体と,板状をなし最大面積を有する縦大表面が筒体の中心軸方向に略平行で塊状体及び筒体の内表面と接触して塊状体と筒体の内表面の間に配置された縦板と,板状をなし最大面積を有する横大表面が筒体の中心軸方向に略垂直で縦板と当接するとともに塊状体及び筒体の内表面と接触する横板と,からなるユニットと、よりなり、ユニットが筒体の中心軸方向に直列に1個又は複数個充填された充填構造体を用い、塊状体,縦板及び横板を担体としてそれぞれに触媒成分を担持してなる触媒とすることも好ましい。このようにすれば、筒体内を流れる排ガスは乱流となり、かつ排ガスと担体との接触面積もきわめて大きくなるので、排ガス中のPMを効率よく燃焼除去することができる。
【0025】
【実施例】
以下、試験例、実施例及び比較例により本発明を具体的に説明する。
【0026】
<試験例1>
表1に示す各種溶融塩の触媒粉末を用意し、それぞれの触媒粉末とカーボンブラックを、重量比で触媒粉末:カーボンブラック=2:1となるようにそれぞれ混合した。そして示差熱分析及び熱重量分析により、溶融温度とカーボンブラックが50%酸化された温度とをそれぞれ測定し、結果を図1に示す。
【0027】
図1より、硝酸塩系の溶融塩(a−j)は、従来型の酸化物系溶融塩(A−D)と比較して溶融温度、カーボン燃焼温度共に低く、PM燃焼用触媒として優れた性能を有していることがわかる。
【0028】
【表1】

Figure 0003821357
【0029】
<試験例2>
図2に示す各種溶融塩の触媒粉末を用意し、それぞれの触媒粉末とカーボンブラックを、重量比で触媒粉末:カーボンブラック=2:1となるようにそれぞれ混合した。そして示差熱分析及び熱重量分析により、溶融温度とカーボンブラックが燃焼する温度範囲及びカーボンブラックが50%酸化された温度をそれぞれ測定し、結果を図2に示す。図2は一部図1と重複し、白四角の範囲がPMを燃焼できる温度域を示している。なおブランクとしてカーボンブラックのみについても同様に測定している。
【0030】
図2より、硝酸塩系の溶融塩と混合することでカーボンブラックの燃焼温度域が低下し、 LiNO3が特に好ましいことがわかる。
【0031】
国際公開WO00/43109号(PCT/JP00/00194)には、硝酸マグネシウム触媒粉末を用いると 260〜 300℃でPMが酸化されるとの記載があるが、これは液溜を用いた触媒がきわめて多い場合についていえることであり、触媒粉末:カーボンブラック=2:1程度の触媒量が少ない範囲では、アルカリ金属の硝酸塩が特に効果的であり、硝酸マグネシウムには効果のないことがわかる。つまり国際公開WO00/43109号(PCT/JP00/00194)は大量の溶融塩で少量のPMを燃焼させるという技術思想であるのに対し、本願では少量の溶融塩でPMを連続的に燃焼させることを技術思想としている。
【0032】
(実施例1)
所定量のマグネシアスピネル粉末に対し、所定濃度のKNO3水溶液の所定量を含浸させ、それを乾燥して本実施例の触媒を調製した。KNO3の担持量は、マグネシアスピネル担体 100gに対して4gである。
【0033】
この触媒について、KNO3の融点( 339℃)を超える 600℃にて3時間保持する耐久試験を行い、その後X線回折で観察したところ、担体との反応は生じていないことがわかった。またKNO3の分解温度( 400℃)を超えているにもかかわらずKNO3の分解は部分的にしか進んでおらず、担体により安定化されていることがわかった。
【0034】
(比較例1)
所定量の Al2O3粉末に対し、所定濃度のジニトロジアンミン白金水溶液の所定量を含浸させ、それを乾燥して本比較例の触媒を調製した。Ptの担持量は、 Al2O3担体 100gに対して2gである。
【0035】
(比較例2)
所定量の Al2O3粉末に対し、所定濃度のジニトロジアンミン白金水溶液の所定量を含浸させ、それを乾燥・焼成した。その後所定濃度の酢酸バリウム水溶液の所定量を含浸させ、それを乾燥・焼成して本比較例の触媒を調製した。 Al2O3担体 100gに対してPtの担持量は2g、Baの担持量は 0.2モルである。
【0036】
(比較例3)
所定量のCeO2粉末に対し、所定濃度のジニトロジアンミン白金水溶液の所定量を含浸させ、それを乾燥・焼成して本比較例の触媒を調製した。Ptの担持量は、CeO2担体 100gに対して2gである。
【0037】
(比較例4)
所定量のSiO2粉末に対し、所定濃度のジニトロジアンミン白金水溶液の所定量を含浸させ、それを乾燥・焼成して本比較例の触媒を調製した。Ptの担持量は、SiO2担体 100gに対して2gである。
【0038】
<試験例3>
上記した実施例1及び比較例1〜4の触媒粉末とカーボンブラックを、重量比で触媒粉末:カーボンブラック=2:1となるようにそれぞれ混合し、O2を10%含むHeガス雰囲気下にて40℃/分の速度で昇温しながら、発生する CO2の量を連続的に測定した。なおブランクとして、カーボンブラックのみについても測定した。各温度における CO2発生率を算出し、結果を図3に示す。
【0039】
図3より、実施例1の触媒は、従来の酸化触媒及びNOx 吸蔵還元型触媒である比較例の触媒に比べて燃焼温度が約 150℃低下していることがわかる。また各比較例の触媒は、カーボンブラックの酸化にはほとんど寄与しないこともわかる。
【0040】
(実施例2)
フォーム形状の基材を用意し、マグネシアスピネル粉末をウェットコートしてコート層を形成した。コート量は基材1リットルに対して 100gとした。次いで所定濃度のKNO3水溶液の所定量をコート層に含浸させ、それを乾燥して本実施例の触媒を調製した。KNO3の担持量は、基材1リットルに対して20gである。
【0041】
(実施例3)
KNO3水溶液に代えて LiNO3水溶液を用いたこと以外は実施例2と同様にして本実施例の触媒を調製した。 LiNO3の担持量は、基材1リットルに対して20gである。
【0042】
(比較例5)
マグネシアスピネル粉末に代えて Al2O3粉末,TiO2粉末,CeO2粉末及びRh担持ZrO2粉末の混合粉末を用いたこと以外は実施例2と同様にしてコート層を形成した。次いで所定濃度のジニトロジアンミン白金水溶液の所定量を含浸させ、それを乾燥・焼成した。その後所定濃度の酢酸バリウム水溶液の所定量を含浸させて乾燥・焼成し、次いで酢酸リチウム水溶液及び酢酸カリウム水溶液を用いてLiとKを同様に担持して、本比較例の触媒を調製した。基材1リットルに対して、Ptは2g、Baは 0.2モル、Li及びKはそれぞれ 0.1モル、Rhは 0.5gそれぞれ担持されている。
【0043】
<試験例4>
実施例2〜3及び比較例5の触媒をディーゼルエンジンの排気系にそれぞれ装着し、エンジン回転数 2500rpm、トルク3.2kgm、排ガス温度 200℃の条件で触媒にPMをそれぞれ捕集した。そしてPMが捕集された各触媒を取り出し、O2を10%含むN2ガス雰囲気下にて20℃/分の速度で昇温しながら、発生する CO2の量を連続的に測定した。またブランクとして、コート層も触媒成分ももたない基材についても同様にPMを捕集し、発生する CO2量を測定した。結果を図4に示す。なお図4において、縦軸は発生した CO2の体積%である。
【0044】
図4では、 CO2の発生温度に二つの山が存在しているのが認められる。 450℃以下における CO2はPM中の SOF成分の燃焼によって生成したものであり、それ以上の温度における CO2はPM中のカーボン成分の燃焼によって生成したものである。そこで図4におけるカーボン燃焼のピーク温度を抽出して、図5に示す。
【0045】
図4より、比較例5の触媒では SOF成分の燃焼による CO2が多く発生し、その燃焼温度が 300℃程度と低い。これは担持されている貴金属成分による高い酸化活性によるものである。しかし比較例5の触媒では、図5にも示すようにカーボン成分の燃焼温度は 610℃であり、ブランクの 630℃と比べるとカーボン成分の燃焼効果はほとんど認められない。
【0046】
それに対し実施例2〜3の触媒では、ブランクに比べてカーボン成分の燃焼温度が大きく低下していることが認められ、PM燃焼触媒として高い性能を有していることが明らかである。
【0047】
(比較例6)
マグネシアスピネル粉末に代えて Al2O3粉末を用いたこと以外は実施例2と同様にしてコート層を形成し、次いで所定濃度のジニトロジアンミン白金水溶液の所定量を含浸させ、それを乾燥・焼成して本比較例の触媒を調製した。Ptの担持量は、基材1リットルに対して2gである。
【0048】
(比較例7)
マグネシアスピネル粉末に代えてCeO2−ZrO2固溶体粉末を用いたこと以外は実施例2と同様にしてコート層を形成し、次いで所定濃度のジニトロジアンミン白金水溶液の所定量を含浸させ、それを乾燥・焼成して本比較例の触媒を調製した。Ptの担持量は、基材1リットルに対して2gである。
【0049】
<試験例5>
実施例2及び比較例6、7の触媒をディーゼルエンジンの排気系にそれぞれ装着し、試験例4と同様にして触媒にPMをそれぞれ1時間捕集した。捕集されたPM量を測定し、結果を表2に示す。
【0050】
【表2】
Figure 0003821357
【0051】
表2より、実施例2の触媒が最もPMの捕集量が多い。これは触媒成分が溶融して液相となったためであり、本発明の触媒はPMをよく捕捉できることがわかる。
【0052】
(実施例4)
KNO3の担持量を基材1リットル当たり 100gとしたこと以外は実施例2と同様にして本実施例の触媒を調製した。
【0053】
(実施例5)
KNO3水溶液に代えて LiNO3水溶液を用い、かつ LiNO3の担持量を基材1リットル当たり 100gとしたこと以外は実施例2と同様にして本実施例の触媒を調製した。
【0054】
<試験例6>
実施例4〜5及び比較例5の触媒とブランクの基材をディーゼルエンジンの排気系にそれぞれ装着し、試験例4と同様にして発生する CO2量を測定した。結果を図6に示す。さらに図6におけるカーボン燃焼のピーク温度を抽出して、図7に示す。
【0055】
図4と図6の比較及び図5と図7の比較より、硝酸塩の担持量が多くなるほどカーボン燃焼温度域が低温側へ移行し、かつカーボン燃焼による CO2の発生量も多くなっていることが認められる。
【0056】
【発明の効果】
すなわち本発明の溶融塩型触媒によれば、低温域でもPMを燃焼除去でき、かつ自動車の排気系に安定して配置することができるので、きわめて実用的である。
【図面の簡単な説明】
【図1】各溶融塩の溶融温度とPM50%酸化温度との関係を示すグラフである。
【図2】各溶融塩の溶融温度、PM50%酸化温度及びPM燃焼温度域を示すグラフである。
【図3】実施例及び比較例の溶融塩型触媒の CO2が発生するピーク温度を示すグラフである。
【図4】実施例及び比較例の溶融塩型触媒の温度と発生 CO2量の関係を示すグラフである。
【図5】実施例及び比較例の溶融塩型触媒のカーボン燃焼ピーク温度を示すグラフである。
【図6】実施例及び比較例の溶融塩型触媒の温度と発生 CO2量の関係を示すグラフである。
【図7】実施例及び比較例の溶融塩型触媒のカーボン燃焼ピーク温度を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molten salt type catalyst capable of efficiently purifying particulates (hereinafter referred to as PM) contained in exhaust gas such as a diesel engine in an exhaust gas temperature range.
[0002]
[Prior art]
Diesel engine exhaust gas contains PM composed of carbon, SOF (Soluble Organic Fraction), polymer organic compounds, sulfuric acid mist, etc., and tries to suppress PM emissions from the viewpoint of air pollution and adverse effects on the human body. The movement is growing. In order to suppress the emission of PM, there are two types, a method of capturing PM by a filter and a method of burning and removing PM, and technological development is progressing by combining each or both.
[0003]
In order to burn PM, for example, it is conceivable to use an oxidation catalyst carrying a noble metal such as Pt. However, in this case, since the solid phases are in contact with each other, the contact probability between PM and the catalyst component is low, and it is difficult to efficiently burn and purify PM. In particular, for the carbon component in PM, the effect of noble metals such as Pt is hardly recognized.
[0004]
Then, it is recalled that the catalyst is brought into contact with PM as a liquid phase. For example, Appl. Cat. B21 (1999) 35-49 includes Cs 2 MoO 4 —V 2 O 5 , CsVO 3 —MoO 3 , Cs 2 SO 4. A molten salt type catalyst such as -V 2 O 5 has been reported. In such a molten salt type catalyst, it is preferable conditions that the oxidizing power of carbon is strong, the transpiration of the catalyst is low, the combustion temperature is low, etc., and in this document, Cs 2 MoO 4 -V 2 O 5 and It is described that CsVO 3 -MoO 3 has a high activity at 620 K (347 ° C.) or higher, is stable up to 1025 K (752 ° C.) in the atmosphere, and is a preferred catalyst.
[0005]
JP-A-9-14528 also discloses eutectic compositions such as Cs 2 O · V 2 O 5 and K 2 O · V 2 O 5 that have a melting point of 300 to 500 ° C. and have catalytic activity in soot combustion. A catalyst device in which an object is supported on a carrier such as a monolith body is disclosed.
[0006]
International Publication WO00 / 43109 (PCT / JP00 / 00194) describes that PM can be removed by combustion by putting magnesium nitrate and magnesium carbonate into a liquid reservoir and contacting exhaust gas at about 185 to 270 ° C. .
[0007]
[Problems to be solved by the invention]
The temperature of exhaust gas from diesel engines is usually below 300 ° C. It is even lower at startup. Therefore, when the melting point of the molten salt catalyst is 300 ° C. or higher, it is difficult to efficiently burn and remove PM because it does not become a liquid phase in the exhaust gas from the diesel engine.
[0008]
The molten salt needs to be in a liquid phase, but since it is in a liquid phase, it may be flowed downstream and condensed if it comes into contact with the exhaust gas flow. Therefore, the technique disclosed in International Publication No. WO00 / 43109 uses a primitive technique called a liquid reservoir. However, when mounted on an automobile, it is not practical because the exhaust pressure increases or the liquid level becomes unstable due to vibration during traveling.
[0009]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a practical molten salt type catalyst that can burn and remove PM even in a low temperature range and can be stably disposed in an exhaust system of an automobile. .
[0010]
[Means for Solving the Problems]
The feature of the molten salt type catalyst of the present invention that solves the above problems is a catalyst for purifying PM contained in exhaust gas from an internal combustion engine, comprising a solid support composed of a basic support, silver nitrate supported on the solid support, And a catalyst component containing at least one selected from alkali metal nitrates, alkaline earth metal nitrates, and rare earth element nitrates.
[0011]
The catalyst component preferably contains at least an alkali metal nitrate, and preferably further contains an oxidation promoting component.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the molten salt type catalyst of the present invention, a catalyst component containing a molten salt is supported on a solid support. Therefore, even when the molten salt becomes a liquid phase, the state of adhering to the solid support is maintained by the interaction with the solid support, and there is no problem that the molten salt flows downstream. Further, since the catalyst component is solid at room temperature, the catalyst can be easily handled and can be mounted in the exhaust passage in the same manner as a conventional three-way catalyst.
[0013]
In the molten salt catalyst of the present invention, the molten salt melts into a liquid phase at the exhaust gas temperature of the automobile diesel engine, so that the contact probability with PM is increased, and PM combustion reaction occurs. Moreover, since it is a liquid phase, PM is easy to be collected, and this also increases the contact probability. Therefore, PM can be efficiently burned and removed. If a molten salt that melts at a low temperature, such as lithium nitrate, is used, the contact property between the PM and the catalyst is improved at a low temperature range, so that PM can be burned and removed in a wide temperature range from a low temperature range to a high temperature range.
[0014]
Furthermore, since nitrate is used as the molten salt, even if the nitrate is decomposed at a high temperature, nitrate is generated again by the nitrogen oxides contained in the exhaust gas. Since the catalyst is regenerated by this, the durability is excellent.
[0015]
As the solid support, basic supports such as magnesia spinel, zirconia, alkali metal oxides, oxides of alkaline earth metals such as magnesia, and oxides of rare earth elements such as lantana and neodia are particularly preferable. By using such a basic carrier, the solid-phase reaction between the catalyst component and the carrier is suppressed, so that durability is improved.
[0016]
The catalyst component includes at least one selected from silver nitrate, alkali metal nitrate, alkaline earth metal nitrate, and rare earth element nitrate. Examples of the alkali metal nitrate include KNO 3 , CsNO 3 , NaNO 3 , and LiNO 3 . Examples of alkaline earth metal nitrates include Ba (NO 3 ) 2 , Sr (NO 3 ) 2 , Ca (NO 3 ) 2 , Mg (NO 3 ) 2 , and the rare earth element nitrates include Y Examples include 2 (NO 3 ) 3 , La 2 (NO 3 ) 3 , Nd 2 (NO 3 ) 3 , and Pr 2 (NO 3 ) 3 . Of these, only one type may be used, or a composite nitrate in which a plurality of types are combined may be supported. By using a composite nitrate, the melting temperature often decreases.
[0017]
These complex nitrates include AgNO 3 -CsNO 3 , CsNO 3 -KNO 3 , CsNO 3 -NaNO 3 , CsNO 3 -LiNO 3 , KNO 3 -Mg (NO 3 ) 2 , LiNO 3 -NaNO 3 , NaNO 3 -Ca (NO 3 ) 2 , NaNO 3 -Mg (NO 3 ) 2 , AgNO 3 -KNO 3 -NaNO 3 , AgNO 3 -NaNO 3 -Ba (NO 3 ) 2 , KNO 3 -LiNO 3 -NaNO 3 , KNO 3- NaNO 3 -Mg (NO 3 ) 2 , KNO 3 -Ba (NO 3 ) 2 -Ca (NO 3 ) 2 , KNO 3 -Ba (NO 3 ) 2 -Sr (NO 3 ) 2 , KNO 3 -Ca (NO 3 ) 2 -Sr (NO 3 ) 2 , LiNO 3 -NaNO 3 -Ca (NO 3 ) 2 , NaNO 3 -Ca (NO 3 ) 2 -Mg (NO 3 ) 2 , NaNO 3 -Ca (NO 3 ) 2 -Sr (NO 3 ) 2 , KNO 3 -NaNO 3 -Ca (NO 3 ) 2 -Mg (NO 3 ) 2 and the like are preferable. If these complex nitrates are used, the melting temperature can be reduced to 200 ° C. or lower.
[0018]
The nitrate contained in the catalyst component is preferably one having a low melting temperature and a high decomposition temperature. Thereby, PM can be efficiently burned and removed in the exhaust gas having a wide temperature range and a wide space velocity. For example, among the above nitrates, those containing alkali metal nitrates are preferred, and those containing LiNO 3 are most preferred.
[0019]
The amount of nitrate supported is preferably 1% by weight or more based on the solid support. If the loading amount is less than this, it becomes difficult to burn PM. Also, the PM combustion temperature tends to decrease as the amount of nitrate loaded increases. However, if it is supported by 120% by weight or more, the stability on the carrier becomes insufficient and it may flow to the downstream and aggregate. It is desirable to make it less than.
[0020]
It is desirable that the catalyst component further includes an oxidation promoting component. This oxidation promoting component promotes PM combustion by oxidation of SOF in PM. Oxidation promoting components include noble metals such as Pt, Pd, Rh, or CeO 2 , ZrO 2 , CeO 2 —ZrO 2 solid solution, BaO, CaO, V 2 O 5 , ZnO, WO 3 , MoO 3 , NiO, FeO, Various oxides such as Fe 3 O 4 , Fe 2 O 3 , MnO 2 , Cr 2 O 3 , CuO, CoO, Co 3 O 4 can be used. Among these, it is particularly desirable to contain Pt. Pt effect of reducing the NO x in the exhaust gas with the oxidation of SOF is achieved by, also if supporting Pt in the vicinity of the nitrate, is decomposed nitrate regeneration at high temperature durability is improved to be done.
[0021]
The amount of the oxidation promoting component supported is preferably in the range of 0.1 to 10% by weight for noble metals and 1 to 50% by weight for various oxides with respect to the solid support. If the amount is less than this range, the effect is not exhibited, and even if it is supported more than this, the effect is saturated and an adverse effect may appear.
[0022]
In order to support nitrate on the solid support, the solid support may be impregnated with an aqueous solution of nitrate and dried. Moreover, in order to carry | support an oxidation promotion component, what is necessary is just to carry | support by using the aqueous solution of the metal compound, and baking it.
[0023]
The shape of the molten salt catalyst of the present invention is not particularly limited, and may be a pellet shape, a filter shape, a foam shape, a flow-through type monolith shape, or the like. For example, in the case of a filter shape, a monolith shape, or a foam shape, it can be produced by coating a solid support on the surface of the base material in that shape and supporting nitrate on it. It is desirable that the exhaust gas has a turbulent shape, and it is particularly desirable to have a foam shape. As the material of the base material, heat-resistant ceramics, metals, etc. can be used as in the conventional three-way catalyst.
[0024]
Further, for example, a cylindrical body whose inside constitutes a fluid passage, a lump body having a maximum diameter smaller than the inner diameter of the cylindrical body, and a vertically large surface having a plate-like maximum area are substantially parallel to the central axis direction of the cylindrical body. A vertical plate arranged between the block and the inner surface of the tube in contact with the block and the inner surface of the tube, and a large horizontal surface having a maximum area in the shape of a plate are substantially in the direction of the central axis of the tube. The unit is composed of a vertical plate that is in contact with the vertical plate and in contact with the lump and the inner surface of the cylindrical body, and one or a plurality of units are filled in series in the central axis direction of the cylindrical body It is also preferable to use a packed structure and make a catalyst in which catalyst components are supported on each of a lump, vertical plate and horizontal plate as a carrier. In this way, the exhaust gas flowing through the cylinder becomes a turbulent flow and the contact area between the exhaust gas and the carrier becomes extremely large, so that PM in the exhaust gas can be efficiently removed by combustion.
[0025]
【Example】
Hereinafter, the present invention will be specifically described with reference to test examples, examples and comparative examples.
[0026]
<Test Example 1>
Catalyst powders of various molten salts shown in Table 1 were prepared, and each catalyst powder and carbon black were mixed so that the catalyst powder: carbon black = 2: 1 by weight ratio. The melting temperature and the temperature at which the carbon black was oxidized by 50% were measured by differential thermal analysis and thermogravimetric analysis, and the results are shown in FIG.
[0027]
As shown in FIG. 1, the nitrate-based molten salt (aj) is lower in melting temperature and carbon combustion temperature than the conventional oxide-based molten salt (AD), and has excellent performance as a catalyst for PM combustion. It can be seen that
[0028]
[Table 1]
Figure 0003821357
[0029]
<Test Example 2>
Catalyst powders of various molten salts shown in FIG. 2 were prepared, and each catalyst powder and carbon black were mixed so that the catalyst powder: carbon black = 2: 1 by weight ratio. Then, by differential thermal analysis and thermogravimetric analysis, the melting temperature, the temperature range in which carbon black burns, and the temperature at which carbon black was oxidized by 50% were measured, and the results are shown in FIG. FIG. 2 partially overlaps with FIG. 1, and a white square range indicates a temperature range where PM can be combusted. Note that the same measurement was performed for only carbon black as a blank.
[0030]
FIG. 2 shows that mixing with a nitrate-based molten salt lowers the combustion temperature range of carbon black, and LiNO 3 is particularly preferable.
[0031]
International Publication No. WO00 / 43109 (PCT / JP00 / 00194) describes that when magnesium nitrate catalyst powder is used, PM is oxidized at 260 to 300 ° C. This is because a catalyst using a liquid reservoir is extremely This is true for many cases, and it can be seen that alkali metal nitrates are particularly effective and not effective for magnesium nitrate in a range where the catalyst amount is about 2: 1, ie, catalyst powder: carbon black = 2. In other words, International Publication No. WO00 / 43109 (PCT / JP00 / 00194) is a technical idea of burning a small amount of PM with a large amount of molten salt, whereas in this application, PM is continuously burned with a small amount of molten salt. Is the technical idea.
[0032]
Example 1
A predetermined amount of a magnesia spinel powder was impregnated with a predetermined amount of a KNO 3 aqueous solution having a predetermined concentration and dried to prepare a catalyst of this example. The amount of KNO 3 supported is 4 g with respect to 100 g of magnesia spinel carrier.
[0033]
This catalyst was subjected to an endurance test held at 600 ° C., which exceeds the melting point of KNO 3 (339 ° C.) for 3 hours, and then observed by X-ray diffraction. As a result, it was found that no reaction with the support occurred. In addition, it was found that although the decomposition temperature of KNO 3 (400 ° C.) was exceeded, the decomposition of KNO 3 proceeded only partially and was stabilized by the support.
[0034]
(Comparative Example 1)
A catalyst of the present comparative example was prepared by impregnating a predetermined amount of Al 2 O 3 powder with a predetermined amount of a dinitrodiammine platinum aqueous solution having a predetermined concentration and drying it. The supported amount of Pt is 2 g with respect to 100 g of Al 2 O 3 support.
[0035]
(Comparative Example 2)
A predetermined amount of Al 2 O 3 powder was impregnated with a predetermined amount of a dinitrodiammine platinum aqueous solution having a predetermined concentration, and dried and fired. Thereafter, a predetermined amount of a barium acetate aqueous solution having a predetermined concentration was impregnated and dried and calcined to prepare a catalyst of this comparative example. The supported amount of Pt is 2 g and the supported amount of Ba is 0.2 mol with respect to 100 g of Al 2 O 3 support.
[0036]
(Comparative Example 3)
A catalyst of the present comparative example was prepared by impregnating a predetermined amount of CeO 2 powder with a predetermined amount of a dinitrodiammine platinum aqueous solution having a predetermined concentration, followed by drying and firing. The amount of Pt supported is 2 g with respect to 100 g of CeO 2 support.
[0037]
(Comparative Example 4)
A catalyst of the present comparative example was prepared by impregnating a predetermined amount of SiO 2 powder with a predetermined amount of a dinitrodiammine platinum aqueous solution having a predetermined concentration, and drying and calcining it. The amount of Pt supported is 2 g with respect to 100 g of SiO 2 support.
[0038]
<Test Example 3>
The catalyst powders of Example 1 and Comparative Examples 1 to 4 described above and carbon black were mixed at a weight ratio of catalyst powder: carbon black = 2: 1, respectively, in a He gas atmosphere containing 10% O 2. The amount of generated CO 2 was continuously measured while raising the temperature at a rate of 40 ° C./min. As a blank, only carbon black was also measured. The CO 2 generation rate at each temperature was calculated, and the results are shown in FIG.
[0039]
FIG. 3 shows that the combustion temperature of the catalyst of Example 1 is about 150 ° C. lower than that of the comparative example catalyst that is a conventional oxidation catalyst and NO x storage reduction catalyst. It can also be seen that the catalysts of the comparative examples hardly contribute to the oxidation of carbon black.
[0040]
(Example 2)
A foam-shaped substrate was prepared, and magnesia spinel powder was wet coated to form a coat layer. The coating amount was 100 g per liter of the substrate. Next, a predetermined amount of a KNO 3 aqueous solution having a predetermined concentration was impregnated into the coat layer and dried to prepare a catalyst of this example. The amount of KNO 3 supported is 20 g per liter of base material.
[0041]
Example 3
A catalyst of this example was prepared in the same manner as in Example 2 except that a LiNO 3 aqueous solution was used instead of the KNO 3 aqueous solution. The supported amount of LiNO 3 is 20 g with respect to 1 liter of base material.
[0042]
(Comparative Example 5)
A coat layer was formed in the same manner as in Example 2 except that a mixed powder of Al 2 O 3 powder, TiO 2 powder, CeO 2 powder and Rh-supported ZrO 2 powder was used instead of magnesia spinel powder. Next, a predetermined amount of a dinitrodiammine platinum aqueous solution having a predetermined concentration was impregnated and dried and calcined. Thereafter, a predetermined amount of a barium acetate aqueous solution having a predetermined concentration was impregnated, dried and fired, and then Li and K were similarly supported using an aqueous lithium acetate solution and an aqueous potassium acetate solution to prepare a catalyst of this comparative example. For 1 liter of the base material, 2 g of Pt, 0.2 mol of Ba, 0.1 mol of Li and K, and 0.5 g of Rh are supported, respectively.
[0043]
<Test Example 4>
The catalysts of Examples 2 to 3 and Comparative Example 5 were respectively attached to the exhaust system of a diesel engine, and PM was collected on the catalyst under the conditions of an engine speed of 2500 rpm, a torque of 3.2 kgm, and an exhaust gas temperature of 200 ° C. Then, each catalyst in which PM was collected was taken out, and the amount of generated CO 2 was continuously measured while raising the temperature at a rate of 20 ° C./min in an N 2 gas atmosphere containing 10% of O 2 . Also, as a blank, PM was collected in the same manner for a base material having neither a coating layer nor a catalyst component, and the amount of generated CO 2 was measured. The results are shown in FIG. In FIG. 4, the vertical axis represents the volume% of generated CO 2 .
[0044]
In FIG. 4, it can be seen that there are two peaks in the CO 2 generation temperature. CO 2 at 450 ° C. or lower is generated by combustion of SOF component in PM, and CO 2 at higher temperature is generated by combustion of carbon component in PM. Therefore, the peak temperature of carbon combustion in FIG. 4 is extracted and shown in FIG.
[0045]
From FIG. 4, the catalyst of Comparative Example 5 generates a large amount of CO 2 due to the combustion of the SOF component, and its combustion temperature is as low as about 300 ° C. This is due to the high oxidation activity by the supported noble metal component. However, in the catalyst of Comparative Example 5, as shown in FIG. 5, the combustion temperature of the carbon component is 610 ° C., and the combustion effect of the carbon component is hardly recognized as compared with 630 ° C. of the blank.
[0046]
On the other hand, in the catalysts of Examples 2 to 3, it is recognized that the combustion temperature of the carbon component is greatly reduced as compared with the blank, and it is clear that the catalyst has high performance as a PM combustion catalyst.
[0047]
(Comparative Example 6)
A coating layer was formed in the same manner as in Example 2 except that Al 2 O 3 powder was used instead of magnesia spinel powder, and then impregnated with a predetermined amount of dinitrodiammine platinum aqueous solution having a predetermined concentration, followed by drying and firing. Thus, a catalyst of this comparative example was prepared. The supported amount of Pt is 2 g with respect to 1 liter of base material.
[0048]
(Comparative Example 7)
A coat layer was formed in the same manner as in Example 2 except that CeO 2 —ZrO 2 solid solution powder was used instead of magnesia spinel powder, and then impregnated with a predetermined amount of dinitrodiammine platinum aqueous solution having a predetermined concentration and dried. -The catalyst of this comparative example was prepared by calcination. The supported amount of Pt is 2 g with respect to 1 liter of base material.
[0049]
<Test Example 5>
The catalysts of Example 2 and Comparative Examples 6 and 7 were respectively attached to the exhaust system of a diesel engine, and PM was collected in the catalyst for 1 hour in the same manner as in Test Example 4. The amount of PM collected is measured, and the results are shown in Table 2.
[0050]
[Table 2]
Figure 0003821357
[0051]
From Table 2, the catalyst of Example 2 has the largest amount of PM trapped. This is because the catalyst component melted to form a liquid phase, and it can be seen that the catalyst of the present invention can capture PM well.
[0052]
Example 4
A catalyst of this example was prepared in the same manner as in Example 2 except that the amount of KNO 3 supported was 100 g per liter of the base material.
[0053]
(Example 5)
A catalyst of this example was prepared in the same manner as in Example 2 except that a LiNO 3 aqueous solution was used instead of the KNO 3 aqueous solution, and the supported amount of LiNO 3 was 100 g per liter of the base material.
[0054]
<Test Example 6>
The catalysts of Examples 4 to 5 and Comparative Example 5 and the blank base material were respectively attached to the exhaust system of a diesel engine, and the amount of CO 2 generated was measured in the same manner as in Test Example 4. The results are shown in FIG. Further, the peak temperature of carbon combustion in FIG. 6 is extracted and shown in FIG.
[0055]
From the comparison between FIG. 4 and FIG. 6 and the comparison between FIG. 5 and FIG. 7, the greater the amount of nitrate supported, the more the carbon combustion temperature range shifts to the lower temperature side, and the amount of CO 2 generated by carbon combustion increases. Is recognized.
[0056]
【The invention's effect】
That is, according to the molten salt catalyst of the present invention, PM can be burned and removed even in a low temperature range, and can be stably disposed in an automobile exhaust system, which is extremely practical.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the melting temperature of each molten salt and the PM50% oxidation temperature.
FIG. 2 is a graph showing the melting temperature, PM 50% oxidation temperature, and PM combustion temperature range of each molten salt.
FIG. 3 is a graph showing peak temperatures at which CO 2 is generated in the molten salt type catalysts of Examples and Comparative Examples.
FIG. 4 is a graph showing the relationship between the temperature of the molten salt catalyst of Examples and Comparative Examples and the amount of generated CO 2 .
FIG. 5 is a graph showing carbon combustion peak temperatures of molten salt type catalysts of Examples and Comparative Examples.
FIG. 6 is a graph showing the relationship between the temperature of the molten salt catalyst of Examples and Comparative Examples and the amount of generated CO 2 .
FIG. 7 is a graph showing carbon combustion peak temperatures of molten salt type catalysts of Examples and Comparative Examples.

Claims (6)

内燃機関からの排ガスに含まれるPMを浄化する触媒であって、塩基性担体からなる固体担体と、該固体担体に担持される硝酸銀,アルカリ金属の硝酸塩,アルカリ土類金属の硝酸塩及び希土類元素の硝酸塩から選ばれる少なくとも一種を含む触媒成分と、からなることを特徴とする溶融塩型触媒。A catalyst for purifying PM contained in exhaust gas from an internal combustion engine, comprising: a solid support comprising a basic support ; silver nitrate, alkali metal nitrate, alkaline earth metal nitrate and rare earth elements supported on the solid support. A molten salt type catalyst comprising: a catalyst component containing at least one selected from nitrates. 前記触媒成分は、複数の元素の硝酸塩からなる複合硝酸塩を含むことを特徴とする請求項1に記載の溶融塩型触媒。The molten salt catalyst according to claim 1, wherein the catalyst component includes a composite nitrate composed of nitrates of a plurality of elements. 前記触媒成分は少なくともアルカリ金属の硝酸塩又はアルカリ土類金属の硝酸塩を含むことを特徴とする請求項1又は請求項2に記載の溶融塩型触媒。The molten salt type catalyst according to claim 1 or 2, wherein the catalyst component contains at least an alkali metal nitrate or an alkaline earth metal nitrate . 前記アルカリ金属の硝酸塩はThe alkali metal nitrate is KNOKNO 3Three , CsNO CsNO 3Three , NaNO NaNO 3Three , LiNO LiNO 3Three から選ばれる少なくとも一種であり、前記アルカリ土類金属の硝酸塩はThe alkaline earth metal nitrate is at least one selected from Ba(NOBa (NO 3Three )) 22 , Sr(NOSr (NO 3Three )) 22 , Ca(NOCa (NO 3Three )) 22 , Mg(NOMg (NO 3Three )) 22 から選ばれる少なくとも一種であることを特徴とする請求項1〜3のいずれかに記載の溶融塩型触媒。The molten salt type catalyst according to claim 1, wherein the molten salt type catalyst is at least one selected from the group consisting of: 前記触媒成分は、酸化促進成分をさらに含むことを特徴とする請求項1〜4のいずれかに記載の溶融塩型触媒。The molten salt catalyst according to any one of claims 1 to 4, wherein the catalyst component further contains an oxidation promoting component. 前記触媒成分は、前記固体担体に対して1重量%以上The catalyst component is 1% by weight or more based on the solid support 120 120 重量%未満担持されていることを特徴とする請求項1〜5のいずれかに記載の溶融塩型触媒。The molten salt type catalyst according to any one of claims 1 to 5, which is supported by less than% by weight.
JP2001008792A 2001-01-17 2001-01-17 Molten salt catalyst Expired - Fee Related JP3821357B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001008792A JP3821357B2 (en) 2001-01-17 2001-01-17 Molten salt catalyst
US10/033,920 US6777368B2 (en) 2001-01-17 2002-01-03 Molten-salt type catalyst
EP02000414A EP1224968A1 (en) 2001-01-17 2002-01-07 Supported molten-salt type catalyst for exhaust gas treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001008792A JP3821357B2 (en) 2001-01-17 2001-01-17 Molten salt catalyst

Publications (2)

Publication Number Publication Date
JP2002210368A JP2002210368A (en) 2002-07-30
JP3821357B2 true JP3821357B2 (en) 2006-09-13

Family

ID=18876359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001008792A Expired - Fee Related JP3821357B2 (en) 2001-01-17 2001-01-17 Molten salt catalyst

Country Status (3)

Country Link
US (1) US6777368B2 (en)
EP (1) EP1224968A1 (en)
JP (1) JP3821357B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952254A1 (en) 2011-04-28 2015-12-09 Panasonic Intellectual Property Management Co., Ltd. Molten salt-type off gas purification catalyst and off gas purification filter
CN107413374A (en) * 2017-05-26 2017-12-01 南京工业大学 A kind of solid base catalyst for synthesizing 3 alkoxypropan acid alkyl esters
CN110180354A (en) * 2019-05-31 2019-08-30 北京市劳动保护科学研究所 Methane purifying carrier, device and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7198764B2 (en) * 2003-03-05 2007-04-03 Delphi Technologies, Inc. Gas treatment system and a method for using the same
JP5217072B2 (en) * 2003-11-14 2013-06-19 トヨタ自動車株式会社 Exhaust gas purification catalyst and process for producing the same
DE10353426A1 (en) * 2003-11-15 2005-06-23 Robert Bosch Gmbh Exhaust system for an internal combustion engine
DE102006009015A1 (en) * 2006-02-27 2007-08-30 Robert Bosch Gmbh Catalyst material, useful for the treatment of products emerged during combustion, comprises cerium and a further catalyst component, where the catalyst material is applied on a carrier
TW200938236A (en) * 2008-03-13 2009-09-16 Fei-Peng Lin Deodorization material composition, manufacturing method thereof, and deodorization method
DE102011101061A1 (en) 2011-05-10 2012-11-15 Friedrich- Alexander- Universität Catalyst system useful for the steam reforming of methanol, comprises a porous catalyst support having catalytically active centers and a molten salt with inorganic cations and organic anions
US20170298284A1 (en) * 2016-04-19 2017-10-19 Saudi Arabian Oil Company Vanadium corrosion inhibitors in gas turbine applications

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1871117A (en) 1930-11-10 1932-08-09 Allan R Day Catalyst for vapor phase oxidation of organic compounds
US3754074A (en) 1967-11-20 1973-08-21 North American Rockwell Removal of nitrogen oxides and other impurities from gaseous mixtures
US4415757A (en) * 1981-03-19 1983-11-15 Imperial Chemical Industries Plc Production of saturated carbonyl compounds
US4959486A (en) * 1986-11-12 1990-09-25 Olin Corporation Alkylene oxides production from alkanes or alkylaromatics using molten nitrate salt catalyst
US4898845A (en) * 1988-12-12 1990-02-06 University Of Iowa Research Foundation Catalyst dispersed in supported molten salt
US4943643A (en) * 1989-06-07 1990-07-24 Olin Corporation Molten salt catalyzed oxidation of alkanes or olefins using lower temperture nitrate salts
US5053372A (en) 1989-07-31 1991-10-01 Shell Oil Company Basic alkaline earth metal-zeolite compositions
ATE215176T1 (en) 1995-08-30 2002-04-15 Haldor Topsoe As METHOD AND CATALYTIC UNIT FOR TREATING EXHAUST GAS FROM DIESEL ENGINES
DE19651492B4 (en) 1996-12-11 2006-04-06 Eads Deutschland Gmbh Device for removing NOx from the exhaust gas of internal combustion engines
WO2000043109A1 (en) 1999-01-19 2000-07-27 Yataro Ichikawa Exhaust gas treating method and device therefor, and vehicles equipped with the device
US6565820B1 (en) * 1999-05-20 2003-05-20 University Technology Corporation Low temperature oxidation using support molten salt catalysts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952254A1 (en) 2011-04-28 2015-12-09 Panasonic Intellectual Property Management Co., Ltd. Molten salt-type off gas purification catalyst and off gas purification filter
CN107413374A (en) * 2017-05-26 2017-12-01 南京工业大学 A kind of solid base catalyst for synthesizing 3 alkoxypropan acid alkyl esters
CN107413374B (en) * 2017-05-26 2020-07-28 南京工业大学 Solid base catalyst for synthesizing 3-alkoxy alkyl propionate
CN110180354A (en) * 2019-05-31 2019-08-30 北京市劳动保护科学研究所 Methane purifying carrier, device and method

Also Published As

Publication number Publication date
JP2002210368A (en) 2002-07-30
US20020137627A1 (en) 2002-09-26
EP1224968A1 (en) 2002-07-24
US6777368B2 (en) 2004-08-17

Similar Documents

Publication Publication Date Title
JP4092441B2 (en) Exhaust gas purification catalyst
JPWO2002066155A1 (en) Exhaust gas purification catalyst
JP2006272288A (en) Catalyst for purifying diesel exhaust gas
JP3821357B2 (en) Molten salt catalyst
JP4776869B2 (en) Exhaust gas purification catalyst, exhaust gas purification material using the same, and method for producing the same
JP5684973B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH04200637A (en) Catalyst for cleaning exhausted gas of diesel engine
JP2577757B2 (en) Diesel exhaust gas purification catalyst
JP4600710B2 (en) Exhaust gas purification catalyst
JP2010227739A (en) Catalytic material and catalyst for cleaning exhaust gas from internal-combustion engine
JP4821251B2 (en) NOx / PM purification catalyst, NOx / PM purification material, and method for producing NOx / PM purification catalyst
JP3965672B2 (en) Exhaust gas purification catalyst
JP2004113936A (en) Exhaust gas purification catalyst and its using method
JP4103407B2 (en) NOx storage reduction catalyst
JP3739223B2 (en) Exhaust gas purification catalyst
JP4079622B2 (en) Exhaust gas purification catalyst
JP3897483B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
CN113877565B (en) Preparation method of non-noble metal CDPF catalyst based on sodium metavanadate
JPH10174868A (en) Catalyst for cleaning of exhaust gas
JP2010110732A (en) Exhaust gas purifying catalyst
JP5007691B2 (en) Particulate matter purification catalyst and particulate matter purification method using the same
JP2007252996A (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2005169280A (en) Catalyst for cleaning exhaust gas
JP4265445B2 (en) Exhaust gas purification catalyst
JP2003053150A (en) Exhaust gas cleaning device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

LAPS Cancellation because of no payment of annual fees