JP4103407B2 - NOx storage reduction catalyst - Google Patents

NOx storage reduction catalyst Download PDF

Info

Publication number
JP4103407B2
JP4103407B2 JP2002045124A JP2002045124A JP4103407B2 JP 4103407 B2 JP4103407 B2 JP 4103407B2 JP 2002045124 A JP2002045124 A JP 2002045124A JP 2002045124 A JP2002045124 A JP 2002045124A JP 4103407 B2 JP4103407 B2 JP 4103407B2
Authority
JP
Japan
Prior art keywords
catalyst
purification
storage material
storage reduction
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002045124A
Other languages
Japanese (ja)
Other versions
JP2003245551A (en
Inventor
哲也 山下
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002045124A priority Critical patent/JP4103407B2/en
Publication of JP2003245551A publication Critical patent/JP2003245551A/en
Application granted granted Critical
Publication of JP4103407B2 publication Critical patent/JP4103407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2022Potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2025Lithium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高温雰囲気下での触媒成分のシンタリングが顕著に抑制され、高い耐久性能を有する吸蔵還元型NOx浄化用触媒に関する。
【0002】
【従来の技術】
地球環境保護のため、自動車用エンジン等の内燃機関から排出される二酸化炭素(CO2)の発生量を抑え、かつ窒素酸化物(NOx)の発生量を抑えることが世界的課題となっている。
こうした課題に対し、燃費の高いリーンバーンエンジンと、その排気ガスを浄化する触媒としての吸蔵還元型NOx浄化用触媒が開発されている。
【0003】
この吸蔵還元型NOx浄化用触媒は、一般に、白金(Pt)、パラジウム(Pd)等の触媒成分に加え、NOx吸蔵材としてアルカリ金属又はアルカリ土類金属をγ-アルミナ等の担体に担持して構成される。NOxは、リーン条件下でアルカリ金属又はアルカリ土類金属によって吸蔵され、その吸蔵したNOxを一時的なストイキ〜リッチ条件下で放出させ、白金等の触媒作用と一時的な還元性雰囲気によって、その放出させたNOxを還元浄化する。
【0004】
しかるに、こうした触媒が、排気ガスの浄化反応を効率的に促進するためには、触媒成分が排気ガスと大きい面積で接触するように、担体上に触媒成分が高分散に担持され、そして、この高分散の担持状態が、排気ガス雰囲気下で経時的に維持されることが必要である。
【0005】
ここで、自動車用エンジンの排気ガスは、常温と高くは約1000℃の間で温度の変化を繰り返し、かつ比較的HCとCOの濃度が高くてO2濃度が低い還元性雰囲気と、比較的HCとCOの濃度が低くてO2濃度が高い酸化性雰囲気を繰り返す。
【0006】
【発明が解決しようとする課題】
しかしながら、白金等の貴金属の触媒成分には、こうした雰囲気に長期間曝されると、特に高温の酸化性雰囲気において、触媒成分が移動して肥大化した粒子を形成する、いわゆるシンタリングを生じる性質がある。
このため、触媒成分は、排気ガスとの高い接触面積を維持することができず、排気ガスの浄化性能が経時的に低下するという問題がある。
【0007】
ところで、本出願人等は、特開平11−300203号公報、特開平7−251073号公報等において、PtとPdを含み、シンタリングが抑制された排気ガス浄化用触媒を提案している。
本発明は、このような先行技術とは異なる触媒構成により、触媒成分のシンタリングが抑制され、広い温度範囲で経時的に安定して高いNOx浄化性能を発揮する吸蔵還元型NOx浄化用触媒を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の目的は、酸化物担体上にPt、Pd、及びNOx吸蔵材が担持された第1触媒、並びに酸化物担体上にPd、及びNOx吸蔵材が担持された第2触媒を含んでなり、且つ第1触媒におけるPd/ ( Pt+Pd ) のモル比が0 . 02〜0 . 2である吸蔵還元型NOx浄化用触媒によって達成される。
即ち、本発明の触媒は、第1触媒と第2触媒を含んでなる吸蔵還元型NOx浄化用触媒であって、Ptが第1触媒のみに担持され、Pdが第1触媒と第2触媒の双方に担され、且つ第1触媒におけるPd/ ( Pt+Pd ) のモル比が0 . 02〜0 . 2であることにより、Ptのシンタリングが抑制され、経時的に安定して高いNOx浄化性能を発揮する触媒である。
【0009】
図1は、かかる触媒のモデル図であり、酸化物担体上でPt粒子を取り囲んでPdが存在し、それらの周りにNOx吸蔵材が存在する状態の第1触媒と、酸化物担体にPdが存在し、その周りにNOx吸蔵材が存在する状態の第2触媒が、混在して共存する状態を示す。こうした触媒においてシンタリングが抑制され、広い温度範囲で経時的に安定して高いNOx浄化性能を発揮することができる理由は、次のように考えられる。
【0010】
第1触媒に関し、Ptは、高温酸化性雰囲気において比較的シンタリングを生じやすい性質を有するが、Pdは、比較的シンタリングを生じにくいという性質を有する。したがって、Pt粒子の周囲にPdが存在することで、Pt移動の抑制作用が生じることができる。
【0011】
そして、とりわけ、Pd/(Pt+Pd)のモル比が0.02〜0.2であるときにかかる状態が発現することができ、また、Pt化合物とPd化合物を溶解させた溶液を酸化物担体に含浸させ、次いで焼成することにより、かかる状態が、微細な形態で発現することができ、それによって、触媒成分の担体上での高分散性と、この高分散の安定性が得られるものと考えられる。
【0012】
一方、上記のリーン条件と一時的なストイキ〜リッチ条件の繰り返しによるNOxの浄化において、Ptは比較的高い温度でNOx浄化作用を奏するが、Pt粒子は殆どが表出しているため、このNOx浄化作用は維持される。したがって、第1触媒は、主として、比較的高い温度で高いNOx浄化作用を提供することができる。
【0013】
次に、第2触媒に関し、Pdは、比較的シンタリングを生じにくいという性質を有する一方で、比較的高い温度では、酸素貯蔵能のためにそれ程NOx浄化作用を奏しないが、比較的低い温度では高いNOx浄化作用を奏する。したがって、第2触媒は、主として、比較的低い温度で高いNOx浄化作用を提供することができる。
【0014】
このため、第1触媒と第2触媒が共存することで、広範囲な温度にわたって高いNOx浄化性能を発揮する触媒を提供することができ、とりわけ、第1触媒に含まれる(Pt+Pd)のモル量に対する第2触媒に含まれるPdのモル量が、Pd/(Pt+Pd)のモル比として0.9〜1.0であるときに、このNOx浄化性能が最適化されるものと考えられる。
また、上記の目的は、酸化物担体上にPt、Pd、及びNO x 吸蔵材が担持された触媒の製造方法であって、Pt化合物とPd化合物を溶解させた溶液を酸化物担体に含浸させた後で焼成し、次いでNO x 吸蔵材を担持する触媒の製造方法によって達成される。この本発明の方法では好ましくは、この触媒におけるPd/ ( Pt+Pd ) のモル比が0 . 02〜0 . 2である。
【0015】
【発明の実施の形態】
本発明の吸蔵還元型NOx浄化用触媒は、酸化物担体上にPt、Pd、及びNOx吸蔵材が担持された第1触媒、並びに酸化物担体上にPd、及びNOx吸蔵材が担持された第2触媒を含んで構成され、且つ第1触媒におけるPd/ ( Pt+Pd ) のモル比が0 . 02〜0 . 2である
【0016】
これら第1触媒と第2触媒の酸化物担体は、アルミナ、シリカ、ジルコニアのような酸化物のほか、シリカ-アルミナ、ジルコニア-セリア、アルミナ-セリア-ジルコニア、セリア-ジルコニア-イットリア、ジルコニア-カルシアのような複合酸化物からなるもので、平均粒子径が1μm以下の微粒子からなるものが好適に使用可能であり、第1触媒と第2触媒の酸化物担体は、同じ種類の酸化物又は異なる種類の酸化物からなることができる。
【0017】
第1触媒の調製に関し、このような酸化物担体にPtとPdを担持するのは、好ましくは、ジニトロジアンミン白金錯体Pt(NH3)2(NO2)2、塩化白金酸H2PtCl6・6H2O等の白金化合物と、硝酸パラジウムPd(NO3)2、塩化パラジウムPdCl2等のパラジウム化合物を用い、これらの化合物を、所定のPd/(Pt+Pd)のモル比となる量で溶解させた溶液を調製し、この溶液を上記の酸化物担体に含浸し、次いで乾燥・焼成することによって行う。
焼成は、例えば、大気雰囲気の450〜650℃の温度で数時間加熱することによって行うことができる。
【0018】
酸化物担体に担持されるNOx吸蔵材としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)のアルカリ金属、及びマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)のアルカリ土類金属の少なくとも1種が例示され、好ましくは、Li、K、及びBaから選択された少なくとも1種の金属を含む。
【0019】
好ましくは、NOx吸蔵材は、PtとPdを担持した後に担持する。この担持の仕方としては、これらNOx吸蔵材の溶液を調製し、この溶液を上記の酸化物担体に含浸し、次いで乾燥・焼成することによって行うことができる。
【0020】
第2触媒は、第1触媒と同様に、好ましくは、硝酸パラジウムPd(NO3)2、塩化パラジウムPdCl2等のパラジウム化合物を用い、これらの化合物を、所定の量で溶解させた溶液を調製し、この溶液を上記の酸化物担体に含浸し、次いで乾燥・焼成することによってPdを担持し、さらに、好ましくは、Li、K、及びBaから選択された少なくとも1種のNOx吸蔵材を担持して調製することができる。
【0021】
このようにして調製された第1触媒と第2触媒は、例えば、水を媒体にしてボールミル等で湿式混合した後、乾燥して、あるいは、粉末状の第1触媒と第2触媒をヘンシェルミキサー等で乾式混合して、本発明の吸蔵還元型NOx浄化用触媒を得ることができる。
【0022】
また、本発明の吸蔵還元型NOx浄化用触媒が、通常のハニカム基材にコートされる場合、第1触媒と第2触媒のNOx吸蔵材の担持は、NOx吸蔵材が担持される前の、PtとPdが担持された第1触媒と第2触媒をハニカム基材にコートした後、そのハニカム基材上のコート層にNOx吸蔵材の溶液を含浸し、次いで乾燥・焼成することによって同時に行うこともできる。
酸化物担体上にPt、Pd、及びNO x 吸蔵材が担持された触媒を製造する本発明の方法では、Pt化合物とPd化合物を溶解させた溶液を酸化物担体に含浸させた後で焼成し、次いでNO x 吸蔵材を担持する。ここで用いられるNO 吸蔵材、Pt化合物、Pd化合物、酸化物担体については、本発明の吸蔵還元型NO x 浄化用触媒についての上記の説明を参照することができる。
以下、実施例によって本発明をより具体的に説明する。
【0023】
【実施例】
実施例1
γ-アルミナ粉末(比表面積約180m2/g)に、ジニトロジアンミン白金錯体と硝酸パラジウムを溶解した水溶液(Pt濃度4.61質量%、Pd濃度4.33質量%)を用いて、γ-アルミナ粉末120gあたり5.75gのPtと0.15gのPdとなるように含浸し、乾燥の後、300℃の大気雰囲気中で1時間焼成した。
別に、γ-アルミナ粉末に、硝酸パラジウムの水溶液(Pd濃度4.33質量%)を用いて、γ-アルミナ粉末120gあたり3.25gのPdとなるように含浸し、乾燥の後、400℃の大気雰囲気中で1時間焼成した。
【0024】
これらのPtPd/γ-アルミナ粉末とPd/γ-アルミナ粉末を1:1の質量比で混合し、さらに100gのアルミナゾル(日産化学製A-200)と200ccのイオン交換水を加えてボールミル中で2時間混合し、スラリーを作成した。
得られたスラリーを、直径30mm×長さ50mmのコージェライト製ハニカム基材にウォッシュコートし、120℃で2時間乾燥した後、500℃の大気雰囲気中で1時間焼成して、ハニカム基材1リットルあたり5.75gのPtと3.4gのPdを担持した。
【0025】
次いでこのコート層に、酢酸バリウム、酢酸カリウム、及び酢酸リチウムを溶解した水溶液を吸水させ、乾燥の後、500℃の大気雰囲気中で1時間焼成して、ハニカム基材1リットルあたり0.2モルのBa、0.1モルのK、0.1モルのLiを担持し、本発明の触媒を調製した。
【0026】
比較例1
γ-アルミナ粉末に、ジニトロジアンミン白金錯体と硝酸パラジウムを溶解した水溶液(Pt濃度4.61質量%、Pd濃度4.33質量%)を用いて、γ-アルミナ粉末120gあたり5.75gのPtと0.15gのPdとなるように含浸し、乾燥の後、400℃の大気雰囲気中で1時間焼成した。
【0027】
このPtPd/γ-アルミナ粉末に100gのアルミナゾルと200ccのイオン交換水を加えてボールミル中で2時間混合し、スラリーを作成した。
次いで、実施例1と同様にして、得られたスラリーをハニカム基材にウォッシュコートした後、さらに、実施例1と同様にして、ハニカム基材1リットルあたり0.2モルのBa、0.1モルのK、0.1モルのLiを担持し、比較例の触媒を調製した。
【0028】
比較例2
γ-アルミナ粉末に、硝酸パラジウムを溶解した水溶液(Pd濃度4.33質量%)を用いて、γ-アルミナ粉末120gあたり3.25gのPdとなるように含浸し、乾燥の後、400℃の大気雰囲気中で1時間焼成した。
【0029】
このPd/γ-アルミナ粉末に100gのアルミナゾルと200ccのイオン交換水を加えてボールミル中で2時間混合し、スラリーを作成した。
次いで、実施例1と同様にして、得られたスラリーをハニカム基材にウォッシュコートし、乾燥・焼成した後、実施例1と同様にして、ハニカム基材1リットルあたり0.2モルのBa、0.1モルのK、0.1モルのLiを担持し、比較例の触媒を調製した。
【0030】
−NOx浄化性能の評価−
上記の得られた各触媒を大気雰囲気中の850℃×2時間の熱処理に供した後、下記のモデルガスで300℃、400℃、及び500℃におけるNOx浄化率を測定した。この結果を図2にまとめて示す。
モデルガス組成:
500ppmNO+2000ppmHC+0.6%CO+10%CO2 +0.3%O2+5%H2O(残余:N2
【0031】
−触媒成分の粒子径−
ハニカム基材を用いない以外は実施例1と同様にして、γ-アルミナ粉末に、表1に示す量の触媒成分のPtとPd、及びNOx吸蔵材のBa、K、Liを担持し、それぞれのγ-アルミナ粉末を、大気雰囲気中で750℃×5時間の焼成に供した後、誘導結合プラズマ発光分析(ICP)によるPtとPdの組成分析、及び粉末X線回折(XRD)による触媒成分の粒子径の測定を行った。この結果を図3にまとめて示す。なお、図3に示した粒子径は、触媒成分がPtのみの粒子径を基準にした相対値で示す。
【0032】
−結果より−
図2に示したNOx浄化率から、比較例1は、低温側のNOx浄化率は比較的低いが、高温側のNOx浄化率は比較的高く、比較例2は、低温側のNOx浄化率は比較的高いが、高温側のNOx浄化率は比較的低いといった結果であるのに対し、実施例1は、全温度範囲で高いNOx浄化率を示している。
このことは、第1触媒と第2触媒を含むことによって、双方のNOx浄化性能の総和として本発明の触媒のNOx浄化性能が発現し、それによって、全温度範囲で高いNOx浄化率が得られることを示すものと理解される。
【0033】
また、図3に示した結果から、第1触媒のPd/(Pt+Pd)のモル比に、触媒成分の粒子径の成長が抑えられる特定の範囲が存在することが分かる。したがって、その範囲であれば第1触媒のNOx浄化性能がより効果的に維持されるものと考えられる。
【0034】
【発明の効果】
触媒成分のシンタリングが抑制され、広い温度範囲で経時的に安定して高いNOx浄化性能を発揮する吸蔵還元型NOx浄化用触媒を提供することができる。
【0035】
【表1】

Figure 0004103407

【図面の簡単な説明】
【図1】本発明の触媒の想定される形態を示すモデル図である。
【図2】NOx浄化率を比較したグラフである。
【図3】熱処理後の触媒成分の粒子径を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a storage reduction type NO x purification catalyst which has a high durability performance in which sintering of catalyst components in a high temperature atmosphere is remarkably suppressed.
[0002]
[Prior art]
In order to protect the global environment, it is a global challenge to reduce the amount of carbon dioxide (CO 2 ) emitted from internal combustion engines such as automobile engines and the amount of nitrogen oxides (NO x ). Yes.
These issues to a high fuel efficiency lean-burn engine, the storage reduction the NO x purification catalyst as a catalyst for purifying an exhaust gas have been developed.
[0003]
The storage reduction the NO x purification catalyst is generally, platinum (Pt), added to the catalyst component such as palladium (Pd), supported alkali metals or alkaline earth metals on a carrier γ- alumina, as the NO x storage material Configured. NO x is occluded by alkali metal or alkaline earth metal under lean conditions, and the occluded NO x is released under temporary stoichiometric to rich conditions, and by catalytic action such as platinum and a temporary reducing atmosphere. Then, the released NO x is reduced and purified.
[0004]
However, in order for such a catalyst to efficiently promote the exhaust gas purification reaction, the catalyst component is supported in a highly dispersed manner on the support so that the catalyst component contacts the exhaust gas in a large area, and this It is necessary that the highly dispersed support state be maintained over time in an exhaust gas atmosphere.
[0005]
Here, the exhaust gas of the automobile engine has a reductive atmosphere in which the temperature changes repeatedly between room temperature and about 1000 ° C., and the concentration of HC and CO is relatively high and the O 2 concentration is low. The oxidizing atmosphere with low HC and CO concentrations and high O 2 concentration is repeated.
[0006]
[Problems to be solved by the invention]
However, the catalytic components of noble metals such as platinum, when exposed to such an atmosphere for a long period of time, in particular in a high-temperature oxidizing atmosphere, the catalytic components move to form enlarged particles, so-called sintering. There is.
For this reason, the catalyst component cannot maintain a high contact area with the exhaust gas, and there is a problem that the exhaust gas purification performance decreases with time.
[0007]
By the way, the present applicants have proposed an exhaust gas purifying catalyst containing Pt and Pd and suppressed sintering in JP-A-11-300203, JP-A-7-255103 and the like.
The present invention, by catalytic structure which is different from such prior art, sintering of the catalyst component is suppressed, for storage reduction the NO x purification to exhibit stable over time with higher the NO x purification performance over a wide temperature range An object is to provide a catalyst.
[0008]
[Means for Solving the Problems]
The above objects, comprises Pt on an oxide support, Pd, and NO first catalyst x storage material is supported, Pd on oxides carrier as well, and the second catalyst NO x storage material is supported in Ri Na, and the molar ratio of Pd / (Pt + Pd) in the first catalyst from 0.02 to 0. it is achieved by storage reduction the NO x purification catalyst is 2.
That is, the catalyst of the present invention is a storage reduction the NO x purification catalyst comprising a first catalyst and a second catalyst, Pt is carried only to the first catalyst, Pd is the first catalyst and the second catalyst both are responsible to a, and the molar ratio of Pd / (Pt + Pd) in the first catalyst from 0.02 to 0. by a 2, sintering of Pt is suppressed, stable over time with a high NO x It is a catalyst that exhibits purification performance.
[0009]
Figure 1 is a model diagram of such catalysts, the oxide surrounding the Pt particles on the support there is Pd, a first catalyst in the state where the NO x storage material around them is present, Pd on the oxide support Is present, and the second catalyst in the state where the NO x storage material is present around it is present in a mixed state. The reason why sintering is suppressed in such a catalyst and the high NO x purification performance can be stably exhibited over time in a wide temperature range is considered as follows.
[0010]
Regarding the first catalyst, Pt has a property that is relatively easy to cause sintering in a high-temperature oxidizing atmosphere, while Pd has a property that is relatively difficult to cause sintering. Therefore, the presence of Pd around the Pt particles can produce an effect of suppressing Pt movement.
[0011]
In particular, such a state can be exhibited when the molar ratio of Pd / (Pt + Pd) is 0.02 to 0.2, and a solution in which a Pt compound and a Pd compound are dissolved is used as an oxide carrier. By impregnating and then firing, such a state can be expressed in a fine form, and it is considered that high dispersibility of the catalyst component on the carrier and stability of this high dispersion can be obtained. It is done.
[0012]
On the other hand, in the purification of NO x by repeating the above lean condition and temporary stoichiometric to rich condition, Pt performs the NO x purification action at a relatively high temperature, but most of the Pt particles are exposed. The NO x purification action is maintained. Accordingly, the first catalyst is mainly capable of providing high the NO x purification action at relatively high temperatures.
[0013]
Next, with respect to the second catalyst, Pd has a property that it is relatively difficult to cause sintering. On the other hand, at a relatively high temperature, Pd does not have a NO x purification effect due to its oxygen storage capacity, but is relatively low. High NO x purification effect at temperature. Therefore, the second catalyst can mainly provide a high NO x purification action at a relatively low temperature.
[0014]
Therefore, the coexistence of the first catalyst and the second catalyst can provide a catalyst that exhibits high NO x purification performance over a wide range of temperatures, and in particular, the molar amount of (Pt + Pd) contained in the first catalyst. It is considered that this NO x purification performance is optimized when the molar amount of Pd contained in the second catalyst with respect to the above is 0.9 to 1.0 as the molar ratio of Pd / (Pt + Pd).
Another object of the present invention is a method for producing a catalyst in which Pt, Pd, and NO x storage material are supported on an oxide carrier, wherein the oxide carrier is impregnated with a solution in which a Pt compound and a Pd compound are dissolved. This is achieved by a method for producing a catalyst which is calcined afterwards and then carries a NO x storage material. Preferably, in the method of the present invention, the molar ratio of Pd / (Pt + Pd) in the catalyst is from 0.02 to 0.2.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Storage reduction NO x purifying catalyst of the present invention, Pt on an oxide support, Pd, and NO first catalyst x storage material is supported, Pd on oxides carrier as well, and NO x storage material is is configured to include a supported second catalyst, and the molar ratio of Pd / (Pt + Pd) in the first catalyst is from 0.02 to 0.2.
[0016]
The oxide supports of these first and second catalysts include oxides such as alumina, silica and zirconia, as well as silica-alumina, zirconia-ceria, alumina-ceria-zirconia, ceria-zirconia-yttria, zirconia-calcia. Can be suitably used, and the oxide support of the first catalyst and the second catalyst can be the same type of oxide or different from each other. It can consist of different types of oxides.
[0017]
Regarding the preparation of the first catalyst, Pt and Pd supported on such an oxide support are preferably dinitrodiammine platinum complex Pt (NH 3 ) 2 (NO 2 ) 2 , chloroplatinic acid H 2 PtCl 6. Using a platinum compound such as 6H 2 O and a palladium compound such as palladium nitrate Pd (NO 3 ) 2 and palladium chloride PdCl 2 , these compounds are dissolved in an amount to give a predetermined Pd / (Pt + Pd) molar ratio. This solution is prepared by impregnating the above-mentioned oxide carrier with this solution, followed by drying and baking.
Firing can be performed, for example, by heating at a temperature of 450 to 650 ° C. in an air atmosphere for several hours.
[0018]
Examples of the NO x storage material supported on the oxide carrier include lithium (Li), sodium (Na), potassium (K), rubidium (Rb) alkali metals, magnesium (Mg), calcium (Ca), strontium ( Sr), at least one of alkaline earth metals of barium (Ba) is exemplified, and preferably contains at least one metal selected from Li, K, and Ba.
[0019]
Preferably, the NO x storage material is supported after supporting Pt and Pd. This loading method can be performed by preparing a solution of these NO x storage materials, impregnating the solution into the above oxide carrier, and then drying and firing.
[0020]
As with the first catalyst, the second catalyst is preferably a palladium compound such as palladium nitrate Pd (NO 3 ) 2 or palladium chloride PdCl 2 , and a solution in which these compounds are dissolved in a predetermined amount is prepared. Then, the above oxide carrier is impregnated with this solution, and then dried and calcined to support Pd, and more preferably, at least one NOx storage material selected from Li, K, and Ba is supported. Can be prepared.
[0021]
The first catalyst and the second catalyst thus prepared are, for example, wet mixed with a ball mill or the like using water as a medium and then dried, or the powdered first catalyst and the second catalyst are combined with a Henschel mixer. it can be dry-mixed to obtain a storage reduction the NO x purification catalyst of the present invention the like.
[0022]
Also, storage reduction the NO x purification catalyst of the present invention, when coated on conventional honeycomb substrate, carrying of the NO x storage material of the first catalyst and the second catalyst, the NO x storage material is supported After the first catalyst and the second catalyst supporting Pt and Pd are coated on the honeycomb base material, the coating layer on the honeycomb base material is impregnated with the NO x storage material solution, and then dried and fired. Can be done simultaneously.
In the method of the present invention Pt on an oxide support, Pd, and the the NO x storage material to produce a supported catalyst, and calcining the solution of a Pt compound and Pd compound was impregnated in the oxide support Then, the NO x storage material is supported. Regarding the NO x storage material, Pt compound, Pd compound, and oxide support used here, the above description of the storage reduction type NO x purification catalyst of the present invention can be referred to.
Hereinafter, the present invention will be described more specifically with reference to examples.
[0023]
【Example】
Example 1
Using an aqueous solution (Pt concentration 4.61% by mass, Pd concentration 4.33% by mass) in which dinitrodiammine platinum complex and palladium nitrate are dissolved in γ-alumina powder (specific surface area about 180 m 2 / g), γ-alumina is used. It was impregnated so as to be 5.75 g of Pt and 0.15 g of Pd per 120 g of powder, dried and then fired in an air atmosphere at 300 ° C. for 1 hour.
Separately, γ-alumina powder was impregnated with an aqueous solution of palladium nitrate (Pd concentration 4.33 mass%) to give 3.25 g of Pd per 120 g of γ-alumina powder. Firing was performed for 1 hour in an air atmosphere.
[0024]
These PtPd / γ-alumina powder and Pd / γ-alumina powder were mixed at a mass ratio of 1: 1, and 100 g of alumina sol (Nissan Chemical A-200) and 200 cc of ion-exchanged water were added in a ball mill. Mix for 2 hours to make a slurry.
The obtained slurry was wash-coated on a cordierite honeycomb substrate having a diameter of 30 mm and a length of 50 mm, dried at 120 ° C. for 2 hours, and then fired in an air atmosphere at 500 ° C. for 1 hour. 5.75 g Pt and 3.4 g Pd were loaded per liter.
[0025]
Next, an aqueous solution in which barium acetate, potassium acetate, and lithium acetate are dissolved is absorbed in this coating layer, dried, and then fired in an air atmosphere at 500 ° C. for 1 hour to give 0.2 mol per liter of honeycomb substrate. The catalyst of the present invention was prepared by loading 0.1 mol of Ba, 0.1 mol of K, and 0.1 mol of Li.
[0026]
Comparative Example 1
Using an aqueous solution (Pt concentration 4.61% by mass, Pd concentration 4.33% by mass) obtained by dissolving dinitrodiammine platinum complex and palladium nitrate in γ-alumina powder, 5.75 g of Pt per 120 g of γ-alumina powder It was impregnated to 0.15 g of Pd, dried and then fired in an air atmosphere at 400 ° C. for 1 hour.
[0027]
To this PtPd / γ-alumina powder, 100 g of alumina sol and 200 cc of ion exchange water were added and mixed in a ball mill for 2 hours to prepare a slurry.
Subsequently, after the obtained slurry was wash-coated on the honeycomb base material in the same manner as in Example 1, and further in the same manner as in Example 1, 0.2 mol of Ba, 0.1 per liter of the honeycomb base material was used. A catalyst of a comparative example was prepared by supporting 1 mol of K and 0.1 mol of Li.
[0028]
Comparative Example 2
γ-alumina powder was impregnated with an aqueous solution of palladium nitrate (Pd concentration 4.33 mass%) to give 3.25 g of Pd per 120 g of γ-alumina powder. Firing was performed for 1 hour in an air atmosphere.
[0029]
To this Pd / γ-alumina powder, 100 g of alumina sol and 200 cc of ion exchange water were added and mixed in a ball mill for 2 hours to prepare a slurry.
Next, the obtained slurry was wash-coated on the honeycomb substrate in the same manner as in Example 1, dried and fired, and then 0.2 mol of Ba per liter of the honeycomb substrate, as in Example 1, A catalyst of a comparative example was prepared by supporting 0.1 mol of K and 0.1 mol of Li.
[0030]
Evaluation of -NO x purification performance -
Each of the obtained catalysts was subjected to a heat treatment at 850 ° C. for 2 hours in an air atmosphere, and the NO x purification rates at 300 ° C., 400 ° C., and 500 ° C. were measured with the following model gas. The results are summarized in FIG.
Model gas composition:
500ppmNO + 2000ppmHC + 0.6% CO + 10% CO 2 + 0.3% O 2 + 5% H 2 O ( the remainder: N 2)
[0031]
-Particle size of catalyst component-
Except for not using a honeycomb substrate, in the same manner as in Example 1, γ-alumina powder was loaded with Pt and Pd as catalyst components in amounts shown in Table 1, and Ba, K, and Li as NO x storage materials, Each γ-alumina powder was subjected to firing at 750 ° C. for 5 hours in an air atmosphere, then Pt and Pd composition analysis by inductively coupled plasma emission spectrometry (ICP), and catalyst by powder X-ray diffraction (XRD) The particle size of the component was measured. The results are summarized in FIG. The particle size shown in FIG. 3 is a relative value based on the particle size of the catalyst component only Pt.
[0032]
-From the results-
From the NO x purification rate shown in FIG. 2, Comparative Example 1, but the NO x purification rate of the low temperature side is relatively low, the NO x purification rate of the high temperature side is relatively high, Comparative Example 2, the low-temperature-side NO Although the x purification rate is relatively high, the high temperature side NO x purification rate is relatively low, whereas Example 1 shows a high NO x purification rate in the entire temperature range.
This can be achieved by including a first catalyst and a second catalyst, the NO x purification performance of the catalyst is expressed in the present invention as the sum of both of the NO x purifying performance, thereby high the NO x purification rate over temperature Is understood to indicate that is obtained.
[0033]
Further, from the results shown in FIG. 3, it can be seen that there is a specific range in which the growth of the particle diameter of the catalyst component can be suppressed in the Pd / (Pt + Pd) molar ratio of the first catalyst. Therefore, it is considered that the NO x purification performance of the first catalyst if the range is maintained more effectively.
[0034]
【The invention's effect】
It is possible to provide a storage-reduction type NO x purification catalyst that suppresses sintering of catalyst components and exhibits high NO x purification performance stably over time in a wide temperature range.
[0035]
[Table 1]
Figure 0004103407

[Brief description of the drawings]
FIG. 1 is a model diagram showing an assumed form of a catalyst of the present invention.
FIG. 2 is a graph comparing NO x purification rates.
FIG. 3 is a graph showing the particle diameter of the catalyst component after heat treatment.

Claims (4)

酸化物担体上にPt、Pd、及びNOx吸蔵材が担持された第1触媒、並びに酸化物担体上にPd、及びNOx吸蔵材が担持された第2触媒を含んでなり、且つ第1触媒におけるPd/(Pt+Pd)のモル比が0.02〜0.2である、吸蔵還元型NOx浄化用触媒。Pt on an oxide support, Pd, and NO x first catalyst occluding material is supported, and Pd on an oxide support, and the NO x storage material comprises a second catalyst supported, and first molar ratio of Pd / (Pt + Pd) in the catalyst is 0.02 to 0.2, storage reduction the NO x purification catalyst. 第1触媒に含まれる(Pt+Pd)のモル量に対する第2触媒に含まれるPdのモル量が、Pd/(Pt+Pd)のモル比として0.9〜1.0である、請求項1に記載の吸蔵還元型NOx浄化用触媒。The molar amount of Pd contained in the second catalyst with respect to the molar amount of (Pt + Pd) contained in the first catalyst is 0.9 to 1.0 as a molar ratio of Pd / (Pt + Pd). storage reduction the NO x purification catalyst. NOx吸蔵材が、Li、K、及びBaから選択された少なくとも1種の金属を含む、請求項1又は2に記載の吸蔵還元型NOx浄化用触媒。 The NO x storage material, Li, K, and at least one metal selected from Ba, storage reduction the NO x purification catalyst according to claim 1 or 2. 酸化物担体上にPt、Pd、及びNOx吸蔵材が担持された触媒の製造方法であって、Pt化合物とPd化合物を溶解させた溶液を酸化物担体に含浸させた後で焼成し、次いでNOx吸蔵材を担持する、請求項1〜3のいずれか1項に記載の吸蔵還元型NO 浄化用触媒に含まれる第1触媒の製造方法。A method for producing a catalyst in which Pt, Pd, and a NO x storage material are supported on an oxide support, wherein the oxide support is impregnated with a solution in which a Pt compound and a Pd compound are dissolved, and then calcined. carrying the NO x storage material, a first manufacturing method of the catalyst contained in the storage reduction the NO x purification catalyst according to any one of claims 1-3.
JP2002045124A 2002-02-21 2002-02-21 NOx storage reduction catalyst Expired - Fee Related JP4103407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002045124A JP4103407B2 (en) 2002-02-21 2002-02-21 NOx storage reduction catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002045124A JP4103407B2 (en) 2002-02-21 2002-02-21 NOx storage reduction catalyst

Publications (2)

Publication Number Publication Date
JP2003245551A JP2003245551A (en) 2003-09-02
JP4103407B2 true JP4103407B2 (en) 2008-06-18

Family

ID=28659209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002045124A Expired - Fee Related JP4103407B2 (en) 2002-02-21 2002-02-21 NOx storage reduction catalyst

Country Status (1)

Country Link
JP (1) JP4103407B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7101399B2 (en) 2018-02-06 2022-07-15 有光工業株式会社 Sprayer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248787A (en) 2004-03-03 2005-09-15 Mitsubishi Fuso Truck & Bus Corp Exhaust cleaner
JP5676679B2 (en) 2013-04-19 2015-02-25 株式会社キャタラー Exhaust gas purification catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7101399B2 (en) 2018-02-06 2022-07-15 有光工業株式会社 Sprayer

Also Published As

Publication number Publication date
JP2003245551A (en) 2003-09-02

Similar Documents

Publication Publication Date Title
JP3741303B2 (en) Exhaust gas purification catalyst
EP1371415B1 (en) Catalyst for hydrogen generation and catalyst for purification of exhaust gas
JP2004074138A (en) Catalyst for exhaust gas purification, and exhaust gas purification method
JP2006051431A (en) Ternary catalyst for exhaust gas purification, and its production method
KR20090031414A (en) Catalyst for purification of exhaust gas
JP2009050791A (en) Catalyst for purifying exhaust gas
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4103407B2 (en) NOx storage reduction catalyst
JP2003020227A (en) Fine mixed oxide powder, production method thereor and catalyst
JPH10128114A (en) Catalyst for purifying exhaust gas
JPH08281116A (en) Catalyst for purifying exhaust gas
EP3676002B1 (en) Nox-trapping catalyst having non-platinum-group-metal nox-trapping layer
JP2000246107A (en) Catalyst for cleaning exhaust gas, its production and method for cleaning exhaust gas
JP3897483B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP3739223B2 (en) Exhaust gas purification catalyst
JP4239679B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP7448620B2 (en) Nitrogen oxide storage materials and exhaust gas purification catalysts
JP2000325787A (en) Manufacture of exhaust gas cleaning catalyst
JP2010227804A (en) Exhaust gas purifying catalyst
JP4822049B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2001046835A (en) NOx ABSORBING AND CLEANING MATERIAL AND EXHAUST GAS CLEANING CATALYST USING THE SAME
JP2007252996A (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2005169280A (en) Catalyst for cleaning exhaust gas
JP4534749B2 (en) NOx storage material, method for supporting the same, and NOx storage reduction catalyst
JP2003245550A (en) ABSORPTION AND REDUCTION TYPE CATALYST FOR REMOVING NOx AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees