JP2010227804A - Exhaust gas purifying catalyst - Google Patents

Exhaust gas purifying catalyst Download PDF

Info

Publication number
JP2010227804A
JP2010227804A JP2009077408A JP2009077408A JP2010227804A JP 2010227804 A JP2010227804 A JP 2010227804A JP 2009077408 A JP2009077408 A JP 2009077408A JP 2009077408 A JP2009077408 A JP 2009077408A JP 2010227804 A JP2010227804 A JP 2010227804A
Authority
JP
Japan
Prior art keywords
catalyst
layer
mass
exhaust gas
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009077408A
Other languages
Japanese (ja)
Inventor
Hisao Aoki
悠生 青木
Takaaki Kanazawa
孝明 金沢
Takeshi Yoshida
健 吉田
Tomoaki Sunada
智章 砂田
Toshitaka Tanabe
稔貴 田辺
Naoki Takahashi
直樹 高橋
Hirohisa Tanaka
裕久 田中
Mari Uenishi
真里 上西
Masashi Taniguchi
昌司 谷口
Shingo Sakagami
新吾 坂神
Masaaki Kawai
将昭 河合
Hirotaka Ori
浩隆 小里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Cataler Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Daihatsu Motor Co Ltd
Cataler Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Cataler Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Daihatsu Motor Co Ltd
Priority to JP2009077408A priority Critical patent/JP2010227804A/en
Publication of JP2010227804A publication Critical patent/JP2010227804A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas purifying catalyst which controls migration of rhodium(Rh) to a lower layer and sintering and exerts high NO<SB>x</SB>purifying performance over a wide temperature range including high-temperature ranges. <P>SOLUTION: The catalyst includes the first catalyst layer with platinum and/or palladium supported and the second catalyst layer in which rhodium is supported in a support containing alumina solid-dissolved with lanthanum oxide and ceria zirconia sold-dissolved with lanthanum oxide in a ratio of the lanthanum oxide to the total mass of the support of 1-7 mass%, in this order from the side of the supporting substrate, on a supporting substrate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排ガス等に含まれるNO等のガスの浄化に好適な排ガス浄化触媒に関する。 The present invention relates to an exhaust gas purification catalyst suitable for purification of gas such as NO x contained in exhaust gas.

近年では、環境保護の要請から、内燃機関などから排出される有害な排気物質を浄化することは極めて重要である。   In recent years, it is extremely important to purify harmful exhaust substances discharged from an internal combustion engine or the like due to a demand for environmental protection.

従来より、内燃機関を搭載する自動車には、排出される排出ガス中の有害物質を浄化する浄化触媒として三元触媒が一般に実用されている。この三元触媒には、白金(Pt)やロジウム(Rh)、ジルコニウム(Zr)、セリウム(Ce)などの金属が用いられており、これらの金属成分を単一の層中に存在させたものが広く知られている。ところが、同じ層中に触媒金属であるRhやPt等を共存させると、例えばRhがPtと相互作用して固溶体を作りやすく、固溶体化すると本来各々の金属が有している触媒活性が低下し、NOに対する浄化性能が低下する。一般的にRhはNO浄化に優れており、Rhの触媒活性が低下するとNO浄化能は著しく低下する。 Conventionally, a three-way catalyst is generally put into practical use as a purification catalyst for purifying harmful substances in exhaust gas discharged in an automobile equipped with an internal combustion engine. In this three-way catalyst, metals such as platinum (Pt), rhodium (Rh), zirconium (Zr), cerium (Ce) are used, and these metal components are present in a single layer. Is widely known. However, if Rh, Pt, or the like, which is a catalyst metal, coexists in the same layer, for example, Rh can easily interact with Pt to form a solid solution, and when the solution is formed, the catalytic activity inherent to each metal decreases. , purification performance for NO x is reduced. Generally Rh is excellent in the NO x purification, the NO x purification performance when the catalyst activity is reduced of Rh is significantly reduced.

そのため、近年では、NOを効率よく浄化する方法として、3元触媒を2層以上の層構造にしたり、ゾーンコート構造とし、Rhをガス接触性の高い外層(基材から離れた上層)に配置することが広く検討されている。 Therefore, in recent years, as a method for efficiently purifying NO x , the three-way catalyst has a layer structure of two or more layers, or has a zone coat structure, and Rh is an outer layer having a high gas contact property (upper layer separated from the base material). Placement is widely considered.

例えば、上記の3元触媒として、上層にZrOを主成分とする複合酸化物をロジウム用担体に用い、下層にセリアジルコニア系複合酸化物を担体に用いた触媒などが知られている。 For example, as the above three-way catalyst, a catalyst using a complex oxide mainly composed of ZrO 2 in the upper layer as a carrier for rhodium and a ceria zirconia complex oxide as a carrier in the lower layer is known.

これに関連して、内部コート層として白金もしくはパラジウムを担持した酸化セリウム含有アルミナ層、外部コート層としてロジウムを担持した酸化ランタン含有アルミナ層を設けた2層からなり、ランタン含有量を酸化ランタン換算で0.5重量%ないし10重量%とした排ガス浄化触媒が開示されている(例えば、特許文献1参照)。   In this connection, it consists of two layers: a cerium oxide-containing alumina layer supporting platinum or palladium as an inner coating layer and a lanthanum oxide-containing alumina layer supporting rhodium as an outer coating layer. The lanthanum content is converted to lanthanum oxide. In other words, an exhaust gas purification catalyst with 0.5 to 10% by weight is disclosed (see, for example, Patent Document 1).

特開昭62−197148号公報JP-A-62-197148

しかし、上記のように、上層にZrOを主成分とする複合酸化物をロジウム用担体に用い、下層に酸素吸放出能の高いセリアジルコニア系複合酸化物を白金やパラジウム等の活性貴金属種担持用の担体に用いた場合、触媒が950℃以上の高温酸化雰囲気に曝されると、上層のロジウムは下層のセリアジルコニア系複合酸化物に移動しやすく、触媒のNO浄化能は著しく低下する傾向がある。 However, as described above, a composite oxide mainly composed of ZrO 2 is used for the rhodium support in the upper layer, and a ceria zirconia-based composite oxide having a high oxygen absorption / release capability is supported in the lower layer on active noble metal species such as platinum and palladium. when used on a carrier use, the catalyst is exposed to high-temperature oxidizing atmosphere of above 950 ° C., the upper layer of the rhodium likely to move to the lower layer of ceria zirconia composite oxide, NO x purification performance of the catalyst is remarkably lowered Tend.

白金もしくはパラジウムを担持した酸化セリウム含有アルミナ層を内部コート層とし、ロジウムを担持した酸化ランタン含有アルミナ層を外部コート層とした上記の排ガス浄化触媒の場合も同様であり、高温下に曝された際に上層に担持されたロジウムが移動したり、シンタリングを起こして浄化性能が低下する課題がある。   The same applies to the above exhaust gas purification catalyst in which the cerium oxide-containing alumina layer supporting platinum or palladium was used as the inner coating layer, and the lanthanum oxide-containing alumina layer supporting rhodium was used as the outer coating layer. There is a problem that the rhodium supported on the upper layer moves or the sintering performance is lowered due to sintering.

本発明は、上記に鑑みなされたものであり、ロジウム(Rh)の下層への移動及びシンタリングが抑制され、高温域を含めた広範な温度領域にわたって高いNO浄化性能を有する排ガス浄化触媒を提供することを目的とし、該目的を達成することを課題とする。 The present invention has been made in view of the above, and provides an exhaust gas purification catalyst that has high NO x purification performance over a wide temperature range including a high temperature range, in which rhodium (Rh) migration and sintering are suppressed. It aims at providing and makes it a subject to achieve this objective.

本発明は、ロジウム(Rh)の浄化性能を、これを担持する担体面から向上させるものであり、具体的には、特に上層のRh担持用担体中に塩基性の強い酸化ランタンを固溶し、上層の担体中の酸化ランタンを特定濃度にすると、高温下でのロジウムの移動を抑えるとともにロジウムをメタル状態に保ちやすく、低温下と高温下とで挙動が異なるNO浄化能の低下要因を軽減できるとの知見を得、かかる知見に基づいて達成されたものである。 The present invention improves the purification performance of rhodium (Rh) from the surface of the carrier on which rhodium (Rh) is supported. Specifically, in particular, strongly basic lanthanum oxide is dissolved in the upper layer of Rh carrier. , when the particular concentration of lanthanum oxide in the upper layer of the carrier, easily maintained rhodium suppresses the movement of rhodium at a high temperature to the metal state, the reduction factor in the behavior in the low temperature and high temperature are different the NO x purification performance It has been achieved based on the knowledge that it can be reduced.

本発明の排ガス浄化触媒は、支持基材と、該支持基材上に設けられ、白金(Pt)及び/又はパラジウム(Pd)が担持された第1の触媒層と、該第1の触媒層上に設けられ、酸化ランタン(La)が固溶したアルミナ(Al)と、酸化ランタン(La)が固溶したセリアジルコニア(CeO−ZrO)とを含む担体にロジウム(Rh)が担持された第2の触媒層とを設け、この第2の触媒層における酸化ランタンの担体全質量に対する割合を1〜7質量%として構成したものである。 The exhaust gas purifying catalyst of the present invention includes a supporting base, a first catalyst layer provided on the supporting base and carrying platinum (Pt) and / or palladium (Pd), and the first catalyst layer. provided in the upper, comprising a lanthanum oxide (La 2 O 3) alumina solid solution (Al 2 O 3), and a lanthanum oxide ceria zirconia (La 2 O 3) is solid-solved (CeO 2 -ZrO 2) The support is provided with a second catalyst layer on which rhodium (Rh) is supported, and the ratio of lanthanum oxide in the second catalyst layer to the total mass of the support is 1 to 7% by mass.

本発明の排ガス浄化触媒においては、支持基材に近い下層側にPt及び/又はPdを担持し、その上層側にRhを担持した2層以上の触媒層を有する触媒構造とする場合に、上層である第2の触媒層の担体に塩基性の高い酸化ランタンを固溶することで、Rhの移動が抑制され、下層である第1の触媒層中のPtとの固溶体化が防止されるとともに、アルミナとセリアジルコニアとが混在する複合酸化物担体を用いることで、酸化ランタンが固溶する担体は高い耐熱性を有し、担体中のセリアジルコニア粒子の熱収縮、粒成長が抑制され、Rh自体のシンタリングが抑制される。このRhのシンタリング抑制効果は、Laを用いた系で特に大きく、Rhの触媒活性をより高く保てる。また、下層に酸化ランタンを存在させると上層のRhは酸化物の状態をとりやすくなるが、Rhを担持する上層に酸化ランタンが存在することで、Rhをメタル状態で保ち、Rhの触媒活性を高められる。   In the exhaust gas purification catalyst of the present invention, when the catalyst structure has two or more catalyst layers supporting Pt and / or Pd on the lower layer side close to the supporting base material and supporting Rh on the upper layer side, By dissolving the highly basic lanthanum oxide in the second catalyst layer carrier, the movement of Rh is suppressed and the formation of a solid solution with Pt in the lower first catalyst layer is prevented. By using a composite oxide carrier in which alumina and ceria zirconia are mixed, a carrier in which lanthanum oxide is dissolved has high heat resistance, and heat shrinkage and grain growth of ceria zirconia particles in the carrier are suppressed, and Rh Its own sintering is suppressed. This sintering suppression effect of Rh is particularly large in a system using La, and the catalytic activity of Rh can be kept higher. In addition, when lanthanum oxide is present in the lower layer, Rh in the upper layer easily takes an oxide state. However, the presence of lanthanum oxide in the upper layer supporting Rh keeps Rh in a metal state, thereby improving the catalytic activity of Rh. Enhanced.

これにより、Rhの触媒活性を高く維持し、排ガス浄化触媒のNO浄化性能を飛躍的に向上させることができる。ここで、酸化ランタン(La)を担体中に存在させる場合、高温域では担体中のLaの割合が増すにつれNO浄化性が向上し、NO排出量は抑えられる一方、低温域では逆にLaの割合増加に伴ないNO浄化性は低下し、NO排出量が増える傾向にある。そのため、本発明においては、酸化ランタンの担体全質量に対する割合を1〜7質量%の範囲とすることで、低温域から高温域にわたる広範な温度領域で安定して高いNO浄化性能を確保することが可能である。 Thus, high to maintain the catalytic activity of Rh, it is possible to remarkably improve the the NO x purification performance of the exhaust gas purifying catalyst. Here, when lanthanum oxide (La 2 O 3 ) is present in the carrier, the NO x purification performance is improved as the proportion of La 2 O 3 in the carrier increases at a high temperature range, while the NO x emission amount is suppressed. Conversely, in the low temperature range, the NO x purification performance decreases as the proportion of La 2 O 3 increases, and the NO x emission amount tends to increase. Therefore, in the present invention, by setting the ratio of lanthanum oxide to the total mass of the carrier in the range of 1 to 7% by mass, stable and high NO x purification performance is ensured in a wide temperature range from the low temperature range to the high temperature range. It is possible.

本発明の排ガス浄化触媒は、上層である第2の触媒層中のアルミナ粒子及びセリアジルコニア粒子が、少なくとも一部において一次粒子レベルで混在した状態にあることが望ましい。上層のRhを担持したRh担体は、Al、Zr、Ce、Laを含む複合酸化物であり、この粉末構造がLa添加Al粒子とLa添加CeO−ZrO粒子とを一次粒子レベルで含むことで、CeO−ZrO粒子の熱収縮、粒成長の抑制効果が高く、Rhのシンタリングを抑制する効果が大きくなる。 In the exhaust gas purification catalyst of the present invention, it is desirable that the alumina particles and ceria zirconia particles in the second catalyst layer, which is the upper layer, are at least partially mixed at the primary particle level. The Rh carrier carrying Rh in the upper layer is a composite oxide containing Al, Zr, Ce, and La, and this powder structure is composed of La 2 O 3 -added Al 2 O 3 particles and La 2 O 3 -added CeO 2 -ZrO 2. By including particles at the primary particle level, the effect of suppressing thermal shrinkage and grain growth of CeO 2 —ZrO 2 particles is high, and the effect of suppressing Rh sintering is increased.

本発明においては、排ガス雰囲気がストイキ〜水素等の還元成分過剰なリッチ雰囲気であるときには、Rhの触媒活性、すなわちNOの還元活性を上げて高効率に還元することにより、排ガス浄化能に優れた浄化系統を構築することができる。 In the present invention, when the exhaust gas atmosphere is a rich atmosphere with excessive reducing components such as stoichiometric to hydrogen, it is excellent in exhaust gas purification performance by increasing the catalytic activity of Rh, that is, the reduction activity of NO x and reducing it with high efficiency. Purification system can be constructed.

本発明によれば、ロジウム(Rh)の下層への移動及びシンタリングが抑制され、高温域を含めた広範な温度領域にわたって高いNO浄化性能を有する排ガス浄化触媒を提供することができる。 According to the present invention, is suppressed movement and sintering to the underlying rhodium (Rh) is, it is possible to provide an exhaust gas purifying catalyst having a high the NO x purification performance over a wide temperature range including high temperature range.

LaをAlに固溶した場合とLa及びAlを物理混合した場合とにおける熱処理温度に伴なう比表面積の変化の差を示すグラフである。The La 2 O 3 is a graph showing the difference in the change in accompanied specific surface area in the heat treatment temperature in the case of physical mixing when solid solution in Al 2 O 3 and La 2 O 3 and Al 2 O 3. Rh担持用担体中のLa濃度とRhの上下層中における存在割合との関係を示すグラフである。It is a graph showing the relationship between the existing ratio of La 2 O 3 the upper and lower layers of the concentration and Rh in Rh supporting carrier. Rh担持用担体中のLa濃度が高温域と低温域とにおいて及ぼすNO排出量の変化を示すグラフである。Rh La 2 O 3 concentration in the particles for supports in the carrier is a graph showing the change of the NO x emissions on the high temperature region and low temperature region. Rh担持用担体中のLa濃度とCOP浄化率との関係を示すグラフである。It is a graph showing the relationship between the La 2 O 3 concentration and COP purification rate in the Rh supporting carrier.

以下、本発明の排ガス浄化触媒について詳細に説明する。
本発明の排ガス浄化触媒は、支持基材の上に、Pt(白金)又はPd(パラジウム)、あるいはPt及びPdが担持された第1の触媒層と、Laが固溶したAlとLaが固溶したCeO−ZrOとを含む複合酸化物担体にRh(ロジウム)が担持され、Laの複合酸化物担体の全質量に対する割合が1〜7質量%である第2の触媒層と、を支持基材側から順に設けて構成されている。
Hereinafter, the exhaust gas purification catalyst of the present invention will be described in detail.
The exhaust gas purifying catalyst of the present invention includes a first catalyst layer in which Pt (platinum) or Pd (palladium) or Pt and Pd are supported on a support base, and Al 2 in which La 2 O 3 is dissolved. Rh (rhodium) is supported on a composite oxide support including CeO 2 —ZrO 2 in which O 3 and La 2 O 3 are dissolved, and the ratio of La 2 O 3 to the total mass of the composite oxide support is 1 to 7 The second catalyst layer having a mass% is provided in order from the support base material side.

本発明の排ガス浄化触媒における第1の触媒層は、少なくともPt又はPd、あるいはPt及びPdを(好ましくは担体に担持して)含有し、後述の第2の触媒層と支持基材との間に第2の触媒層の下層として設けられている。第1の触媒層は、Pt、Pdに加え、更に、Li、K、Na、Mg、Ca、St、Ba等のアルカリ金属、アルカリ土類金属などのNO吸蔵材料を含有することができる。 The first catalyst layer in the exhaust gas purifying catalyst of the present invention contains at least Pt or Pd, or Pt and Pd (preferably supported on a carrier), and is provided between a second catalyst layer described later and the supporting substrate. Are provided as a lower layer of the second catalyst layer. In addition to Pt and Pd, the first catalyst layer can further contain a NO x storage material such as an alkali metal such as Li, K, Na, Mg, Ca, St, or Ba, or an alkaline earth metal.

Ptは、NOの酸化活性に優れており、リーン雰囲気でNOを酸化し、NOを生成する。Ptの第1の触媒層中における含有濃度は、NOの酸化効率の観点から、0.1〜1.5g/Lの範囲であるのが好ましい。 Pt is excellent in NO oxidation activity and oxidizes NO in a lean atmosphere to generate NO x . The concentration of Pt in the first catalyst layer is preferably in the range of 0.1 to 1.5 g / L from the viewpoint of NO oxidation efficiency.

Pdは、NO還元活性が高いが、NOの酸化活性を有している。Pdは、NOの還元活性が高く、リーン雰囲気で吸蔵されたNOの還元効率が高められる。また、Pdはリーン雰囲気での安定性が高いため、Ptと共に存在させることでPtの粒成長を抑制し、Ptの持つNOの酸化活性を高く保つことができる。 Pd has high NO x reduction activity, but has NO oxidation activity. Pd has a high reducing activity of the NO x, reduction efficiency of the NO x occluded in the lean atmosphere is enhanced. In addition, since Pd is highly stable in a lean atmosphere, the presence of Pd together with Pt can suppress the growth of Pt grains and keep the NO oxidation activity of Pt high.

Pt、Pdは、所望の担体に担持して層中に含有することができる。ここでの担体としては、二酸化ジルコニウム(ZrO)や酸化アルミニウム(Al)、シリカ、シリカ−アルミナ、セリア(CeO)、ゼオライトなどの酸化物の粒子、並びにこれらの混合粒子を用いることができる。 Pt and Pd can be supported on a desired carrier and contained in the layer. As the carrier here, particles of oxide such as zirconium dioxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), silica, silica-alumina, ceria (CeO 2 ), zeolite, and mixed particles thereof are used. be able to.

Pt、Pdを層中に含有する場合、Ptが担持されたPt担持酸化物の粒子とPdが担持されたPd担持酸化物の粒子とを混合してもよいし、Pt及びPdをともに担持した酸化物粒子を用いてもよい。Pt担持酸化物は、例えば、ZrO粉末等の酸化物の粉状物や粒状物と、ジ硝酸ジアンミン白金溶液、塩化白金溶液、アンミン白金溶液などとを混合し、乾燥、焼成(例えば400〜800℃程度)する等により得られる。また、Pt及びPdをともに担持した酸化物粒子は、例えば、ZrO粉末等の酸化物の粉状物や粒状物と、ジ硝酸ジアンミン白金溶液、塩化白金溶液、アンミン白金溶液などと、硝酸パラジウム溶液、塩化パラジウム溶液などとを混合し、乾燥、焼成(例えば400〜800℃程度)する等により得ることができる。 When Pt and Pd are contained in the layer, Pt-supported oxide particles supporting Pt and Pd-supported oxide particles supporting Pd may be mixed, or both Pt and Pd are supported. Oxide particles may be used. The Pt-supported oxide is, for example, a mixture of an oxide powder or granular material such as ZrO 2 powder and a diammineplatinum platinum solution, a platinum chloride solution, an ammineplatinum solution, and the like, and is dried and fired (for example, 400 to For example, about 800 ° C.). The oxide particles supporting both Pt and Pd are, for example, oxide powder such as ZrO 2 powder and granular materials, diammine platinum nitrate solution, platinum chloride solution, ammine platinum solution, and palladium nitrate. It can be obtained by mixing a solution, a palladium chloride solution and the like, drying, firing (for example, about 400 to 800 ° C.), and the like.

第1の触媒層は、例えば、水等の媒質中に、Pt担持酸化物又はPd担持酸化物の粉状物又は粒状物、あるいはPt及びPdを担持した酸化物粒子の粉状物又は粒状物(及び必要に応じて他の成分)を加えて撹拌してスラリーとし、得られたスラリーを所望の支持基材上にコートし、焼成して形成することができる。
コート方法や焼成条件などについては、組成やスケール等により適宜選択すればよい。
The first catalyst layer is, for example, a powdery or granular material of Pt-supported oxide or Pd-supported oxide or oxide particles supporting Pt and Pd in a medium such as water. (And other components as necessary) can be added and stirred to form a slurry, and the resulting slurry can be coated on a desired support substrate and fired to form.
What is necessary is just to select suitably about a coating method, baking conditions, etc. by a composition, a scale, etc.

本発明の排ガス浄化触媒における第2の触媒層は、Laが固溶したAl及びLaが固溶したCeO−ZrOを含む複合酸化物担体とこれに担持したRhとを少なくとも含み、前記第1の触媒層の上層として設けられる。第2の触媒層は、Rhに加え、更に、パラジウム(Pd)や、NO吸蔵材料を含有することができる。NO吸蔵材料については、前記第1の触媒層で使用可能なアルカリ金属、アルカリ土類金属が好適である。 The second catalyst layer in the exhaust gas purifying catalyst of the present invention, the composite oxide support and the carrier to which La 2 O 3 Al 2 O 3 in a solid solution and La 2 O 3 contains CeO 2 -ZrO 2 solid-solved And is provided as an upper layer of the first catalyst layer. In addition to Rh, the second catalyst layer can further contain palladium (Pd) and a NO x storage material. For the NO x storage material, alkali metals and alkaline earth metals that can be used in the first catalyst layer are suitable.

Rhは、NOの還元活性に優れており、Ptを含む第1の触媒層とは別にRhを存在させるとともに、第2の触媒層中のRh担持用の担体にLaを固溶させることで、Rhの下層への移動が抑制され、Ptとの固溶体化が抑えられている。LaをAl粒子やCeO−ZrO粒子と固溶化して含ませることで、図1に示すように、固溶化した場合の方が、単にAl粒子とLa粒子とを物理混合した場合に比べ、担体の比表面積(SSA)を向上させることが可能であり、結果として貴金属のシンタリングの抑制効果を高めることができる。
これにより、リッチ雰囲気下ではNOを良好に還元し、NOを高効率に浄化する。
Rh is excellent in reducing activity of NO x, with separately the presence of Rh and a first catalyst layer containing Pt, solid solution of La 2 O 3 to a carrier for Rh supported in the second catalyst layer By making it, the movement to the lower layer of Rh is suppressed and solid solution formation with Pt is suppressed. By including La 2 O 3 in solid solution with Al 2 O 3 particles or CeO 2 —ZrO 2 particles, as shown in FIG. 1, the case of solid solution is simply Al 2 O 3 particles and La. Compared with the case where 2 O 3 particles are physically mixed, the specific surface area (SSA) of the carrier can be improved, and as a result, the effect of suppressing sintering of the noble metal can be enhanced.
Thus, favorably reducing NO x under a rich atmosphere, to purify NO x efficiently.

第2の触媒層の担体中におけるLaの含有量は、第2の触媒層中の担体の全質量に対して、1質量%〜7質量%の範囲とする。Laの含有量が1質量%未満であると、Rhの下層(第1の触媒層)への移動を充分に抑えることができず(図2参照)、特に高温域(例えば550℃以上)でのNO浄化能は低下し、NOの排出量は多くなる(図3参照)。また、Laの含有量が7質量%を超えると、高温域(例えば550℃以上)ではNOの排出が抑えられるものの、比較的低温(例えば400℃以下)の温度領域では、逆にLa濃度の増加に伴なってNO浄化能は低下し、NOの排出量は多くなる(図3参照)。
上記の中でも、Rhの移動を効果的に抑制し、HC浄化率曲線とNO浄化率曲線とが交わる点(クロスオーバーポイント)の浄化率を高める観点から、Laの担体全質量に対する割合は、1〜4質量%(更には1〜3質量%)の範囲が好ましい。これに加え、さらにRhの移動抑制効果を高める観点からは、2〜3質量%の範囲が好ましい。
The content of La 2 O 3 in the carrier of the second catalyst layer is in the range of 1% by mass to 7% by mass with respect to the total mass of the carrier in the second catalyst layer. When the content of La 2 O 3 is less than 1% by mass, the movement of Rh to the lower layer (first catalyst layer) cannot be sufficiently suppressed (see FIG. 2), and particularly in a high temperature range (for example, 550 ° C. As described above, the NO x purification ability decreases, and the NO x emission amount increases (see FIG. 3). Further, when the content of La 2 O 3 exceeds 7% by mass, NO x emission is suppressed in a high temperature range (for example, 550 ° C. or higher), but in a relatively low temperature range (for example, 400 ° C. or lower), In addition, as the La 2 O 3 concentration increases, the NO x purification capacity decreases and the NO x emission increases (see FIG. 3).
Among the above, from the viewpoint of effectively suppressing the movement of Rh and increasing the purification rate at the point (crossover point) where the HC purification rate curve and the NO x purification rate curve intersect, it is based on the total mass of La 2 O 3 carrier. The ratio is preferably in the range of 1 to 4% by mass (more preferably 1 to 3% by mass). In addition to this, from the viewpoint of further enhancing the effect of suppressing the movement of Rh, a range of 2 to 3% by mass is preferable.

Rhは複合酸化物担体に担持されており、この複合酸化物担体は、Laが固溶したAl粒子と、Laが固溶したCeO−ZrO粒子とを少なくとも含んでいる。Al及びCeO−ZrOの粒子サイズとしては、Al粒子の体積平均径が5〜10nmであり、CeO−ZrO粒子の体積平均径が5〜10nmである場合が好ましい。なお、本発明における体積平均径は、X線回折法、TEM観察により測定される値である。
Rhを担持した複合酸化物担体は、複合酸化物担体と硝酸ロジウム溶液、塩化ロジウム溶液などとを混合し、乾燥、焼成(例えば400〜800℃程度)する等により得られる。
Rh is carried on the composite oxide support, the composite oxide support, and Al 2 O 3 particles La 2 O 3 in a solid solution state, and a CeO 2 -ZrO 2 particles La 2 O 3 in a solid solution state At least. Al The 2 particle size of O 3 and CeO 2 -ZrO 2, a volume mean diameter 5~10nm of Al 2 O 3 particles, if the volume average diameter of the CeO 2 -ZrO 2 particles are 5~10nm preferable. The volume average diameter in the present invention is a value measured by X-ray diffraction method and TEM observation.
The composite oxide carrier carrying Rh can be obtained by mixing the composite oxide carrier with a rhodium nitrate solution, a rhodium chloride solution, etc., drying, firing (for example, about 400 to 800 ° C.), and the like.

Rhの第2の触媒層中における含有濃度としては、0.15g/L〜0.4g /Lの範囲が好ましく、0.15g/L〜0.30g/Lの範囲がより好ましい。Rhの含有濃度が前記範囲内であると、NOの浄化性能が良好である。 The concentration of Rh in the second catalyst layer is preferably in the range of 0.15 g / L to 0.4 g / L, and more preferably in the range of 0.15 g / L to 0.30 g / L. When the concentration of Rh is within the above range, the NO x purification performance is good.

第2の触媒層は、NOの酸化効率とNOの還元効率をより高める観点から、Rhと共にPdが含有された形態が好ましい。Pdを含有する場合、Pdの含有濃度としては、上記同様の観点から、Rhの担持量100g/Lに対して、100〜1000g/Lの範囲であるのが好ましい。 The second catalyst layer, from the viewpoint of enhancing the reduction efficiency of the oxidation efficiency and NO x NO, the form in which Pd is contained together with Rh is preferred. When Pd is contained, the concentration of Pd is preferably in the range of 100 to 1000 g / L with respect to the amount of Rh supported of 100 g / L from the same viewpoint as described above.

第2の触媒層は、例えば、以下のように形成することができる。
まず、硝酸アルミニウム溶液と硝酸ランタン溶液と硝酸酸化ジルコニウム(硝酸ジルコニル二水和物)と硝酸セリウム溶液とを、Al、La、Zr及びCeの比率が所望のモル比になるように混合した硝酸系前駆体溶液を調製し、これをアンモニア水、炭酸ナトリウム、炭酸水素ナトリウム等のアルカリ溶液に滴下する。滴下後、生成した沈殿物を焼成し、Laが固溶したAl粒子とLaが固溶したCeO−ZrO粒子とを含む複合酸化物を得る。このLaが固溶したAl粒子及びCeO−ZrO粒子(及び必要に応じて他の成分)を水等の媒質中に加えて撹拌してスラリー等の溶液とし、得られたスラリー等を前記第1の触媒層の上にコートし、焼成して形成することができる。
コート方法や焼成条件などについては、組成やスケール等により適宜選択すればよい。
The second catalyst layer can be formed as follows, for example.
First, a nitric acid system in which an aluminum nitrate solution, a lanthanum nitrate solution, zirconium nitrate oxide (zirconyl nitrate dihydrate), and a cerium nitrate solution are mixed so that the ratio of Al, La, Zr, and Ce is a desired molar ratio. A precursor solution is prepared and added dropwise to an alkaline solution such as aqueous ammonia, sodium carbonate, or sodium bicarbonate. After the dropwise addition, the mixture was fired the precipitate formed to obtain a complex oxide containing CeO 2 -ZrO 2 particles La 2 Al O 3 in a solid solution 2 O 3 particles and La 2 O 3 in a solid solution state. The Al 2 O 3 particles and CeO 2 —ZrO 2 particles (and other components as necessary) in which La 2 O 3 is dissolved are added to a medium such as water and stirred to obtain a solution such as a slurry. The obtained slurry or the like can be coated on the first catalyst layer and baked.
What is necessary is just to select suitably about a coating method, baking conditions, etc. by a composition, a scale, etc.

前記第1及び第2の触媒層を含む触媒層全体におけるNO吸蔵材料の含有濃度としては、支持基材の1リットルあたり0.01〜5モルの範囲が好ましく、0.1〜0.5モルの範囲がより好ましい。NO吸蔵材料の担持量は、0.01モル/L以上であるとNO浄化能がより良好になり、5モル/L以下であるとRhの還元活性を損なわず維持できる。 As the content level of the NO x storage material in the whole catalyst layer containing the first and second catalyst layer is preferably 0.01 to 5 mols per liter of the supporting substrate, 0.1 to 0.5 A molar range is more preferred. When the loading amount of the NO x storage material is 0.01 mol / L or more, the NO x purification ability becomes better, and when it is 5 mol / L or less, the reduction activity of Rh can be maintained without loss.

−支持基材−
支持基材は、第1の触媒層及び第2の触媒層を支持するものであり、目的や場合により炭素や金属製の公知のものを選択することができる。具体的な例としては、多孔性炭素担体、モノリス担体(ハニカム担体)、メタル担体などが挙げられる。
-Support substrate-
The supporting base material supports the first catalyst layer and the second catalyst layer, and a known material made of carbon or metal can be selected depending on the purpose or the case. Specific examples include a porous carbon support, a monolith support (honeycomb support), a metal support, and the like.

なお、上記の第1の触媒層及び第2の触媒層は、それぞれが1層のみ設けられた形態のほか、第1の触媒層及び/又は第2の触媒層が2層以上設けられた形態に構成されたものであってもよい。第2の触媒層が2層以上設けられる場合は、その少なくとも1層においてLaが固溶したAlとLaが固溶したCeO−ZrOとを含む担体にロジウムを担持し、かつLaの担体全質量に対する割合が前記範囲を満たしていればよい。 The first catalyst layer and the second catalyst layer are each provided with only one layer, and also provided with two or more first catalyst layers and / or second catalyst layers. It may be configured as follows. In the case where two or more second catalyst layers are provided, a carrier containing Al 2 O 3 in which La 2 O 3 is dissolved and CeO 2 —ZrO 2 in which La 2 O 3 is dissolved in at least one layer is provided. It is only necessary that rhodium is supported and the ratio of La 2 O 3 to the total mass of the carrier satisfies the above range.

また、本発明の排ガス浄化触媒は、上記の第1の触媒層及び第2の触媒層と共に、さらに別の層を設けて3層以上に構成されてもよい。   In addition, the exhaust gas purification catalyst of the present invention may be composed of three or more layers by providing another layer together with the first catalyst layer and the second catalyst layer.

以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof. Unless otherwise specified, “part” is based on mass.

(下層用複合酸化物の調製)
0.3モル/Lの硝酸ジルコニウムと、0.3モル/Lの硝酸セリウム溶液と、0.3モル/Lの硝酸ランタン溶液と、0.3モル/Lの硝酸イットリウム溶液とを、酸化物質量比でZrO/CeO/La/Y=60/30/5/5となるように混合した硝酸系前駆体溶液を調製し、これをアンモニア水に滴下した。滴下終了後、生成した沈殿物を850℃で焼成することにより、Zr,Ce,La,Y複合酸化物を得た。
(Preparation of lower layer composite oxide)
0.3 mol / L zirconium nitrate, 0.3 mol / L cerium nitrate solution, 0.3 mol / L lanthanum nitrate solution, and 0.3 mol / L yttrium nitrate solution are oxidized A nitric acid-based precursor solution mixed so as to have a quantitative ratio of ZrO 2 / CeO 2 / La 2 O 3 / Y 2 O 3 = 60/30/5/5 was prepared, and this was dropped into aqueous ammonia. After completion of the dropwise addition, the resulting precipitate was baked at 850 ° C. to obtain a Zr, Ce, La, Y composite oxide.

(上層用複合酸化物の調製)
0.3モル/Lの硝酸アルミニウム溶液と、0.3モル/Lの硝酸ランタン溶液と、0.3モル/Lの硝酸酸化ジルコニウム(硝酸ジルコニル二水和物)と、0.3モル/Lの硝酸セリウム溶液とを混合した硝酸系前駆体溶液を調製し、これをアンモニア水に滴下した。滴下終了後、生成した沈殿物を900℃で焼成することにより、Al粒子とCeO−ZrO粒子を含む複合酸化物を得た。このとき、Al粒子にはLaが固溶し、CeO−ZrO粒子にもLaが固溶している。
なお、硝酸系前駆体溶液の調製は、担体全質量(Al、La、CeO、ZrOの合計質量)に対するLaの比率が、0質量%,1質量%,1.5質量%,2質量%,2.5質量%,3質量%,5質量%,7質量%,10質量%となる量とし、Al/Zr/Ceの比率がモル比で2/1/5となるように行なった。
(Preparation of upper layer composite oxide)
0.3 mol / L aluminum nitrate solution, 0.3 mol / L lanthanum nitrate solution, 0.3 mol / L zirconium nitrate oxide (zirconyl nitrate dihydrate), 0.3 mol / L A nitric acid-based precursor solution mixed with a cerium nitrate solution was prepared and added dropwise to aqueous ammonia. After completion of the dropping, the generated precipitate was baked at 900 ° C. to obtain a composite oxide containing Al 2 O 3 particles and CeO 2 —ZrO 2 particles. At this time, the Al 2 O 3 particles dissolved is La 2 O 3, also CeO 2 -ZrO 2 particles La 2 O 3 in solid solution.
In the preparation of the nitric acid precursor solution, the ratio of La 2 O 3 to the total mass of the support (total mass of Al 2 O 3 , La 2 O 3 , CeO 2 , and ZrO 2 ) is 0% by mass and 1% by mass. , 1.5% by mass, 2% by mass, 2.5% by mass, 3% by mass, 5% by mass, 7% by mass, and 10% by mass, and the ratio of Al / Zr / Ce is 2 / 1/5 was performed.

得られた複合酸化物をX線回折法、TEM観察により、Al粒子とCeO−ZrO粒子とがそれぞれ一次粒子レベルで混在していることを確認した。 It was confirmed by X-ray diffractometry and TEM observation that the obtained composite oxide was mixed with Al 2 O 3 particles and CeO 2 —ZrO 2 particles at the primary particle level.

(下側触媒コート層の形成)
上記で得られたZr,Ce,La,Y複合酸化物に、0.5%のジ硝酸ジアンミン白金溶液を混合し、乾燥、500℃での焼成を行ない、Pt0.75g/Lが担持されたPt担持酸化物粒子粉末Aを作製した。
(Formation of lower catalyst coat layer)
The Zr, Ce, La, Y composite oxide obtained above was mixed with 0.5% diammineplatinum dinitrate solution, dried and fired at 500 ° C., and Pt 0.75 g / L was supported. Pt-supported oxide particle powder A was produced.

このPt担持酸化物粒子粉末Aを120g/Lと、市販のγ−Al粉末40g/Lと、イオン交換水160g/Lとを混合してスラリーとし、得られたスラリーを875mlのコージェライトモノリス基材にウォッシュコートした。その後、乾燥、焼成を行なって、下側触媒コート層(第1の触媒層)を形成した。Pt担持量は、0.75g/Lであった。 120 g / L of this Pt-supported oxide particle powder A, 40 g / L of commercially available γ-Al 2 O 3 powder, and 160 g / L of ion-exchanged water were mixed to form a slurry, and the resulting slurry was 875 ml of cordier. A light monolith substrate was wash coated. Thereafter, drying and firing were performed to form a lower catalyst coat layer (first catalyst layer). The amount of Pt supported was 0.75 g / L.

(上側触媒コート層の形成)
次に、上記のようにLaを固溶したAl及びCeO−ZrOを含む複合酸化物に、0.1%の硝酸ロジウム溶液を混合し、乾燥、500℃での焼成を行ない、Rh0.15g/Lが担持されたRh担持酸化物粒子粉末Bを作製した。
(Formation of upper catalyst coat layer)
Next, 0.1% rhodium nitrate solution is mixed with the composite oxide containing Al 2 O 3 and CeO 2 —ZrO 2 in which La 2 O 3 is dissolved as described above, dried, and dried at 500 ° C. Firing was performed to prepare Rh-supported oxide particle powder B on which Rh 0.15 g / L was supported.

このRh担持酸化物粒子粉末Bを60g/Lと、市販のγ−Al粉末25g/Lと、イオン交換水85g/Lとを混合してスラリーとし、得られたスラリーを前記下側触媒コート層の上にウォッシュコートし、乾燥、焼成を行なって、上側触媒コート層(第2の触媒層)を形成した。Rh担持量は、0.15g/Lであった。 The Rh-supported oxide particle powder B was mixed with 60 g / L, commercially available γ-Al 2 O 3 powder 25 g / L, and ion-exchanged water 85 g / L to obtain a slurry. Wash coating was performed on the catalyst coat layer, followed by drying and firing to form an upper catalyst coat layer (second catalyst layer). The amount of Rh supported was 0.15 g / L.

その後、酢酸バリウムと酢酸カリウムを含む混合溶液中に、下側触媒コート層及び上側触媒コート層が形成されたモノリス基材を浸漬し、余分な溶液を吹き払った後、120℃で乾燥させた。その後、500℃で焼成し、排ガス浄化触媒を作製した。
このとき、排ガス浄化触媒は、上側触媒コート層中のLaの比率が0質量%,1質量%,1.5質量%,2質量%,2.5質量%,3質量%,5質量%,7質量%,10質量%である9種を作製した。
Thereafter, the monolith substrate on which the lower catalyst coat layer and the upper catalyst coat layer were formed was immersed in a mixed solution containing barium acetate and potassium acetate, and the excess solution was blown off, followed by drying at 120 ° C. . Then, it baked at 500 degreeC and produced the exhaust gas purification catalyst.
At this time, in the exhaust gas purification catalyst, the ratio of La 2 O 3 in the upper catalyst coat layer is 0 mass%, 1 mass%, 1.5 mass%, 2 mass%, 2.5 mass%, 3 mass%, 5 Nine types of mass%, 7 mass%, and 10 mass% were produced.

(評価)
上記で得られた排ガス浄化触媒について、下記の評価を行なった。
−1.Rhの層間移動−
得られた排ガス浄化触媒の各々を、エンジンベンチに装着し、触媒床温1000℃で50時間、リーン及びリッチ雰囲気の排ガスを流す耐久試験を実施した。耐久試験後の各浄化触媒について、下側触媒コート層及び上側触媒コート層中のRhの分布状態をX線マイクロアナライザー(EPMA;Electron Probe Micro Analyzer)で求め、図2に示すグラフを作成し、Rhの層間移動を評価した。
(Evaluation)
The exhaust gas purification catalyst obtained above was evaluated as follows.
-1. Interlayer movement of Rh
Each of the obtained exhaust gas purification catalysts was mounted on an engine bench, and an endurance test was conducted in which exhaust gas in a lean and rich atmosphere was flown at a catalyst bed temperature of 1000 ° C. for 50 hours. About each purification catalyst after an endurance test, the distribution state of Rh in the lower catalyst coat layer and the upper catalyst coat layer is obtained with an X-ray microanalyzer (EPMA; Electron Probe Micro Analyzer), and the graph shown in FIG. 2 is created. Rh interlayer movement was evaluated.

図2に示すように、上側触媒コート層中の担体にLaを含有し、その含有濃度を増加させるに伴なって、Rhの下層への層間移動が抑えられた。 As shown in FIG. 2, La 2 O 3 was contained in the support in the upper catalyst coat layer, and the interlayer movement of Rh to the lower layer was suppressed as the content concentration was increased.

−2.未還元NO量−
得られた排ガス浄化触媒の各々をエンジンベンチに装着し、リーン雰囲気下での定常運転を120秒間、リッチ雰囲気下でのリッチ処理を120秒間とした繰り返し運転を行ない、リッチ雰囲気での未還元のNO量を測定した。測定結果を図3に示す。
-2. Unreduced NO x amount-
Each of the obtained exhaust gas purification catalysts was mounted on an engine bench, and repeated operation was performed with a steady operation under a lean atmosphere for 120 seconds and a rich treatment under a rich atmosphere for 120 seconds. The amount of NO x was measured. The measurement results are shown in FIG.

図3に示すように、Rh担持用の担体中のLa濃度が1〜7質量%である実施例では、この範囲外の比較例に比べ、550℃及び400℃の両方の温度環境下で未還元のNO排出量を少なく抑えることができた。すなわち、図3に示すように、高温下と低温下とでLa濃度が増加した際のNO浄化能の挙動が逆になるが、La濃度が1〜7質量%の範囲内であると、高温領域及び低温領域の両温度域において、NO浄化性能を高く維持することができることが確認された。 As shown in FIG. 3, in the example in which the La 2 O 3 concentration in the carrier for supporting Rh is 1 to 7% by mass, the temperature environment at both 550 ° C. and 400 ° C. is compared with the comparative example outside this range. Below, the amount of unreduced NO x emissions was reduced. That is, as shown in FIG. 3, the behavior of the NO x purification ability when the La 2 O 3 concentration is increased at high and low temperatures is reversed, but the La 2 O 3 concentration is 1 to 7% by mass. It was confirmed that the NO x purification performance can be kept high in both the high temperature region and the low temperature region within the range.

−3.COP浄化率−
得られた排ガス浄化触媒の各々をエンジンベンチに装着し、リーン及びリッチ雰囲気での運転を1Hzで繰り返しながら400℃定常で評価し、その間のHC浄化率とNO浄化率とを連続的に測定した。そして、HC浄化率曲線とNO浄化率曲線とが交わる点(クロスオーバーポイント)の浄化率を求めた。その結果をCOP浄化率として図4に示す。
-3. COP purification rate
Each of the obtained exhaust gas purification catalysts was mounted on an engine bench, evaluated at 400 ° C. constantly while repeating the operation in a lean and rich atmosphere at 1 Hz, and continuously measured the HC purification rate and NO x purification rate during that time. did. Then, to determine the purification rate of the point of intersection and the HC purification rate curve and the NO x purification rate curve (crossover point). The result is shown in FIG. 4 as the COP purification rate.

図4に示すように、高いNO浄化性能が得られたLa濃度の範囲(1〜7質量%)で高い値が得られ、特に1〜3質量%の範囲で最大となった。 As shown in FIG. 4, a high value was obtained in the range of La 2 O 3 concentration (1 to 7% by mass) where high NO x purification performance was obtained, and the maximum was obtained particularly in the range of 1 to 3% by mass. .

Claims (2)

支持基材の上に、該支持基材側から順に、
白金及びパラジウムの少なくとも一方が担持された第1の触媒層と、
酸化ランタンが固溶したアルミナと酸化ランタンが固溶したセリアジルコニアとを含む担体にロジウムが担持され、酸化ランタンの担体全質量に対する割合が1〜7質量%である第2の触媒層と、
を有する排ガス浄化触媒。
On the support substrate, in order from the support substrate side,
A first catalyst layer on which at least one of platinum and palladium is supported;
A second catalyst layer in which rhodium is supported on a support containing alumina in which lanthanum oxide is dissolved and ceria zirconia in which lanthanum oxide is dissolved, and the ratio of lanthanum oxide to the total mass of the support is 1 to 7% by mass;
An exhaust gas purifying catalyst.
前記アルミナ及び前記セリアジルコニアの少なくとも一部が一次粒子であることを特徴とする請求項1に記載の排ガス浄化触媒。   The exhaust gas purifying catalyst according to claim 1, wherein at least a part of the alumina and the ceria zirconia are primary particles.
JP2009077408A 2009-03-26 2009-03-26 Exhaust gas purifying catalyst Pending JP2010227804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077408A JP2010227804A (en) 2009-03-26 2009-03-26 Exhaust gas purifying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077408A JP2010227804A (en) 2009-03-26 2009-03-26 Exhaust gas purifying catalyst

Publications (1)

Publication Number Publication Date
JP2010227804A true JP2010227804A (en) 2010-10-14

Family

ID=43044196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077408A Pending JP2010227804A (en) 2009-03-26 2009-03-26 Exhaust gas purifying catalyst

Country Status (1)

Country Link
JP (1) JP2010227804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241527A (en) * 2011-05-16 2012-12-10 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
CN116322946A (en) * 2020-12-15 2023-06-23 N.E.化学株式会社 Exhaust gas purifying catalyst for saddle-ride type vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290063A (en) * 1995-02-24 1996-11-05 Mazda Motor Corp Catalyst for waste gas purification and manufacture thereof
JP2002331238A (en) * 2000-07-27 2002-11-19 Toyota Central Res & Dev Lab Inc Composite oxide, method for manufacturing the same, exhaust gas cleaning catalyst and method for manufacturing the same
JP2003038937A (en) * 2001-07-30 2003-02-12 Valtion Teknillinen Tutkimuskeskus Method for catalytically reducing nitrogen oxides, and catalyst therefor
JP2003053151A (en) * 2001-08-16 2003-02-25 Valtion Teknillinen Tutkimuskeskus Method for subjecting nitrogen oxide to catalytic reduction and catalyst therefor
WO2008000449A2 (en) * 2006-06-29 2008-01-03 Umicore Ag & Co. Kg Three-way catalyst
WO2010101219A1 (en) * 2009-03-06 2010-09-10 株式会社アイシーティー Catalyst for purification of exhaust gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290063A (en) * 1995-02-24 1996-11-05 Mazda Motor Corp Catalyst for waste gas purification and manufacture thereof
JP2002331238A (en) * 2000-07-27 2002-11-19 Toyota Central Res & Dev Lab Inc Composite oxide, method for manufacturing the same, exhaust gas cleaning catalyst and method for manufacturing the same
JP2003038937A (en) * 2001-07-30 2003-02-12 Valtion Teknillinen Tutkimuskeskus Method for catalytically reducing nitrogen oxides, and catalyst therefor
JP2003053151A (en) * 2001-08-16 2003-02-25 Valtion Teknillinen Tutkimuskeskus Method for subjecting nitrogen oxide to catalytic reduction and catalyst therefor
WO2008000449A2 (en) * 2006-06-29 2008-01-03 Umicore Ag & Co. Kg Three-way catalyst
WO2010101219A1 (en) * 2009-03-06 2010-09-10 株式会社アイシーティー Catalyst for purification of exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241527A (en) * 2011-05-16 2012-12-10 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
CN116322946A (en) * 2020-12-15 2023-06-23 N.E.化学株式会社 Exhaust gas purifying catalyst for saddle-ride type vehicle

Similar Documents

Publication Publication Date Title
JP5376261B2 (en) Exhaust gas purification catalyst
JP5253233B2 (en) Exhaust gas purification catalyst
JP5709005B2 (en) Exhaust gas purification catalyst and method for producing the same
CN104168999A (en) Catalyst composition for exhaust gas cleaning and catalyst for automobile exhaust gas cleaning
JP2006192357A (en) Catalyst for exhaust gas purification
JP3988202B2 (en) Exhaust gas purification catalyst
WO2014080695A1 (en) Complex oxide particles and catalyst for purifying exhaust gas using same
JPWO2017203863A1 (en) Three-way catalyst for purification of gasoline engine exhaust gas
JP2012055842A (en) Exhaust gas purifying catalyst
JP5684973B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP5827567B2 (en) Method for producing catalyst carrier or catalyst
JP2006051431A (en) Ternary catalyst for exhaust gas purification, and its production method
US20110118113A1 (en) Exhaust gas purifying catalyst
JPH09313938A (en) Catalyst for cleaning exhaust gas
JPH09248462A (en) Exhaust gas-purifying catalyst
JP2010227804A (en) Exhaust gas purifying catalyst
JP2003245553A (en) Catalyst powder and catalyst for cleaning exhaust gas
JP5328133B2 (en) Exhaust gas purification catalyst
JP4103407B2 (en) NOx storage reduction catalyst
JP5253308B2 (en) NOx storage reduction exhaust gas purification catalyst
JP7448620B2 (en) Nitrogen oxide storage materials and exhaust gas purification catalysts
JP2002331240A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning apparatus
JP4382560B2 (en) Exhaust gas purification catalyst
JP4265445B2 (en) Exhaust gas purification catalyst
JP4534749B2 (en) NOx storage material, method for supporting the same, and NOx storage reduction catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130409