JP2004074138A - Catalyst for exhaust gas purification, and exhaust gas purification method - Google Patents

Catalyst for exhaust gas purification, and exhaust gas purification method Download PDF

Info

Publication number
JP2004074138A
JP2004074138A JP2002285223A JP2002285223A JP2004074138A JP 2004074138 A JP2004074138 A JP 2004074138A JP 2002285223 A JP2002285223 A JP 2002285223A JP 2002285223 A JP2002285223 A JP 2002285223A JP 2004074138 A JP2004074138 A JP 2004074138A
Authority
JP
Japan
Prior art keywords
exhaust gas
ceo
composite oxide
amount
ceria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002285223A
Other languages
Japanese (ja)
Inventor
Naoyuki Hara
原 尚之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002285223A priority Critical patent/JP2004074138A/en
Publication of JP2004074138A publication Critical patent/JP2004074138A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the granular growth of noble metals using cerium oxide and to prevent lowering of NOx purification rate. <P>SOLUTION: A noble metal is carried on an oxide carrier containing cerium-based compound oxide particles of an ununiform constitution having a large amount of CeO<SB>2</SB>on the surface and less in the inner part. The granular growth the noble metal is suppressed by CeO<SB>2</SB>much existing on the surface. The absolute amount of CeO<SB>2</SB>is less than that in the conventional case, as the content of CeO<SB>2</SB>in the inner part is small, causing less capacity of oxygen storing and releasing. This suppresses the consumption of a reducing component in rich spiking, to suppress the lowering of the NOx purification rate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、酸素過剰のリーン雰囲気と還元成分過剰のリッチ雰囲気とが交互に切り替えられる排ガス中で使用されるNO 吸蔵還元型の排ガス浄化用触媒と、その排ガス浄化用触媒を用いた排ガス浄化方法に関する。
【0002】
【従来の技術】
燃費の向上とともに二酸化炭素の排出の抑制を目的とし、近年の自動車には酸素過剰のリーン雰囲気で燃焼されるリーンバーンエンジンが用いられている。ところがリーンバーンエンジンからの排ガスは酸素過剰のリーン雰囲気であるために、一般の三元触媒では、HC,COの浄化は可能であるもののNO の還元浄化が困難である。
【0003】
そこで酸化物担体に貴金属とNO 吸蔵材とを担持してなるNO 吸蔵還元型触媒が開発され、空気過剰のリーン雰囲気と燃料過剰のリッチ雰囲気とを交互に切り替える燃焼条件下にて用いられている。空気過剰のリーン雰囲気での燃焼排ガスは酸素過剰のリーン雰囲気であるので、排ガス中のNOは酸化によってNO となりNO 吸蔵材に硝酸塩などとして吸蔵される。そして燃料過剰のリッチ雰囲気の燃焼排ガスは還元成分過剰のリッチ雰囲気であり、その雰囲気下では吸蔵されていたNO がNO 吸蔵材から放出され雰囲気中に豊富に存在する還元成分によってNまで還元され浄化される。
【0004】
そして燃費の向上及び二酸化炭素の排出抑制の目的を達成するためには、空気過剰のリーン雰囲気での燃焼時間を長くし、燃料過剰のリッチ雰囲気での燃焼時間は短くする必要があり、常時はリーン雰囲気で燃焼させ燃料過剰のリッチ雰囲気をパルス的に導入する(リッチスパイク)ことが行われている。しかし空気過剰のリーン雰囲気での燃焼排ガスは、高温の酸化性雰囲気であるために、NO 吸蔵還元型触媒に担持されている貴金属に粒成長が生じ、活性点の減少によって浄化性能が低下するという不具合があった。
【0005】
そこで特開2001−149757号公報には、セリウム酸化物粉末又はCeO−ZrO複合酸化物粉末に貴金属を担持したNO 吸蔵還元型触媒が開示されている。このように少なくともセリウム酸化物を含む担体に担持された貴金属は、理由は不明であるが、高温のリーン雰囲気における粒成長が抑制される。したがって耐久性に優れた触媒とすることができる。
【0006】
またNO 吸蔵還元型触媒を用いた空燃比の制御システムにおいて、空燃比がストイキ一定の場合にも、三元触媒としての活性を向上させ、かつ貴金属の粒成長を抑制するために、NO 吸蔵還元型触媒にセリウム酸化物粉末又はCeO−ZrO複合酸化物を含むことがより好ましい。
【0007】
【特許文献1】特開2001−149757号
【特許文献2】特開平05−168927号
【0008】
【発明が解決しようとする課題】
セリウム酸化物は酸素吸蔵放出能を備え、酸素過剰のリーン雰囲気下では酸素を吸蔵し、還元成分過剰のリッチ雰囲気下では酸素を放出するという特性(以下OSC能という)を有している。そのためセリウム酸化物を含むNO 吸蔵還元型触媒では、リッチスパイク時にセリウム酸化物から放出された酸素によって還元成分が消費され、NO の浄化が困難になるという不具合があった。そのためNO 吸蔵材は、NO が吸蔵された状態で再び酸素過剰のリーン雰囲気の排ガスに曝されることとなり、新たなNO の吸蔵が困難となってNO 浄化率の低下という現象が生じる。
【0009】
本発明はこのような事情に鑑みてなされたものであり、セリウム酸化物を効率的に用いてNO 浄化率の低下を防止することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決する本発明の排ガス浄化用触媒の特徴は、酸化物担体に貴金属とNO 吸蔵材とを担持してなるNO 吸蔵還元型の排ガス浄化用触媒において、酸化物担体は、CeOが表面に多く内部に少ない不均質構造のセリア系複合酸化物粒子を含むことにある。
【0011】
セリア系複合酸化物はCeO−ZrO複合酸化物であることが望ましい。また、貴金属は少なくともセリア系複合酸化物粒子粒子に担持されていることが望ましい。
【0012】
さらに、セリア系複合酸化物粒子は排ガス上流側より排ガス下流側に多く含まれていることが望ましい。
【0013】
そして本発明の排ガス浄化方法の特徴は、本発明の排ガス浄化用触媒を、空燃比(A/F)が15以上の燃料リーン雰囲気で運転され間欠的にストイキ〜燃料リッチ雰囲気とされる希薄燃焼エンジンから排出される排ガスと接触させ、排ガス中に含まれるNO をリーン側でNO 吸蔵材に吸蔵し、ストイキからリッチ側でNO 吸蔵材から放出されたNO を還元することにある。
【0014】
燃料リーン雰囲気は空燃比(A/F)が18以上であることがさらに好ましい。
【0015】
【発明の実施の形態】
セリウム酸化物を含む担体の OSC能は、セリウム酸化物の量に比例することがわかっている。しかしセリウム酸化物を含む担体に担持された貴金属の粒成長の抑制作用は、担持されている貴金属近傍のセリウム酸化物の量にのみ影響され、担持されている貴金属から離れた内部のセリウム酸化物の作用はほとんどないことが、本発明者の研究により明らかとなった。
【0016】
そこで本発明の排ガス浄化用触媒では、CeOが表面に多く内部に少ない不均質構造のセリア系複合酸化物粒子を含む酸化物担体を用いている。このような構成とすることにより、粒子表面に多く存在するCeOによって貴金属の粒成長が抑制される。そして粒子内部にはCeOが少ないのでCeOの絶対量が従来より少なくなり、 OSC能が従来より低くなるため、リッチスパイク時における還元成分の消費が抑制され、これによってNO 浄化率の低下が抑制される。なお、この作用効果を最大に発現させるには、貴金属は少なくとも不均質構造のセリア系複合酸化物粒子に担持されていることが望ましい。
【0017】
不均質構造のセリア系複合酸化物粒子は、排ガス上流側より排ガス下流側に多く含まれていることが望ましい。このように構成することで、排ガス上流側においては、リッチスパイク時の還元成分の酸素による消費を抑制することができる。したがって従来と同じ還元剤量でもNO 浄化率が向上し、NO 浄化率を同等とすれば還元剤量が低減できるので燃費が向上する。すなわち、還元成分をNO の還元に効率よく利用することができる。そして排ガス下流側においては、 OSC能が発現されるため放出された酸素によって余剰の還元成分を酸化浄化することができる。したがってリッチスパイクにより導入された還元成分をNO の還元浄化に効率よく利用することができ、NO 浄化率が向上するとともにHC及びCOの排出も抑制される。
【0018】
不均質構造のセリア系複合酸化物粒子としては、CeO−ZrO複合酸化物,CeO−Al複合酸化物,CeO−TiO複合酸化物,CeO−SiO複合酸化物などを用いることができるが、CeO−ZrO複合酸化物が特に好ましい。ZrOを複合化することでCeOの安定性が向上し、CeO自体の粒成長が抑制されるので、CeOの粒成長に伴う貴金属の粒成長も抑制することができる。例えばCeO−ZrO複合酸化物の組成比は特に制限されないが、モル比でCe/Zr=5/95〜50/50の範囲であるのが好ましい。Ceがこの範囲より少ないと貴金属の粒成長の抑制が困難となり、Ceがこの範囲より多くなると OSC能が高くなりすぎてNO 浄化率が低下するようになる。
【0019】
CeOが表面に多く内部に少ない不均質構造のセリア系複合酸化物粒子において、表面におけるセリウム元素量は不均質構造のセリア系複合酸化物粒子中の全セリウム元素量の50%を超えればよく、60%以上であることが特に望ましい。表面におけるセリウム元素量が全セリウム元素量の50%以下であると、貴金属の粒成長の抑制が困難となる。またセリア系複合酸化物粒子中の全セリウム元素量は、不均質構造のセリア系複合酸化物粒子の全金属元素量に対して50モル%以下であることが望ましい。全セリウム元素量がこの範囲より多くなると OSC能が高くなりすぎ、NO 浄化率が低下するようになる。
【0020】
CeOが表面に多く内部に少ない不均質構造のセリア系複合酸化物粒子を製造するには、例えばZrO粉末や Al粉末に硝酸セリウム水溶液を含浸して焼成する方法がある。あるいはオキシ硝酸ジルコニウム水溶液からZrO前駆体を析出させ、その後に硝酸セリウム水溶液を混合してZrO前駆体の表面にCeO前駆体を析出させ、それを焼成することで製造することもできる。またZrOあるいはZrO前駆体などの表面でセリウムアルコキシドを加水分解させ、それを焼成して製造することも可能である。
【0021】
本発明の排ガス浄化用触媒における酸化物担体は、上記した不均質構造のセリア系複合酸化物粒子を含めばよく、不均質構造のセリア系複合酸化物粒子の粉末のみから構成してもよいし他の酸化物粉末を混合することもできる。また他の酸化物よりなるコート層の表面に不均質構造のセリア系複合酸化物粒子の粉末を含むコート層をオーバーコートすることもできる。他の酸化物粉末としては、 Al,ZrO,TiOなどが例示されるが、不均質構造のセリア系複合酸化物粒子の粉末と他の酸化物粉末を混合して用いる場合は、酸化物担体中に不均質構造のセリア系複合酸化物粒子の粉末が10体積%以上含まれるようにすることが望ましい。
【0022】
貴金属としてはPt,Rh,Pd,Irなどから選択されるが、酸化活性の高いPtを少なくとも含むことが望ましい。なお不均質構造のセリア系複合酸化物粒子を含む酸化物担体の貴金属の担持量は担体に対して 0.1〜10重量%が適当であり、 0.1重量%より少ないと排ガス浄化用触媒としての浄化活性が得られず、10重量%を超えて担持しても活性が飽和するとともに高価となってしまう。
【0023】
NO 吸蔵材は、アルカリ金属,アルカリ土類金属,セリウムを除く希土類元素の中から選択して用いることができる。アルカリ金属及びアルカリ土類金属の中から選ばれる金属であることが好ましく、アルカリ金属とアルカリ土類金属の両方を担持することが特に望ましい。またNO 吸蔵材の担持量は、排ガス浄化用触媒の1リットル当たり0.01〜5モルの範囲が適当である。0.01モルより少ないとNO 浄化能が低すぎて実用的でなく、5モルを超えて担持すると貴金属の活性が低下するようになる。
【0024】
不均質構造のセリア系複合酸化物粒子を排ガス上流側より排ガス下流側に多く含む排ガス浄化用触媒とする場合、セリア系複合酸化物粒子の濃度が排ガス上流側より排ガス下流側に多くなるようにしてもよいし、セリア系複合酸化物粒子を排ガス上流側に含まず排ガス下流側にのみ含むようにしてもよい。なお排ガス下流側とは、下流側端面からの長さが排ガス流れ方向の排ガス浄化用触媒の全長に対して10〜70%の範囲とするのが好ましく、30〜50%の範囲とするのが特に好ましい。
【0025】
また不均質構造のセリア系複合酸化物粒子を排ガス上流側より排ガス下流側に多く含む排ガス浄化用触媒とする場合、酸化物担体に混合してコート層を形成してもよいし、酸化物担体層の表面にオーバーコートすることもできる。
【0026】
そして本発明の排ガス浄化方法では、本発明の排ガス浄化用触媒を、空燃比(A/F)が15以上の燃料リーン雰囲気で運転され間欠的にストイキ〜燃料リッチ雰囲気とされる希薄燃焼エンジンから排出される排ガスと接触させ、排ガス中に含まれるNO をリーン側でNO 吸蔵材に吸蔵し、ストイキからリッチ側でNO 吸蔵材から放出されたNO を還元する。
【0027】
ストイキ〜燃料リッチ雰囲気の排ガス中では、NO 吸蔵材に吸蔵されていたNO が放出され、雰囲気中に存在するHC及びCOなどの還元成分によって還元される。このとき酸化物担体には不均質構造のセリア系複合酸化物粒子が含まれているが、その OSC能は従来より低いため還元成分の消費が抑制され、これによってNO 浄化率の低下が抑制され高いNO 浄化能が発現される。
【0028】
そして不均質構造のセリア系複合酸化物粒子を排ガス上流側より排ガス下流側に多く含む排ガス浄化用触媒とすれば、排ガス上流側においては還元成分の酸素による消費を抑制することができ、還元成分をNO の還元に効率よく利用することができる。したがって従来と同じ還元剤量でもNO 浄化率が向上し、NO 浄化率を同等とすれば還元剤量が低減できるので燃費が向上する。そして排ガス下流側においては、ある程度の OSC能が発現されるため放出された酸素によって余剰の還元成分を酸化浄化することができる。
【0029】
【実施例】
以下、実施例及び比較例により本発明を具体的に説明する。
【0030】
(実施例1)
オキシ硝酸ジルコニウムを蒸留水に溶解した所定濃度の水溶液に、モル比でZr:NH =2:3となる量のアンモニア水を投入し、80℃で30分撹拌してZrO前駆体(水酸化ジルコニウム)を析出させた。次いでこの溶液に、モル比でZr:Ce=9:1となる量のセリウムイオンを含む硝酸セリウム水溶液を添加して撹拌し、モル比でCe:NH =2:3となる量のアンモニア水を投入して80℃で30分撹拌した。これによりZrO前駆体を核として、その表面にCeO前駆体が析出した。この溶液を濾過し、 110℃で24時間乾燥後、 600℃で5時間焼成してCeO−ZrO複合酸化物粉末を調製した。
【0031】
このCeO−ZrO複合酸化物粉末は、図1に示すように、核としてのZrO(1)と、ZrO(1)の表面に分散して複合化されたCeO(2)と、からなる不均質構造の粒子から構成されている。
【0032】
このCeO−ZrO複合酸化物粉末と、蒸留水と、バインダ(硝酸アルミニウム)を混合してスラリーを調製し、35ccのセラミック製モノリスハニカム基材にウオッシュコートして、 250℃で2時間乾燥後、 500℃で2時間焼成しコート層を形成した。コート層は、モノリスハニカム基材1リットルあたり 200g形成された。
【0033】
次に、コート層が形成されたモノリスハニカム基材に、所定濃度のジニトロジアンミン白金水溶液の所定量を含浸させ、 500℃で1時間焼成してコート層にPtを担持した。次いで酢酸バリウムと酢酸カリウムが所定濃度で溶解した水溶液の所定量を含浸させ、 550℃で2時間焼成してBaとKを担持した。各成分の担持量は、モノリスハニカム基材1リットルあたりPtが2g、Baが 0.2モル、Kが0.15モルである。
【0034】
(実施例2)
ZrO前駆体(水酸化ジルコニウム)が析出した溶液に、モル比でZr:Ce=7:3となる量のセリウムイオンを含む硝酸セリウム水溶液を添加したこと以外は実施例1と同様にしてCeO−ZrO複合酸化物粉末を調製し、そのCeO−ZrO複合酸化物粉末を用いたこと以外は実施例1と同様にして、実施例2の触媒を調製した。
【0035】
(比較例1)
オキシ硝酸ジルコニウムと硝酸セリウムを、モル比でZr:Ce=9:1となるように蒸留水に溶解した水溶液に、モル比で(Zr+Ce):NH =2:3となる量のアンモニア水を投入して80℃で30分撹拌した。この溶液を濾過し、 110℃で24時間乾燥後 600℃で5時間焼成して、表面から内部まで均質なCeO−ZrO複合酸化物粒子からなるCeO−ZrO複合酸化物粉末を調製した。
【0036】
そしてこのCeO−ZrO複合酸化物粉末を用いたこと以外は実施例1と同様にして、比較例1の触媒を調製した。
【0037】
(比較例2)
オキシ硝酸ジルコニウムと硝酸セリウムをモル比でZr:Ce=7:3となるように蒸留水に溶解した水溶液を用いたこと以外は比較例1と同様にしてCeO−ZrO複合酸化物粉末を調製し、そのCeO−ZrO複合酸化物粉末を用いたこと以外は実施例1と同様にして、比較例2の触媒を調製した。
【0038】
<試験・評価>
実施例1−2及び比較例1−2で調製されたCeO−ZrO複合酸化物粉末の表面Ce量をXPSにて測定した。結果を図2に示す。図2から、実施例1は比較例1より表面Ce量が多く、実施例2は比較例2より表面Ce量が多いことが明らかであり、実施例1−2で調製されたCeO−ZrO複合酸化物粒子は大部分が図1に示すような構造になっていると考えられる。
【0039】
次に、各触媒を評価装置にそれぞれ配置し、表1に示すLeanモデルガスを流通させたときの触媒全体の飽和NO 吸蔵量を 250〜 550℃の範囲の各温度でそれぞれ測定した。結果を図3に示す。またNO 吸蔵量が飽和した触媒に表1に示すRichモデルガスを3秒間流し、その後Leanモデルガスに切り換えた時の触媒全体のNO 吸蔵量(RSNO 吸蔵量)を各温度でそれぞれ測定した。総流量は30L/分である。結果を図4に示す。
【0040】
【表1】

Figure 2004074138
【0041】
次いで各触媒に対して、表2に示すLeanモデルガスを55秒,Richモデルガスを5秒ずつ交互に、 800℃で4時間流通させる耐久試験を行った。総流量は30L/分である。
【0042】
【表2】
Figure 2004074138
【0043】
そして耐久試験後の各触媒について、上記と同様にして触媒全体の飽和NO 吸蔵量とRSNO 吸蔵量をそれぞれ測定し、結果を図5及び図6に示す。
【0044】
図3,図4より、初期の飽和NO 吸蔵量は各触媒とも同等であり、Ptの担持量(活性点数)が同一であればNOが酸化されNO となってNO 吸蔵材に吸蔵される量は、Ce量に無関係に一定であることがわかる。またリッチスパイク後のNO 吸蔵量(RSNO 吸蔵量)は、(実施例1≒比較例1)<(実施例2≒比較例2)である。すなわちリッチスパイク時にCeOから放出される酸素によって還元成分が消費される量、及びそれによって浄化されずに残るNO 量はコート層中の総Ce量によって決定され、表面Ce量には無関係であることが明らかである。
【0045】
一方、図5,図6から、耐久試験後における低温域の飽和NO 吸蔵量は、比較例1<実施例1<比較例2<実施例2であり、低温域のRSNO 吸蔵量は比較例1<比較例2<実施例1<実施例2となっている。すなわち同じCe量で比較すると、実施例1及び実施例2の方が比較例1及び比較例2より飽和NO 吸蔵量及びRSNO 吸蔵量が共に多い。このことは、実施例1及び実施例2の触媒の方がPtの活性が高いことを意味し、実施例1及び実施例2の触媒の方が耐久試験時のPtの粒成長が少ないことを意味している。すなわち実施例1及び実施例2の触媒では、CeO−ZrO複合酸化物粒子の表面Ce量が多いため、耐久試験時のPtの粒成長が抑制されたことがわかる。
【0046】
したがって、表面Ce量を多くするとともに内部のCe量を少なくすることで総Ce量を抑制すれば、耐久試験時のPtの粒成長を抑制できるとともに、リッチスパイク時にCeOから放出される酸素によって還元成分が消費される量を少なくすることができることが明らかであり、本発明の触媒は耐久性に優れかつ高いNO 浄化性能が発現されることが明らかである。
【0047】
(実施例3)
Al粉末 100gとTiO粉末 100gを混合した後スラリーを調製し、35ccのセラミック製モノリスハニカム基材にウオッシュコートして、 250℃で2時間乾燥後、 500℃で2時間焼成しコート層を形成した。コート層は、モノリスハニカム基材1リットルあたり 200g形成された。このコート層が形成されたモノリスハニカム基材に、所定濃度のジニトロジアンミン白金水溶液の所定量を含浸させ、500℃で1時間焼成してコート層にPtを担持した。Ptの担持量はモノリスハニカム基材1リットルあたり2gである。
【0048】
次に、実施例1で調製された不均質構造のCeO−ZrO複合酸化物粉末を30重量%含むスラリーを調製し、Ptを担持したコート層をもつモノリスハニカム基材の下流側端面から全長の1/10の長さの範囲のみにウォッシュコートして、 250℃で2時間乾燥後、 500℃で2時間焼成しオーバーコート層を形成した。オーバーコート層は、モノリスハニカム基材1リットルあたり10g形成された。
【0049】
次いで酢酸バリウムと酢酸カリウムが所定濃度で溶解した水溶液の所定量を含浸させ、 550℃で2時間焼成してBaとKを担持した。各成分の担持量は、モノリスハニカム基材1リットルあたりPtが2g、Baが 0.2モル、Kが0.15モルである。
【0050】
(実施例4)
オーバーコート層を下流側端面から全長の1/3の長さの範囲のみに形成したこと以外は実施例3と同様である。オーバーコート層は、モノリスハニカム基材1リットルあたり10g形成されている。
【0051】
(実施例5)
オーバーコート層を下流側端面から全長の1/2の長さの範囲のみに形成したこと以外は実施例3と同様である。オーバーコート層は、モノリスハニカム基材1リットルあたり10g形成されている。
【0052】
(実施例6)
オーバーコート層を下流側端面から全長の2/3の長さの範囲のみに形成したこと以外は実施例3と同様である。オーバーコート層は、モノリスハニカム基材1リットルあたり10g形成されている。
【0053】
(実施例7)
オーバーコート層を全長に形成したこと以外は実施例3と同様である。オーバーコート層は、モノリスハニカム基材1リットルあたり10g形成されている。
【0054】
(比較例3)
オーバーコート層を形成せず、PtとともにBa及びKを Al及びTiOからなるコート層に担持したこと以外は実施例3と同様である。
【0055】
<試験・評価>
各触媒を評価装置にそれぞれ配置し、表2に示したLeanモデルガスを55秒,Richモデルガスを5秒ずつ交互に、 800℃で4時間流通させる耐久試験をそれぞれ行った。総流量は30L/分である。
【0056】
そして耐久試験後の各触媒について、表1に示したLeanモデルガスを60秒、Richモデルガスを3秒ずつ交互に繰り返し流通させたときのNO 浄化率及びHC排出量を測定した。触媒床温度は 300℃である。結果を図7及び図8に示す。
【0057】
図7より各実施例の触媒は比較例3の触媒に比べて高いNO 浄化率を示し、これは不均質構造のセリア系複合酸化物粉末からなるコート層を形成した効果であることが明らかである。また実施例どうしの比較から、オーバーコート層の形成範囲は、全長に対して10〜70%の範囲とするのが好ましく、30〜50%の範囲とするのが特に好ましいことも明らかである。
【0058】
さらに図8より、各実施例の触媒は比較例3の触媒に比べて低いHC排出量を示し、これは不均質構造のセリア系複合酸化物粉末からなるコート層を形成した効果であることが明らかである。また各実施例ともに不均質構造のセリア系複合酸化物の量は同一であるが、HCの排出量にはほとんど差が無いのにNO 浄化率には大きな差がある。これは消費されたHCがNO の還元に利用された効率が異なるためであり、実施例3〜6のように排ガス下流側にオーバーコート層を形成することで、酸素によって消費されるHCが低減されその分がNO の還元に消費されたと考えられ、HCの利用効率が向上したと考えられる。
【0059】
【発明の効果】
すなわち本発明の排ガス浄化用触媒及び排ガス浄化方法によれば、CeOが効率的に利用されて貴金属の粒成長が抑制されているので浄化性能の耐久性が向上するとともに、リッチスパイク時の還元性成分の消費が抑制されNO 浄化率の低下を防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施例で調製された不均質構造のCeO−ZrO複合酸化物粒子の構成を示す説明図である。
【図2】実施例及び比較例で調製された不均質構造のCeO−ZrO複合酸化物粒子の表面Ce量を示すグラフである。
【図3】実施例及び比較例の触媒の初期における飽和NO 吸蔵量を示すグラフである。
【図4】実施例及び比較例の触媒の初期におけるRSNO 吸蔵量を示すグラフである。
【図5】実施例及び比較例の触媒の耐久試験後における飽和NO 吸蔵量を示すグラフである。
【図6】実施例及び比較例の触媒の耐久試験後におけるRSNO 吸蔵量を示すグラフである。
【図7】実施例及び比較例の触媒の耐久試験後におけるNO 浄化率を示すグラフである。
【図8】実施例及び比較例の触媒の耐久試験後におけるHC排出量を示すグラフである。
【符号の説明】
1:ZrO      2:CeO [0001]
TECHNICAL FIELD OF THE INVENTION
The present invention, excess oxygen and NO x storage-and-reduction type catalyst for purifying an exhaust gas and lean atmosphere and the rich atmosphere of over-reduction component is used in the exhaust gas is switched alternately, exhaust gas purification using the exhaust gas purifying catalyst About the method.
[0002]
[Prior art]
For the purpose of improving fuel efficiency and suppressing the emission of carbon dioxide, a recent automobile uses a lean burn engine that is burned in a lean atmosphere containing excess oxygen. However for the exhaust gases from lean-burn engine is oxygen excess lean atmosphere, in a general three-way catalyst, HC, although purification of CO is possible reduction purification of the NO x is difficult.
[0003]
So formed by carrying a noble metal and the NO x storage material to the oxide support NO x storage-and-reduction type catalyst has been developed, used in the combustion conditions for switching between a rich atmosphere of the air excess lean atmosphere and excess fuel alternately ing. Since the combustion exhaust gas in the lean atmosphere with excess air is a lean atmosphere with excess oxygen, NO in the exhaust gas becomes NO 2 by oxidation and is stored as nitrate in the NO x storage material. The flue gas of the excess fuel rich atmosphere is a rich atmosphere of over-reduction component, up to N 2 by the rich reducing component present in the NO x that was stored in the atmosphere is released from the NO x storage material Atmosphere It is reduced and purified.
[0004]
In order to improve fuel efficiency and achieve the purpose of suppressing carbon dioxide emissions, it is necessary to increase the combustion time in an air rich lean atmosphere and to shorten the combustion time in an excess fuel rich atmosphere. Burning in a lean atmosphere and introducing a fuel-rich rich atmosphere in a pulsed manner (rich spike) has been performed. However flue gas at the air excess lean atmosphere, to a high temperature oxidizing atmosphere, cause grain growth in the noble metal carried on the NO x storage-and-reduction type catalyst, the purification performance decreases due to a decrease in active sites There was a problem.
[0005]
Accordingly Japanese Patent 2001-149757 Patent Publication, NO x storage-reduction catalyst carrying the noble metal in the cerium oxide powder or CeO 2 -ZrO 2 composite oxide powder is disclosed. Although the reason of the noble metal supported on the carrier containing at least cerium oxide is unknown, the grain growth in a high-temperature lean atmosphere is suppressed. Therefore, a catalyst having excellent durability can be obtained.
[0006]
In the air-fuel ratio control system using the NO x storage-and-reduction type catalyst, even when the air-fuel ratio is stoichiometric constant, to improve the activity as a three-way catalyst, and in order to suppress grain growth of the noble metal, NO x More preferably, the storage reduction catalyst contains cerium oxide powder or CeO 2 -ZrO 2 composite oxide.
[0007]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-149775 [Patent Document 2] Japanese Patent Application Laid-Open No. 05-168927 [0008]
[Problems to be solved by the invention]
Cerium oxide has the ability to store and release oxygen, and has the property of storing oxygen in a lean atmosphere with excess oxygen and releasing oxygen in a rich atmosphere with excess reducing components (hereinafter referred to as OSC capability). Therefore, in the NO x storage reduction catalyst containing cerium oxide, there is a problem in that the reducing component is consumed by oxygen released from the cerium oxide at the time of the rich spike, and purification of NO x becomes difficult. Therefore the NO x storage material becomes a possible NO x is exposed to the exhaust gas again oxygen-excess lean atmosphere while being occluded, a phenomenon that decreases of the NO x purification rate by occlusion of new NO x becomes difficult Occurs.
[0009]
The present invention has been made in view of such circumstances, and an object thereof is to prevent deterioration of the NO x purification rate using cerium oxide efficiently.
[0010]
[Means for Solving the Problems]
Features of the exhaust gas purifying catalyst of the present invention to solve the above problems is the NO x storage-and-reduction type exhaust gas purifying catalyst obtained by carrying a noble metal and the NO x storage material on the oxide carrier, oxide support, CeO No. 2 comprises ceria-based composite oxide particles having a heterogeneous structure with a large amount on the surface and a small amount on the inside.
[0011]
Ceria composite oxide is preferably a CeO 2 -ZrO 2 composite oxide. Further, it is desirable that the noble metal is supported on at least the ceria-based composite oxide particles.
[0012]
Further, it is desirable that the ceria-based composite oxide particles are contained more in the exhaust gas downstream than in the exhaust gas upstream.
[0013]
The exhaust gas purification method of the present invention is characterized in that the exhaust gas purifying catalyst of the present invention is operated in a fuel-lean atmosphere having an air-fuel ratio (A / F) of 15 or more and intermittently becomes a stoichiometric to fuel-rich atmosphere. contacting the exhaust gas discharged from the engine, the NO x contained in the exhaust gas is occluded in the NO x storage material in a lean side, is to reduce the released NO x from the NO x storage material in the rich side from the stoichiometric .
[0014]
More preferably, the fuel lean atmosphere has an air-fuel ratio (A / F) of 18 or more.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
It has been found that the OSC ability of a support containing cerium oxide is proportional to the amount of cerium oxide. However, the effect of suppressing the grain growth of the noble metal supported on the support containing cerium oxide is affected only by the amount of cerium oxide near the noble metal supported, and the cerium oxide inside the noble metal away from the noble metal supported Has little effect, as clarified by the present inventors' research.
[0016]
Therefore, in the exhaust gas purifying catalyst of the present invention, an oxide carrier containing a ceria-based composite oxide particle having a heterogeneous structure with a large amount of CeO 2 on the surface and a small amount on the inside is used. With such a configuration, the grain growth of the noble metal is suppressed by CeO 2 which is largely present on the particle surface. And since the particle inside CeO 2 is less less than the absolute amount of CeO 2 is conventional, since the OSC capacity is lower than conventionally consumed suppression of reducing components during the rich spike, thereby lowering of the NO x purification rate Is suppressed. In order to maximize this effect, it is desirable that the noble metal is supported on at least the ceria-based composite oxide particles having a heterogeneous structure.
[0017]
It is desirable that the ceria-based composite oxide particles having a heterogeneous structure be contained more in the exhaust gas downstream than in the exhaust gas upstream. With this configuration, on the exhaust gas upstream side, the consumption of the reducing component by oxygen during the rich spike can be suppressed. Thus improved the NO x purification rate even with the same amount of reducing agent and conventional reducing agent amount if equal to the NO x purification rate fuel efficiency is improved can be reduced. That is, it is possible to utilize efficiently the reducing component in the reduction of NO x. And, on the downstream side of the exhaust gas, since the OSC function is developed, the excess reduced components can be oxidized and purified by the released oxygen. Thus the introduced reducing components by the rich spike can be utilized efficiently reduce and purify the NO x, even emission of HC and CO as well as improved the NO x purification rate is suppressed.
[0018]
Examples of the ceria-based composite oxide particles having a heterogeneous structure include CeO 2 —ZrO 2 composite oxide, CeO 2 —Al 2 O 3 composite oxide, CeO 2 —TiO 2 composite oxide, and CeO 2 —SiO 2 composite oxide. Etc. can be used, but a CeO 2 -ZrO 2 composite oxide is particularly preferred. By compounding ZrO 2 , the stability of CeO 2 is improved and the grain growth of CeO 2 itself is suppressed, so that the noble metal grain growth accompanying the CeO 2 grain growth can also be suppressed. For example, the composition ratio of the CeO 2 -ZrO 2 composite oxide is not particularly limited, but is preferably in a molar ratio of Ce / Zr = 5/95 to 50/50. Ce becomes difficult to suppress the grain growth of the noble metal is less than this range, Ce is the NO x purification rate becomes too high OSC ability becomes more than this range will be lowered.
[0019]
In the ceria-based composite oxide particles having a heterogeneous structure having a large amount of CeO 2 on the surface and a small amount in the interior, the amount of cerium on the surface may be more than 50% of the total amount of cerium in the ceria-based composite oxide particles having a heterogeneous structure. , 60% or more. When the amount of cerium on the surface is 50% or less of the total amount of cerium, it is difficult to suppress the grain growth of the noble metal. Further, the total amount of cerium in the ceria-based composite oxide particles is desirably 50 mol% or less based on the total amount of metal elements in the ceria-based composite oxide particles having a heterogeneous structure. Total cerium element amount becomes too high number becomes the OSC capacity than this range, NO x purification rate will be lowered.
[0020]
In order to produce ceria-based composite oxide particles having a heterogeneous structure with a large amount of CeO 2 on the surface and a small amount inside, there is, for example, a method of impregnating a ZrO 2 powder or an Al 2 O 3 powder with a cerium nitrate aqueous solution and firing. Alternatively, it can be manufactured by depositing a ZrO 2 precursor from an aqueous solution of zirconium oxynitrate, then mixing an aqueous solution of cerium nitrate to deposit a CeO 2 precursor on the surface of the ZrO 2 precursor, and firing it. In addition, it is also possible to hydrolyze cerium alkoxide on the surface of ZrO 2 or a ZrO 2 precursor or the like, and calcine it to produce the cerium alkoxide.
[0021]
The oxide carrier in the exhaust gas purifying catalyst of the present invention may contain the above-mentioned ceria-based composite oxide particles having a heterogeneous structure, or may be composed of only powder of the ceria-based composite oxide particles having a heterogeneous structure. Other oxide powders can be mixed. Further, the surface of the coat layer made of another oxide may be overcoated with a coat layer containing ceria-based composite oxide particles having a heterogeneous structure. Examples of other oxide powders include Al 2 O 3 , ZrO 2 , TiO 2, and the like. In the case where a mixture of ceria-based composite oxide particles having a heterogeneous structure and another oxide powder is used. It is preferable that the oxide carrier contains 10% by volume or more of ceria-based composite oxide particles having a heterogeneous structure.
[0022]
The noble metal is selected from Pt, Rh, Pd, Ir and the like, and preferably contains at least Pt having a high oxidizing activity. The amount of the noble metal supported on the oxide carrier containing the ceria-based composite oxide particles having a heterogeneous structure is suitably from 0.1 to 10% by weight based on the carrier. As a result, the activity becomes saturated and the cost increases even if the amount exceeds 10% by weight.
[0023]
The NO x occluding material can be used by selecting from rare earth elements other than alkali metals, alkaline earth metals, and cerium. A metal selected from an alkali metal and an alkaline earth metal is preferable, and it is particularly desirable to support both an alkali metal and an alkaline earth metal. The loading amount of the NO x storage material is suitably 0.01 to 5 mols per liter of the exhaust gas purifying catalyst. Small and the NO x purification performance than 0.01 mol is not practical too low, when carrying the activity of the noble metal will be lowered more than 5 mol.
[0024]
In the case of an exhaust gas purification catalyst that contains a large amount of ceria-based composite oxide particles having a heterogeneous structure in the exhaust gas downstream from the exhaust gas upstream, the concentration of the ceria-based composite oxide particles should be increased in the exhaust gas downstream from the exhaust gas upstream. Alternatively, the ceria-based composite oxide particles may be included only in the exhaust gas downstream, not in the exhaust gas upstream. In addition, it is preferable that the length from the downstream end surface is in the range of 10 to 70%, and more preferably in the range of 30 to 50%, with respect to the entire length of the exhaust gas purifying catalyst in the exhaust gas flow direction. Particularly preferred.
[0025]
When the exhaust gas purifying catalyst contains a large amount of ceria-based composite oxide particles having a heterogeneous structure on the exhaust gas downstream side from the exhaust gas upstream side, the coat layer may be formed by mixing the oxide carrier with the oxide carrier. The surface of the layer can be overcoated.
[0026]
In the exhaust gas purifying method of the present invention, the exhaust gas purifying catalyst of the present invention is supplied from a lean-burn engine which is operated in a fuel-lean atmosphere having an air-fuel ratio (A / F) of 15 or more and is intermittently brought into a stoichiometric to fuel-rich atmosphere. is contacted with exhaust gas discharged, the NO x contained in the exhaust gas is occluded in the NO x storage material in a lean side, to reduce the released NO x from the NO x storage material in the rich side from the stoichiometric.
[0027]
In the exhaust gas of the stoichiometric-fuel-rich atmosphere, the NO x is released which has stored in the NO x storage material is reduced by reducing components such as HC and CO present in the atmosphere. This time, the oxide support contains ceria composite oxide particles of the heterogeneous structure, the OSC capability is suppressed consumption of reducing components lower than conventionally, this reduction of the NO x purification rate by the suppression is higher the NO x purification performance is expressed.
[0028]
If the exhaust gas purifying catalyst contains more ceria-based composite oxide particles having a heterogeneous structure in the exhaust gas downstream than in the exhaust gas upstream, it is possible to suppress the consumption of the reducing component by oxygen on the exhaust gas upstream, the can be used efficiently for the reduction of NO x. Thus improved the NO x purification rate even with the same amount of reducing agent and conventional reducing agent amount if equal to the NO x purification rate fuel efficiency is improved can be reduced. On the downstream side of the exhaust gas, a certain amount of OSC ability is developed, so that the excess reduced components can be oxidized and purified by the released oxygen.
[0029]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[0030]
(Example 1)
An aqueous ammonia solution having a molar ratio of Zr: NH 3 = 2: 3 is added to an aqueous solution having a predetermined concentration in which zirconium oxynitrate is dissolved in distilled water, and the mixture is stirred at 80 ° C. for 30 minutes, and the ZrO 2 precursor (water (Zirconium oxide) was deposited. Next, to this solution, an aqueous cerium nitrate solution containing cerium ions in an amount of Zr: Ce = 9: 1 in molar ratio was added and stirred, and ammonia water in an amount of Ce: NH 3 = 2: 3 in molar ratio was added. And stirred at 80 ° C. for 30 minutes. As a result, the CeO 2 precursor was deposited on the surface of the ZrO 2 precursor as a nucleus. This solution was filtered, dried at 110 ° C. for 24 hours, and calcined at 600 ° C. for 5 hours to prepare a CeO 2 —ZrO 2 composite oxide powder.
[0031]
As shown in FIG. 1, this CeO 2 —ZrO 2 composite oxide powder is composed of ZrO 2 (1) as a nucleus and CeO 2 (2) dispersed and complexed on the surface of ZrO 2 (1). , Composed of particles having a heterogeneous structure.
[0032]
A slurry was prepared by mixing the CeO 2 -ZrO 2 composite oxide powder, distilled water, and a binder (aluminum nitrate), and was wash-coated on a 35 cc ceramic monolith honeycomb substrate, and dried at 250 ° C. for 2 hours. Thereafter, the coating was fired at 500 ° C. for 2 hours to form a coat layer. The coating layer was formed in an amount of 200 g per liter of the monolith honeycomb substrate.
[0033]
Next, the monolith honeycomb substrate on which the coating layer was formed was impregnated with a predetermined amount of a dinitrodiammine platinum aqueous solution having a predetermined concentration, and baked at 500 ° C. for 1 hour to carry Pt on the coating layer. Subsequently, a predetermined amount of an aqueous solution in which barium acetate and potassium acetate were dissolved at a predetermined concentration was impregnated, and calcined at 550 ° C. for 2 hours to carry Ba and K. The loading amount of each component is 2 g of Pt, 0.2 mol of Ba, and 0.15 mol of K per liter of the monolith honeycomb substrate.
[0034]
(Example 2)
CeO 2 was prepared in the same manner as in Example 1 except that an aqueous solution of cerium nitrate containing cerium ions in a molar ratio of Zr: Ce = 7: 3 was added to the solution in which the ZrO 2 precursor (zirconium hydroxide) was precipitated. A 2- ZrO 2 composite oxide powder was prepared, and a catalyst of Example 2 was prepared in the same manner as in Example 1 except that the CeO 2 -ZrO 2 composite oxide powder was used.
[0035]
(Comparative Example 1)
An aqueous solution of zirconium oxynitrate and cerium nitrate dissolved in distilled water in a molar ratio of Zr: Ce = 9: 1 was mixed with an amount of ammonia water in a molar ratio of (Zr + Ce): NH 3 = 2: 3. It poured and stirred at 80 degreeC for 30 minutes. This solution was filtered, dried at 110 ° C. for 24 hours, and calcined at 600 ° C. for 5 hours to prepare CeO 2 —ZrO 2 composite oxide powder composed of homogeneous CeO 2 —ZrO 2 composite oxide particles from the surface to the inside. did.
[0036]
Then, a catalyst of Comparative Example 1 was prepared in the same manner as in Example 1 except that this CeO 2 -ZrO 2 composite oxide powder was used.
[0037]
(Comparative Example 2)
A CeO 2 -ZrO 2 composite oxide powder was prepared in the same manner as in Comparative Example 1, except that an aqueous solution in which zirconium oxynitrate and cerium nitrate were dissolved in distilled water so that the molar ratio was Zr: Ce = 7: 3 was used. The catalyst of Comparative Example 2 was prepared in the same manner as in Example 1 except that the CeO 2 -ZrO 2 composite oxide powder was used.
[0038]
<Test / Evaluation>
The Ce content of the surface of the CeO 2 -ZrO 2 composite oxide powder prepared in Example 1-2 and Comparative Example 1-2 was measured by XPS. FIG. 2 shows the results. From FIG. 2, it is clear that Example 1 has a larger amount of surface Ce than Comparative Example 1, and Example 2 has a larger amount of surface Ce than Comparative Example 2, and the CeO 2 —ZrO prepared in Example 1-2 is evident. It is considered that most of the two composite oxide particles have a structure as shown in FIG.
[0039]
Then arranged each catalyst evaluation apparatus, were measured at each temperature in the range of 250 to 550 ° C. Saturated the NO x storage amount of the entire catalyst when allowed to flow Lean model gas shown in Table 1. The results are shown in FIG. In addition, the Rich model gas shown in Table 1 was flowed for 3 seconds through the catalyst where the NO x storage amount was saturated, and then the NO x storage amount (RSNO x storage amount) of the entire catalyst when switching to the lean model gas was measured at each temperature. did. The total flow rate is 30 L / min. FIG. 4 shows the results.
[0040]
[Table 1]
Figure 2004074138
[0041]
Next, a durability test was conducted for each catalyst in which the Lean model gas shown in Table 2 was passed at 800 ° C. for 55 seconds and the Rich model gas was passed alternately for 5 seconds at 800 ° C. for 4 hours. The total flow rate is 30 L / min.
[0042]
[Table 2]
Figure 2004074138
[0043]
Then, for each of the catalysts after the durability test, the saturated NO x storage amount and the RSNO x storage amount of the entire catalyst were measured in the same manner as described above, and the results are shown in FIGS. 5 and 6.
[0044]
3, from 4, initial saturated the NO x storage amount is equal in each catalyst, occlusion loading of Pt (activity score) becomes the NO 2 is NO oxidation if they are identical to the NO x storage material It can be seen that the amount performed is constant irrespective of the Ce amount. The NO x storage amount (RSNO x storage amount) after the rich spike is (Example 1 実 施 Comparative Example 1) <(Example 2 ≒ Comparative Example 2). That amount reducing components by oxygen released from the CeO 2 is consumed during the rich spike, and the amount of NO x remaining without being purified thereby it is determined by the total amount of Ce in the coating layer, independent of the surface Ce amount It is clear that there is.
[0045]
On the other hand, from FIGS. 5 and 6, the saturated NO x storage amount in the low temperature region after the durability test is Comparative Example 1 <Example 1 <Comparative Example 2 <Example 2, and the RSNO x storage amount in the low temperature region is comparative. Example 1 <Comparative Example 2 <Example 1 <Example 2. That is, when compared at the same Ce amount, the saturated NO x storage amount and the RSNO x storage amount of Examples 1 and 2 are larger than those of Comparative Examples 1 and 2. This means that the catalysts of Example 1 and Example 2 have higher Pt activity, and that the catalysts of Example 1 and Example 2 have less Pt grain growth during the durability test. Means. That is, in the catalyst of Example 1 and Example 2, since the surface Ce of CeO 2 -ZrO 2 composite oxide particles is large, it can be seen that the grain growth of Pt during the durability test is suppressed.
[0046]
Therefore, if the total Ce amount is suppressed by increasing the surface Ce amount and decreasing the internal Ce amount, the Pt grain growth during the durability test can be suppressed, and the oxygen released from CeO 2 at the time of rich spikes it is apparent that it is possible to reduce the amount of reducing components are consumed, the catalyst of the present invention it is clear that excellent durability and high the NO x purification performance is expressed.
[0047]
(Example 3)
After mixing 100 g of Al 2 O 3 powder and 100 g of TiO 2 powder, a slurry is prepared and wash-coated on a 35 cc ceramic monolith honeycomb substrate, dried at 250 ° C. for 2 hours, and baked at 500 ° C. for 2 hours to coat. A layer was formed. The coating layer was formed in an amount of 200 g per liter of the monolith honeycomb substrate. The monolith honeycomb substrate on which the coating layer was formed was impregnated with a predetermined amount of a dinitrodiammineplatinum aqueous solution having a predetermined concentration, and baked at 500 ° C. for 1 hour to carry Pt on the coating layer. The supported amount of Pt is 2 g per liter of the monolith honeycomb substrate.
[0048]
Next, a slurry containing 30% by weight of the CeO 2 —ZrO 2 composite oxide powder having a heterogeneous structure prepared in Example 1 was prepared, and a slurry was prepared from the downstream end face of the monolith honeycomb substrate having a coat layer carrying Pt. Wash coat was applied only in the range of 1/10 of the total length, dried at 250 ° C. for 2 hours, and baked at 500 ° C. for 2 hours to form an overcoat layer. The overcoat layer was formed in an amount of 10 g per liter of the monolith honeycomb substrate.
[0049]
Subsequently, a predetermined amount of an aqueous solution in which barium acetate and potassium acetate were dissolved at a predetermined concentration was impregnated, and calcined at 550 ° C. for 2 hours to carry Ba and K. The loading amount of each component is 2 g of Pt, 0.2 mol of Ba, and 0.15 mol of K per liter of the monolith honeycomb substrate.
[0050]
(Example 4)
It is the same as Example 3 except that the overcoat layer was formed only in the range of 1/3 of the total length from the downstream end face. The overcoat layer is formed in an amount of 10 g per liter of the monolith honeycomb substrate.
[0051]
(Example 5)
Example 3 is the same as Example 3 except that the overcoat layer was formed only in the range of 1 / of the total length from the downstream end face. The overcoat layer is formed in an amount of 10 g per liter of the monolith honeycomb substrate.
[0052]
(Example 6)
Example 3 is the same as Example 3 except that the overcoat layer was formed only in the range of / of the total length from the downstream end face. The overcoat layer is formed in an amount of 10 g per liter of the monolith honeycomb substrate.
[0053]
(Example 7)
It is the same as Example 3 except that the overcoat layer was formed over the entire length. The overcoat layer is formed in an amount of 10 g per liter of the monolith honeycomb substrate.
[0054]
(Comparative Example 3)
Example 3 is the same as Example 3 except that the overcoat layer was not formed, and Ba and K were carried on the coat layer made of Al 2 O 3 and TiO 2 together with Pt.
[0055]
<Test / Evaluation>
Each catalyst was placed in an evaluation device, and a durability test was conducted in which the Lean model gas shown in Table 2 and the Rich model gas were alternately flowed for 55 seconds and 5 seconds at 800 ° C. for 4 hours. The total flow rate is 30 L / min.
[0056]
And for each of the catalysts after the durability test were measured the NO x purification rate and HC emissions obtained while repeatedly circulating Lean model gas shown in Table 1 for 60 seconds, the Rich model gas alternately every three seconds. The catalyst bed temperature is 300 ° C. The results are shown in FIGS.
[0057]
FIG. 7 shows that the catalysts of the respective examples exhibited a higher NO x purification rate than the catalyst of Comparative Example 3, which is the effect of forming the coat layer composed of the ceria-based composite oxide powder having a heterogeneous structure. It is. It is also clear from the comparison between the examples that the formation range of the overcoat layer is preferably in the range of 10 to 70% with respect to the entire length, and particularly preferably in the range of 30 to 50%.
[0058]
Further, FIG. 8 shows that the catalysts of the examples exhibited lower HC emissions than the catalysts of Comparative Example 3, which is due to the effect of forming the coat layer composed of the ceria-based composite oxide powder having a heterogeneous structure. it is obvious. The amount of ceria composite oxide of heterogeneity in both the embodiment is identical, there is a large difference in the NO x purification rate to almost no difference in the emissions of HC. This is because the efficiency of HC consumed is utilized for the reduction of the NO x differs, by forming the overcoat layer to the exhaust gas downstream side as in Example 3 to 6, HC is consumed by oxygen correspondingly reduced is considered to have been consumed in the reduction of NO x, is believed to have improved efficiency of use of HC.
[0059]
【The invention's effect】
That is, according to the exhaust gas purifying catalyst and the exhaust gas purifying method of the present invention, CeO 2 is efficiently used and grain growth of the noble metal is suppressed, so that the durability of the purifying performance is improved and the reduction at the time of rich spike is performed. consumption of sexual components it is possible to prevent a reduction of the NO x purification rate is suppressed.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing the structure of CeO 2 —ZrO 2 composite oxide particles having a heterogeneous structure prepared in one example of the present invention.
FIG. 2 is a graph showing the amount of Ce on the surface of CeO 2 —ZrO 2 composite oxide particles having a heterogeneous structure prepared in Examples and Comparative Examples.
FIG. 3 is a graph showing the saturated NO x storage amount of the catalysts of Examples and Comparative Examples at the initial stage.
FIG. 4 is a graph showing the amount of occluded RSNO x at the beginning of the catalysts of Examples and Comparative Examples.
FIG. 5 is a graph showing saturated NO x storage amounts after endurance tests of catalysts of Examples and Comparative Examples.
FIG. 6 is a graph showing the amount of occluded RSNO x after the durability test of the catalysts of Examples and Comparative Examples.
7 is a graph showing the the NO x purification rate after the durability test of catalysts of Examples and Comparative Examples.
FIG. 8 is a graph showing HC emissions of catalysts of Examples and Comparative Examples after a durability test.
[Explanation of symbols]
1: ZrO 2 2: CeO 2

Claims (6)

酸化物担体に貴金属とNO 吸蔵材とを担持してなるNO 吸蔵還元型の排ガス浄化用触媒において、
該酸化物担体は、CeOが表面に多く内部に少ない不均質構造のセリア系複合酸化物粒子を含むことを特徴とする排ガス浄化用触媒。
In the NO x storage-reduction type exhaust gas purifying catalyst obtained by carrying a noble metal and the NO x storage material to the oxide support,
An exhaust gas purifying catalyst, characterized in that the oxide carrier contains ceria-based composite oxide particles having a heterogeneous structure with a large amount of CeO 2 on the surface and a small amount inside.
前記セリア系複合酸化物はCeO−ZrO複合酸化物である請求項1に記載の排ガス浄化用触媒。The ceria composite oxide catalyst for purification of exhaust gas according to claim 1 is a CeO 2 -ZrO 2 composite oxide. 前記貴金属は少なくとも前記セリア系複合酸化物粒子に担持されている請求項1に記載の排ガス浄化用触媒。The exhaust gas purifying catalyst according to claim 1, wherein the noble metal is supported on at least the ceria-based composite oxide particles. 前記セリア系複合酸化物粒子は排ガス上流側より排ガス下流側に多く含まれている請求項1に記載の排ガス浄化用触媒。The exhaust gas purifying catalyst according to claim 1, wherein the ceria-based composite oxide particles are contained more in the exhaust gas downstream than in the exhaust gas upstream. 請求項1〜4のいずれかに記載の排ガス浄化用触媒を、空燃比(A/F)が15以上の燃料リーン雰囲気で運転され間欠的にストイキ〜燃料リッチ雰囲気とされる希薄燃焼エンジンから排出される排ガスと接触させ、該排ガス中に含まれるNO をリーン側で該NO 吸蔵材に吸蔵し、ストイキからリッチ側で該NO 吸蔵材から放出されたNO を還元することを特徴とする排ガス浄化方法。The exhaust gas purifying catalyst according to any one of claims 1 to 4, which is discharged from a lean-burn engine which is operated in a fuel-lean atmosphere having an air-fuel ratio (A / F) of 15 or more and is intermittently changed to a stoichiometric to fuel-rich atmosphere. is contacted with exhaust gas, characterized in that the NO x contained in the exhaust gas occluded into the the NO x storage material in a lean side, the reduction of NO x released from the the NO x storage material in the rich side from the stoichiometric Exhaust gas purification method. 前記燃料リーン雰囲気は空燃比(A/F)が18以上である請求項5に記載の排ガス浄化方法。The exhaust gas purifying method according to claim 5, wherein the fuel lean atmosphere has an air-fuel ratio (A / F) of 18 or more.
JP2002285223A 2002-06-17 2002-09-30 Catalyst for exhaust gas purification, and exhaust gas purification method Pending JP2004074138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285223A JP2004074138A (en) 2002-06-17 2002-09-30 Catalyst for exhaust gas purification, and exhaust gas purification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002175830 2002-06-17
JP2002285223A JP2004074138A (en) 2002-06-17 2002-09-30 Catalyst for exhaust gas purification, and exhaust gas purification method

Publications (1)

Publication Number Publication Date
JP2004074138A true JP2004074138A (en) 2004-03-11

Family

ID=32032415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285223A Pending JP2004074138A (en) 2002-06-17 2002-09-30 Catalyst for exhaust gas purification, and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP2004074138A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102523A1 (en) * 2004-04-27 2005-11-03 Toyota Jidosha Kabushiki Kaisha Process for producing metal oxide particle and exhaust gas purifying catalyst
WO2005102933A2 (en) 2004-04-27 2005-11-03 Toyota Jidosha Kabushiki Kaisha Zirconia core particles coated with ceria particles, production process thereof and exhaust gas purifying catalyst
WO2005102524A1 (en) * 2004-04-27 2005-11-03 Toyota Jidosha Kabushiki Kaisha Metal oxide particle, production process thereof and exhaust gas purifying catalyst
WO2006134976A1 (en) * 2005-06-16 2006-12-21 Cataler Corporation Catalyst for exhaust gas purification
JP2007105571A (en) * 2005-10-11 2007-04-26 Cataler Corp Catalyst for emission gas purification and its manufacturing method
US7344683B2 (en) 2005-04-14 2008-03-18 Mazda Motor Corporation Exhaust gas catalytic converter
US7745371B2 (en) 2004-03-09 2010-06-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst, metal oxide particle and production process thereof
US8097553B2 (en) 2005-03-23 2012-01-17 Toyota Jidosha Kabushiki Kaisha Catalyst support powder and exhaust gas purifying catalyst
WO2012137050A1 (en) * 2011-04-04 2012-10-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas catalyst, method for the production of carrier, method for the production of exhaust gas catalyst, and apparatus for treating exhaust gas
US8293677B2 (en) 2007-05-23 2012-10-23 Toyota Jidosha Kabushiki Kaisha Core-shell structure, process for its production, and exhaust gas purification catalyst comprising core-shell structure
WO2012144098A1 (en) * 2011-04-22 2012-10-26 三井金属鉱業株式会社 Carrier for internal-combustion engine exhaust gas purification catalyst
JP2013525255A (en) * 2010-05-06 2013-06-20 ロデイア・オペラシヨン Compositions comprising zirconium, cerium and at least one other rare earth oxide and having a specific porosity, a process for preparing them, and their use in catalysis
CN103526204A (en) * 2013-10-15 2014-01-22 云南大学 Preparation of heat shock-resisting functional oxide layer on surface of alloy by anodic oxidation
JP2014030800A (en) * 2012-08-03 2014-02-20 Noritake Co Ltd Promotor material for purifying automobile exhaust gas, and method for producing the same
JP2014030801A (en) * 2012-08-03 2014-02-20 Noritake Co Ltd Promotor material for purifying automobile exhaust gas, and method for producing the same
US10473047B2 (en) 2014-11-28 2019-11-12 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling an internal combustion engine
US10612438B2 (en) 2016-10-14 2020-04-07 Toyota Jidosha Kabushiki Kaisha Exhaust purification apparatus for internal combustion engine

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7745371B2 (en) 2004-03-09 2010-06-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst, metal oxide particle and production process thereof
US7989387B2 (en) 2004-04-27 2011-08-02 Toyota Jidosha Kabushiki Kaisha Process for producing metal oxide particle and exhaust gas purifying catalyst
US8026193B2 (en) 2004-04-27 2011-09-27 Toyota Jidosha Kabushiki Kaisha Metal oxide particle, production process thereof and exhaust gas purifying catalyst
WO2005102933A3 (en) * 2004-04-27 2006-01-12 Toyota Motor Co Ltd Zirconia core particles coated with ceria particles, production process thereof and exhaust gas purifying catalyst
CN104096594A (en) * 2004-04-27 2014-10-15 丰田自动车株式会社 Process for producing metal oxide particle and exhaust gas purifying catalyst
WO2005102523A1 (en) * 2004-04-27 2005-11-03 Toyota Jidosha Kabushiki Kaisha Process for producing metal oxide particle and exhaust gas purifying catalyst
WO2005102524A1 (en) * 2004-04-27 2005-11-03 Toyota Jidosha Kabushiki Kaisha Metal oxide particle, production process thereof and exhaust gas purifying catalyst
KR100881300B1 (en) * 2004-04-27 2009-02-03 도요타 지도샤(주) Process for producing metal oxide particle and exhaust gas purifying catalyst
WO2005102933A2 (en) 2004-04-27 2005-11-03 Toyota Jidosha Kabushiki Kaisha Zirconia core particles coated with ceria particles, production process thereof and exhaust gas purifying catalyst
US8097553B2 (en) 2005-03-23 2012-01-17 Toyota Jidosha Kabushiki Kaisha Catalyst support powder and exhaust gas purifying catalyst
US7344683B2 (en) 2005-04-14 2008-03-18 Mazda Motor Corporation Exhaust gas catalytic converter
WO2006134976A1 (en) * 2005-06-16 2006-12-21 Cataler Corporation Catalyst for exhaust gas purification
JP2007105571A (en) * 2005-10-11 2007-04-26 Cataler Corp Catalyst for emission gas purification and its manufacturing method
US8293677B2 (en) 2007-05-23 2012-10-23 Toyota Jidosha Kabushiki Kaisha Core-shell structure, process for its production, and exhaust gas purification catalyst comprising core-shell structure
JP2013525255A (en) * 2010-05-06 2013-06-20 ロデイア・オペラシヨン Compositions comprising zirconium, cerium and at least one other rare earth oxide and having a specific porosity, a process for preparing them, and their use in catalysis
WO2012137050A1 (en) * 2011-04-04 2012-10-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas catalyst, method for the production of carrier, method for the production of exhaust gas catalyst, and apparatus for treating exhaust gas
JP2012217875A (en) * 2011-04-04 2012-11-12 Toyota Motor Corp Base metal exhaust gas purifying catalyst, method for producing carrier, method for producing catalyst, and exhaust emission control device
US9617886B2 (en) 2011-04-04 2017-04-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas catalyst, method for the production of carrier, method for the production of exhaust gas catalyst, and apparatus for treating exhaust gas
JP2012228628A (en) * 2011-04-22 2012-11-22 Mitsui Mining & Smelting Co Ltd Carrier for catalyst for purifying exhaust gas from internal-combustion engine
WO2012144098A1 (en) * 2011-04-22 2012-10-26 三井金属鉱業株式会社 Carrier for internal-combustion engine exhaust gas purification catalyst
US9669389B2 (en) 2011-04-22 2017-06-06 Mitsui Mining & Smelting Co., Ltd. Carrier for internal-combustion engine exhaust gas purification catalyst
JP2014030800A (en) * 2012-08-03 2014-02-20 Noritake Co Ltd Promotor material for purifying automobile exhaust gas, and method for producing the same
JP2014030801A (en) * 2012-08-03 2014-02-20 Noritake Co Ltd Promotor material for purifying automobile exhaust gas, and method for producing the same
CN103526204A (en) * 2013-10-15 2014-01-22 云南大学 Preparation of heat shock-resisting functional oxide layer on surface of alloy by anodic oxidation
US10473047B2 (en) 2014-11-28 2019-11-12 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling an internal combustion engine
US10612438B2 (en) 2016-10-14 2020-04-07 Toyota Jidosha Kabushiki Kaisha Exhaust purification apparatus for internal combustion engine

Similar Documents

Publication Publication Date Title
JP3826357B2 (en) Hydrogen production catalyst and exhaust gas purification catalyst
JP3358766B2 (en) Exhaust gas purification catalyst
WO2010026814A1 (en) Exhaust gas purifying catalyst and method for producing the same
JP2003334442A (en) OCCLUSION-REDUCTION TYPE CATALYST FOR REMOVING NOx
JP2004074138A (en) Catalyst for exhaust gas purification, and exhaust gas purification method
JP2003340291A (en) Exhaust gas cleaning catalyst
JPH10286462A (en) Catalyst of purifying exhaust gas
JP2005144334A (en) Exhaust gas cleaning catalyst and its production method
JP4923412B2 (en) Exhaust gas purification catalyst
JP2010046656A (en) Catalyst for purifying exhaust gas and exhaust gas purification method using the catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH09253454A (en) Catalyst for purifying exhaust gas
JPH10128114A (en) Catalyst for purifying exhaust gas
JP5328133B2 (en) Exhaust gas purification catalyst
JP2004216224A (en) Nox occlusion reduction type catalyst
JP3748202B2 (en) Exhaust gas purification catalyst
JP3659028B2 (en) Exhaust gas purification device and method of using the same
JP3664201B2 (en) Exhaust gas purification catalyst
JP4103407B2 (en) NOx storage reduction catalyst
JP2003305363A (en) Catalyst carrier and catalyst for exhaust gas treatment
JP2000157867A (en) Catalyst for exhaust gas treatment
JP4507413B2 (en) Exhaust gas purification catalyst
JP3897483B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP2000070717A (en) Exhaust gas purification catalyst and catalyst carrier
JP2005305338A (en) Exhaust gas cleaning catalyst and preparation method therefor