JP2000246107A - Catalyst for cleaning exhaust gas, its production and method for cleaning exhaust gas - Google Patents

Catalyst for cleaning exhaust gas, its production and method for cleaning exhaust gas

Info

Publication number
JP2000246107A
JP2000246107A JP11054158A JP5415899A JP2000246107A JP 2000246107 A JP2000246107 A JP 2000246107A JP 11054158 A JP11054158 A JP 11054158A JP 5415899 A JP5415899 A JP 5415899A JP 2000246107 A JP2000246107 A JP 2000246107A
Authority
JP
Japan
Prior art keywords
exhaust gas
carrier
powder
porous oxide
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11054158A
Other languages
Japanese (ja)
Other versions
JP3860929B2 (en
Inventor
Hiroto Hirata
裕人 平田
Ichiro Hachisuga
一郎 蜂須賀
Yasuo Ikeda
靖夫 池田
Hiroshi Hirayama
洋 平山
Kiyotaka Hayashi
清高 林
Katsuyuki Murata
克之 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Original Assignee
Cataler Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp, Toyota Motor Corp filed Critical Cataler Corp
Priority to JP05415899A priority Critical patent/JP3860929B2/en
Publication of JP2000246107A publication Critical patent/JP2000246107A/en
Application granted granted Critical
Publication of JP3860929B2 publication Critical patent/JP3860929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit the sulfur poisoning of an NOx occlusion material and to enhance durability. SOLUTION: This catalyst for cleaning exhaust gas has a support containing at least titania particles and another porous oxide. The titania particles in the support are ultrafine particles having <50 nm particle diameter. Since the ultrafine particulate titania particles are used, interfaces with the another porous oxide are extremely increased, and since SOx is hardly adsorbed on the porous oxide such as alumina at the interfaces, the sulfur poisoning of an NOx occlusion material present on the interfaces is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は排ガス中に含まれる
一酸化炭素(CO)や炭化水素(HC)を酸化するのに必要
な量より過剰な酸素が含まれている排ガス中の、NOx
効率よく浄化できる触媒とその製造方法、及びその触媒
を用いた排ガス浄化方法に関する。
The present invention relates to the in the exhaust gas contains excess oxygen than the amount required to oxidize the carbon monoxide contained in the exhaust gas (CO) and hydrocarbons (HC), NO x TECHNICAL FIELD The present invention relates to a catalyst capable of efficiently purifying exhaust gas, a production method thereof, and an exhaust gas purification method using the catalyst.

【0002】[0002]

【従来の技術】リーンバーンエンジンにおいて、常時は
酸素過剰の燃料リーン条件で燃焼させ、間欠的に燃料ス
トイキ〜リッチ条件とすることにより排ガスを還元雰囲
気としてNOx を還元浄化するシステムが開発され、実用
化されている。そしてこのシステムに最適な触媒とし
て、リーン雰囲気でNOx を吸蔵し、ストイキ〜リッチ雰
囲気で吸蔵されたNOx を放出するNOx 吸蔵材を用いたNO
x 吸蔵還元型の排ガス浄化用触媒が開発されている。
BACKGROUND ART In a lean-burn engine, normally is burned with oxygen excess fuel lean condition, the system reduces and purifies NO x exhaust gas as a reducing atmosphere is developed by the intermittent fuel stoichiometric-rich condition, Has been put to practical use. And as the best catalysts for this system, occludes NO x in lean atmosphere, with the NO x storage material that releases occluded NO x at stoichiometric ~ rich atmosphere NO
x Oxidation reduction type exhaust gas purifying catalysts have been developed.

【0003】例えば特開平5-317652号公報には、Baなど
のアルカリ土類金属とPtをアルミナなどの多孔質酸化物
担体に担持した排ガス浄化用触媒が提案されている。ま
た特開平 6-31139号公報には、Kなどのアルカリ金属と
Ptをアルミナなどの多孔質酸化物担体に担持した排ガス
浄化用触媒が提案されている。さらに特開平5-168860号
公報には、Laなどの希土類元素とPtをアルミナなどの多
孔質酸化物担体に担持した排ガス浄化用触媒が提案され
ている。
For example, Japanese Patent Application Laid-Open No. 5-317652 proposes an exhaust gas purifying catalyst in which an alkaline earth metal such as Ba and Pt are supported on a porous oxide carrier such as alumina. Also, JP-A-6-31139 discloses that an alkali metal such as K is used.
An exhaust gas purifying catalyst in which Pt is supported on a porous oxide carrier such as alumina has been proposed. Further, Japanese Patent Application Laid-Open No. H5-168860 proposes an exhaust gas purifying catalyst in which a rare earth element such as La and Pt are supported on a porous oxide carrier such as alumina.

【0004】このNOx 吸蔵還元型触媒を用いれば、空燃
比をリーン側からパルス状にストイキ〜リッチ側となる
ように制御することにより、排ガスもリーン雰囲気から
パルス状にストイキ〜リッチ雰囲気となる。したがっ
て、リーン側ではNOx がNOx 吸蔵材に吸蔵され、それが
ストイキ又はリッチ側で放出されてHCやCOなどの還元性
成分と反応して浄化されるため、リーンバーンエンジン
からの排ガスであってもNOx を効率良く浄化することが
できる。また排ガス中のHC及びCOは、貴金属により酸化
されるとともにNOx の還元にも消費されるので、HC及び
COも効率よく浄化される。
[0004] By using this NO x storage-and-reduction type catalyst, by controlling so that the stoichiometric-rich side in a pulsed manner the air-fuel ratio from the lean side, the stoichiometric-rich atmosphere exhaust gas from a lean atmosphere in pulses . Thus, NO x is occluded in the NO x storage material in the lean side, because it is purified by reacting with reducing components, such as being released in the stoichiometric or rich side HC and CO, in exhaust gases from lean-burn engines can efficiently purify NO x even. The HC and CO in the exhaust gas, since it is consumed in the reduction of the NO x while being oxidized by the noble metal, HC and
CO is also purified efficiently.

【0005】ところが排ガス中には、燃料中に含まれる
硫黄(S)が燃焼して生成したSOxが含まれ、それがリ
ーン雰囲気の排ガス中で貴金属により酸化されてSO3
なる。そしてそれがやはり排ガス中に含まれる水蒸気に
より容易に硫酸となり、これらがNOx 吸蔵材と反応して
亜硫酸塩や硫酸塩が生成し、これによりNOx 吸蔵材が被
毒劣化することが明らかとなった。また、アルミナなど
の多孔質酸化物担体はSOx を吸着しやすいという性質が
あることから、上記硫黄被毒が促進されるという問題が
ある。
[0005] However in the exhaust gas, contains SO x to sulfur contained in the fuel (S) is generated by the combustion, it becomes that it SO 3 is oxidized by the noble metal in the exhaust gas of a lean atmosphere. And it will be readily sulfate by water vapor also contained in the exhaust gas, these sulfites and sulfates are produced by the reaction with the NO x storage material, thereby the NO x storage material it would degrade poisoned became. The porous oxide support such as alumina from the the property that easily adsorbs SO x, there is a problem that the sulfur poisoning is facilitated.

【0006】そして、このようにNOx 吸蔵材が亜硫酸塩
や硫酸塩となって被毒劣化すると、もはやNOx を吸蔵す
ることができなくなり、その結果上記触媒では、耐久試
験後(以下、耐久後という)のNOx の浄化性能が低下す
るという不具合があった。また、チタニアはSOx を吸着
しないので、チタニア担体を用いることが想起され実験
が行われた。その結果、SOx はチタニアには吸着されず
そのまま下流に流れ、貴金属と直接接触したSOx のみが
酸化されるだけであるので被毒の程度は少ないことが明
らかとなった。ところがチタニア担体では初期活性が低
く、耐久後のNOx の浄化性能も低いままであるという不
具合があることも明らかとなった。
[0006] When thus the NO x storage material is deteriorated poisoning become sulfites and sulfates, it becomes impossible to occlude NO x longer, with the result the catalyst after the durability test (hereinafter, durable purification performance of the NO x in) that after there has been a problem of a decrease. Moreover, since titania does not adsorb SO x , an experiment was conducted with the supposition of using a titania carrier. As a result, SO x flows downstream as it is not adsorbed on titania, only SO x in direct contact with the noble metal is revealed that since only the degree of poisoning is small is oxidized. However, it has also been found that the titania carrier has a problem that the initial activity is low and the NO x purification performance after durability remains low.

【0007】そこで本願出願人は、特開平8-099034号公
報において、TiO2−Al2O3 よりなる複合担体を用いるこ
とを提案している。このようにアルミナとチタニアとを
混合あるいは複合酸化物とした担体を用いることで、Al
2O3 の長所により初期のNOx浄化率が高くなる。またTiO
2は、Al2O3 に比べてSOx を吸着しにくく、かつ吸着さ
れたSOx はNOx 吸蔵材に吸蔵された場合に比べて低温で
脱離しやすいため、硫黄被毒が防止される。したがって
上記複合担体を用いると、初期の高いNOx 浄化率を確保
しつつ、SOx の吸着が防止され耐久後のNOx 浄化率が向
上する。
Therefore, the applicant of the present application has proposed in Japanese Patent Application Laid-Open No. Hei 8-099034 to use a composite carrier composed of TiO 2 —Al 2 O 3 . By using a carrier in which alumina and titania are mixed or a composite oxide is used, Al
The advantages of 2 O 3 increase the initial NO x purification rate. Also TiO
2 is less likely to adsorb SO x than Al 2 O 3 , and the adsorbed SO x is easier to desorb at lower temperatures than when it is occluded by the NO x storage material, thus preventing sulfur poisoning. . Therefore, when the above composite carrier is used, the adsorption of SO x is prevented and the NO x purification rate after endurance is improved while securing a high initial NO x purification rate.

【0008】[0008]

【発明が解決しようとする課題】ところが、上記特開平
8-099034号公報に開示されているようにアルミナとチタ
ニアとを混合した担体を用いた排ガス浄化用触媒におい
ても、近年の大気汚染の現状と排ガス規制の強化に鑑み
ると耐久後のNOx 浄化能が充分ではなく、初期から耐久
後まで高いNOx 浄化能を示す排ガス浄化用触媒の早期開
発が望まれている。
However, the above-mentioned Japanese Patent Application Laid-Open
Also in the exhaust gas purifying catalyst using the carrier of a mixture of alumina and titania, as disclosed in 8-099034 JP, NO x purifying Considering the after endurance strengthening the current and emission control in recent years air pollution capacity is insufficient, early development of an exhaust gas purifying catalyst exhibiting high the NO x purification performance from the initial to after the durability is desired.

【0009】本発明はこのような事情に鑑みてなされた
ものであり、NOx 吸蔵材の硫黄被毒をさらに抑制して耐
久性を一層向上させることを目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to further suppress the sulfur poisoning of the NO x occluding material and further improve the durability.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化用触媒の特徴は、多孔質酸化物からなる
担体と、担体に担持された貴金属と、担体に担持されア
ルカリ金属,アルカリ土類金属及び希土類元素から選ば
れる少なくとも1種のNOx 吸蔵材と、よりなるNOx 吸蔵
還元型の排ガス浄化用触媒であって、担体は少なくとも
チタニア粒子とそれ以外の多孔質酸化物を含み、チタニ
ア粒子は超微粒子であることにある。
The exhaust gas purifying catalyst of the present invention which solves the above-mentioned problems is characterized by a carrier made of a porous oxide, a noble metal carried on the carrier, an alkali metal carried on the carrier, and an alkali metal. at least one of the NO x storage material selected from alkaline earth metals and rare earth elements, a more becomes NO x storage-and-reduction type exhaust gas purifying catalyst, the support comprises at least titania particles and other porous oxide And the titania particles are ultrafine particles.

【0011】また本発明の排ガス浄化用触媒の製造方法
の特徴は、多孔質酸化物からなる担体と、担体に担持さ
れた貴金属と、担体に担持されアルカリ金属,アルカリ
土類金属及び希土類元素から選ばれる少なくとも1種の
NOx 吸蔵材と、よりなるNOx吸蔵還元型の排ガス浄化用
触媒の製造方法であって、超微粒子状のチタニア粉末を
界面活性剤の存在下で多孔質酸化物及び水と混合してス
ラリーを形成し、そのスラリーから担体を形成すること
にある。
The method of the present invention for producing an exhaust gas purifying catalyst is characterized in that the catalyst comprises a porous oxide carrier, a noble metal supported on the carrier, and an alkali metal, an alkaline earth metal and a rare earth element supported on the carrier. At least one selected
And the NO x storage material, a more becomes NO x production method of storage-reduction type exhaust gas purifying catalyst, slurry the finely divided titania powder were mixed with the porous oxide and water in the presence of a surfactant And forming a carrier from the slurry.

【0012】そして本発明の排ガス浄化方法の特徴は、
多孔質酸化物からなる担体と、担体に担持された貴金属
と、担体に担持されアルカリ金属,アルカリ土類金属及
び希土類元素から選ばれる少なくとも1種のNOx 吸蔵材
とよりなり、担体には少なくとも超微粒子状のチタニア
粒子とそれ以外の多孔質酸化物を含むNOx 吸蔵還元型の
排ガス浄化用触媒を、空燃比(A/F)が18以上で運転
され間欠的に燃料ストイキ〜リッチ雰囲気とされるリー
ンバーンエンジンからの排ガスと接触させ、排ガス中に
含まれるNOx を燃料リーン雰囲気でNOx 吸蔵材に吸蔵
し、燃料ストイキ〜リッチ雰囲気でNOx 吸蔵材から放出
されたNOx を還元することにある。
The characteristics of the exhaust gas purifying method of the present invention are as follows.
A carrier comprising a porous oxide, a noble metal supported on a carrier, an alkali metal supported on a carrier, more be at least one of the NO x storage material selected from alkaline earth metals and rare earth elements, at least the carrier A NO x storage-reduction type exhaust gas purifying catalyst containing ultrafine titania particles and other porous oxides is operated at an air-fuel ratio (A / F) of 18 or more and intermittently switches to a fuel stoichiometric to rich atmosphere. is contacted with the exhaust gas from lean-burn engines, the NO x contained in the exhaust gas is occluded in the NO x storage material in the fuel lean atmosphere, reducing the NO x released from the NO x storage material in the fuel stoichiometric-rich atmosphere Is to do.

【0013】[0013]

【発明の実施の形態】本発明の排ガス浄化用触媒では、
担体中に超微粒子状のチタニア粒子とそれ以外の多孔質
酸化物を含んでいる。このような構成の担体とすること
により、担持されているNOx 吸蔵材の硫黄被毒を効果的
に抑制することができ、耐久後にも高いNOx 浄化能が発
現される。このようになる理由は明らかではないが、超
微粒子状のチタニア粒子を用いることにより他の多孔質
酸化物との界面がきわめて多くなり、界面においてアル
ミナなど他の多孔質酸化物にSOx が吸着しにくいため、
界面に存在するNOx 吸蔵材の硫黄被毒が防止されるか
ら、と考えられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the exhaust gas purifying catalyst of the present invention,
The carrier contains ultrafine titania particles and other porous oxides. By using the carrier having such a configuration, the sulfur poisoning of the NO x storage material carried can be effectively suppressed, and a high NO x purification ability is exhibited even after durability. The reason for this is not clear, but by using ultrafine titania particles, the number of interfaces with other porous oxides becomes extremely large, and SO x is adsorbed on other porous oxides such as alumina at the interface. Because it is difficult to
It is considered that sulfur poisoning of the NO x storage material present at the interface is prevented.

【0014】超微粒子状のチタニア粒子の粒径は、50nm
未満であることが望ましく、20nm未満であることがさら
に望ましい。粒径が50nm以上になると、NOx 吸蔵材が硫
黄被毒されやすくなり、耐久後のNOx 浄化能が低下する
ようになる。微粒子状のチタニア粒子の多孔質酸化物と
しては、アルミナ、シリカ、ジルコニア、チタニア、シ
リカ−アルミナなどを用いることができ、中でも活性が
高く耐熱性に優れたγ−アルミナが特に望ましい。この
多孔質酸化物の粒径は特に制限されない。
The particle size of the ultrafine titania particles is 50 nm.
Is preferably less than 20 nm, and more preferably less than 20 nm. When the particle diameter is more than 50 nm, NO x storage material is likely to be sulfur poisoning, NO x purifying ability after durability is lowered. As the porous oxide of the fine titania particles, alumina, silica, zirconia, titania, silica-alumina and the like can be used. Among them, γ-alumina having high activity and excellent heat resistance is particularly desirable. The particle size of the porous oxide is not particularly limited.

【0015】微粒子状のチタニア粒子と他の多孔質酸化
物との混合比率は、浄化性能と耐硫黄被毒性とのバラン
スをとりながら、多孔質酸化物の種類に応じて適宜設計
することができる。例えば他の多孔質酸化物がアルミナ
の場合には、モル比で Al2O3/TiO2=4/1〜1/3の
範囲とすることが望ましい。この範囲とすることで浄化
性能と耐硫黄被毒性を両立させることができる。アルミ
ナがこれより少ないと浄化性能が低く貴金属のシンタリ
ングが生じやすくなり、チタニアがこれより少ないと耐
硫黄被毒性が低下する。
The mixing ratio of the particulate titania particles and the other porous oxide can be appropriately designed according to the type of the porous oxide while maintaining a balance between the purification performance and the sulfur poisoning resistance. . For example, when the other porous oxide is alumina, the molar ratio is preferably in the range of Al 2 O 3 / TiO 2 = 4/1 to 1/3. Within this range, both purification performance and sulfur poisoning resistance can be achieved. If the amount of alumina is less than this, the purification performance is low and sintering of the noble metal is likely to occur. If the amount of titania is less than this, the sulfur poisoning resistance is reduced.

【0016】また担体には、セリアを含むことが好まし
い。セリアの酸素吸蔵放出能により、浄化性能が一層向
上する。またジルコニアで安定化されたセリア(セリア
−ジルコニア複合酸化物)を用いれば、その耐久性が一
層向上する。貴金属としては、Pt,Rh,Pd,Irあるいは
Ruの1種又は複数種を用いることができる。その担持量
は、担体体積1リットル当たりに、Pt及びPdの場合は
0.1〜20gが好ましく、 0.5〜10gが特に好ましい。ま
たRhの場合は0.01〜10gが好ましく、0.05〜5gが特に
好ましい。
Further, the carrier preferably contains ceria. Purification performance is further improved by the oxygen storage / release capability of ceria. The use of ceria stabilized with zirconia (ceria-zirconia composite oxide) further improves the durability. Noble metals include Pt, Rh, Pd, Ir or
One or more types of Ru can be used. The amount of the carrier per 1 liter of the carrier volume is Pt and Pd.
0.1 to 20 g is preferable, and 0.5 to 10 g is particularly preferable. In the case of Rh, the amount is preferably 0.01 to 10 g, particularly preferably 0.05 to 5 g.

【0017】またNOx 吸蔵材としては、アルカリ金属、
アルカリ土類金属及び希土類元素から選ばれる少なくと
も一種を用いることができる。中でもアルカリ度が高く
NOx吸蔵能の高いアルカリ金属及びアルカリ土類金属の
少なくとも一方を用いるのが好ましい。アルカリ金属と
しては、リチウム、ナトリウム、カリウム、ルビジウ
ム、セシウム、フランシウムが例示される。アルカリ土
類金属とは周期表2A族元素をいい、バリウム、ベリリウ
ム、マグネシウム、カルシウム、ストロンチウムなどが
例示される。また希土類元素としては、スカンジウム、
イットリウム、ランタン、セリウム、プラセオジム、ネ
オジム、ジスプロシウム、イッテルビウムなどが例示さ
れる。
[0017] In addition, as the NO x storage material, alkali metal,
At least one selected from alkaline earth metals and rare earth elements can be used. Above all, alkalinity is high
It is preferable to use at least one of an alkali metal and an alkaline earth metal having high NOx storage capacity. Examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium, and francium. The alkaline earth metal refers to a Group 2A element in the periodic table, and examples thereof include barium, beryllium, magnesium, calcium, strontium, and the like. In addition, scandium,
Examples include yttrium, lanthanum, cerium, praseodymium, neodymium, dysprosium, ytterbium and the like.

【0018】NOx 吸蔵材の担持量は、担体体積1リット
ルに対して0.05〜1.0モルの範囲が望ましい。担持量が
0.05モルより少ないとNOx 吸蔵能力が小さくNOx 浄化性
能が低下し、 1.0モルを超えて含有しても効果が飽和し
他の成分量の低下による不具合が生じる。さて、上記し
た本発明の排ガス浄化用触媒に用いられる担体を製造す
るには、微粒子状のチタニア粒子からなる粉末と他の多
孔質酸化物粉末とを乾式混合するだけでもよいが、超微
粒子状のチタニア粉末を界面活性剤の存在下で多孔質酸
化物及び水と混合して形成されたスラリーから担体を形
成することが望ましい。界面活性剤の存在により微粒子
状のチタニア粉末の凝集が抑制されるため、チタニア粉
末は一次粒子の状態で多孔質酸化物粉末と混合され、界
面をさらに多くすることができる。
The loading amount of the NO x occluding material is desirably in the range of 0.05 to 1.0 mol per liter of the carrier. Loading amount
If the amount is less than 0.05 mol, the NO x storage capacity is small and the NO x purification performance is reduced. Even if the amount exceeds 1.0 mol, the effect is saturated and a problem occurs due to a decrease in the amount of other components. Now, in order to produce the carrier used in the exhaust gas purifying catalyst of the present invention described above, it is only necessary to dry-mix a powder composed of fine titania particles and another porous oxide powder, It is desirable to form a carrier from a slurry formed by mixing the titania powder of Example 1 with a porous oxide and water in the presence of a surfactant. Since the aggregation of the particulate titania powder is suppressed by the presence of the surfactant, the titania powder is mixed with the porous oxide powder in a state of primary particles, so that the number of interfaces can be further increased.

【0019】両粉末が混合された分散液に界面活性剤を
添加してもよいし、界面活性剤を含む他の多孔質酸化物
粉末の分散液に超微粒子状のチタニア粉末を混合しても
よいが、予め界面活性剤で高分散された超微粒子状のチ
タニア粉末の分散液に他の多孔質酸化物粉末を混合する
ことが望ましい。これにより超微粒子状のチタニア粉末
のほとんど全部を一次粒子の状態で高分散したスラリー
が得られ、界面が多い担体を形成することができる。
A surfactant may be added to the dispersion in which the two powders are mixed, or an ultrafine titania powder may be mixed in a dispersion of another porous oxide powder containing the surfactant. It is preferable to mix another porous oxide powder with a dispersion liquid of ultrafine titania powder which has been highly dispersed in advance with a surfactant. As a result, a slurry in which almost all of the ultrafine titania powder is highly dispersed in the form of primary particles is obtained, and a carrier having many interfaces can be formed.

【0020】界面活性剤としては、アニオン系、カチオ
ン系及びノニオン系の界面活性剤のほか、ステアリン酸
ナトリウムなどの金属セッケン、ポリビニルアルコー
ル、ポリビニルピロリドン、ポリアクリルアミド、ポリ
アクリル酸などの高分子界面活性剤などを用いることが
できる。またその添加量は、少なくとも超微粒子状のチ
タニア粉末が分散する量であり、臨界ミセル濃度以上と
される。
Examples of the surfactant include anionic, cationic and nonionic surfactants, metal soaps such as sodium stearate, and polymer surfactants such as polyvinyl alcohol, polyvinylpyrrolidone, polyacrylamide and polyacrylic acid. Agents and the like can be used. The addition amount is at least the amount in which the ultrafine titania powder is dispersed, and is not less than the critical micelle concentration.

【0021】上記のようにして得られたスラリーから触
媒を形成するには、ハニカム形状の担体基材にスラリー
をコートして乾燥・焼成して担持層を形成し、その担持
層に貴金属とNOx 吸蔵材を定法で担持すればよい。また
スラリーを押出成形後切断するなどしてペレット状に成
形し、それを乾燥・焼成した後に貴金属とNOx 吸蔵材を
担持してペレット触媒を製造することもできる。さら
に、上記スラリーを調製する際に、他の多孔質酸化物粉
末の一部又は全部に予め貴金属が担持された貴金属担持
粉末を用いてもよい。
In order to form a catalyst from the slurry obtained as described above, a slurry is coated on a honeycomb-shaped carrier substrate, dried and fired to form a carrier layer, and a noble metal and NO The x- occluding material may be supported by a standard method. Further, for example, by cutting after extrusion of the slurry was formed into pellets, it may be dried and calcined by supporting the noble metal and the NO x storage material after producing the catalyst pellets. Further, when preparing the slurry, a noble metal-supported powder in which a noble metal is previously supported on a part or all of another porous oxide powder may be used.

【0022】そして本発明の排ガス浄化方法では、上記
した本発明の排ガス浄化用触媒を用い、空燃比(A/
F)が18以上で運転され間欠的に燃料ストイキ〜リッチ
雰囲気とされるリーンバーンエンジンからの排ガスと接
触させる。すると燃料リーン雰囲気では、排ガス中に含
まれるNOが触媒上で酸化されてNOx となり、それがNOx
吸蔵材に吸蔵される。そして間欠的に燃料ストイキ〜リ
ッチ雰囲気とされると、NOx 吸蔵材からNOx が放出さ
れ、それが触媒上で排ガス中のHCやCOと反応して還元さ
れる。
In the exhaust gas purifying method of the present invention, the air-fuel ratio (A / A
F) is operated at 18 or more to intermittently come into contact with exhaust gas from a lean burn engine which is in a fuel stoichiometric to rich atmosphere. Then the fuel-lean atmosphere, NO x is NO contained in exhaust gas is oxidized on the catalyst, it is NO x
It is stored in the storage material. When the fuel stoichiometric-rich atmosphere is set intermittently, NO x is released from the NO x occluding material, and the NO x is reduced by reacting with HC and CO in the exhaust gas on the catalyst.

【0023】このとき、チタニア粒子と他の多孔質酸化
物粉末との界面においては、他の多孔質酸化物表面への
SOx の吸着が抑制されており、かつチタニア粒子は微粒
子状であるため界面がきわめて多い。したがって他の多
孔質酸化物表面へのSOx の吸着をきわめて抑制すること
ができ、吸着したSOx によるNOx 吸蔵材の硫黄被毒を効
果的に抑制することができる。これにより耐久性が著し
く向上し、高いNOx 浄化能を長期間維持することができ
る。
At this time, at the interface between the titania particles and the other porous oxide powder,
Since the adsorption of SO x is suppressed and the titania particles are in the form of fine particles, the number of interfaces is extremely large. Therefore, adsorption of SO x on the surface of another porous oxide can be extremely suppressed, and sulfur poisoning of the NO x storage material by the adsorbed SO x can be effectively suppressed. Thereby, the durability is remarkably improved, and a high NO x purification ability can be maintained for a long period of time.

【0024】[0024]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。 (実施例1)平均粒子径が20nmの超微粒子TiO2粉末と、
粒径 300〜 400nmのγ-Al2O3粉末を、重量比で1対1と
なるように混合し、ボールミルにて24時間ミリングして
充分に混合した。この混合粉末40gを 200gの水に分散
させ、酢酸バリウム 17.03gを加えてよく攪拌して溶解
させた後、濃縮・乾固し、 550℃で2時間焼成した。
The present invention will be specifically described below with reference to examples and comparative examples. (Example 1) Ultrafine TiO 2 powder having an average particle diameter of 20 nm,
Γ-Al 2 O 3 powder having a particle size of 300 to 400 nm was mixed at a weight ratio of 1: 1 and milled in a ball mill for 24 hours to be sufficiently mixed. 40 g of this mixed powder was dispersed in 200 g of water, and 17.03 g of barium acetate was added and dissolved by stirring well, then concentrated and dried, and calcined at 550 ° C. for 2 hours.

【0025】次に、炭酸水素アンモニウム( NH4HCO3
4.3gを 300gの水に溶解した溶液中に、上記で得られ
た酢酸Ba担持粉末全量を混合し、15分間攪拌した後吸引
濾過・乾燥して炭酸Ba担持粉末とした。この炭酸Ba担持
粉末全量を 300gの水に分散させ、そこへ所定濃度のジ
ニトロジアンミン白金錯体水溶液の所定量(Ptとして3.
42×10-3モル)を混合して30分間攪拌し、濾過後 110℃
で2時間乾燥し、 450℃で2時間焼成してPtを担持し
た。Ptの担持量は、混合粉末1g当たり8.54×10 -5モル
であり、Baの担持量は混合粉末1g当たり1.67×10-3
ルである。
Next, ammonium bicarbonate (NHFourHCOThree)
 4.3 g in a solution of 300 g of water
The whole amount of the Ba acetate-supported powder was mixed and stirred for 15 minutes, followed by suction
It was filtered and dried to obtain Ba carbonate-supported powder. This Ba carbonate support
Disperse the entire amount of powder in 300 g of water,
Predetermined amount of aqueous solution of nitrodiammine platinum complex (3.
42 × 10-3Mol), stirred for 30 minutes, filtered and
And bake at 450 ° C for 2 hours to carry Pt
Was. The supported amount of Pt was 8.54 × 10 -FiveMole
And the supported amount of Ba is 1.67 × 10-3Mo
It is.

【0026】得られた触媒粉末は、定法により粒子径1
〜3mmのペレット触媒とされ、後述の試験に使用した。 (比較例1)平均粒子径が20nmの超微粒子TiO2粉末の代
わりに、平均粒子径が50nmの微粒子TiO2粉末を用いたこ
と以外は実施例1と同様にして、比較例1のペレット触
媒を調製した。
The catalyst powder obtained has a particle size of 1 by a conventional method.
It was a pellet catalyst of 33 mm, which was used in the tests described below. (Comparative Example 1) The pellet catalyst of Comparative Example 1 was prepared in the same manner as in Example 1 except that the fine particle TiO 2 powder having an average particle diameter of 50 nm was used instead of the ultrafine TiO 2 powder having an average particle diameter of 20 nm. Was prepared.

【0027】<試験例1>実施例1と比較例1のペレッ
ト触媒をそれぞれ実験室用反応器に配置し、表1に示す
組成のモデル排ガスを、ガス空間速度100,000h-1の条件
で導入した。触媒床温度 250〜 450℃の範囲で、リッチ
ガス定常状態からリーンガス定常状態にガスを切換えて
排出ガスのNOx 濃度が定常になるまでに、それぞれの触
媒が吸蔵したNOx 量(NOx 飽和吸蔵量)を測定した。ま
たリーンガス定常状態から10秒間リッチガスをスパイク
状(パルス状)に導入し、再びリーンガスに切換えた後
のNO x 吸蔵量(リッチスパイク後NOx 吸蔵量)を測定し
た。結果をそれぞれ図1及び図2に示す。
<Test Example 1> The pellets of Example 1 and Comparative Example 1
Each catalyst was placed in a laboratory reactor and shown in Table 1.
A model exhaust gas with a gas space velocity of 100,000h-1Condition
Introduced in. Rich in catalyst bed temperature range of 250 to 450 ° C
Switching gas from gas steady state to lean gas steady state
NO of exhaust gasxUntil the concentration becomes steady,
NO occluded by the mediumxAmount (NOx(Saturated occlusion amount) was measured. Ma
Spike rich gas for 10 seconds from steady state
After switching to lean gas again
NO xStorage amount (NO after rich spike)xOcclusion amount)
Was. The results are shown in FIGS. 1 and 2, respectively.

【0028】[0028]

【表1】 また実施例1と比較例1のペレット触媒をそれぞれ実験
室用反応器に配置し、表2に示す組成のモデル排ガスを
触媒床温度 600℃、ガス空間速度100,000h-1の条件で、
リーンガス55秒−リッチガス5秒の周期で繰り返し4時
間導入し、それぞれ硫黄被毒耐久試験を行った。そして
硫黄被毒耐久試験後のそれぞれの触媒について、上記と
同様にしてNOx 飽和吸蔵量とリッチスパイク後NOx 吸蔵
量を測定し、結果を図3及び図4に示す。
[Table 1] Further, the pellet catalysts of Example 1 and Comparative Example 1 were respectively disposed in a laboratory reactor, and a model exhaust gas having a composition shown in Table 2 was subjected to a catalyst bed temperature of 600 ° C. and a gas space velocity of 100,000 h −1 ,
A cycle of lean gas 55 seconds-rich gas 5 seconds was repeatedly introduced for 4 hours, and each was subjected to a sulfur poisoning endurance test. And for each of the catalyst after sulfur poisoning durability test, in the same manner as described above to measure the NO x saturation occlusion amount and the rich spike after the NO x storage amount, and the results are shown in Figures 3 and 4.

【0029】[0029]

【表2】 図1〜4よりわかるように、実施例1の触媒の初期のNO
x 吸蔵能は比較例1と同等であるが、硫黄被毒耐久試験
後のNOx 飽和吸蔵量は比較例1の約2倍であり、リッチ
スパイク後NOx 吸蔵量は約 1.2倍である。また図1と図
3の比較及び図2と図4の比較より、初期から耐久後の
NOx 吸蔵量の低下度合いは実施例1の触媒の方が小さ
く、実施例1の触媒は比較例1の触媒に比べて耐久性に
優れている。これは実施例1において平均粒子径20nmの
超微粒子TiO2粉末を用いたことによる効果であることが
明らかであり、比較例1のように平均粒子径が50nmの微
粒子TiO2粉末を用いた場合には硫黄被毒抑制作用が小さ
いことを意味している。すなわち超微粒子TiO2粉末の粒
径は、50nm未満とすることが望ましいことが明らかであ
る。
[Table 2] As can be seen from FIGS. 1-4, the initial NO of the catalyst of Example 1 was
The x storage capacity is equivalent to that of Comparative Example 1, but the NO x saturated storage amount after the sulfur poisoning durability test is about twice that of Comparative Example 1, and the NO x storage amount after the rich spike is about 1.2 times. Also, from the comparison between FIGS. 1 and 3 and the comparison between FIG. 2 and FIG.
The degree of decrease in the NO x storage amount is smaller for the catalyst of Example 1, and the catalyst of Example 1 is superior in durability to the catalyst of Comparative Example 1. It is clear that this is the effect of using the ultrafine TiO 2 powder having an average particle diameter of 20 nm in Example 1. In the case of using the fine TiO 2 powder having an average particle diameter of 50 nm as in Comparative Example 1, Means that the effect of suppressing sulfur poisoning is small. That is, it is clear that the particle diameter of the ultrafine TiO 2 powder is desirably less than 50 nm.

【0030】(実施例2)所定量のRhを含有する硝酸ロ
ジウム水溶液中に所定量のZrO2粉末を投入し、攪拌後蒸
発・乾固してRhを担持した。Rhは0.42重量%担持され
た。このRh/ZrO2粉末と、平均粒子径20nmの超微粒子Ti
O2粉末と、γ-Al2O3粉末とを混合した。混合比率(重量
比)はTiO2: Al2O3=1:1で、Rh/ZrO2粉末はTiO2
Al2O3の合計重量の1/20の量とした。さらにCeO2−Zr
O2複合酸化物粉末をTiO2と Al2O3の合計重量の1/10添
加し、よく混合した。
Example 2 A predetermined amount of ZrO 2 powder was put into a rhodium nitrate aqueous solution containing a predetermined amount of Rh, and after stirring, evaporated and dried to carry Rh. Rh was loaded at 0.42% by weight. This Rh / ZrO 2 powder and ultrafine particles Ti having an average particle diameter of 20 nm
O 2 powder and γ-Al 2 O 3 powder were mixed. The mixing ratio (weight ratio) is TiO 2 : Al 2 O 3 = 1: 1, and the Rh / ZrO 2 powder is TiO 2
The amount was 1/20 of the total weight of Al 2 O 3 . Furthermore, CeO 2 −Zr
The O 2 composite oxide powder was added to 1/10 of the total weight of TiO 2 and Al 2 O 3 and mixed well.

【0031】得られた混合粉末を水でスラリー化し、容
量 1.3Lのセラミックス製モノリス担体基材にコートし
た。コート量はモノリス担体基材1L当たり 270gであ
る。これを 250℃で15分乾燥させた後、所定濃度の酢酸
バリウム水溶液を吸水させ、250℃で15分乾燥後 500℃
で30分焼成した。これを濃度15g/Lの重炭酸アンモニ
ウム水溶液に15分間浸漬し、 250℃で15分乾燥してBaを
担持した。Baの担持量は、モノリス担体基材1L当たり
0.2モルである。
The obtained mixed powder was slurried with water and coated on a ceramic monolith carrier substrate having a capacity of 1.3 L. The coating amount is 270 g per liter of the monolith carrier substrate. After drying at 250 ° C. for 15 minutes, a predetermined concentration of barium acetate aqueous solution is absorbed, and dried at 250 ° C. for 15 minutes, and then 500 ° C.
For 30 minutes. This was immersed in an aqueous solution of ammonium bicarbonate having a concentration of 15 g / L for 15 minutes, and dried at 250 ° C. for 15 minutes to carry Ba. The amount of Ba supported is per liter of the monolithic carrier substrate.
0.2 mol.

【0032】Baが担持された担体に、さらに所定濃度の
ジニトロジアンミン白金錯体の硝酸溶液を吸水させ、 3
00℃で15分乾燥・焼成してPtを担持した。Ptの担持量
は、モノリス担体基材1L当たり 2.0gである。さらに
硝酸カリウムと硝酸リチウムを所定濃度で含有する水溶
液を吸水させ、250℃で乾燥した後 500℃で30分焼成し
て、K及びLiを担持した。K及びLiの担持量は、モノリ
ス担体基材1L当たりそれぞれ 0.1モルである。
Further, a nitric acid solution of a dinitrodiammineplatinum complex having a predetermined concentration is absorbed by the carrier on which Ba is supported.
Drying and baking at 00 ° C. for 15 minutes carried Pt. The supported amount of Pt is 2.0 g per liter of the monolithic carrier substrate. Further, an aqueous solution containing potassium nitrate and lithium nitrate at a predetermined concentration was absorbed, dried at 250 ° C., and baked at 500 ° C. for 30 minutes to carry K and Li. The loading amounts of K and Li are each 0.1 mol per 1 L of the monolithic carrier substrate.

【0033】(比較例2)平均粒子径が20nmの超微粒子
TiO2粉末の代わりに、平均粒子径が50nmの微粒子TiO2
末を用いたこと以外は実施例2と同様にして、比較例2
のモノリス触媒を調製した。 <試験例2>実施例2と比較例2の触媒を、 1.8Lのリ
ーンバーンエンジンの排気系に取付け、試験例1と同じ
条件で、初期のNOx 飽和吸蔵量とリッチスパイク後NOx
吸蔵量を測定した。結果を図5及び図6に示す。
(Comparative Example 2) Ultrafine particles having an average particle diameter of 20 nm
Instead of TiO 2 powder, except that the average particle diameter was used fine TiO 2 powder 50nm in the same manner as in Example 2, Comparative Example 2
Was prepared. The catalyst of Comparative Example 2 <Test Example 2> Example 2, mounted in an exhaust system of a lean burn engine of 1.8L, under the same conditions as in Test Example 1, the initial of the NO x saturation occlusion amount and the rich spike after NO x
The amount of occlusion was measured. The results are shown in FIGS.

【0034】さらに、硫黄濃度が500ppmとなるように硫
黄添加剤が添加された燃料を用い、市街地走行を模した
パターンで50時間の促進耐久試験を行った。耐久試験後
のNO x 飽和吸蔵量とリッチスパイク後NOx 吸蔵量を同様
に測定し、結果を図7及び図8に示す。図5〜8よりわ
かるように、実施例2の触媒は比較例2の触媒に比べて
初期及び耐久後のNOx 吸蔵量が多く、特に耐久後のNOx
吸蔵量は実施例2の触媒の方が格段に多く耐久性に優れ
ている。これは、実施例2において平均粒子径20nmの超
微粒子TiO2粉末を用いたことによる効果であることが明
らかであり、比較例2のように平均粒子径が50nmの微粒
子TiO2粉末では硫黄被毒抑制作用が小さいことを意味し
ている。
Further, the sulfur concentration is adjusted so that the sulfur concentration becomes 500 ppm.
Simulates urban driving using fuel with yellow additive
An accelerated endurance test for 50 hours was performed with the pattern. After endurance test
NO xNO after saturated storage and rich spikexSame amount of storage
7 and FIG. 8 show the results. 5-8
Thus, the catalyst of Example 2 was compared to the catalyst of Comparative Example 2.
Initial and endurance NOxLarge storage capacity, especially after endurancex
The storage amount of the catalyst of Example 2 is much higher and the durability is excellent.
ing. This is because in Example 2, the average particle diameter was more than 20 nm.
Fine particle TiOTwoIt is clear that this is the effect of using powder.
Fine particles having an average particle diameter of 50 nm as in Comparative Example 2.
Child TiOTwoIt means that powder has little effect on sulfur poisoning.
ing.

【0035】<試験例3>平均粒子径20nmの超微粒子Ti
O2粉末と、平均粒子径が50nmの微粒子TiO2粉末の電子顕
微鏡写真を図9及び図10に示す。さらに、平均粒子径20
nmの超微粒子TiO2粉末とγ-Al2O3粉末を重量比で1:1
に混合しそれをボールミルで24時間ミリングした混合粉
末の電子顕微鏡写真を図11に、平均粒子径50nmの微粒子
TiO2粉末とγ-Al2O3粉末を重量比で1:1に混合しそれ
をボールミルで24時間ミリングした混合粉末の電子顕微
鏡写真を図12にそれぞれ示す。
<Test Example 3> Ultrafine particles Ti having an average particle diameter of 20 nm
And O 2 powder, an electron micrograph of the fine TiO 2 powder having an average particle diameter of 50nm shown in FIGS. Furthermore, the average particle size is 20
nm ultrafine TiO 2 powder and γ-Al 2 O 3 powder in a weight ratio of 1: 1
Fig. 11 shows an electron micrograph of the mixed powder obtained by milling with a ball mill for 24 hours.
FIG. 12 shows electron micrographs of the mixed powder obtained by mixing TiO 2 powder and γ-Al 2 O 3 powder at a weight ratio of 1: 1 and milling the mixture by a ball mill for 24 hours.

【0036】図9〜12より、混合粉末においてはTiO2
末が Al2O3粒子表面に付着した状態であることがわか
り、図11及び図12から付着状態はそれぞれ図13及び図14
のような構造であると判断される。すなわち平均粒子径
20nmの超微粒子TiO2粉末は平均粒子径50nmの微粒子TiO2
粉末に比べて高分散状態であることが明らかであり、平
均粒子径20nmの超微粒子状のTiO2と Al2O3との界面は、
平均粒子径50nmの微粒子TiO2と Al2O3との界面よりも多
く、これが上記したNOx 吸蔵能の向上に貢献していると
考えられる。
9 to 12, it can be seen that the TiO 2 powder is in a state of adhering to the surface of the Al 2 O 3 particles in the mixed powder, and FIGS. 13 and 14 show the adhering state in FIGS. 11 and 12, respectively.
Is determined. That is, the average particle diameter
20 nm ultra-fine TiO 2 powder is 50 nm average particle diameter TiO 2
It is clear that it is in a highly dispersed state as compared to powder, and the interface between ultrafine TiO 2 and Al 2 O 3 with an average particle diameter of 20 nm is
It is more than the interface between the fine particles of TiO 2 and Al 2 O 3 having an average particle diameter of 50 nm, which is considered to have contributed to the improvement of the NO x storage ability described above.

【0037】(実施例3)一次粒子径が 300〜 500Åの
TiO2粉末を用意し表面をステアリン酸処理した後、所定
割合となるように界面活性剤としてのポリエーテル変性
シリコーンオイルを混合してよく攪拌した。一方、所定
量のRhを含有する硝酸ロジウム水溶液中に所定量のZrO2
粉末を投入し、攪拌後蒸発・乾固してRhを担持した。Rh
は 0.5重量%担持された。またγ-Al2O3粉末と、CeO2
ZrO2複合酸化物粉末を用意した。
(Example 3) When the primary particle diameter is 300 to 500 mm
After preparing TiO 2 powder and treating the surface with stearic acid, a polyether-modified silicone oil as a surfactant was mixed at a predetermined ratio, and the mixture was thoroughly stirred. On the other hand, a predetermined amount of ZrO 2 is contained in an aqueous rhodium nitrate solution containing a predetermined amount of Rh.
The powder was charged, and after stirring, evaporated and dried to carry Rh. Rh
Was carried by 0.5% by weight. Also, γ-Al 2 O 3 powder and CeO 2
A ZrO 2 composite oxide powder was prepared.

【0038】これらの粉末を所定割合で混合し、水を加
えてスラリー化した。スラリー中の組成は、重量比でTi
O2: Al2O3=1:1で、Rh/ZrO2粉末はTiO2と Al2O3
合計重量の1/4、CeO2−ZrO2複合酸化物粉末はTiO2
Al2O3の合計重量の1/10である。このスラリーを用
い、実施例2と同様にしてモノリス担体基材を調製し
た。
These powders were mixed at a predetermined ratio, and water was added to form a slurry. The composition in the slurry is Ti by weight.
O 2 : Al 2 O 3 = 1: 1, Rh / ZrO 2 powder is 4 of the total weight of TiO 2 and Al 2 O 3 , CeO 2 -ZrO 2 composite oxide powder is TiO 2
It is 1/10 of the total weight of Al 2 O 3 . Using this slurry, a monolithic carrier substrate was prepared in the same manner as in Example 2.

【0039】このモノリス担体基材を用い、実施例2と
同様にしてBa、Pt、K及びLiを同様に担持した。それぞ
れの担持量も実施例2と同様である。 (実施例4)一次粒子径が 300〜 500ÅのTiO2粉末に代
えて、一次粒子径が 100〜 300ÅのTiO2粉末を用い表面
をステアリン酸処理し、界面活性剤としてのポリエーテ
ル変性シリコーンオイルが所定量添加された水中に投入
して攪拌した。そして実施例3と同様のRh/ZrO2粉末、
γ-Al2O3粉末及びCeO2−ZrO2複合酸化物粉末をさらに混
合し、実施例3と同様の組成のスラリーを調製した。そ
して実施例3と同様にしてモノリス担体基材にコート
し、同様にしてモノリス触媒を調製した。
Using this monolithic carrier substrate, Ba, Pt, K and Li were carried in the same manner as in Example 2. The amount of each carried is the same as in Example 2. (Example 4) primary particle diameter instead of the TiO 2 powder 300 to 500 Å, the surface primary particle diameter using a TiO 2 powder 100 to 300 Å was treated stearate, polyether-modified silicone oil as a surfactant Was added to a predetermined amount of water and stirred. And the same Rh / ZrO 2 powder as in Example 3,
The γ-Al 2 O 3 powder and the CeO 2 -ZrO 2 composite oxide powder were further mixed to prepare a slurry having the same composition as in Example 3. Then, a monolith carrier substrate was coated in the same manner as in Example 3, and a monolith catalyst was prepared in the same manner.

【0040】(実施例5)界面活性剤を用いなかったこ
と以外は実施例3と同様にして、本実施例のモノリス触
媒を調製した。 (実施例6)界面活性剤を用いなかったこと以外は実施
例4と同様にして、本実施例のモノリス触媒を調製し
た。
Example 5 A monolith catalyst of this example was prepared in the same manner as in Example 3 except that no surfactant was used. Example 6 A monolith catalyst of this example was prepared in the same manner as in Example 4 except that no surfactant was used.

【0041】(比較例3)一次粒子径が 300〜 500Åの
TiO2粉末に代えて、一次粒子径が50nmのTiO2粉末を用い
たこと以外は実施例3と同様にして、本比較例のモノリ
ス触媒を調製した。 <試験例4>それぞれのモノリス触媒を 1.8Lのリーン
バーンエンジンの排気系に取付け、試験例2と同様にし
て、硫黄濃度が500ppmとなるように硫黄添加剤が添加さ
れた燃料を用い、市街地走行を模したパターンで50時間
の促進耐久試験を行った。その後、同じエンジンを用
い、試験例1と同じ条件でリッチスパイク後NOx 吸蔵量
をそれぞれ測定した。なお、リッチスパイクは 0.5秒間
と1秒間の2水準で測定し、触媒床温度は 300℃、 350
℃及び 400℃の3水準とした。また耐久試験後の触媒を
破壊分析し、硫黄被毒量をそれぞれ測定した。結果を図
15〜17に示す。
(Comparative Example 3) A primary particle diameter of 300 to 500 mm
Instead of the TiO 2 powder, a primary particle diameter except for using TiO 2 powder 50nm in the same manner as in Example 3, was prepared monolithic catalyst of this comparative example. <Test Example 4> Each monolith catalyst was attached to the exhaust system of a 1.8 L lean burn engine. A 50-hour accelerated durability test was performed in a pattern simulating running. Then, using the same engine, after the rich spike the NO x storage amount were measured under the same conditions as in Test Example 1. The rich spike was measured at two levels, 0.5 seconds and 1 second.
℃ and 400 ℃. The catalyst after the durability test was subjected to destructive analysis, and the sulfur poisoning amount was measured. Figure the result
15-17.

【0042】図15〜17より、比較例3の触媒ではリッチ
スパイク後NOx 吸蔵量が各実施例より少なく、これは各
実施例より硫黄被毒量が多いことに起因していることが
明らかである。そして各実施例では、比較例3に比べて
耐久試験後のNOx 吸蔵量が多く、TiO2の一次粒子径が小
さいほど耐久試験後のNOx 吸蔵量が多くなっている。そ
して実施例3,4と実施例5,6を比べると、実施例
5,6の方がNOx 吸蔵量が低下し、硫黄被毒量も多くな
っている。この差は界面活性剤の有無による差異であ
り、界面活性剤を用いることでTiO2の分散性が一層向上
したことによる効果であることが明らかである。
[0042] than 15-17, less than each of the examples is the NO x storage amount after the rich spike is the catalyst of Comparative Example 3, which revealed to be due to sulfur poisoning amount is larger than each of the embodiments It is. And in each embodiment, NO x occlusion amount after the durability test compared to Comparative Example 3 is much, NO x occlusion amount after the durability test as the primary particle diameter of the TiO 2 is small is increased. When compared to Examples 3 and 4 and Examples 5, 6, and decreases the the NO x storage amount towards the Examples 5 and 6, are increasingly also sulfur poisoning amount. This difference is caused by the presence or absence of the surfactant, and it is clear that the effect is obtained by further improving the dispersibility of TiO 2 by using the surfactant.

【0043】[0043]

【発明の効果】すなわち本発明の排ガス浄化用触媒及び
排ガス浄化方法によれば、初期から耐久試験後まで安定
して高いNOx 浄化性能が得られ、耐久性が格段に向上す
る。また本発明の排ガス浄化用触媒の製造方法によれ
ば、耐久性が向上した排ガス浄化用触媒を安定してかつ
容易に製造することができる。
Effects of the Invention] That is, according to the catalyst and the exhaust gas purifying method for purifying an exhaust gas of the present invention, stably high the NO x purification performance from the initial to after the durability test was obtained, the durability is remarkably improved. Further, according to the method for manufacturing an exhaust gas purifying catalyst of the present invention, an exhaust gas purifying catalyst having improved durability can be stably and easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】温度と初期のNOx 飽和吸蔵量との関係を示すグ
ラフである。
FIG. 1 is a graph showing a relationship between a temperature and an initial NO x saturation storage amount.

【図2】温度と初期のリッチスパイク後NOx 吸蔵量との
関係を示すグラフである。
2 is a graph showing the relationship between the temperature and the initial rich spike after the NO x storage amount.

【図3】温度と硫黄被毒耐久試験後のNOx 飽和吸蔵量と
の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a temperature and a NO x saturation storage amount after a sulfur poisoning durability test.

【図4】温度と硫黄被毒耐久試験後のリッチスパイク後
NOx 吸蔵量との関係を示すグラフである。
FIG. 4. Temperature and after rich spike after sulfur poisoning endurance test
4 is a graph showing a relationship with an NO x storage amount.

【図5】温度と初期のNOx 飽和吸蔵量との関係を示すグ
ラフである。
FIG. 5 is a graph showing a relationship between a temperature and an initial NO x saturation storage amount.

【図6】温度と初期のリッチスパイク後NOx 吸蔵量との
関係を示すグラフである。
6 is a graph showing the relationship between the temperature and the initial rich spike after the NO x storage amount.

【図7】温度と硫黄被毒耐久試験後のNOx 飽和吸蔵量と
の関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the temperature and the NO x saturation storage amount after the sulfur poisoning durability test.

【図8】温度と硫黄被毒耐久試験後のリッチスパイク後
NOx 吸蔵量との関係を示すグラフである。
FIG. 8 After temperature and after rich spike after sulfur poisoning endurance test
4 is a graph showing a relationship with an NO x storage amount.

【図9】平均粒子径20nmの超微粒子TiO2粉末の粒子構造
を示す電子顕微鏡写真である。
FIG. 9 is an electron micrograph showing the particle structure of ultrafine TiO 2 powder having an average particle diameter of 20 nm.

【図10】平均粒子径50nmの微粒子TiO2粉末の粒子構造を
示す電子顕微鏡写真である。
FIG. 10 is an electron micrograph showing the particle structure of fine TiO 2 powder having an average particle diameter of 50 nm.

【図11】平均粒子径20nmの超微粒子TiO2粉末とγ-Al2O3
粉末との混合粉末の粒子構造を示す電子顕微鏡写真であ
る。
FIG. 11 Ultrafine TiO 2 powder with an average particle diameter of 20 nm and γ-Al 2 O 3
5 is an electron micrograph showing the particle structure of a powder mixture with a powder.

【図12】平均粒子径50nmの微粒子TiO2粉末とγ-Al2O3
末との混合粉末の粒子構造を示す電子顕微鏡写真であ
る。
FIG. 12 is an electron micrograph showing a particle structure of a mixed powder of fine TiO 2 powder having an average particle diameter of 50 nm and γ-Al 2 O 3 powder.

【図13】平均粒子径20nmの超微粒子TiO2粉末とγ-Al2O3
粉末との混合粉末の粒子構造を示す説明図である。
FIG. 13 Ultrafine TiO 2 powder with an average particle diameter of 20 nm and γ-Al 2 O 3
It is explanatory drawing which shows the particle structure of the mixed powder with powder.

【図14】平均粒子径50nmの微粒子TiO2粉末とγ-Al2O3
末との混合粉末の粒子構造を示す説明図である。
FIG. 14 is an explanatory diagram showing a particle structure of a mixed powder of a fine particle TiO 2 powder having an average particle diameter of 50 nm and a γ-Al 2 O 3 powder.

【図15】 0.5秒のリッチスパイク後のNOx 吸蔵量を示す
グラフである。
FIG. 15 is a graph showing the NO x storage amount after a 0.5-second rich spike.

【図16】1秒のリッチスパイク後のNOx 吸蔵量を示すグ
ラフである。
FIG. 16 is a graph showing the NO x storage amount after a one-second rich spike.

【図17】硫黄被毒量を示すグラフである。FIG. 17 is a graph showing the amount of sulfur poisoning.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 蜂須賀 一郎 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 池田 靖夫 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 平山 洋 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 林 清高 静岡県小笠郡大東町千浜7800番地 株式会 社キャタラー内 (72)発明者 村田 克之 静岡県小笠郡大東町千浜7800番地 株式会 社キャタラー内 Fターム(参考) 4D048 AA06 AB03 AC04 BA03Y BA07X BA07Y BA08Y BA14X BA15X BA15Y BA18X BA19Y BA30Y BA33Y BB02 4G069 AA03 AA08 BA01B BA04A BA04B BA05B BA26B BC01A BC08A BC13B BC38A BC43B BC69A BC71B BC75B CA02 CA13 EA01Y EA02Y EA19 EB18X ED07 FA02 FB30 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ichiro Hachisuka 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Yasuo Ikeda 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation ( 72) Inventor Hiroshi Hirayama 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Co., Ltd. (72) Inventor Kiyotaka Hayashi 7800 Chihama, Oto-cho, Ogasa-gun, Shizuoka Prefecture Cataler Co., Ltd. 7800 Chihama, Oto-cho, Ogasa-gun F-term in Cataler Co., Ltd. (reference) BC75B CA02 CA13 EA01Y EA02Y EA19 EB18X ED07 FA02 FB30

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 多孔質酸化物からなる担体と、該担体に
担持された貴金属と、該担体に担持されアルカリ金属,
アルカリ土類金属及び希土類元素から選ばれる少なくと
も1種のNOx 吸蔵材と、よりなるNOx 吸蔵還元型の排ガ
ス浄化用触媒であって、 該担体は少なくともチタニア粒子とそれ以外の多孔質酸
化物を含み、該チタニア粒子は超微粒子であることを特
徴とする排ガス浄化用触媒。
1. A carrier comprising a porous oxide, a noble metal carried on the carrier, an alkali metal carried on the carrier,
At least one of the NO x storage material selected from alkaline earth metals and rare earth elements, a more becomes NO x storage-and-reduction type exhaust gas purifying catalyst, the carrier least titania particles and other porous oxides Wherein the titania particles are ultrafine particles.
【請求項2】 前記チタニア粒子の粒径は50nm未満であ
ることを特徴とする請求項1に記載の排ガス浄化用触
媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the titania particles have a particle size of less than 50 nm.
【請求項3】 前記チタニア粒子の粒径は20nm未満であ
ることを特徴とする請求項1に記載の排ガス浄化用触
媒。
3. The exhaust gas purifying catalyst according to claim 1, wherein the titania particles have a particle size of less than 20 nm.
【請求項4】 多孔質酸化物からなる担体と、該担体に
担持された貴金属と、該担体に担持されアルカリ金属,
アルカリ土類金属及び希土類元素から選ばれる少なくと
も1種のNOx 吸蔵材と、よりなるNOx 吸蔵還元型の排ガ
ス浄化用触媒の製造方法であって、 超微粒子状のチタニア粉末を界面活性剤の存在下で多孔
質酸化物及び水と混合してスラリーを形成し、該スラリ
ーから該担体を形成することを特徴とする排ガス浄化用
触媒の製造方法。
4. A carrier comprising a porous oxide, a noble metal carried on the carrier, an alkali metal carried on the carrier,
By weight of at least one NO and x storage material, become more NO x production method of storage-reduction type exhaust gas purifying catalyst selected from alkaline earth metals and rare earth elements, the finely divided titania powder detergent A method for producing an exhaust gas purifying catalyst, comprising: forming a slurry by mixing with a porous oxide and water in the presence thereof; and forming the carrier from the slurry.
【請求項5】 多孔質酸化物からなる担体と、該担体に
担持された貴金属と、該担体に担持されアルカリ金属,
アルカリ土類金属及び希土類元素から選ばれる少なくと
も1種のNOx 吸蔵材とよりなり、該担体には少なくとも
超微粒子状のチタニア粒子とそれ以外の多孔質酸化物を
含むNOx 吸蔵還元型の排ガス浄化用触媒を、空燃比(A
/F)が18以上で運転され間欠的に燃料ストイキ〜リッ
チ雰囲気とされるリーンバーンエンジンからの排ガスと
接触させ、該排ガス中に含まれるNOx を燃料リーン雰囲
気で該NOx 吸蔵材に吸蔵し、燃料ストイキ〜リッチ雰囲
気で該NOx 吸蔵材から放出されたNOx を還元することを
特徴とする排ガス浄化方法。
5. A carrier comprising a porous oxide, a noble metal carried on the carrier, an alkali metal carried on the carrier,
Becomes more and at least one NO x storage material selected from alkaline earth metals and rare earth elements, the NO x storage reduction type exhaust gas to the carrier comprising a porous oxide of otherwise at least finely divided titania particles The purification catalyst is used at the air-fuel ratio (A
/ F) was is operated at 18 or higher in contact with the exhaust gas from a lean burn engine which is intermittently fuel stoichiometric-rich atmosphere, occluding NO x contained in the exhaust gas to the the NO x storage material in the fuel lean atmosphere exhaust gas purification method, characterized in that, and reducing the NO x released from the the NO x storage material in the fuel stoichiometric-rich atmosphere.
JP05415899A 1999-03-02 1999-03-02 Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method Expired - Fee Related JP3860929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05415899A JP3860929B2 (en) 1999-03-02 1999-03-02 Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05415899A JP3860929B2 (en) 1999-03-02 1999-03-02 Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2000246107A true JP2000246107A (en) 2000-09-12
JP3860929B2 JP3860929B2 (en) 2006-12-20

Family

ID=12962752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05415899A Expired - Fee Related JP3860929B2 (en) 1999-03-02 1999-03-02 Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP3860929B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000342967A (en) * 1999-03-31 2000-12-12 Toyota Motor Corp Catalyst for purifying exhaust gas, its production, and method for purifying exhaust gas
JP2003200033A (en) * 2002-01-09 2003-07-15 Hitachi Chem Co Ltd Hollow particulate assembly manufacturing method and hollow particulate assembly obtained thereby
WO2007119658A1 (en) * 2006-04-03 2007-10-25 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and method for producing the same
WO2008090991A1 (en) * 2007-01-26 2008-07-31 Cataler Corporation Exhaust gas purifying catalyst
JP2009202090A (en) * 2008-02-27 2009-09-10 Cataler Corp Method for manufacturing exhaust gas treatment catalyst
JP2011224550A (en) * 2010-03-30 2011-11-10 Nippon Shokubai Co Ltd Catalyst for treating nitrogen-containing compound, and method of treating waste water using the same
JP2021533991A (en) * 2018-08-20 2021-12-09 エルエックス・ハウシス・リミテッドLx Hausys, Ltd. Exhaust gas purification catalyst

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000342967A (en) * 1999-03-31 2000-12-12 Toyota Motor Corp Catalyst for purifying exhaust gas, its production, and method for purifying exhaust gas
JP2003200033A (en) * 2002-01-09 2003-07-15 Hitachi Chem Co Ltd Hollow particulate assembly manufacturing method and hollow particulate assembly obtained thereby
JP5147687B2 (en) * 2006-04-03 2013-02-20 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
US7759279B2 (en) 2006-04-03 2010-07-20 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and production method thereof
KR101010070B1 (en) * 2006-04-03 2011-01-24 르노 에스.아.에스. Exhaust gas purifying catalyst and method for producing the same
WO2007119658A1 (en) * 2006-04-03 2007-10-25 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and method for producing the same
WO2008090991A1 (en) * 2007-01-26 2008-07-31 Cataler Corporation Exhaust gas purifying catalyst
JP5113082B2 (en) * 2007-01-26 2013-01-09 株式会社キャタラー Exhaust gas purification catalyst
US8496899B2 (en) 2007-01-26 2013-07-30 Cataler Corporation Exhaust gas purifying catalyst
JP2009202090A (en) * 2008-02-27 2009-09-10 Cataler Corp Method for manufacturing exhaust gas treatment catalyst
JP2011224550A (en) * 2010-03-30 2011-11-10 Nippon Shokubai Co Ltd Catalyst for treating nitrogen-containing compound, and method of treating waste water using the same
JP2021533991A (en) * 2018-08-20 2021-12-09 エルエックス・ハウシス・リミテッドLx Hausys, Ltd. Exhaust gas purification catalyst
JP7145318B2 (en) 2018-08-20 2022-09-30 エルエックス・ハウシス・リミテッド Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP3860929B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
EP1371415B1 (en) Catalyst for hydrogen generation and catalyst for purification of exhaust gas
JP3494147B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
JP2003334442A (en) OCCLUSION-REDUCTION TYPE CATALYST FOR REMOVING NOx
JP3789231B2 (en) Exhaust gas purification catalyst
JP3227074B2 (en) Exhaust gas purification catalyst and exhaust gas purification method for lean burn and stoichiometric internal combustion engines
JP2006075716A (en) System provided with catalyst for cleaning exhaust gas, exhaust gas cleaning apparatus and internal combustion engine
JP3860929B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP2007289921A (en) Exhaust-gas cleaning catalyst and its regeneration method
JP3567708B2 (en) Exhaust gas purification catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
WO2002020155A1 (en) Absorption/reduction type catalyst for nox removal
JP4304559B2 (en) Hydrogen production catalyst, exhaust gas purification catalyst, and exhaust gas purification method
JP3897483B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP4807620B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP4775954B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP3523843B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP4103407B2 (en) NOx storage reduction catalyst
JP4239679B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2006043637A (en) Catalyst for cleaning exhaust gas
JP4079622B2 (en) Exhaust gas purification catalyst
JPH10174868A (en) Catalyst for cleaning of exhaust gas
JP3885376B2 (en) Exhaust gas purification catalyst and method of using the same
JP2000157867A (en) Catalyst for exhaust gas treatment
JP2000325787A (en) Manufacture of exhaust gas cleaning catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees