JP5113082B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP5113082B2
JP5113082B2 JP2008555119A JP2008555119A JP5113082B2 JP 5113082 B2 JP5113082 B2 JP 5113082B2 JP 2008555119 A JP2008555119 A JP 2008555119A JP 2008555119 A JP2008555119 A JP 2008555119A JP 5113082 B2 JP5113082 B2 JP 5113082B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
outer layer
layer
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008555119A
Other languages
Japanese (ja)
Other versions
JPWO2008090991A1 (en
Inventor
啓人 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp filed Critical Cataler Corp
Priority to JP2008555119A priority Critical patent/JP5113082B2/en
Publication of JPWO2008090991A1 publication Critical patent/JPWO2008090991A1/en
Application granted granted Critical
Publication of JP5113082B2 publication Critical patent/JP5113082B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、自動車、二輪車等の内燃機関からの排ガス中に含まれる有害成分を除去する排ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purifying catalyst that removes harmful components contained in exhaust gas from internal combustion engines such as automobiles and motorcycles.

近年、地球環境保護の観点から、自動車等の内燃機関が排出する二酸化炭素が問題となっている。この解決策として、燃料使用量が少ないリーンバーンエンジンが有望である。   In recent years, carbon dioxide emitted from internal combustion engines such as automobiles has become a problem from the viewpoint of protecting the global environment. As a solution, a lean burn engine with a small amount of fuel is promising.

ところで、排ガス中に含まれるNOxを浄化する触媒として、貴金属とともに、アルカリ金属等のNOx吸蔵材を含むものが用いられている(特許文献1参照)。この触媒は、排ガス中のNOxをNOx吸蔵材に吸蔵しておき、排ガス中の燃料濃度がリッチになったとき、吸蔵されていたNOxを貴金属の作用により除去するものである。
特開2002−361094号公報
By the way, what contains NOx occlusion materials, such as an alkali metal, is used with a noble metal as a catalyst which purifies NOx contained in exhaust gas (refer patent document 1). This catalyst stores NOx in the exhaust gas in the NOx storage material, and removes the stored NOx by the action of the noble metal when the fuel concentration in the exhaust gas becomes rich.
Japanese Patent Laid-Open No. 2002-361094

しかし、上述したリーンバーンエンジンの排ガスは、排ガス中における燃料濃度が低いため、従来の触媒ではNOxを充分浄化することができなかった。   However, since the exhaust gas of the lean burn engine mentioned above has a low fuel concentration in the exhaust gas, the conventional catalyst cannot sufficiently purify NOx.

また、NOx吸蔵材であるアルカリ金属は融点が低いため、触媒が高温となった時に触媒基材に移動・固溶し、結果として、触媒の性能が低下してしまっていた。   Moreover, since the alkali metal which is a NOx occlusion material has a low melting point, it moves and dissolves in the catalyst base material when the temperature of the catalyst becomes high, resulting in a decrease in the performance of the catalyst.

本発明は、以上の点に鑑みなされたものであり、例えばガソリンエンジンやディーゼルエンジン等のリーンバーンエンジンの排ガスに対してもNOx浄化性能が高く、高温時にも触媒性能が低下しない排ガス浄化用触媒を提供することを目的とする。   The present invention has been made in view of the above points. For example, an exhaust gas purifying catalyst that has high NOx purification performance even with respect to exhaust gas from a lean burn engine such as a gasoline engine or a diesel engine, and does not deteriorate catalyst performance even at high temperatures. The purpose is to provide.

本発明は、
触媒基材と、
前記触媒基材上に形成され、(a)Rh、(b)Pt、(c)アルカリ金属又はアルカリ土類金属元素、及び(d)ZrTi複合酸化物又は CeZr複合酸化物を含む触媒コート層と、
を有する排ガス浄化用触媒であって、
前記触媒コート層は、
前記(a)の70重量%以上が存在する内層と、前記(b)の70重量%以上が存在する外層とを備えた層構造を有し、
前記内層は、アルカリ土類金属元素及び希土類元素から成る群から選ばれる元素と、ジルコニアとの複合酸化物を含み、
前記(d)は、少なくとも前記外層に含まれていることを特徴とする排ガス浄化用触媒を要旨とする。
The present invention
A catalyst substrate;
A catalyst coating layer formed on the catalyst substrate and comprising (a) Rh, (b) Pt, (c) an alkali metal or alkaline earth metal element, and (d) a ZrTi composite oxide or CeZr composite oxide ; ,
An exhaust gas purifying catalyst having
The catalyst coat layer is
A layer structure comprising an inner layer in which 70% by weight or more of (a) is present and an outer layer in which 70% by weight or more of (b) is present ;
The inner layer, viewed contains an element selected from the group consisting of alkaline earth metal elements and rare earth elements, a composite oxide of zirconia,
The gist of (d) is an exhaust gas purifying catalyst which is contained in at least the outer layer .

本発明の排ガス浄化用触媒は、アルカリ土類金属元素及び希土類元素から成る群から選ばれる元素と、ジルコニアとの複合酸化物を含む内層を有することにより、高温(例えば350〜450℃)になったときでも(c)アルカリ金属又はアルカリ土類金属元素が、触媒基材に移動・固溶することを防止できる。また、本発明の排ガス浄化用触媒は、リーンバーンエンジンの排ガスに対しても、高いNOx浄化性能を奏することができる。 The exhaust gas purifying catalyst of the present invention has a high temperature (for example, 350 to 450 ° C.) by having an inner layer containing a complex oxide of an element selected from the group consisting of alkaline earth metal elements and rare earth elements and zirconia. (C) The alkali metal or alkaline earth metal element can be prevented from moving and dissolving in the catalyst substrate. Further, the exhaust gas purifying catalyst of the present invention can exhibit high NOx purifying performance even with respect to the exhaust gas of a lean burn engine.

また、本発明において、前記(a)Rhの70重量%以上が前記内層に存在し、前記(b)Ptの70重量%以上が前記外層に存在する。このように、(a)Rhと(b)Ptとを分離することにより、貴金属の活性低下を抑制し、NOx浄化性能を一層高めることができる。 Further, in the present invention, the (a) at least 70 wt% of Rh is present in the inner layer, wherein (b) more than 70 wt% of Pt is present in the outer layer. Thus, by separating (a) Rh and (b) Pt, it is possible to suppress a decrease in the activity of the noble metal and further improve the NOx purification performance.

前記(c)アルカリ金属又はアルカリ土類金属元素、及び前記(d)ZrTi複合酸化物又は CeZr複合酸化物は、少なくとも前記外層に含まれるようにすることができる。こうすることにより、NOx浄化性能が一層向上する。 The (c) alkali metal or alkaline earth metal element and the (d) ZrTi composite oxide or CeZr composite oxide can be included in at least the outer layer. By doing so, the NOx purification performance is further improved.

前記内層が含むルカリ土類金属元素(例えば、Ca、Mg)及び希土類元素(例えば、Y、Ce、La等)から成る群から選ばれる元素とジルコニアとの複合酸化物、より高温の条件下でも、(c)アルカリ金属又はアルカリ土類金属元素が、触媒基材に移動・固溶することを防止できるこの複合酸化物において、ジルコニア以外の成分(例えばCa)の添加量は、酸化物換算で1.0〜8重量%、好ましくは1〜4重量%の範囲が好適である。1.0重量%以上であることにより、(c)アルカリ金属又はアルカリ土類金属元素が、触媒基材に移動・固溶することを防止する効果が一層高く、8重量%以下(好ましくは7重量%以下)であることにより、ジルコニアの特性が失われ、内層の調製が困難になってしまうようなことがない。 A alkaline earth metal elements wherein the inner layer comprises (e.g., Ca, Mg) and rare earth elements (e.g., Y, Ce, La, etc.) composite oxide of an element and zirconia selected from the group consisting of the higher temperature conditions Even under the above, (c) the alkali metal or alkaline earth metal element can be prevented from moving and dissolving in the catalyst substrate . In this composite oxide, the amount of components other than zirconia (for example, Ca) is 1.0 to 8% by weight, preferably 1 to 4% by weight in terms of oxide. By being 1.0% by weight or more, the effect of preventing (c) alkali metal or alkaline earth metal element from moving / dissolving in the catalyst base is even higher, and is 8% by weight or less (preferably 7%). (Weight% or less), the characteristics of zirconia are not lost, and the preparation of the inner layer does not become difficult.

なお、本願明細書における複合酸化物とは、複数の酸化物を単に混合させたものだけではなく、加熱処理などにより酸化物の構造内に他の酸化物を固溶させたものも意味する。後者の複合酸化物を形成する方法としては、加熱処理に限定されず、他の公知の方法も用いることができる。   Note that the composite oxide in this specification means not only a mixture of a plurality of oxides but also a solution in which other oxides are dissolved in the oxide structure by heat treatment or the like. The method of forming the latter composite oxide is not limited to the heat treatment, and other known methods can be used.

また、前記内層の位置は、外層よりも触媒基材側であればよいが、触媒基材に隣接する位置が好ましい。   Moreover, the position of the said inner layer should just be a catalyst base material side rather than an outer layer, but the position adjacent to a catalyst base material is preferable.

本発明の排ガス浄化用触媒は、Rh、Pt以外の貴金属(例えば、Pd、Ir等)を含んでいてもよい。上記Rh、Pt以外の貴金属は、内層と外層とのうちの一方、または内層と外層との両方に含まれていてもよい。特に、Pdは、内層と外層とのうちのいずれか一方、または内層と外層との両方に含まれていてもよいが、Ptのシンタリングを抑制するなどの観点を考慮すると、Ptを含む層と同一の層に添加することが好ましい。また、触媒コート層は、内層、外層以外の層を、例えば、内層と外層との間、外層よりも更に外側に備えていてもよい。   The exhaust gas purifying catalyst of the present invention may contain a noble metal (for example, Pd, Ir, etc.) other than Rh and Pt. The noble metals other than Rh and Pt may be contained in one of the inner layer and the outer layer, or both the inner layer and the outer layer. In particular, Pd may be contained in either one of the inner layer and the outer layer, or both the inner layer and the outer layer, but considering the viewpoint of suppressing sintering of Pt, the layer containing Pt It is preferable to add to the same layer. Moreover, the catalyst coat layer may be provided with layers other than the inner layer and the outer layer, for example, between the inner layer and the outer layer, further outside the outer layer.

前記(c)成分におけるアルカリ金属元素としては、例えば、Li、Na、K等が挙げられる。また、前記(c)成分におけるアルカリ土類金属元素としては、例えば、Ba、Sr等が挙げられる。(c)成分は、内層と外層の両方に存在していてもよいし、外層にのみ存在していてもよい。   Examples of the alkali metal element in the component (c) include Li, Na, and K. Examples of the alkaline earth metal element in the component (c) include Ba and Sr. The component (c) may be present in both the inner layer and the outer layer, or may be present only in the outer layer.

前記触媒基材としては、通常、排ガス浄化触媒に使用されるものであれば特に制限はなく、例えば、ハニカム型、コルゲート型、モノリスハニカム型等が挙げられる。触媒基材の材質は、耐火性を有するものであればいずれのものであっても良く、例えば、コージェライト等の耐火性を有するセラミックス製、フェライト系ステンレス等金属製の一体構造型を用いることができる。   The catalyst base is not particularly limited as long as it is usually used for an exhaust gas purification catalyst, and examples thereof include a honeycomb type, a corrugated type, and a monolith honeycomb type. The catalyst base material may be any material as long as it has fire resistance. For example, use a monolithic structure type made of ceramic such as cordierite or a metal such as ferritic stainless steel. Can do.

排ガス浄化用触媒の構成を表す説明図である。It is explanatory drawing showing the structure of the catalyst for exhaust gas purification. 排ガス浄化用触媒の構成を表す説明図である。It is explanatory drawing showing the structure of the catalyst for exhaust gas purification. 排ガス浄化用触媒の構成を表す説明図である。It is explanatory drawing showing the structure of the catalyst for exhaust gas purification.

符号の説明Explanation of symbols

1、101・・・排ガス浄化用触媒
3・・・基材
5、105・・・内層
7、107・・・外層
9・・・触媒コート層
DESCRIPTION OF SYMBOLS 1,101 ... Exhaust gas purification catalyst 3 ... Base material 5, 105 ... Inner layer 7, 107 ... Outer layer 9 ... Catalyst coating layer

本発明を実施例に基づいて説明する。   The present invention will be described based on examples.

a)まず、本実施例1の排ガス浄化用触媒1の構成を図1に基づいて説明する。   a) First, the structure of the exhaust gas-purifying catalyst 1 of the first embodiment will be described with reference to FIG.

排ガス浄化用触媒1は、基材(触媒基材)3の表面に内層5を形成し、さらにその上に外層7を形成したものである。内層5と外層7とは、触媒コート層として機能する。基材3は、容積1.0L、セル数400セル/in2のモノリスハニカム担体であり、内層5及び外層7は、基材3のセルの内面に形成されている。The exhaust gas-purifying catalyst 1 is formed by forming an inner layer 5 on the surface of a substrate (catalyst substrate) 3 and further forming an outer layer 7 thereon. The inner layer 5 and the outer layer 7 function as a catalyst coat layer. The substrate 3 is a monolith honeycomb carrier having a volume of 1.0 L and a cell number of 400 cells / in 2 , and the inner layer 5 and the outer layer 7 are formed on the inner surface of the cells of the substrate 3.

内層5は、以下の組成を有する。   The inner layer 5 has the following composition.

Rh:0.5g/L
Caを酸化物換算で2重量%添加した複合ジルコニア酸化物:50g/L
Ba
Li

外層7は、以下の組成を有する。
Rh: 0.5 g / L
Composite zirconia oxide added with 2% by weight of Ca in terms of oxide: 50 g / L
Ba
Li
K
The outer layer 7 has the following composition.

Pt:2g/L
アルミナ:100g/L
ZrTi複合酸化物:100g/L
CeZr複合酸化物20g/L
Ba
Li

なお、Ba、Li、Kは、内層5及び外層7の全体に含まれており、全体での配合量は、Baは0.2mol/L、Liは0.1mol/L、Kは0.15mol/Lである。Ba、Li、及びKは、窒素酸化物として作用する成分である。
Pt: 2g / L
Alumina: 100 g / L
ZrTi composite oxide: 100 g / L
CeZr composite oxide 20g / L
Ba
Li
K
In addition, Ba, Li, and K are contained in the whole inner layer 5 and outer layer 7, and the total compounding amount is 0.2 mol / L for Ba, 0.1 mol / L for Li, and 0.15 mol for K. / L. Ba, Li, and K are components that act as nitrogen oxides.

b)次に、本実施例1の排ガス浄化用触媒1を製造する方法を説明する。   b) Next, a method for producing the exhaust gas-purifying catalyst 1 of the first embodiment will be described.

まず、以下成分を混合することで、スラリーS1、スラリーS2を調製した。
(スラリーS1)
塩化Rh溶液:Rhで0.5g
Caを酸化物換算で2重量%添加した複合ジルコニア酸化物:50g
水:100g
(スラリーS2)
アルミナ:100g
ZrTi複合酸化物:100g
CeZr複合酸化物:20g
水:200g
次に、スラリーS1を基材3全体にコートし、250℃で2時間以上乾燥後、500℃で1時間以上焼成して、内層5を形成した。さらに、スラリーS2を、先にスラリーS1をコートした上にコートし、250℃で2時間以上乾燥後、500℃で1時間以上焼成して、外層7を形成した。次に、硝酸Pt溶液(Ptで2g)に浸漬し、外層7にPtを2g/L担持させた。
First, slurry S1 and slurry S2 were prepared by mixing the following components.
(Slurry S1)
Rh chloride solution: 0.5 g Rh
Composite zirconia oxide added with 2% by weight of Ca in terms of oxide: 50 g
Water: 100g
(Slurry S2)
Alumina: 100g
ZrTi composite oxide: 100 g
CeZr composite oxide: 20 g
Water: 200g
Next, slurry S1 was coated on the entire substrate 3, dried at 250 ° C. for 2 hours or longer, and then fired at 500 ° C. for 1 hour or longer to form the inner layer 5. Further, the slurry S2 was coated on the slurry S1 previously, dried at 250 ° C. for 2 hours or more, and then fired at 500 ° C. for 1 hour or more to form the outer layer 7. Next, it was immersed in a Pt nitrate solution (2 g Pt), and 2 g / L of Pt was supported on the outer layer 7.

次に、Ba、K、Liをそれぞれ、0.2mol、0.1mol、0.15mol含む酢酸溶液に浸漬し、余分な水溶液を吹き払った後、350℃で30分以上乾燥して排ガス浄化用触媒1を完成した。
(参考例2)
Next, it is immersed in an acetic acid solution containing 0.2 mol, 0.1 mol, and 0.15 mol of Ba, K, and Li, respectively, and after the excess aqueous solution is blown off, it is dried at 350 ° C. for 30 minutes or more for exhaust gas purification. Catalyst 1 was completed.
(Reference Example 2)

参考例2の排ガス浄化用触媒1の構成は、基本的には前記実施例1と同様であるが、内層5において一部相違する。以下では、その相違点を中心に説明する。内層5は、Caを酸化物換算で2重量%添加した複合ジルコニア酸化物の代わりに、ジルコニアのみの酸化物(以下、「ジルコニア」とする)を含んでいる。 The configuration of the exhaust gas purifying catalyst 1 of the present reference example 2 is basically the same as that of the first embodiment, but is partially different in the inner layer 5. Below, it demonstrates centering on the difference. The inner layer 5 contains an oxide of only zirconia (hereinafter referred to as “zirconia”) instead of the composite zirconia oxide added with 2% by weight of Ca in terms of oxide.

参考例2の排ガス浄化用触媒1の製造方法は、基本的には前記実施例1と同様であるが、内層5を形成するためのスラリーとして、スラリーS1の代わりに、スラリーS3を用いた。スラリーS3は、以下の材料を混合することで調製した。
(スラリーS3)
塩化Rh溶液:Rhで0.5g
ジルコニア:50g
水:100g
実施例3
The manufacturing method of the exhaust gas-purifying catalyst 1 of the present Reference Example 2 is basically the same as that of Example 1, but the slurry S3 was used instead of the slurry S1 as the slurry for forming the inner layer 5. . Slurry S3 was prepared by mixing the following materials.
(Slurry S3)
Rh chloride solution: 0.5 g Rh
Zirconia: 50g
Water: 100g
( Example 3 )

本実施例3の排ガス浄化用触媒1の構成は、基本的には前記実施例1と同様であるが、外層7が、貴金属として、Ptのみではなく、Pt(1.5g/L)とPd(0.5g/L)とを含む点で相違する。   The configuration of the exhaust gas purifying catalyst 1 of Example 3 is basically the same as that of Example 1 except that the outer layer 7 is not only Pt but also Pt (1.5 g / L) and Pd as noble metals. (0.5 g / L).

本実施例3の排ガス浄化用触媒1の製造方法は、基本的には前記実施例1と同様であるが、外層7を形成した後、硝酸Pt溶液ではなく、硝酸PtPd溶液(Ptで1.5g、Pdで0.5g)に浸漬し、外層7にPtを1.5g/L、Pdを0.5g/L、それぞれ担持させた。なお、その後、Ba、K、Liを担持する工程は前記実施例1と同様である。
(比較例1)
本比較例1の排ガス浄化用触媒101の構成は、図2に示すように、基材(触媒基材)3の表面に、単一の触媒コート層9を形成したものである。基材3は、前記実施例1のものと同様である。
The manufacturing method of the exhaust gas-purifying catalyst 1 of Example 3 is basically the same as that of Example 1. However, after forming the outer layer 7, not the Pt nitrate solution but the PtPd nitrate solution (Pt. 5 g, 0.5 g / L with Pd), and Pt 1.5 g / L and Pd 0.5 g / L were supported on the outer layer 7, respectively. Thereafter, the steps of supporting Ba, K, and Li are the same as in the first embodiment.
(Comparative Example 1)
The configuration of the exhaust gas purifying catalyst 101 of Comparative Example 1 is such that a single catalyst coat layer 9 is formed on the surface of a substrate (catalyst substrate) 3 as shown in FIG. The substrate 3 is the same as that of the first embodiment.

触媒コート層9は、以下の組成を有する。   The catalyst coat layer 9 has the following composition.

アルミナ:100g/L
ジルコニア:50g/L
ZrTi複合酸化物:100g/L
CeZr複合酸化物:20g/L
Rh:0.5g/L
Pt:2g/L
Ba:0.2mol/L
Li:0.1mol/L
K:0.15mol/L
本比較例1の排ガス浄化用触媒101を製造するには、まず、以下の成分を混合し、湿式粉砕してスラリーS4を調製した。
(スラリーS4)
アルミナ:100g
ジルコニア:50g
ZrTi複合酸化物:100g
CeZr複合酸化物:20g
Rh:0.5g
次に、このスラリーS4を基材3全体にコートし、250℃で2時間以上乾燥後、500℃で1時間以上焼成して、触媒コート層9を形成した。
Alumina: 100 g / L
Zirconia: 50 g / L
ZrTi composite oxide: 100 g / L
CeZr composite oxide: 20 g / L
Rh: 0.5 g / L
Pt: 2g / L
Ba: 0.2 mol / L
Li: 0.1 mol / L
K: 0.15 mol / L
In order to manufacture the exhaust gas-purifying catalyst 101 of Comparative Example 1, first, the following components were mixed and wet-pulverized to prepare slurry S4.
(Slurry S4)
Alumina: 100g
Zirconia: 50g
ZrTi composite oxide: 100 g
CeZr composite oxide: 20 g
Rh: 0.5g
Next, the entire substrate 3 was coated with the slurry S4, dried at 250 ° C. for 2 hours or longer, and then baked at 500 ° C. for 1 hour or longer to form the catalyst coat layer 9.

次に、硝酸Pt溶液に浸漬することで、触媒コート層9にPtを2g/L含浸担持し、その後乾燥させた。   Next, the catalyst coat layer 9 was impregnated with 2 g / L of Pt by being immersed in a Pt nitrate solution, and then dried.

さらに、Ba、K、Liを、前記実施例1と同様に、触媒コート層9に担持し、排ガス浄化用触媒101を完成した。
(比較例2)
本比較例2の排ガス浄化用触媒101の構成は、図3に示すとおり、基材3上に内層105と外層107とが形成されているが、内層105の組成は、前記実施例1における外層7の組成に等しく、外層107の組成は、前記実施例1における内層5の組成に等しい。すなわち、本比較例2の排ガス浄化用触媒101は、前記実施例1と対比して、内層と外層とが逆転したものである。
Further, Ba, K, and Li were supported on the catalyst coat layer 9 in the same manner as in Example 1 to complete the exhaust gas purification catalyst 101.
(Comparative Example 2)
As shown in FIG. 3, the exhaust gas purifying catalyst 101 of Comparative Example 2 has an inner layer 105 and an outer layer 107 formed on the base material 3. The composition of the inner layer 105 is the same as that of the outer layer of Example 1. The composition of the outer layer 107 is equal to the composition of the inner layer 5 in the first embodiment. That is, in the exhaust gas purifying catalyst 101 of Comparative Example 2, the inner layer and the outer layer are reversed in comparison with Example 1.

本比較例2の排ガス浄化用触媒101は、以下のように製造した。まず、スラリーS2を基材3全体にコートし、250℃で2時間以上乾燥後、500℃で1時間以上焼成して、内層105を形成した。次に、硝酸Pt溶液(Ptで2g)に浸漬し、内層105にPtを2g/L担持させた。   The exhaust gas-purifying catalyst 101 of Comparative Example 2 was manufactured as follows. First, the entire surface of the substrate 3 was coated with the slurry S2, dried at 250 ° C. for 2 hours or longer, and then fired at 500 ° C. for 1 hour or longer to form the inner layer 105. Next, the inner layer 105 was supported with 2 g / L of Pt by immersing in a Pt nitrate solution (2 g of Pt).

さらに、スラリーS1を、先にスラリーS2をコートした上にコートし、250℃で2時間以上乾燥後、500℃で1時間以上焼成して、外層107を形成した。次に、Ba、K、Liを、前記実施例1と同様に、内層105及び外層107に担持し、排ガス浄化用触媒101を完成した。
(比較例3)
本比較例3の排ガス浄化用触媒101の構成は、基本的には前記参考例2と同様であるが、内層5、及び層7において一部相違する。以下では、その相違点を中心に説明する。Rhは、内層5に含まれず、外層7に含まれている。すなわち、本比較例3では、Rh及びPtは、ともに、外層7に含まれている。
Further, the slurry S1 was coated on the slurry S2 previously, dried at 250 ° C. for 2 hours or longer, and then baked at 500 ° C. for 1 hour or longer to form the outer layer 107. Next, Ba, K, and Li were supported on the inner layer 105 and the outer layer 107 in the same manner as in Example 1 to complete the exhaust gas purification catalyst 101.
(Comparative Example 3)
The exhaust gas purifying catalyst 101 of Comparative Example 3 is basically the same as that of Reference Example 2, it differs in part in the inner layer 5 and the outer layer 7. Below, it demonstrates centering on the difference. Rh is not included in the inner layer 5 but is included in the outer layer 7. That is, in Comparative Example 3, both Rh and Pt are included in the outer layer 7.

比較例4)
本比較例4の排ガス浄化用触媒101の構成は、基本的には前記実施例1と同様であるが、内層5において一部相違する。以下では、その相違点を中心に説明する。
( Comparative Example 4)
The configuration of the exhaust gas-purifying catalyst 101 of Comparative Example 4 is basically the same as that of Example 1, but is partially different in the inner layer 5. Below, it demonstrates centering on the difference.

内層5は、以下の組成を有する。   The inner layer 5 has the following composition.

Rh:0.5g/L
アルミナ:50g/L
Ba
Li

すなわち、本比較例4では、内層5にジルコニア酸化物が含まれておらず、代わりにアルミナが含まれている。
Rh: 0.5 g / L
Alumina: 50 g / L
Ba
Li
K
That is, in this comparative example 4, the inner layer 5 does not contain zirconia oxide, and instead contains alumina.

本比較例4の排ガス浄化用触媒101の製造方法は、基本的には前記実施例1と同様であるが、内層5を形成するためのスラリーとして、スラリーS1の代わりに、スラリーS7を用いた。スラリーS7は、以下の成分を混合することにより調製した。
(スラリーS7)
塩化Rh溶液:Rhで0.5g
アルミナ:50g
水:100g
(比較例5)
本比較例5の排ガス浄化用触媒101の構成は、基本的には前記比較例4と同様であるが、外層7において一部相違する。以下では、その相違点を中心に説明する。
The manufacturing method of the exhaust gas-purifying catalyst 101 of Comparative Example 4 is basically the same as that of Example 1, but the slurry S7 is used instead of the slurry S1 as the slurry for forming the inner layer 5. . Slurry S7 was prepared by mixing the following components.
(Slurry S7)
Rh chloride solution: 0.5 g Rh
Alumina: 50g
Water: 100g
(Comparative Example 5)
The configuration of the exhaust gas-purifying catalyst 101 of Comparative Example 5 is basically the same as that of Comparative Example 4, but is partially different in the outer layer 7. Below, it demonstrates centering on the difference.

外層7は、以下の組成を有する。   The outer layer 7 has the following composition.

Pt:2g/L
アルミナ:220g/L
Ba
Li

すなわち、本比較例5では、外層7に、ZrTi複合酸化物、CeZr複合酸化物が含まれていない。
Pt: 2g / L
Alumina: 220 g / L
Ba
Li
K
That is, in this comparative example 5, the outer layer 7 does not contain a ZrTi composite oxide or a CeZr composite oxide.

本比較例5の排ガス浄化用触媒101の製造方法は、基本的には前記比較例4と同様であるが、外層7を形成するためのスラリーとして、スラリーS2の代わりに、スラリーS8を用いた。スラリーS8は、以下の成分を混合することにより調製した。
(スラリーS8)
アルミナ:220g
水:500g
(比較例6)
本比較例6の排ガス浄化用触媒101の構成は、基本的には前記実施例1と同様であるが、内層5にPtを配置し、外層7にRhを配置する点で異なる。以下では、その相違点を中心に説明する。
The manufacturing method of the exhaust gas-purifying catalyst 101 of Comparative Example 5 is basically the same as that of Comparative Example 4, but the slurry S8 is used as the slurry for forming the outer layer 7 instead of the slurry S2. . Slurry S8 was prepared by mixing the following components.
(Slurry S8)
Alumina: 220g
Water: 500g
(Comparative Example 6)
The configuration of the exhaust gas-purifying catalyst 101 of Comparative Example 6 is basically the same as that of Example 1, but differs in that Pt is disposed in the inner layer 5 and Rh is disposed in the outer layer 7. Below, it demonstrates centering on the difference.

内層5は、以下の組成を有する。   The inner layer 5 has the following composition.

Pt:2g/L
Caを酸化物換算で2重量%添加した複合ジルコニア酸化物:50g/L
Ba
Li

外層7は、以下の組成を有する。
Pt: 2g / L
Composite zirconia oxide added with 2% by weight of Ca in terms of oxide: 50 g / L
Ba
Li
K
The outer layer 7 has the following composition.

Rh:0.5g/L
アルミナ:100g/L
ZrTi複合酸化物:100g/L
CeZr複合酸化物20g/L
Ba
Li

本比較例6の排ガス浄化用触媒101の製造方法は、基本的には前記実施例1と同様であるが、内層5を形成するためのスラリーとして、スラリーS1の代わりに、スラリーS9を用いた。スラリーS9は、以下の成分を混合することにより調製した。
(スラリーS9)
硝酸Pt溶液:Ptで2g
Caを酸化物換算で2重量%添加した複合ジルコニア酸化物:50g
水:100g
また、外層7をスラリーS2を用いて形成した後、塩化Rh溶液を用い、Rhを外層7に担持させた。
Rh: 0.5 g / L
Alumina: 100 g / L
ZrTi composite oxide: 100 g / L
CeZr composite oxide 20g / L
Ba
Li
K
The manufacturing method of the exhaust gas-purifying catalyst 101 of Comparative Example 6 is basically the same as that of Example 1, but the slurry S9 was used instead of the slurry S1 as the slurry for forming the inner layer 5. . Slurry S9 was prepared by mixing the following components.
(Slurry S9)
Nitric acid Pt solution: 2g of Pt
Composite zirconia oxide added with 2% by weight of Ca in terms of oxide: 50 g
Water: 100g
Further, after the outer layer 7 is formed using a slurry S2, using a Rh chloride solution to supporting Rh in the outer layer 7.

次に、各実施例で製造した排ガス浄化用触媒1の性能を確かめるために行った試験について説明する。
(1)触媒コート層中のアルカリ金属残存量評価
(1−1)試験方法
まず、排ガス浄化用触媒を、排気量2000ccのガソリンエンジンに取り付け、750℃でのストイキ条件と、700℃のリーン条件とを交互に40回繰り返す劣化促進耐久(以下、「耐久」とする)を行った。
Next, tests performed to confirm the performance of the exhaust gas-purifying catalyst 1 manufactured in each example will be described.
(1) Evaluation of Alkali Metal Remaining Amount in Catalyst Coat Layer (1-1) Test Method First, an exhaust gas purifying catalyst is attached to a 2000 cc gasoline engine, stoichiometric conditions at 750 ° C., and lean conditions at 700 ° C. Deterioration accelerated durability (hereinafter referred to as “endurance”) was repeated 40 times alternately.

次に、排ガス浄化用触媒から、触媒コート層のみをかき取り、それを酸に溶解させ、化学分析(ICP)によりアルカリ金属(K)量を測定した。測定は、実施例1〜3、及び比較例1〜6の排ガス浄化用触媒について行った。   Next, only the catalyst coat layer was scraped from the exhaust gas purifying catalyst, dissolved in an acid, and the amount of alkali metal (K) was measured by chemical analysis (ICP). The measurement was performed on the exhaust gas purifying catalysts of Examples 1 to 3 and Comparative Examples 1 to 6.

表1に、触媒コート層中に残存していたアルカリ金属(K)の量を示す。なお、触媒コート層中に配合されたアルカリ金属(K)の初期量は、実施例13、参考例2及び比較例1〜6のいずれにおいても等しい。 Table 1 shows the amount of alkali metal (K) remaining in the catalyst coat layer. The initial amount of the alkali metal that is incorporated into the catalyst coating layer (K) is, in Example 1, 3, are equal in either of Reference Examples 2 and Comparative Examples 1 to 6.

表1に示すとおり、実施例13、参考例2の排ガス浄化用触媒は、比較例1、2、4、5に比べて、触媒コート層中のアルカリ金属(K)残存量が多かった。これは、実施例13、参考例2の排ガス浄化用触媒では、内層5に含まれるジルコニアが、(c)アルカリ金属又はアルカリ土類金属元素の基材3への移動・固溶を防止するためであると考えられる。 As shown in Table 1, the exhaust gas purifying catalysts of Examples 1 and 3 and Reference Example 2 had a larger amount of residual alkali metal (K) in the catalyst coating layer than Comparative Examples 1, 2, 4, and 5. . This is because in the exhaust gas purifying catalysts of Examples 1 and 3 and Reference Example 2 , zirconia contained in the inner layer 5 prevents (c) migration / solid solution of the alkali metal or alkaline earth metal element to the base material 3. It is thought that it is to do.

特に、実施例1、3の排ガス浄化用触媒は、触媒コート層中のアルカリ金属(K)残存量が一層多かった。このことは、内層5に含まれる、Caを添加したジルコニア複合酸化物は、(c)アルカリ金属又はアルカリ土類金属元素の基材3への移動・固溶を防止する効果が一層高いためであると考えられる。
(2)触媒活性評価
(2−1)試験方法
まず、排ガス浄化用触媒に対し、前記「(1−1)試験方法」と同様に耐久を行った。次に、排ガス浄化用触媒に、HC、O2、NOを含むモデルガスを流し、触媒温度を100℃から30℃/minの速度で昇温しながら、リーン雰囲気中におけるHC浄化率を測定した。HC浄化率の定義は、触媒入り側のHC濃度をAとし、触媒出側HC濃度をBとしたとき、(A−B)/Aで表される値である。実験は、実施例13、参考例2と、比較例1、3(Pt、Rhが、同一の層中に混在するもの)とについて行った。
In particular, in the exhaust gas purifying catalysts of Examples 1 and 3, the remaining amount of alkali metal (K) in the catalyst coat layer was larger. This is because the zirconia composite oxide added with Ca contained in the inner layer 5 has a higher effect of preventing (c) migration and solid solution of the alkali metal or alkaline earth metal element to the base material 3. It is believed that there is.
(2) Evaluation of catalyst activity (2-1) Test method First, durability was performed on the exhaust gas purifying catalyst in the same manner as in the above "(1-1) Test method". Next, a model gas containing HC, O 2 and NO was passed through the exhaust gas purification catalyst, and the HC purification rate in a lean atmosphere was measured while raising the catalyst temperature at a rate of 100 ° C. to 30 ° C./min. The definition of the HC purification rate is a value represented by (A−B) / A, where A is the HC concentration on the catalyst entrance side and B is the catalyst exit HC concentration. The experiment was performed on Examples 1 and 3, Reference Example 2 , and Comparative Examples 1 and 3 (Pt and Rh are mixed in the same layer).

HC浄化率は、触媒温度が高くなるにつれて向上した。各排ガス浄化用触媒について、HC浄化率が、20%、40%、50%、70%、90%に達する温度を求めた。その結果を表2に示す。   The HC purification rate improved as the catalyst temperature increased. For each exhaust gas purification catalyst, the temperature at which the HC purification rate reached 20%, 40%, 50%, 70%, and 90% was determined. The results are shown in Table 2.

表2に示すとおり、実施例13、参考例2の排ガス浄化用触媒は、比較例1、3に比べて、所定のHC浄化率に達する温度が低かった。すなわち、実施例13、参考例2の排ガス浄化用触媒は、比較例1、3よりも、触媒活性が高かった。これは、実施例13、参考例2の排ガス浄化用触媒では、内層5にRhを配合し、外層7にPtを配合することにより、触媒活性が高まっているためであると考えられる。
(3)NOx還元量の評価
(3−1)試験方法
まず、排ガス浄化用触媒を、排気量2000ccのガソリン・リーンバーンエンジンに取り付け、A/F=20〜28のリーン雰囲気とした。そして、その時の触媒入り側のNOx濃度と出側のNOx濃度との差からNOxの還元量(mg)を算出した。なお、測定時におけるその他の条件は、以下のとおりとした。
As shown in Table 2, the exhaust gas purifying catalysts of Examples 1 and 3 and Reference Example 2 were lower in temperature to reach a predetermined HC purification rate than Comparative Examples 1 and 3. That is, the exhaust gas purifying catalysts of Examples 1 and 3 and Reference Example 2 had higher catalytic activity than Comparative Examples 1 and 3. This is considered to be because in the exhaust gas purifying catalysts of Examples 1 and 3 and Reference Example 2 , the catalytic activity is increased by blending Rh in the inner layer 5 and blending Pt in the outer layer 7.
(3) Evaluation of NOx reduction amount (3-1) Test method First, an exhaust gas purifying catalyst was attached to a 2000 cc gasoline lean burn engine, and a lean atmosphere of A / F = 20 to 28 was obtained. Then, the reduction amount (mg) of NOx was calculated from the difference between the NOx concentration on the catalyst entrance side and the NOx concentration on the exit side at that time. The other conditions during the measurement were as follows.

出側のNOx濃度は、入り側の濃度の80%以上となるまで測定した。   The NOx concentration on the outlet side was measured until it reached 80% or more of the concentration on the inlet side.

エンジン回転数:1200〜3000rpm
トルク:20〜70N・m
入りガス温度:300℃、350℃、400℃、450℃、500℃
実験は、実施例13、参考例2、及び比較例1〜6の排ガス浄化用触媒について行った。
結果を表3に示す。
Engine speed: 1200-3000rpm
Torque: 20 ~ 70N ・ m
Entering gas temperature: 300 ° C, 350 ° C, 400 ° C, 450 ° C, 500 ° C
The experiment was conducted on the exhaust gas purifying catalysts of Examples 1 and 3, Reference Example 2 and Comparative Examples 1 to 6.
The results are shown in Table 3.

表3に示す通り、実施例1、3、参考例2の排ガス浄化用触媒は、NOx浄化性能が高く、特に、入りガス温度が450〜500℃のときは、比較例1〜6のいずれよりもNOx浄化性能が高かった。また、実施例1、3の排ガス浄化用触媒は、全ての温度において、比較例1〜6のいずれよりも、NOx浄化性能が顕著に高かった。この結果より、実施例13の排ガス浄化用触媒は、リーンバーンエンジンの排ガスに対してもNOx浄化性能が高いことが明らかになっている。 As shown in Table 3, the exhaust gas purifying catalysts of Examples 1 and 3 and Reference Example 2 have high NOx purification performance. In particular, when the incoming gas temperature is 450 to 500 ° C., any of Comparative Examples 1 to 6 is used. NOx purification performance was also high. Further, the exhaust gas purifying catalysts of Examples 1 and 3 had significantly higher NOx purification performance than any of Comparative Examples 1 to 6 at all temperatures. From this result, it has been clarified that the exhaust gas purifying catalysts of Examples 1 and 3 have high NOx purification performance even with respect to the exhaust gas of the lean burn engine.

尚、本発明は前記実施例になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。   Needless to say, the present invention is not limited to the above-described embodiments, and can be implemented in various modes without departing from the scope of the present invention.

例えば、前記実施例3において、Pd0.5gを、外層7に含ませず、内層5に含ませてもよい。また、外層7と内層5との両方にPdを含ませてもよい。   For example, in Example 3, 0.5 g of Pd may be included in the inner layer 5 without being included in the outer layer 7. Further, both outer layer 7 and inner layer 5 may contain Pd.

Claims (3)

触媒基材と、
前記触媒基材上に形成され、(a)Rh、(b)Pt、(c)アルカリ金属又はアルカリ土類金属元素、及び(d)ZrTi複合酸化物又は CeZr複合酸化物を含む触媒コート層と、
を有する排ガス浄化用触媒であって、
前記触媒コート層は、
前記(a)の70重量%以上が存在する内層と、前記(b)の70重量%以上が存在する外層とを備えた層構造を有し、
前記内層は、アルカリ土類金属元素及び希土類元素から成る群から選ばれる元素と、ジルコニアとの複合酸化物を含み、
前記(d)は、少なくとも前記外層に含まれていることを特徴とする排ガス浄化用触媒。
A catalyst substrate;
A catalyst coating layer formed on the catalyst substrate and comprising (a) Rh, (b) Pt, (c) an alkali metal or alkaline earth metal element, and (d) a ZrTi composite oxide or CeZr composite oxide ; ,
An exhaust gas purifying catalyst having
The catalyst coat layer is
A layer structure comprising an inner layer in which 70% by weight or more of (a) is present and an outer layer in which 70% by weight or more of (b) is present ;
The inner layer, viewed contains an element selected from the group consisting of alkaline earth metal elements and rare earth elements, a composite oxide of zirconia,
Said (d) is contained in at least said outer layer, an exhaust gas purifying catalyst.
前記(c)、少なくとも前記外層に含まれていることを特徴とする請求項1記載の排ガス浄化用触媒。The exhaust gas-purifying catalyst according to claim 1, wherein (c) is included in at least the outer layer. さらに、Pdを、前記内層、及び/又は、前記外層に含むことを特徴とする請求項1又は2に記載の排ガス浄化用触媒。Further, Pd, said inner layer, and / or exhaust gas purifying catalyst according to claim 1 or 2, characterized in that it comprises in the outer layer.
JP2008555119A 2007-01-26 2008-01-25 Exhaust gas purification catalyst Expired - Fee Related JP5113082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008555119A JP5113082B2 (en) 2007-01-26 2008-01-25 Exhaust gas purification catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007016598 2007-01-26
JP2007016598 2007-01-26
PCT/JP2008/051124 WO2008090991A1 (en) 2007-01-26 2008-01-25 Exhaust gas purifying catalyst
JP2008555119A JP5113082B2 (en) 2007-01-26 2008-01-25 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPWO2008090991A1 JPWO2008090991A1 (en) 2010-05-20
JP5113082B2 true JP5113082B2 (en) 2013-01-09

Family

ID=39644565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008555119A Expired - Fee Related JP5113082B2 (en) 2007-01-26 2008-01-25 Exhaust gas purification catalyst

Country Status (4)

Country Link
US (1) US8496899B2 (en)
EP (1) EP2116299A4 (en)
JP (1) JP5113082B2 (en)
WO (1) WO2008090991A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5253233B2 (en) * 2009-02-27 2013-07-31 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP5286526B2 (en) * 2009-03-31 2013-09-11 株式会社キャタラー Exhaust gas purification catalyst and method for producing the same
JP5253308B2 (en) * 2009-06-26 2013-07-31 トヨタ自動車株式会社 NOx storage reduction exhaust gas purification catalyst
US8784759B2 (en) * 2010-06-10 2014-07-22 Basf Se NOx storage catalyst with reduced Rh loading
GB2484911B (en) * 2010-10-22 2013-04-03 Johnson Matthey Plc NOx absorber catalyst comprising caesium silicate and at least one platinum group metal
GB201021649D0 (en) * 2010-12-21 2011-02-02 Johnson Matthey Plc NOx Absorber catalyst
US9186654B2 (en) * 2011-11-03 2015-11-17 GM Global Technology Operations LLC Low cost lean NOx reduction catalyst system
EP2969206A4 (en) 2013-03-14 2016-07-06 Basf Corp Catalytic article with segregated washcoat and methods of making same
US11788450B2 (en) * 2020-10-30 2023-10-17 Johnson Matthey Public Limited Company TWC catalysts for gasoline engine exhaust gas treatments

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000157867A (en) * 1998-11-25 2000-06-13 Toyota Motor Corp Catalyst for exhaust gas treatment
JP2000246107A (en) * 1999-03-02 2000-09-12 Toyota Motor Corp Catalyst for cleaning exhaust gas, its production and method for cleaning exhaust gas
JP2000342966A (en) * 1999-06-08 2000-12-12 Toyota Motor Corp Catalyst for purifying exhaust gas and method for purifying exhaust gas
JP2004267850A (en) * 2003-03-06 2004-09-30 Ict:Kk Exhaust gas cleaning catalyst and manufacturing method therefor

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1098105A (en) * 1977-07-15 1981-03-24 Jack C. Summers Catalyst for automotive emission control and method for making same
US4128506A (en) * 1978-01-23 1978-12-05 General Motors Corporation Platinum-rhodium catalyst for automotive emission control
JPH04118053A (en) * 1989-12-29 1992-04-20 Tokyo Roki Kk Catalyst for cleaning exhaust gas from engine
US5212142A (en) * 1991-11-04 1993-05-18 Engelhard Corporation High performance thermally stable catalyst
US5407880A (en) * 1992-11-09 1995-04-18 Nissan Motor Co., Ltd. Catalysts for adsorption of hydrocarbons
CA2165054A1 (en) * 1993-06-25 1995-01-05 Zhicheng Hu Layered catalyst composite
US6497851B1 (en) * 1994-12-06 2002-12-24 Englehard Corporation Engine exhaust treatment apparatus and method of use
US5593647A (en) * 1995-03-31 1997-01-14 General Motors Corporation Catalytic converter having tri precious metal catalysts
JP3498453B2 (en) * 1995-11-27 2004-02-16 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
US6087298A (en) * 1996-05-14 2000-07-11 Engelhard Corporation Exhaust gas treatment system
US5948377A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Catalyst composition
JP3956437B2 (en) * 1996-09-26 2007-08-08 マツダ株式会社 Exhaust gas purification catalyst
EP0834348B1 (en) * 1996-10-07 2004-03-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite oxide, composite oxide carrier and catalyst
US6921738B2 (en) * 1996-12-06 2005-07-26 Engelhard Corporation Catalytic metal plate
US6165429A (en) * 1997-01-10 2000-12-26 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst and exhaust gas purifying method
JP3589376B2 (en) * 1997-01-10 2004-11-17 トヨタ自動車株式会社 Exhaust gas purification catalyst
US6348430B1 (en) * 1997-06-20 2002-02-19 Degussa Ag Exhaust gas treatment catalyst for internal combustion engines with two catalytically active layers on a carrier structure
GB9713428D0 (en) * 1997-06-26 1997-08-27 Johnson Matthey Plc Improvements in emissions control
DE19847008A1 (en) * 1998-10-13 2000-04-20 Degussa Nitrogen oxide storage catalytic converter
JP2000176298A (en) * 1998-12-11 2000-06-27 Mazda Motor Corp Exhaust gas purification catalyst and its production
US6375910B1 (en) * 1999-04-02 2002-04-23 Engelhard Corporation Multi-zoned catalytic trap and methods of making and using the same
US6294140B1 (en) * 1999-04-23 2001-09-25 Degussa Ag Layered noble metal-containing exhaust gas catalyst and its preparation
US6261989B1 (en) * 1999-05-19 2001-07-17 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
EP1066874B1 (en) * 1999-07-09 2009-09-23 Nissan Motor Company, Limited Exhaust gas purifying catalyst and method of producing same
JP3489049B2 (en) * 1999-07-15 2004-01-19 日産自動車株式会社 Exhaust gas purification catalyst
US6881384B1 (en) * 1999-08-30 2005-04-19 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
JP3489048B2 (en) * 2000-02-01 2004-01-19 日産自動車株式会社 Exhaust gas purification catalyst
JP3904802B2 (en) * 2000-04-26 2007-04-11 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
US6777370B2 (en) * 2001-04-13 2004-08-17 Engelhard Corporation SOx tolerant NOx trap catalysts and methods of making and using the same
JP4645786B2 (en) * 2001-06-08 2011-03-09 三菱自動車工業株式会社 Exhaust gas purification catalyst
JP3845274B2 (en) * 2001-06-26 2006-11-15 ダイハツ工業株式会社 Exhaust gas purification catalyst
JP2003062464A (en) * 2001-08-28 2003-03-04 Hitachi Ltd Exhaust gas cleaning catalyst for internal combustion engine, exhaust gas cleaning apparatus, and automobile
US7276212B2 (en) * 2001-10-01 2007-10-02 Engelhard Corporation Exhaust articles for internal combustion engines
US6764665B2 (en) * 2001-10-26 2004-07-20 Engelhard Corporation Layered catalyst composite
JP3855266B2 (en) * 2001-11-01 2006-12-06 日産自動車株式会社 Exhaust gas purification catalyst
US20040001781A1 (en) * 2002-06-27 2004-01-01 Engelhard Corporation Multi-zone catalytic converter
US7329629B2 (en) * 2002-10-24 2008-02-12 Ford Global Technologies, Llc Catalyst system for lean burn engines
US7022646B2 (en) * 2003-01-31 2006-04-04 Engelhard Corporation Layered catalyst composite
KR100527943B1 (en) * 2003-06-04 2005-11-09 현대자동차주식회사 Method for manufacturing double layer coated Pd only three way catalyst
CA2794531A1 (en) * 2003-08-29 2005-03-10 Robin Ziebarth Improved diesel exhaust filter
US7875250B2 (en) * 2003-12-11 2011-01-25 Umicore Ag & Co. Kg Exhaust treatment device, and methods of making the same
US20050164879A1 (en) * 2004-01-28 2005-07-28 Engelhard Corporation Layered SOx tolerant NOx trap catalysts and methods of making and using the same
US7214331B2 (en) * 2004-02-26 2007-05-08 The Boc Group, Inc. Catalyst configuration and methods for syngas production
US7374729B2 (en) * 2004-03-30 2008-05-20 Basf Catalysts Llc Exhaust gas treatment catalyst
US7795172B2 (en) * 2004-06-22 2010-09-14 Basf Corporation Layered exhaust treatment catalyst
JP4826207B2 (en) * 2005-10-28 2011-11-30 日産自動車株式会社 Exhaust gas purification catalyst and method for producing exhaust gas purification catalyst
US7576031B2 (en) * 2006-06-09 2009-08-18 Basf Catalysts Llc Pt-Pd diesel oxidation catalyst with CO/HC light-off and HC storage function
US7749472B2 (en) * 2006-08-14 2010-07-06 Basf Corporation Phosgard, a new way to improve poison resistance in three-way catalyst applications
US7758834B2 (en) * 2006-08-21 2010-07-20 Basf Corporation Layered catalyst composite
US20080044330A1 (en) * 2006-08-21 2008-02-21 Shau-Lin Franklin Chen Layered catalyst composite
US7517510B2 (en) * 2006-08-21 2009-04-14 Basf Catalysts Llc Layered catalyst composite
US7550124B2 (en) * 2006-08-21 2009-06-23 Basf Catalysts Llc Layered catalyst composite
US7709414B2 (en) * 2006-11-27 2010-05-04 Nanostellar, Inc. Engine exhaust catalysts containing palladium-gold

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000157867A (en) * 1998-11-25 2000-06-13 Toyota Motor Corp Catalyst for exhaust gas treatment
JP2000246107A (en) * 1999-03-02 2000-09-12 Toyota Motor Corp Catalyst for cleaning exhaust gas, its production and method for cleaning exhaust gas
JP2000342966A (en) * 1999-06-08 2000-12-12 Toyota Motor Corp Catalyst for purifying exhaust gas and method for purifying exhaust gas
JP2004267850A (en) * 2003-03-06 2004-09-30 Ict:Kk Exhaust gas cleaning catalyst and manufacturing method therefor

Also Published As

Publication number Publication date
EP2116299A1 (en) 2009-11-11
US8496899B2 (en) 2013-07-30
EP2116299A4 (en) 2011-09-14
US20100056367A1 (en) 2010-03-04
WO2008090991A1 (en) 2008-07-31
WO2008090991A9 (en) 2009-01-15
JPWO2008090991A1 (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP5113082B2 (en) Exhaust gas purification catalyst
JP4838258B2 (en) Exhaust gas purification catalyst
JP5270075B2 (en) Exhaust gas purification catalyst
JP4092441B2 (en) Exhaust gas purification catalyst
JP4682151B2 (en) Exhaust gas purification catalyst
JP4669322B2 (en) Exhaust gas purification catalyst
JP5037888B2 (en) Exhaust gas purification catalyst
KR101438953B1 (en) LNT Catalysts with Enhanced Storage Capacities of Nitrogen Oxide at Low Temperature
JP2730750B2 (en) Exhaust gas purification catalyst and method for producing the same
WO2010026814A1 (en) Exhaust gas purifying catalyst and method for producing the same
WO2006046316A1 (en) Catalyst for exhaust gas purification
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP4923412B2 (en) Exhaust gas purification catalyst
EP1721655B1 (en) Hydrogen sulfide generation-suppressed catalyst
JP5504834B2 (en) Exhaust gas purification catalyst
JP5604497B2 (en) Exhaust gas purification catalyst
JP5328133B2 (en) Exhaust gas purification catalyst
JP2005205302A (en) Exhaust gas cleaning catalyst and apparatus for combustion engine
JP2015093227A (en) Exhaust gas purification catalyst and manufacturing method thereof
JP5096200B2 (en) Exhaust gas purification catalyst
JP5677682B2 (en) Exhaust purification catalyst
JP3739226B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2005305338A (en) Exhaust gas cleaning catalyst and preparation method therefor
JP2007038073A (en) Catalyst for cleaning exhaust gas
JP4556084B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5113082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees