JP3567708B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP3567708B2
JP3567708B2 JP34266997A JP34266997A JP3567708B2 JP 3567708 B2 JP3567708 B2 JP 3567708B2 JP 34266997 A JP34266997 A JP 34266997A JP 34266997 A JP34266997 A JP 34266997A JP 3567708 B2 JP3567708 B2 JP 3567708B2
Authority
JP
Japan
Prior art keywords
carrier
catalyst
powder
supported
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34266997A
Other languages
Japanese (ja)
Other versions
JPH1110000A (en
Inventor
健 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP34266997A priority Critical patent/JP3567708B2/en
Publication of JPH1110000A publication Critical patent/JPH1110000A/en
Application granted granted Critical
Publication of JP3567708B2 publication Critical patent/JP3567708B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は排ガス浄化用触媒に関し、詳しくは、排ガス中に含まれる一酸化炭素(CO)や炭化水素(HC)を酸化するのに必要な量より過剰な酸素が含まれている排ガス中の、窒素酸化物(NO)を効率よく浄化できる触媒に関する。
【0002】
【従来の技術】
従来より、自動車の排ガス浄化用触媒として、CO及びHCの酸化とNOの還元とを同時に行って排ガスを浄化する三元触媒が用いられている。このような触媒としては、例えばコージェライトなどの耐熱性担体にγ−アルミナからなる担持層を形成し、その担持層にPt,Pd,Rhなどの貴金属を担持させたものが広く知られている。
【0003】
ところで、このような排ガス浄化用触媒の浄化性能は、エンジンの空燃比(A/F)によって大きく異なる。すなわち、空燃比の大きい、つまり燃料濃度が希薄なリーン側では排ガス中の酸素量が多くなり、COやHCを浄化する酸化反応が活発である反面NOを浄化する還元反応が不活発になる。逆に空燃比の小さい、つまり燃料濃度が濃いリッチ側では排ガス中の酸素量が少なくなり、酸化反応は不活発となるが還元反応は活発になる。
【0004】
一方、自動車の走行において、市街地走行の場合には加速・減速が頻繁に行われ、空燃比はストイキ(理論空燃比)近傍からリッチ状態までの範囲内で頻繁に変化する。このような走行における低燃費化の要請に応えるには、なるべく酸素過剰の混合気を供給するリーン側での運転が必要となる。したがってリーン側においてもNOを十分に浄化できる触媒の開発が望まれている。
【0005】
そこで本願出願人は、先にBaなどのアルカリ土類金属とPtをアルミナなどの多孔質担体に担持した排ガス浄化用触媒(例えば特開平5-317652号公報)を提案している。この排ガス浄化用触媒を用い、空燃比をリーン側からパルス状にストイキ〜リッチ側となるように制御することにより、リーン側ではNOx がアルカリ土類金属(NOx 吸蔵体)に吸蔵され、それがストイキ〜リッチ側でHCやCOなどの還元性成分と反応して浄化されるため、リーンバーンにおいてもNOx を効率良く浄化することができる。
【0006】
ところが排ガス中には、燃料中に含まれる硫黄(S)が燃焼して生成したSOが含まれ、それが酸素過剰雰囲気中で触媒金属により酸化されてSOとなる。そしてそれがやはり排ガス中に含まれる水蒸気により容易に硫酸となり、これらの硫黄酸化物がアルカリ土類金属などのNO吸蔵体と反応して亜硫酸塩や硫酸塩が生成し、これによりNO吸蔵体が被毒劣化することが明らかとなった。また、アルミナなどの多孔質担体は硫黄酸化物を吸収しやすいという性質があることから、上記硫黄被毒が促進されるという問題がある。
【0007】
そして、このようにNO吸蔵体が亜硫酸塩や硫酸塩となると、もはやNOを吸蔵することができなくなり、その結果上記触媒では、耐久試験後のNOの浄化性能が低下するという不具合があった。
また、チタニアは酸性質であり酸性質の硫黄酸化物を吸収しにくい。そこでチタニア担体を用いることが想起され実験が行われた。その結果、SOはチタニアには余り吸収されず大部分が下流に流れ、貴金属と直接接触したSOが酸化されるだけであるので被毒の程度は少ないことが明らかとなった。ところがチタニア担体を用いた触媒ではNOの初期浄化性能が低いので、耐久試験後のNOの浄化性能も低いままであるという致命的な不具合があることも明らかとなった。
【0008】
そこで特開平8−99034 号公報には、TiO−Al,ZrO−Al及び#SiO−Alから選ばれる少なくとも1種の複合担体を用い、この複合担体にNO吸蔵体と貴金属を担持した排ガス浄化用触媒が開示されている。
この排ガス浄化用触媒によれば、TiO,ZrO,SiO及びAlのそれぞれの長所が発現され、初期のNO浄化率が高い、担体への硫黄酸化物の吸収が抑制されるため耐久試験後のNO浄化率の低下度合いが少ない、などという利点がある。
【0009】
また特開平8−281116号公報には、リン酸ジルコニウムよりなる担体にNO吸蔵体と貴金属を担持した排ガス浄化用触媒が開示されている。この排ガス浄化用触媒によれば、リン酸ジルコニウムは酸性質であるので担体への硫黄酸化物の近接が抑制され、その結果SOの酸化が抑制されるためNO吸蔵体の硫黄被毒が抑制される。
【0010】
【発明が解決しようとする課題】
ところが上記公報に開示の排ガス浄化用触媒においても、燃料中の硫黄成分が多い場合などの過酷な条件下では、比較的低温域におけるNOの硫黄被毒を抑制することが困難となっていた。
このような不具合は、担体の酸性質をさらに高くすることで改善することができる。ところが従来の排ガス浄化用触媒では、高温における酸性質担体とNO吸蔵体との化学結合や高結晶化により、あるいはリン酸ジルコニウム担体では表面の変質により、担体の酸性質が低下したり消失するという現象が生じて、硫黄被毒を抑制する作用が徐々に低下するという問題があった。そのため酸性質を高くしても、高温耐久試験後には酸性質が著しく低下するか消失するため、結局NO吸蔵体の硫黄被毒を抑制することが困難となり、高温耐久試験後のNO浄化能が著しく低下するという問題がある。
【0011】
本発明はこのような事情に鑑みてなされたものであり、比較的低温域における耐硫黄被毒性の向上と、高温耐久試験後の担体の酸性質の低下の抑制とを両立させ、もって耐久試験後のNO浄化性能をさらに向上させることを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決する請求項1に記載の排ガス浄化用触媒の特徴は、空燃比をリーン側からパルス状にストイキ〜リッチ側となるように制御することにより排ガス中の NO x を浄化する触媒であって、WO3 及びMoO3の少なくとも一方を5〜 30 重量%担持したジルコニアよりなる酸性ジルコニア担体と、アルカリ金属,アルカリ土類金属及び希土類元素の中から選ばれる少なくとも一種よりなり酸性ジルコニア担体に担持されたNOx 吸蔵体と、酸性ジルコニア担体に担持された貴金属と、からなることにある。
【0013】
また請求項2に記載の排ガス浄化用触媒の特徴は、空燃比をリーン側からパルス状にストイキ〜リッチ側となるように制御することにより排ガス中の NO x を浄化する触媒であって、 WO 3 及び MoO 3 の少なくとも一方を5〜 30 重量%担持したジルコニアよりなる酸性ジルコニア担体とアルミナとの混合物よりなる担体と、アルカリ金属及びアルカリ土類金属の中から選ばれる少なくとも一種よりなり担体に担持された NO x 吸蔵体と、担体に担持された貴金属と、からなることにある。
【0014】
【発明の実施の形態】
請求項1及び請求項2に記載の排ガス浄化用触媒では、WO 3 及び MoO 3 の少なくとも一方を5〜 30 重量%担持したジルコニアよりなる酸性ジルコニア担体を用いている。この酸性ジルコニア担体は、Zr原子と、W又はMo原子との酸素原子を介した配位構造によると推察されるが、きわめて強い酸性質を示す。またこの酸性ジルコニア担体は、高温下においても高い安定性を示し、その酸性質が維持される。
【0015】
したがって本発明の排ガス浄化用触媒では、高温耐久試験後にも担体が高い酸性質を維持するため、リーン雰囲気において初期から高温耐久試験後まで比較的低温域における担体への硫黄酸化物の吸着が抑制され、NOx 吸蔵体と硫黄酸化物との反応が抑制される。
【0016】
さらに請求項2に記載の排ガス浄化用触媒では、理由は不明であるが、リッチ雰囲気においてNOx 吸蔵体と硫黄酸化物との反応物が容易に還元されることも明らかとなった。したがって硫黄被毒が生じたNOx 吸蔵体であっても、SO2 が容易に脱離してNOx 吸蔵体は本来のNOx 吸蔵能が容易に回復する。
したがって本発明の排ガス浄化用触媒によれば、使用時のリーン/リッチの繰り返しにおいてNOx 吸蔵体の硫黄被毒が抑制されるため、NOx 吸蔵体は初期から耐久試験後までNOx 吸蔵能を保持し高いNOx 浄化率が確保される。
【0017】
請求項1に記載の触媒に用いられる酸性ジルコニア担体は、WO3 及びMoO3の少なくとも一方とジルコニアとより構成され、ジルコニアにWO3 及びMoO3の少なくとも一方が担持された構成である。
WO3 及びMoO3の少なくとも一方の担持量は、両方含有すればその合計で、担体中に5〜30重量%の範囲とする。5重量%より少ないと担体の酸性質が十分でなく、初期から比較的低温域におけるNOx 吸蔵体と硫黄酸化物との反応を抑制することが困難となり、耐久試験後のNOx 浄化性能の低下を抑制することが困難となる。またWO3 及びMoO3の少なくとも一方の担持量が30重量%を超えると、酸性質は十分であるもののジルコニア量の低減により比表面積が低下するため、耐久試験後のNOx 吸蔵能の低下度合いが著しく大きくなる。
【0018】
なお、触媒のNOx 吸蔵量を考慮すると、WO3 及びMoO3の少なくとも一方の担持量は5〜25重量%の範囲とするのが特に望ましい。25重量%より多くなるとNOx 吸蔵量が低くなってしまう。
WO3 及びMoO3の少なくとも一方は、W及びMoの少なくとも一方の化合物の溶液をジルコニアや水酸化ジルコニウムと接触させてW及びMoの少なくとも一方の化合物をジルコニアや水酸化ジルコニウムに担持し、その後焼成することでWO3 及びMoO3の少なくとも一方をジルコニアに担持することができる
【0019】
請求項2に記載の触媒に用いられる担体は、WO 3 及び MoO 3 の少なくとも一方を5〜 30 重量%担持したジルコニアよりなる酸性ジルコニア担体とアルミナとより構成される。酸性ジルコニア担体は、請求項1に記載した触媒に用いられる担体と同様に、ジルコニアにWO3 及びMoO3の少なくとも一方が担持されたものである
【0020】
請求項2に記載の触媒に用いられる担体は、酸性ジルコニア担体とアルミナとの単純混合物である。
請求項2に記載の触媒に用いられる担体において、酸性ジルコニア担体とアルミナとの混合比率は、重量比で酸性ジルコニア担体:アルミナ=3:1〜1:14の範囲とすることが望ましい。酸性ジルコニア担体がこの範囲より多くなると、全体の酸強度が高くなりすぎ、比表面積が低くなるためと考えられるが、NOx 浄化率が低下するようになる。また酸性ジルコニア担体がこの範囲より少ないと、酸性ジルコニア担体の作用の発現が困難となり耐久試験後のNOx 浄化能が低下する。
【0021】
NO吸蔵材としては、アルカリ金属、アルカリ土類金属及び希土類元素から選ばれる少なくとも一種を用いることができる。アルカリ金属としてはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムが挙げられる。また、アルカリ土類金属とは周期表2A族元素をいい、バリウム、ベリリウム、マグネシウム、カルシウム、ストロンチウムが挙げられる。また希土類元素としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジムなどが例示される。
【0022】
NO吸蔵体の含有量は、担体120 gに対して0.05〜1.0 モルの範囲が望ましい。含有量が0.05モルより少ないとNO吸蔵能力が小さくNO浄化性能が低下し、1.0 モルを超えて含有しても効果が飽和し他の成分量の相対的な低下による不具合が生じる。
貴金属としては、Pt,Rh,Pdの1種又は複数種を用いることができる。その担持量は、Pt及びPdの場合は担体120gに対して 0.1〜20.0gが好ましく、 0.5〜10.0gが特に好ましい。またRhの場合は、担体120 gに対して0.01〜80gが好ましく、0.05〜5.0 gが特に好ましい。担体体積1リットル当たりに換算すれば、Pt及びPdの場合は 0.1〜20gが好ましく、 0.5〜10gが特に好ましい。またRhの場合は0.01〜10gが好ましく、0.05〜5gが特に好ましい。
【0023】
【実施例】
以下、実施例及び比較例により、本発明をさらに具体的に説明する。
(実施例1)
<担体の調製>
タングステン酸アンモニウム67.6gをイオン交換水2.3 Lに溶解した水溶液に、水酸化ジルコニウム122.8 gを混合し、1時間撹拌後、蒸発乾固により溶媒を除去した。得られた粉末をさらに120 ℃で乾燥した後、800 ℃で3時間焼成し、WO3/ZrO2担体粉末を調製した。
<貴金属の担持>
上記で得られたWO3/ZrO2担体粉末の所定量に対し、所定量のジニトロジアンミン白金水溶液を含浸させ、110 ℃で蒸発乾固し250 ℃で1時間焼成して1.5 重量%のPtを担持した。
<NOx 吸蔵体の担持>
Ptが担持されたWO3/ZrO2担体粉末に対し、所定量の酢酸カリウム水溶液を含浸させ、1時間撹拌後110 ℃で蒸発乾固し500 ℃で1時間焼成した。担持されたK量は、WO3/ZrO2担体粉末120 gに対してKが0.3 mol である。
【0024】
これを圧粉成形後、解砕して実施例1のペレット触媒を得た。
(実施例2)
タングステン酸アンモニウム135.1 gをイオン交換水4.5 Lに溶解した水溶液に、水酸化ジルコニウム116.3 gを混合したこと以外は実施例1と同様にして、WO3/ZrO2担体粉末を調製した。そして実施例1と同様にしてPtとKを担持し、実施例2のペレット触媒を調製した。
【0025】
(実施例3)
タングステン酸アンモニウム270.2 gをイオン交換水9.0 Lに溶解した水溶液に、水酸化ジルコニウム103.4 gを混合したこと以外は実施例1と同様にして、WO3/ZrO2担体粉末を調製した。そして実施例1と同様にしてPtとKを担持し、実施例3のペレット触媒を調製した。
【0026】
(実施例4)
タングステン酸アンモニウム270.2 gをイオン交換水9.0 Lに溶解した水溶液に、水酸化ジルコニウム71.1gを混合したこと以外は実施例1と同様にして、WO3/ZrO2担体粉末を調製した。そして実施例1と同様にしてPtとKを担持し、実施例4のペレット触媒を調製した。
【0027】
(実施例5)
タングステン酸アンモニウム405.3 gをイオン交換水8.1 Lに溶解した水溶液に、水酸化ジルコニウム90.5gを混合したこと以外は実施例1と同様にして、WO3/ZrO2担体粉末を調製した。そして実施例1と同様にしてPtとKを担持し、実施例5のペレット触媒を調製した。
【0028】
(実施例6)
タングステン酸アンモニウム270.2 gをイオン交換水9.0 Lに溶解した水溶液に、水酸化ジルコニウム103.4 gを混合したこと以外は実施例1と同様にして、WO3/ZrO2担体粉末を調製した。そして実施例1と同様にPtを担持し、酢酸カリウムの代わりに酢酸セシウムを用いたこと以外は実施例1と同様にしてCsを担持し、実施例6のペレット触媒を調製した。
【0029】
(実施例7)
タングステン酸アンモニウム270.2 gをイオン交換水9.0 Lに溶解した水溶液に、水酸化ジルコニウム103.4 gを混合したこと以外は実施例1と同様にして、WO3/ZrO2担体粉末を調製した。そして実施例1と同様にPtを担持し、酢酸カリウムの代わりに酢酸バリウムを用いたこと以外は実施例1と同様にしてBaを担持し、実施例7のペレット触媒を調製した。
【0030】
(実施例8)
タングステン酸アンモニウム270.2 gをイオン交換水9.0 Lに溶解した水溶液に、水酸化ジルコニウム103.4 gを混合したこと以外は実施例1と同様にして、WO3/ZrO2担体粉末を調製した。そして実施例1と同様にPtを担持し、酢酸カリウムの代わりに酢酸ランタンを用いたこと以外は実施例1と同様にしてLaを担持し、実施例8のペレット触媒を調製した。
【0031】
(実施例9)
モリブデン酸5.6 gを1%アンモニア水140.6 gに溶解した水溶液に、水酸化ジルコニウム122.8 gを混合し、1時間攪拌後、蒸発乾固により溶媒を除去した。得られた粉末をさらに120 ℃で乾燥した後、800 ℃で3時間焼成し、MoO/ZrO担体粉末を調製した。
<貴金属の担持>
上記で得られたMoO/ZrO担体粉末の所定量に対し、所定量のジニトロジアンミン白金水溶液を含浸させ、110 ℃で蒸発乾固し250 ℃で1時間焼成して1.5 重量%のPtを担持した。
<NO吸蔵体の担持>
Ptが担持されたMoO/ZrO担体粉末に対し、所定量の酢酸カリウム水溶液を含浸させ、1時間攪拌後110 ℃で蒸発乾固し500 ℃で1時間焼成した。担持されたK量は、MoO/ZrO担体粉末120 gに対してKが0.3molである。
【0032】
これを圧粉成形後、解砕して実施例9のペレット触媒を得た。
(実施例10)
モリブデン酸11.3gを1%アンモニア水281.3 gに溶解した水溶液に、水酸化ジルコニウム116.3 gを混合したこと以外は実施例9と同様にして、MoO/ZrO担体粉末を調製した。そして実施例9と同様にしてPtとKを担持し、実施例10のペレット触媒を調製した。
【0033】
(実施例11)
モリブデン酸22.5gを1%アンモニア水562.6 gに溶解した水溶液に、水酸化ジルコニウム103.4 gを混合したこと以外は実施例9と同様にして、MoO/ZrO担体粉末を調製した。そして実施例9と同様にしてPtとKを担持し、実施例11のペレット触媒を調製した。
【0034】
(実施例12)
モリブデン酸28.1gを1%アンモニア水703.2 gに溶解した水溶液に、水酸化ジルコニウム96.9gを混合したこと以外は実施例9と同様にして、MoO/ZrO担体粉末を調製した。そして実施例9と同様にしてPtとKを担持し、実施例12のペレット触媒を調製した。
【0035】
(実施例13)
モリブデン酸33.8gを1%アンモニア水843.8 gに溶解した水溶液に、水酸化ジルコニウム90.5gを混合したこと以外は実施例9と同様にして、MoO/ZrO担体粉末を調製した。そして実施例9と同様にしてPtとKを担持し、実施例13のペレット触媒を調製した。
【0036】
(実施例14)
モリブデン酸11.3gを1%アンモニア水281.3 gに溶解した水溶液に、水酸化ジルコニウム116.3 gを混合したこと以外は実施例9と同様にして、MoO/ZrO担体粉末を調製した。そして実施例9と同様にPtを担持し、酢酸カリウムの代わりに酢酸セシウムを用いたこと以外は実施例9と同様にしてCsを担持し、実施例14のペレット触媒を調製した。
【0037】
(実施例15)
モリブデン酸11.3gを1%アンモニア水281.3 gに溶解した水溶液に、水酸化ジルコニウム116.3 gを混合したこと以外は実施例9と同様にして、MoO/ZrO担体粉末を調製した。そして実施例9と同様にPtを担持し、酢酸カリウムの代わりに酢酸バリウムを用いたこと以外は実施例9と同様にしてBaを担持し、実施例15のペレット触媒を調製した。
【0038】
(実施例16)
モリブデン酸11.3gを1%アンモニア水281.3 gに溶解した水溶液に、水酸化ジルコニウム116.3 gを混合したこと以外は実施例9と同様にして、MoO/ZrO担体粉末を調製した。そして実施例9と同様にPtを担持し、酢酸カリウムの代わりに酢酸ランタンを用いたこと以外は実施例9と同様にしてLaを担持し、実施例16のペレット触媒を調製した。
【0039】
(実施例17)
実施例3で得られたWO/ZrO担体粉末の所定量に対し、所定量のジニトロジアンミン白金水溶液を含浸させ、110 ℃で蒸発乾固し250 ℃で1時間焼成して1.5 重量%のPtを担持した。さらに所定量の塩化ロジウム水溶液を含浸させ、110 ℃で蒸発乾固し250 ℃で1時間焼成して1.0 重量%のRhを担持した。
【0040】
そして実施例1と同様にしてPtとKを担持し、実施例17のペレット触媒を調製した。
(比較例1)
タングステン酸アンモニウム27.0gをイオン交換水1.0 Lに溶解した水溶液に、水酸化ジルコニウム126.7 gを混合したこと以外は実施例1と同様にして、WO3/ZrO2担体粉末を調製した。そして実施例1と同様にしてPtとKを担持し、比較例1のペレット触媒を調製した。
【0041】
(比較例2)
モリブデン酸2.3 gを1%アンモニア水56.3gに溶解した水溶液に、水酸化ジルコニウム126.7 gを混合したこと以外は実施例9と同様にして、MoO/ZrO担体粉末を調製した。そして実施例9と同様にしてPtとKを担持し、比較例2のペレット触媒を調製した。
【0042】
(比較例3)
テトラプロポキシチタンとイソプロピルアルミニウムを出発原料とし、Ti/Al=1/8となるような割合にてゾルゲル法により粉末を調製した。得られた粉末を600 ℃で3時間焼成し、TiO−Al複合酸化物担体粉末とした。
このTiO−Al複合酸化物担体粉末を用い、実施例1と同様にしてPtとKを担持して、比較例3のペレット触媒を調製した。
【0043】
(比較例4)
テトラプロポキシチタンとイソプロピルアルミニウムを出発原料とし、Ti/Al=1/8となるような割合にてゾルゲル法により粉末を調製した。得られた粉末を600 ℃で3時間焼成し、TiO−Al複合酸化物担体粉末とした。
このTiO−Al複合酸化物担体粉末を用い、実施例1と同様にしてPtを担持した後、酢酸カリウムの代わりに酢酸バリウムを用いたこと以外は実施例1と同様にしてBaを担持し、比較例4のペレット触媒を調製した。
【0044】
(比較例5)
TiO粉末とγ−Al粉末を重量比で1/4の割合で混合し、TiO/Al担体粉末を調製した。このTiO/Al担体粉末を用い、実施例1と同様にしてPtを担持した後、酢酸カリウムの代わりに酢酸バリウムを用いたこと以外は実施例1と同様にしてBaを担持し、比較例5のペレット触媒を調製した。
【0045】
(比較例6)
塩化ジルコニウムにリン酸を添加してリン酸ジルコニウム水和物を生成し、900 ℃で5時間の焼成によりリン酸ジルコニウム担体粉末を調製した。
このリン酸ジルコニウム担体粉末を用い、実施例1と同様にしてPtとKを担持して、比較例6のペレット触媒を調製した。
【0046】
<評価試験>
上記のそれぞれのペレット触媒について、表1に示すモデルガスDを用い温度300 ℃、空間速度SV=200000h−1の条件で流した時の、触媒1g当たり10分間に吸蔵されたNO量を測定した。結果を表2に示す。
一方、表1に示すモデルガスA(ストイキ)を900 ℃で5時間流通させて熱処理を行った。引き続き、モデルガスB(リッチ)とモデルガスC(リーン)をそれぞれ1分間と4分間ずつ交互に繰り返して流しながら、400 ℃で20分間の熱処理を行った。
【0047】
そして上記熱処理後の各ペレット触媒について、モデルガスDを用い、入りガス温度300 ℃、空間速度SV=200000h−1の条件で流した時の、触媒1g当たり10分間に吸蔵されたNO量を測定した。結果を表2に示す。
また初期のNO吸蔵量と熱処理後のNO吸蔵量の差を算出し、その差の初期NO吸蔵量に対する比率(変化率)を算出し、結果を併せて表2に示す。
【0048】
【表1】

Figure 0003567708
【0049】
【表2】
Figure 0003567708
【0050】
表2より、実施例の触媒は変化率が50%未満と小さく、高温熱処理によってもNO吸蔵能の低下度合いが小さいのに対し、比較例の触媒では変化率が69%以上と大きく、熱処理によってNO吸蔵能が大きく低下している。すなわち実施例の触媒は比較例の触媒に比べて熱処理後にもNO吸蔵体の硫黄被毒が抑制されていることが明らかである。
【0051】
また実施例どうしを比較すると、WO又はMoOの量が30重量%である実施例5及び実施例13の触媒は、他の実施例に比べてNO吸蔵量の絶対量が少ないことから、WO又はMoOは25重量%以下とすることが特に望ましいことも明らかである。
このように実施例の触媒が比較例に比べて熱処理後にも硫黄被毒が抑制される理由は明らかではないが、実施例の触媒は比較例の触媒に比べて高温熱処理による担体の酸性質の低下度合いが小さく、担体の耐熱性が高いことに起因すると考えられる。
【0052】
(実施例18)
タングステン酸アンモニウム20.3gをシュウ酸水溶液に溶解し、そこに水酸化ジルコニウム110.0 gを混合して1時間攪拌した後、水分を蒸発乾固により除去した。続いて120 ℃の乾燥炉で乾燥し、大気中にて800 ℃で3時間焼成した。
得られたWO/ZrO粉末をγ−Al粉末と重量比で1:1で混合し、その混合粉末に所定濃度のジニトロジアンミン白金水溶液の所定量を含浸させ、大気中にて250 ℃で1時間焼成した。さらに所定濃度の酢酸カリウム水溶液の所定量を含浸させ、蒸発乾固後、大気中にて500 ℃で1時間焼成して、実施例18の触媒粉末を得た。Ptの担持量は1重量%であり、Kの担持量は6重量%である。
【0053】
(実施例19)
実施例18と同様にして得られた混合粉末にPtを担持した後、所定濃度の酢酸カリウム水溶液の所定量を含浸させ、蒸発乾固後、大気中にて250 ℃で1時間焼成した。この粉末にさらに所定所定濃度の酢酸バリウム水溶液の所定量を含浸させ、蒸発乾固後、大気中にて500 ℃で1時間焼成して実施例19の触媒粉末を調製した。Ptの担持量は1重量%であり、Kの担持量は3重量%、Baの担持量は9重量%である。
【0054】
(実施例20〜25)
実施例18と同様にして得られたWO/ZrO粉末とγ−Al粉末との混合比を、表3に示すように変化させたこと以外は実施例18と同様にして、各実施例の触媒粉末をそれぞれ調製した。それぞれの触媒粉末のPtの担持量は1重量%であり、Kの担持量は6重量%である。
【0055】
(実施例26)
モリブデン酸13.0gをシュウ酸水溶液に溶解し、そこに水酸化ジルコニウム141.2 gを混合して1時間攪拌した後、水分を蒸発乾固により除去した。続いて120 ℃の乾燥炉で乾燥し、大気中にて800 ℃で3時間焼成した。
得られたMoO/ZrO粉末をγ−Al粉末と重量比で1:1で混合し、その混合粉末に所定濃度のジニトロジアンミン白金水溶液の所定量を含浸させ、大気中にて250 ℃で1時間焼成した。さらに所定濃度の酢酸カリウム水溶液の所定量を含浸させ、蒸発乾固後、大気中にて500 ℃で1時間焼成して、実施例26の触媒粉末を得た。Ptの担持量は1重量%であり、Kの担持量は6重量%である。
【0056】
(比較例7)
TiO粉末をγ−Al粉末と重量比で1:1で混合し、その混合粉末に所定濃度のジニトロジアンミン白金水溶液の所定量を含浸させ、大気中にて250 ℃で1時間焼成した。さらに所定濃度の酢酸カリウム水溶液の所定量を含浸させ、蒸発乾固後、大気中にて500 ℃で1時間焼成して、比較例7の触媒粉末を得た。Ptの担持量は1重量%であり、Kの担持量は6重量%である。
【0057】
(試験・評価)
それぞれの触媒粉末を 1.0〜1.7 mmのペレットに造粒し、それぞれのペレット触媒とした。このペレット触媒をそれぞれ評価装置内に配置し、空燃比A/F=12相当のリッチモデルガス(表1のモデルガスB)とA/F=21相当のリーンモデルガス(表1のモデルガスC)を1分/4分の時間で切り替えながら、入りガス温度700 ℃で5時間流通させる耐久試験を行った。
【0058】
耐久試験後の実施例18と比較例7の触媒粉末を、室温から 700℃まで速度 ℃/分で昇温し、SOの脱離量を測定した。結果を図1に示す。
また耐久試験後のそれぞれのペレット触媒について、硫黄の残留量を測定するとともに、表1のモデルガスDを用い、入りガス温度300 ℃、空間速度SV=200000h−1の条件で流した時のNO浄化率を測定した。結果を表3に示す。
【0059】
【表3】
Figure 0003567708
図1及び表3より、実施例18の触媒は比較例7の触媒に比べて残留硫黄量が少ないにも関わらず、SOの脱離量が多くなっている。すなわち実施例18の触媒は、比較例7の触媒に比べて硫黄酸化物と反応しにくく、しかも反応して結合した硫黄分を脱離し易いことが明らかであり、硫黄被毒が著しく抑制されていることが明らかである。
【0060】
一方、表3より、実施例18〜26の触媒は比較例7の触媒に比べて残留硫黄量が少なく、硫黄被毒が抑制されていることがわかる。またその結果、耐久試験後のNO浄化率が向上していることも明らかである。
また実施例20の触媒は他の実施例に比べてNO浄化率が低いが、これはWO/ZrO:Al比が3:1であって全体の酸強度が特に高いこと、担体の比表面積が他より若干低いことから、NOの吸蔵・還元能がある程度阻害されていると考えられる。
【0061】
また実施例25の触媒も他の実施例に比べてNO浄化率が低いが、これはWO/ZrO:Al比が1:14であって、WO/ZrOが少ないためにその作用が充分に発現しにくくなっていると考えられる。
【0062】
【発明の効果】
すなわち本発明の排ガス浄化用触媒によれば、担体はきわめて高い酸性質を示すため、硫黄酸化物の近接が抑制され、また被毒を受けても容易に分解して硫黄分が速やかに脱離する。したがってNO吸蔵体の硫黄被毒が著しく抑制されるので、高いNO浄化能を有している。
【0063】
そして高温耐久試験後においても、比較的低温域におけるNO吸蔵体の硫黄被毒が抑制されるため、耐久試験後にも高いNO吸蔵能が確保され、高いNO浄化性能を維持することができる。
【図面の簡単な説明】
【図1】本発明の実施例18の触媒と比較例7の触媒の、耐久試験後に昇温したときの温度と放出されたSO量との関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purifying catalyst, and more particularly, to an exhaust gas containing an excessive amount of oxygen more than necessary to oxidize carbon monoxide (CO) and hydrocarbons (HC) contained in the exhaust gas. Nitrogen oxide (NOxThe present invention relates to a catalyst capable of efficiently purifying the above.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, oxidation of CO and HC and NOxA three-way catalyst is used for purifying exhaust gas by simultaneously performing reduction of the exhaust gas. As such a catalyst, for example, a catalyst in which a supporting layer made of γ-alumina is formed on a heat-resistant carrier such as cordierite and a noble metal such as Pt, Pd, and Rh is supported on the supporting layer is widely known. .
[0003]
By the way, the purification performance of such an exhaust gas purification catalyst greatly differs depending on the air-fuel ratio (A / F) of the engine. That is, on the lean side where the air-fuel ratio is large, that is, on the lean side where the fuel concentration is lean, the amount of oxygen in the exhaust gas increases, and the oxidation reaction for purifying CO and HC is active, but NOxThe reduction reaction for purifying the catalyst becomes inactive. Conversely, on the rich side where the air-fuel ratio is small, that is, on the rich side where the fuel concentration is high, the amount of oxygen in the exhaust gas decreases, and the oxidation reaction becomes inactive but the reduction reaction becomes active.
[0004]
On the other hand, in running a car, acceleration and deceleration are frequently performed in the case of running in an urban area, and the air-fuel ratio frequently changes within a range from near stoichiometric (theoretical air-fuel ratio) to a rich state. In order to meet the demand for low fuel consumption in such traveling, it is necessary to operate on the lean side, which supplies an air-fuel mixture as much as possible. Therefore, NO on the lean sidexIt is desired to develop a catalyst that can sufficiently purify the catalyst.
[0005]
Therefore, the applicant of the present application has previously proposed an exhaust gas purifying catalyst in which an alkaline earth metal such as Ba and Pt are supported on a porous carrier such as alumina (for example, Japanese Patent Laid-Open No. 5-3176).52Gazette). Using this exhaust gas purifying catalyst, the air-fuel ratio is controlled in a pulsed manner from the lean side to the stoichiometric to rich side, so that NOx is occluded by the alkaline earth metal (NOx storage body) on the lean side. Since it is purified by reacting with reducing components such as HC and CO on the stoichiometric to rich side, NOx can be efficiently purified even in lean burn.
[0006]
However, in the exhaust gas, SO (S) contained in the fuel is combusted and produced.2Which is oxidized by the catalytic metal in an oxygen-rich atmosphere to form SO 23It becomes. It is also easily converted to sulfuric acid by the water vapor contained in the exhaust gas, and these sulfur oxides are converted to NO such as alkaline earth metals.xReacts with the occlusion body to produce sulfites and sulfates,xIt became clear that the occlusion body was poisoned and deteriorated. In addition, since a porous carrier such as alumina has a property of easily absorbing sulfur oxide, there is a problem that the above-mentioned sulfur poisoning is promoted.
[0007]
And like this NOxWhen the occluder becomes sulfite or sulfate, NOxCannot be occluded. As a result, in the above catalyst, NOxThere was a problem that the purification performance of the fuel cell deteriorated.
In addition, titania has an acid property, and it is difficult to absorb sulfur oxide having an acid property. Therefore, an experiment was conducted in which the use of a titania carrier was recalled. As a result, SO2Is not absorbed by titania, most of it flows downstream, and SO directly contacts precious metals.2It has been clarified that the degree of poisoning is small because only is oxidized. However, a catalyst using a titania carrier has NOxHas low initial purification performance.xIt has also been found that there is a fatal problem that the purification performance of the fuel cell remains low.
[0008]
Therefore, JP-A-8-99034 discloses that TiO2-Al2O3, ZrO2-Al2O3And #SiO2-Al2O3At least one composite carrier selected from the group consisting ofxAn exhaust gas purifying catalyst supporting an occlusion body and a noble metal is disclosed.
According to this exhaust gas purifying catalyst, TiO2, ZrO2, SiO2And Al2O3The advantages of each ofxHigh purification rate, NO absorption after endurance test because sulfur oxide absorption into carrier is suppressedxThere is an advantage that the degree of reduction in the purification rate is small.
[0009]
JP-A-8-281116 discloses that a carrier made of zirconium phosphate contains NO.xAn exhaust gas purifying catalyst supporting an occlusion body and a noble metal is disclosed. According to this exhaust gas purifying catalyst, since zirconium phosphate is acidic, the approach of the sulfur oxide to the carrier is suppressed, and as a result, SO2NO because oxidation of NO is suppressedxSulfur poisoning of the occlusion body is suppressed.
[0010]
[Problems to be solved by the invention]
However, even in the exhaust gas purifying catalyst disclosed in the above publication, under severe conditions such as when the sulfur component in the fuel is large, the NOxIt has been difficult to suppress sulfur poisoning of the steel.
Such a problem can be improved by further increasing the acidity of the carrier. However, in a conventional exhaust gas purifying catalyst, an acid-type carrier and NOxDue to chemical bonding with the occlusion body or high crystallization, or in the case of a zirconium phosphate carrier, a phenomenon that the acid property of the carrier is reduced or disappears due to the deterioration of the surface, and the effect of suppressing sulfur poisoning gradually decreases. There was a problem of doing. Therefore, even if the acid property is increased, the acid property is significantly reduced or disappears after the high-temperature durability test.xIt becomes difficult to suppress sulfur poisoning of the occlusion body, and NOxThere is a problem that purification ability is significantly reduced.
[0011]
The present invention has been made in view of such circumstances, and achieves both improvement of sulfur poisoning resistance in a relatively low temperature range and suppression of a decrease in the acidity of a carrier after a high-temperature durability test, thereby achieving a durability test. Later NOxIt is intended to further improve the purification performance.
[0012]
[Means for Solving the Problems]
The feature of the exhaust gas purifying catalyst according to claim 1, which solves the above problem, is that:By controlling the air-fuel ratio from the lean side to the stoichiometric to rich side in a pulsed manner, NO x A catalyst for purifyingWOThree And MoOThreeAt least one ofTo 5 30 An acidic zirconia carrier composed of zirconia supported by weight%;At least one selected from the group consisting of alkali metals, alkaline earth metals and rare earth elementsAcid zirconia carrierNO supported onx Occluder,Acidic zirconiaAnd a noble metal supported on a carrier.
[0013]
The feature of the exhaust gas purifying catalyst according to claim 2 is that:By controlling the air-fuel ratio from the lean side to the stoichiometric to rich side in a pulsed manner, NO x A catalyst for purifying WO Three as well as MoO Three At least one of 5 30 A carrier composed of a mixture of an acidic zirconia carrier composed of zirconia supported by weight% and alumina, and at least one selected from alkali metals and alkaline earth metals supported on the carrier. NO x An occlusion body, a noble metal supported on a carrier,Consists of
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
In the exhaust gas purifying catalyst according to claim 1 and claim 2,WO Three as well as MoO Three At least one of 5 30 Acidic zirconia carrier consisting of zirconia supported by weight%Is used. thisAcidic zirconiaThe support is presumed to have a coordination structure via an oxygen atom between a Zr atom and a W or Mo atom, but exhibits extremely strong acid properties. Also thisAcidic zirconiaThe carrier exhibits high stability even at high temperatures and maintains its acid properties.
[0015]
Therefore, in the exhaust gas purifying catalyst of the present invention, since the carrier maintains high acidity even after the high-temperature durability test, the adsorption of sulfur oxides on the carrier in a relatively low temperature range from the initial stage to after the high-temperature durability test in a lean atmosphere is suppressed. And nox The reaction between the occluding body and the sulfur oxide is suppressed.
[0016]
furtherClaim 2Although the reason is unknown for the exhaust gas purifying catalyst described inx It was also clarified that the reaction product between the storage material and the sulfur oxide was easily reduced. Therefore, sulfur poisoned NOx Even if it is an occlusion body, SOTwo Easily desorbed NOx The storage body is the original NOx The storage capacity is easily restored.
Therefore, according to the exhaust gas purifying catalyst of the present invention, NO / NOx NO is suppressed because sulfur poisoning of the occlusion body is suppressed.x NO from the initial stage to after the endurance testx High NO with storage capacityx Purification rate is ensured.
[0017]
Claim 1Used for the described catalystAcidic zirconiaThe carrier is WOThree And MoOThreeComposed of at least one of zirconia andTo zirconiaWOThree And MoOThreeAt least one of them is supported.
WOThree And MoOThreeAt least one ofCarry amountIs 5 to 30% by weight in the carrier in total if both are contained.Range.If the amount is less than 5% by weight, the acidity of the carrier is not sufficient, and NOx It becomes difficult to suppress the reaction between the occlusion body and the sulfur oxide, and the NOx It becomes difficult to suppress a decrease in purification performance. Also WOThree And MoOThreeAt least one ofCarry amountExceeds 30% by weight, although the acid properties are sufficient, the specific surface area decreases due to the reduction in the amount of zirconia.x The degree of decrease in occlusion capacity is significantly increased.
[0018]
The catalyst NOx Considering the storage amount, WOThree And MoOThreeAt least one ofCarry amountIs particularly preferably in the range of 5 to 25% by weight. NO if more than 25% by weightx The storage amount will be low.
WOThree And MoOThreeAt least one of the compounds is contacted with a solution of at least one compound of W and Mo with zirconia or zirconium hydroxide to support at least one compound of W and Mo on zirconia or zirconium hydroxide, and then calcined.Three And MoOThreeAt least one of zirconiaCan be carried.
[0019]
Claim 2The carrier used in the catalyst described in the,WO Three as well as MoO Three At least one of 5 30 Acidic zirconia carrier consisting of zirconia supported by weight%And alumina. The acidic zirconia carrier is a carrier used for the catalyst according to claim 1.Similarly, zirconiaWOThree And MoOThreeAt least one ofIs the thing.
[0020]
Claim 2The carrier used in the catalyst described in the above, an acidic zirconia carrier and aluminaIt is a simple mixture.
Claim 2In the carrier used for the catalyst described in the above, the mixing ratio of the acidic zirconia carrier and alumina is desirably in the range of acidic zirconia carrier: alumina = 3: 1 to 1:14 by weight ratio. If the amount of the acidic zirconia support exceeds this range, it is considered that the overall acid strength becomes too high and the specific surface area becomes low.x The purification rate decreases. When the amount of the acidic zirconia support is less than this range, it is difficult to express the action of the acidic zirconia support, and NO after the durability test is performed.x Purification ability decreases.
[0021]
NOxAs the occluding material, at least one selected from alkali metals, alkaline earth metals, and rare earth elements can be used. Examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium, and francium. Further, the alkaline earth metal refers to an element of Group 2A of the periodic table, and examples thereof include barium, beryllium, magnesium, calcium, and strontium. Examples of the rare earth element include scandium, yttrium, lanthanum, cerium, praseodymium, and neodymium.
[0022]
NOxThe content of the occluding material is preferably in the range of 0.05 to 1.0 mol per 120 g of the carrier. If the content is less than 0.05 mol, NOxLow storage capacity and NOxThe purifying performance is reduced, and even if the content exceeds 1.0 mol, the effect is saturated and a problem occurs due to a relative decrease in the amount of other components.
As the noble metal, one or more of Pt, Rh, and Pd can be used. In the case of Pt and Pd, the carrying amount is preferably 0.1 to 20.0 g, particularly preferably 0.5 to 10.0 g, per 120 g of the carrier. In the case of Rh, the amount is preferably from 0.01 to 80 g, particularly preferably from 0.05 to 5.0 g, per 120 g of the carrier. When converted to 1 liter of carrier volume, in the case of Pt and Pd, 0.1 to 20 g is preferable, and 0.5 to 10 g is particularly preferable. In the case of Rh, 0.01 to 10 g is preferable, and 0.05 to 5 g is particularly preferable.
[0023]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
(Example 1)
<Preparation of carrier>
Tungstic acid122.8 g of zirconium hydroxide was mixed with an aqueous solution obtained by dissolving 67.6 g of ammonium in 2.3 L of ion-exchanged water, stirred for 1 hour, and evaporated to dryness to remove the solvent. The obtained powder was further dried at 120 ° C., and calcined at 800 ° C. for 3 hours to obtain WO 2Three/ ZrOTwoA carrier powder was prepared.
<Support of precious metal>
WO obtained aboveThree/ ZrOTwoA predetermined amount of the carrier powder was impregnated with a predetermined amount of an aqueous solution of dinitrodiammine platinum, evaporated to dryness at 110 ° C., and calcined at 250 ° C. for 1 hour to carry 1.5% by weight of Pt.
<NOx Carrying occlusion body>
WO loaded with PtThree/ ZrOTwoThe carrier powder was impregnated with a predetermined amount of an aqueous potassium acetate solution, stirred for 1 hour, evaporated to dryness at 110 ° C., and calcined at 500 ° C. for 1 hour. The amount of K supported is WOThree/ ZrOTwoK is 0.3 mol per 120 g of carrier powder.
[0024]
This was compacted and then crushed to obtain a pellet catalyst of Example 1.
(Example 2)
Tungstic acidThe procedure of Example 1 was repeated, except that 116.3 g of zirconium hydroxide was mixed with an aqueous solution in which 135.1 g of ammonium was dissolved in 4.5 L of ion-exchanged water.Three/ ZrOTwoA carrier powder was prepared. Then, Pt and K were carried in the same manner as in Example 1 to prepare a pellet catalyst of Example 2.
[0025]
(Example 3)
Tungstic acidIn the same manner as in Example 1 except that 103.4 g of zirconium hydroxide was mixed with an aqueous solution in which 270.2 g of ammonium was dissolved in 9.0 L of ion-exchanged water, WOThree/ ZrOTwoA carrier powder was prepared. Then, Pt and K were loaded in the same manner as in Example 1 to prepare a pellet catalyst of Example 3.
[0026]
(Example 4)
Tungstic acidIn the same manner as in Example 1 except that 71.1 g of zirconium hydroxide was mixed with an aqueous solution in which 270.2 g of ammonium was dissolved in 9.0 L of ion-exchanged water, WOThree/ ZrOTwoA carrier powder was prepared. Then, Pt and K were carried in the same manner as in Example 1 to prepare a pellet catalyst of Example 4.
[0027]
(Example 5)
Tungstic acidIn the same manner as in Example 1 except that 90.5 g of zirconium hydroxide was mixed with an aqueous solution in which 405.3 g of ammonium was dissolved in 8.1 L of ion-exchanged water, WOThree/ ZrOTwoA carrier powder was prepared. Then, Pt and K were carried in the same manner as in Example 1 to prepare a pellet catalyst of Example 5.
[0028]
(Example 6)
Tungstic acidIn the same manner as in Example 1 except that 103.4 g of zirconium hydroxide was mixed with an aqueous solution in which 270.2 g of ammonium was dissolved in 9.0 L of ion-exchanged water, WOThree/ ZrOTwoA carrier powder was prepared. Then, Pt was supported in the same manner as in Example 1, and Cs was supported in the same manner as in Example 1 except that cesium acetate was used instead of potassium acetate, whereby a pellet catalyst of Example 6 was prepared.
[0029]
(Example 7)
Tungstic acidIn the same manner as in Example 1 except that 103.4 g of zirconium hydroxide was mixed with an aqueous solution in which 270.2 g of ammonium was dissolved in 9.0 L of ion-exchanged water, WOThree/ ZrOTwoA carrier powder was prepared. Pt was supported in the same manner as in Example 1, and Ba was supported in the same manner as in Example 1 except that barium acetate was used instead of potassium acetate, to thereby prepare a pellet catalyst of Example 7.
[0030]
(Example 8)
Tungstic acidIn the same manner as in Example 1 except that 103.4 g of zirconium hydroxide was mixed with an aqueous solution in which 270.2 g of ammonium was dissolved in 9.0 L of ion-exchanged water, WOThree/ ZrOTwoA carrier powder was prepared. Then, Pt was supported in the same manner as in Example 1, and La was supported in the same manner as in Example 1 except that lanthanum acetate was used instead of potassium acetate, whereby a pellet catalyst of Example 8 was prepared.
[0031]
(Example 9)
An aqueous solution in which 5.6 g of molybdic acid was dissolved in 140.6 g of 1% aqueous ammonia was mixed with 122.8 g of zirconium hydroxide. After stirring for 1 hour, the solvent was removed by evaporation to dryness. The obtained powder was further dried at 120 ° C., and calcined at 800 ° C. for 3 hours to obtain MoO.3/ ZrO2A carrier powder was prepared.
<Support of precious metal>
MoO obtained above3/ ZrO2A predetermined amount of the carrier powder was impregnated with a predetermined amount of an aqueous solution of dinitrodiammine platinum, evaporated to dryness at 110 ° C., and calcined at 250 ° C. for 1 hour to carry 1.5% by weight of Pt.
<NOxCarrying occlusion body>
MoO carrying Pt3/ ZrO2The carrier powder was impregnated with a predetermined amount of an aqueous potassium acetate solution, stirred for 1 hour, evaporated to dryness at 110 ° C., and calcined at 500 ° C. for 1 hour. The amount of K supported is MoO3/ ZrO2K is 0.3 mol per 120 g of the carrier powder.
[0032]
This was compacted and then crushed to obtain a pellet catalyst of Example 9.
(Example 10)
The same procedure as in Example 9 was conducted except that 116.3 g of zirconium hydroxide was mixed with an aqueous solution in which 11.3 g of molybdic acid was dissolved in 281.3 g of 1% aqueous ammonia.3/ ZrO2A carrier powder was prepared. Then, Pt and K were carried in the same manner as in Example 9 to prepare a pellet catalyst of Example 10.
[0033]
(Example 11)
MoO 2 was prepared in the same manner as in Example 9 except that 103.4 g of zirconium hydroxide was mixed with an aqueous solution in which 22.5 g of molybdic acid was dissolved in 562.6 g of 1% aqueous ammonia.3/ ZrO2A carrier powder was prepared. Then, Pt and K were loaded in the same manner as in Example 9 to prepare a pellet catalyst of Example 11.
[0034]
(Example 12)
In the same manner as in Example 9, except that 96.9 g of zirconium hydroxide was mixed with an aqueous solution in which 28.1 g of molybdic acid was dissolved in 703.2 g of 1% aqueous ammonia.3/ ZrO2A carrier powder was prepared. Pt and K were carried in the same manner as in Example 9 to prepare a pellet catalyst of Example 12.
[0035]
(Example 13)
In the same manner as in Example 9 except that 90.5 g of zirconium hydroxide was mixed with an aqueous solution in which 33.8 g of molybdic acid was dissolved in 843.8 g of 1% aqueous ammonia, MoO was used.3/ ZrO2A carrier powder was prepared. Then, Pt and K were loaded in the same manner as in Example 9 to prepare a pellet catalyst of Example 13.
[0036]
(Example 14)
The same procedure as in Example 9 was conducted except that 116.3 g of zirconium hydroxide was mixed with an aqueous solution in which 11.3 g of molybdic acid was dissolved in 281.3 g of 1% aqueous ammonia.3/ ZrO2A carrier powder was prepared. Then, Pt was supported in the same manner as in Example 9, and Cs was supported in the same manner as in Example 9 except that cesium acetate was used instead of potassium acetate, to thereby prepare a pellet catalyst of Example 14.
[0037]
(Example 15)
The same procedure as in Example 9 was conducted except that 116.3 g of zirconium hydroxide was mixed with an aqueous solution in which 11.3 g of molybdic acid was dissolved in 281.3 g of 1% aqueous ammonia.3/ ZrO2A carrier powder was prepared. Then, Pt was supported in the same manner as in Example 9, and Ba was supported in the same manner as in Example 9 except that barium acetate was used instead of potassium acetate, whereby a pellet catalyst of Example 15 was prepared.
[0038]
(Example 16)
The same procedure as in Example 9 was conducted except that 116.3 g of zirconium hydroxide was mixed with an aqueous solution in which 11.3 g of molybdic acid was dissolved in 281.3 g of 1% aqueous ammonia.3/ ZrO2A carrier powder was prepared. Then, Pt was supported in the same manner as in Example 9, and La was supported in the same manner as in Example 9 except that lanthanum acetate was used instead of potassium acetate, whereby a pellet catalyst of Example 16 was prepared.
[0039]
(Example 17)
WO obtained in Example 33/ ZrO2A predetermined amount of the carrier powder was impregnated with a predetermined amount of an aqueous solution of dinitrodiammine platinum, evaporated to dryness at 110 ° C., and calcined at 250 ° C. for 1 hour to carry 1.5% by weight of Pt. Further, a predetermined amount of a rhodium chloride aqueous solution was impregnated, evaporated to dryness at 110 ° C., and calcined at 250 ° C. for 1 hour to carry 1.0% by weight of Rh.
[0040]
Then, Pt and K were carried in the same manner as in Example 1 to prepare a pellet catalyst of Example 17.
(Comparative Example 1)
Tungstic acidIn the same manner as in Example 1 except that 126.7 g of zirconium hydroxide was mixed with an aqueous solution in which 27.0 g of ammonium was dissolved in 1.0 L of ion-exchanged water, WOThree/ ZrOTwoA carrier powder was prepared. Then, Pt and K were carried in the same manner as in Example 1 to prepare a pellet catalyst of Comparative Example 1.
[0041]
(Comparative Example 2)
MoO was prepared in the same manner as in Example 9 except that 126.7 g of zirconium hydroxide was mixed with an aqueous solution in which 2.3 g of molybdic acid was dissolved in 56.3 g of 1% aqueous ammonia.3/ ZrO2A carrier powder was prepared. Then, Pt and K were carried in the same manner as in Example 9 to prepare a pellet catalyst of Comparative Example 2.
[0042]
(Comparative Example 3)
Using tetrapropoxytitanium and isopropylaluminum as starting materials, powders were prepared by a sol-gel method in such a ratio that Ti / Al = 1/8. The obtained powder is fired at 600 ° C. for 3 hours,2-Al2O3This was a composite oxide carrier powder.
This TiO2-Al2O3Pt and K were supported in the same manner as in Example 1 using the composite oxide carrier powder to prepare a pellet catalyst of Comparative Example 3.
[0043]
(Comparative Example 4)
Using tetrapropoxytitanium and isopropylaluminum as starting materials, powders were prepared by a sol-gel method in such a ratio that Ti / Al = 1/8. The obtained powder is fired at 600 ° C. for 3 hours,2-Al2O3This was a composite oxide carrier powder.
This TiO2-Al2O3After using the composite oxide carrier powder and supporting Pt as in Example 1, Ba was supported as in Example 1 except that barium acetate was used instead of potassium acetate, and A pellet catalyst was prepared.
[0044]
(Comparative Example 5)
TiO2Powder and γ-Al2O3The powder is mixed at a ratio of 1/4 by weight,2/ Al2O3A carrier powder was prepared. This TiO2/ Al2O3Using the carrier powder, after supporting Pt in the same manner as in Example 1, Ba was supported in the same manner as in Example 1 except that barium acetate was used instead of potassium acetate, and the pellet catalyst of Comparative Example 5 was used. Prepared.
[0045]
(Comparative Example 6)
Phosphoric acid was added to zirconium chloride to produce zirconium phosphate hydrate, and calcined at 900 ° C. for 5 hours to prepare a zirconium phosphate carrier powder.
Using this zirconium phosphate carrier powder, Pt and K were carried in the same manner as in Example 1 to prepare a pellet catalyst of Comparative Example 6.
[0046]
<Evaluation test>
For each of the above pellet catalysts, a model gas D shown in Table 1 was used at a temperature of 300 ° C. and a space velocity SV = 200000 h.-1NO stored for 10 minutes per gram of catalyst when flowing under the conditionsxThe amount was measured. Table 2 shows the results.
On the other hand, a heat treatment was performed by flowing a model gas A (stoichiometric) shown in Table 1 at 900 ° C. for 5 hours. Subsequently, heat treatment was performed at 400 ° C. for 20 minutes while alternately flowing model gas B (rich) and model gas C (lean) alternately for 1 minute and 4 minutes, respectively.
[0047]
Then, for each of the pellet catalysts after the heat treatment, the model gas D was used, the input gas temperature was 300 ° C., and the space velocity SV was 200000 h.-1NO stored for 10 minutes per gram of catalyst when flowing under the conditionsxThe amount was measured. Table 2 shows the results.
Also the initial NOxStorage amount and NO after heat treatmentxCalculate the difference between the occlusion amounts and calculate the initial NO of the difference.xThe ratio (change rate) to the occlusion amount was calculated, and the results are shown in Table 2.
[0048]
[Table 1]
Figure 0003567708
[0049]
[Table 2]
Figure 0003567708
[0050]
Table 2 shows that the catalysts of the examples had a small change rate of less than 50%, and that NOxWhile the degree of decrease in the occlusion ability is small, the change rate of the catalyst of the comparative example is as large as 69% or more.xThe storage capacity has dropped significantly. That is, the catalyst of the example was NO compared to the catalyst of the comparative example even after the heat treatment.xIt is clear that the sulfur poisoning of the occlusion body is suppressed.
[0051]
Further, when comparing the examples, WO3Or MoO3The catalysts of Example 5 and Example 13 in which the amount ofxSince the absolute amount of storage is small, WO3Or MoO3It is also clear that it is particularly desirable that the content be 25% by weight or less.
As described above, it is not clear why the catalyst of the example suppresses sulfur poisoning even after the heat treatment as compared with the comparative example, but the catalyst of the example has a higher acidity than the catalyst of the comparative example due to the high-temperature heat treatment. It is considered that the degree of decrease is small and the heat resistance of the carrier is high.
[0052]
(Example 18)
20.3 g of ammonium tungstate was dissolved in an aqueous solution of oxalic acid, and 110.0 g of zirconium hydroxide was mixed therein and stirred for 1 hour, and then water was removed by evaporation to dryness. Subsequently, it was dried in a drying oven at 120 ° C. and fired in the air at 800 ° C. for 3 hours.
WO obtained3/ ZrO2Γ-Al powder2O3The powder was mixed with the powder at a weight ratio of 1: 1. The mixed powder was impregnated with a predetermined amount of a dinitrodiammine platinum aqueous solution having a predetermined concentration, and calcined at 250 ° C. for 1 hour in the atmosphere. Further, a predetermined amount of an aqueous solution of potassium acetate having a predetermined concentration was impregnated, evaporated to dryness, and calcined at 500 ° C. for 1 hour in the air to obtain a catalyst powder of Example 18. The supported amount of Pt is 1% by weight, and the supported amount of K is 6% by weight.
[0053]
(Example 19)
After supporting Pt on the mixed powder obtained in the same manner as in Example 18, a predetermined amount of an aqueous solution of potassium acetate having a predetermined concentration was impregnated, evaporated to dryness, and then calcined at 250 ° C. for 1 hour in the atmosphere. This powder was further impregnated with a predetermined amount of a barium acetate aqueous solution having a predetermined concentration, evaporated to dryness, and calcined at 500 ° C. for 1 hour in the air to prepare a catalyst powder of Example 19. The supported amount of Pt is 1% by weight, the supported amount of K is 3% by weight, and the supported amount of Ba is 9% by weight.
[0054]
(Examples 20 to 25)
WO obtained in the same manner as in Example 183/ ZrO2Powder and γ-Al2O3Except that the mixing ratio with the powder was changed as shown in Table 3, the same procedure as in Example 18 was carried out to prepare the catalyst powder of each example. The supported amount of Pt in each catalyst powder was 1% by weight, and the supported amount of K was 6% by weight.
[0055]
(Example 26)
Molybdic acid (13.0 g) was dissolved in oxalic acid aqueous solution, and zirconium hydroxide (141.2 g) was mixed therein and stirred for 1 hour, and then water was removed by evaporation to dryness. Subsequently, it was dried in a drying oven at 120 ° C. and fired in the air at 800 ° C. for 3 hours.
MoO obtained3/ ZrO2Γ-Al powder2O3The powder was mixed with the powder at a weight ratio of 1: 1. The mixed powder was impregnated with a predetermined amount of a dinitrodiammine platinum aqueous solution having a predetermined concentration, and calcined at 250 ° C. for 1 hour in the atmosphere. Further, a predetermined amount of a potassium acetate aqueous solution having a predetermined concentration was impregnated, evaporated to dryness, and calcined at 500 ° C. for 1 hour in the air to obtain a catalyst powder of Example 26. The supported amount of Pt is 1% by weight, and the supported amount of K is 6% by weight.
[0056]
(Comparative Example 7)
TiO2Γ-Al powder2O3The powder was mixed with the powder at a weight ratio of 1: 1. The mixed powder was impregnated with a predetermined amount of a dinitrodiammine platinum aqueous solution having a predetermined concentration, and calcined at 250 ° C. for 1 hour in the atmosphere. Further, a predetermined amount of a potassium acetate aqueous solution having a predetermined concentration was impregnated, evaporated to dryness, and calcined at 500 ° C. for 1 hour in the air to obtain a catalyst powder of Comparative Example 7. The supported amount of Pt is 1% by weight, and the supported amount of K is 6% by weight.
[0057]
(Test / Evaluation)
Each of the catalyst powders was granulated into pellets of 1.0 to 1.7 mm to obtain respective pellet catalysts. Each of the pellet catalysts was placed in an evaluation device, and a rich model gas (model gas B in Table 1) corresponding to A / F = 12 and a lean model gas (model gas C in Table 1) corresponding to A / F = 21 were used. ) Was switched at a time of 1 minute / 4 minutes, and an endurance test was conducted in which the gas was supplied at 700 ° C. for 5 hours.
[0058]
The catalyst powders of Example 18 and Comparative Example 7 after the endurance test were heated from room temperature to 700 ° C. at a rate of ° C./min.2Was measured. The results are shown in FIG.
In addition, the residual amount of sulfur was measured for each of the pellet catalysts after the durability test, and using the model gas D shown in Table 1, the inlet gas temperature was 300 ° C., and the space velocity SV was 200000 h.-1NO when flowing under the conditions ofxThe purification rate was measured. Table 3 shows the results.
[0059]
[Table 3]
Figure 0003567708
From FIG. 1 and Table 3, it can be seen that the catalyst of Example 18 had a lower SO2Is increasing. That is, it is clear that the catalyst of Example 18 is less likely to react with sulfur oxides than the catalyst of Comparative Example 7, and it is easy to desorb the sulfur component which has reacted and bonded, and sulfur poisoning is significantly suppressed. It is clear that there is.
[0060]
On the other hand, from Table 3, it can be seen that the catalysts of Examples 18 to 26 have a smaller residual sulfur amount than the catalyst of Comparative Example 7, and the sulfur poisoning is suppressed. As a result, the NO after the endurance testxIt is also clear that the purification rate is improving.
Further, the catalyst of Example 20 is NOxPurification rate is low, but this is WO3/ ZrO2: Al2O3Since the ratio is 3: 1 and the overall acid strength is particularly high, and the specific surface area of the carrier is slightly lower than the others, NOxIt is considered that the occlusion / reduction ability of the phenol is inhibited to some extent.
[0061]
Further, the catalyst of Example 25 was also NO compared with the other examples.xPurification rate is low, but this is WO3/ ZrO2: Al2O3The ratio is 1:14 and WO3/ ZrO2It is considered that the effect is less likely to be sufficiently exhibited due to the small amount.
[0062]
【The invention's effect】
That is, according to the exhaust gas purifying catalyst of the present invention, since the carrier exhibits extremely high acidity, the proximity of sulfur oxides is suppressed, and even if it is poisoned, it is easily decomposed and the sulfur content is quickly desorbed. I do. Therefore NOxSince the sulfur poisoning of the occlusion body is significantly suppressed, high NOxHas purification ability.
[0063]
Even after the high-temperature endurance test, NOxSince sulfur poisoning of the occlusion body is suppressed, high NOxHigh storage NO with high storage capacityxPurification performance can be maintained.
[Brief description of the drawings]
FIG. 1 shows the temperature of the catalyst of Example 18 of the present invention and the catalyst of Comparative Example 7 when the temperature was increased after an endurance test and the released SO.2It is a graph which shows the relationship with quantity.

Claims (2)

空燃比をリーン側からパルス状にストイキ〜リッチ側となるように制御することにより排ガス中の NO x を浄化する触媒であって、
WO3 及びMoO3の少なくとも一方を5〜 30 重量%担持したジルコニアよりなる酸性ジルコニア担体と、
アルカリ金属,アルカリ土類金属及び希土類元素の中から選ばれる少なくとも一種よりなり該酸性ジルコニア担体に担持されたNOx 吸蔵体と、
酸性ジルコニア担体に担持された貴金属と、からなることを特徴とする排ガス浄化触媒。
NO x in the exhaust gas by controlling such that the stoichiometric-rich side air-fuel ratio from the lean side to the pulse-like A catalyst for purifying
An acidic zirconia carrier comprising zirconia supporting 5 to 30 % by weight of at least one of WO 3 and MoO 3 ;
Alkali metal, and the NO x storage material carried on the acidic zirconia support at least consists one selected from alkali earth metals and rare earth elements,
Exhaust gas purifying catalyst, characterized a noble metal supported on the acidic zirconia support, in that it consists of.
空燃比をリーン側からパルス状にストイキ〜リッチ側となるように制御することにより排ガス中のBy controlling the air-fuel ratio from the lean side to the stoichiometric to rich side in a pulsed manner, NONO xx を浄化する触媒であって、A catalyst for purifying
WOWO 3Three 及びas well as MoOMoO 3Three の少なくとも一方を5〜At least one of 5 3030 重量%担持したジルコニアよりなる酸性ジルコニア担体とアルミナとの混合物よりなる担体と、A carrier consisting of a mixture of an acidic zirconia carrier comprising alumina and zirconia supported by weight%;
アルカリ金属及びアルカリ土類金属の中から選ばれる少なくとも一種よりなり該担体に担持された  Consisting of at least one selected from alkali metals and alkaline earth metals, supported on the carrier NONO xx 吸蔵体と、Occluder,
該担体に担持された貴金属と、からなることを特徴とする排ガス浄化触媒。  An exhaust gas purifying catalyst, comprising: a noble metal supported on the carrier.
JP34266997A 1997-04-28 1997-12-12 Exhaust gas purification catalyst Expired - Lifetime JP3567708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34266997A JP3567708B2 (en) 1997-04-28 1997-12-12 Exhaust gas purification catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11080497 1997-04-28
JP9-110804 1997-04-28
JP34266997A JP3567708B2 (en) 1997-04-28 1997-12-12 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH1110000A JPH1110000A (en) 1999-01-19
JP3567708B2 true JP3567708B2 (en) 2004-09-22

Family

ID=26450338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34266997A Expired - Lifetime JP3567708B2 (en) 1997-04-28 1997-12-12 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3567708B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071289A (en) * 2001-08-30 2003-03-11 Toyota Central Res & Dev Lab Inc Nitrogen oxide reduction catalyst and method for reducing nitrogen oxide
US7341694B2 (en) 2002-09-25 2008-03-11 Ngk Spark Plug Co., Ltd. Ammonia sensor
JP4727140B2 (en) * 2003-11-28 2011-07-20 三菱重工業株式会社 Exhaust gas treatment catalyst and method for producing the same
JP4765382B2 (en) * 2005-04-18 2011-09-07 トヨタ自動車株式会社 Manufacturing method of complex oxide with heat resistance
JP4765381B2 (en) * 2005-04-18 2011-09-07 トヨタ自動車株式会社 Manufacturing method of complex oxide with heat resistance
JP5303867B2 (en) * 2007-05-30 2013-10-02 トヨタ自動車株式会社 Manufacturing method of exhaust gas purification catalyst
JP5556022B2 (en) * 2009-02-16 2014-07-23 マツダ株式会社 Exhaust gas purification catalyst
WO2011010699A1 (en) * 2009-07-24 2011-01-27 株式会社 キャタラー Exhaust gas purification catalyst
JP5582490B2 (en) * 2009-11-09 2014-09-03 三井金属鉱業株式会社 Exhaust gas treatment catalyst and method for producing the same

Also Published As

Publication number Publication date
JPH1110000A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
EP2104567B2 (en) Method of making a NOx storage material
JP4098835B2 (en) Exhaust gas purification catalyst
JP3494147B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP3664182B2 (en) High heat-resistant exhaust gas purification catalyst and production method thereof
WO2002066155A1 (en) Exhaust gas clarification catalyst
JP3567708B2 (en) Exhaust gas purification catalyst
JP3789231B2 (en) Exhaust gas purification catalyst
JPH08117600A (en) Catalyst for purifying exhaust gas and preparation of catalyst
JP3473295B2 (en) Catalyst carrier and catalyst for exhaust gas purification
JPH10258232A (en) Catalyst for exhaust gas purification and manufacture thereof
JP3378096B2 (en) Exhaust gas purification catalyst
JPH10128114A (en) Catalyst for purifying exhaust gas
JP2001038211A (en) Catalyst and method for cleaning exhaust gas
JP3496348B2 (en) Exhaust gas purification catalyst
JP3523843B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP3664201B2 (en) Exhaust gas purification catalyst
JP2000246107A (en) Catalyst for cleaning exhaust gas, its production and method for cleaning exhaust gas
JP3965793B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JPH08281116A (en) Catalyst for purifying exhaust gas
JP2001079405A (en) Exhaust gas cleaning catalyst, exhaust gas cleaning catalyst carrying honeycomb structure and exhaust gas cleaning method
JPH11221467A (en) Catalyst for purifying exhaust gas
JP4079622B2 (en) Exhaust gas purification catalyst
JP3897483B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JPH10174844A (en) Exhaust gas cleaning device
JP2000157867A (en) Catalyst for exhaust gas treatment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

EXPY Cancellation because of completion of term