JP2003020227A - Fine mixed oxide powder, production method thereor and catalyst - Google Patents

Fine mixed oxide powder, production method thereor and catalyst

Info

Publication number
JP2003020227A
JP2003020227A JP2001201240A JP2001201240A JP2003020227A JP 2003020227 A JP2003020227 A JP 2003020227A JP 2001201240 A JP2001201240 A JP 2001201240A JP 2001201240 A JP2001201240 A JP 2001201240A JP 2003020227 A JP2003020227 A JP 2003020227A
Authority
JP
Japan
Prior art keywords
oxide
metal
oxide powder
catalyst
fine mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001201240A
Other languages
Japanese (ja)
Inventor
Yoshio Hatanaka
美穂 畑中
Akihiko Suda
明彦 須田
Haruo Imagawa
晴雄 今川
Akira Morikawa
彰 森川
Shinichi Matsunaga
真一 松永
Toshio Yamamoto
敏生 山本
Tadashi Suzuki
正 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2001201240A priority Critical patent/JP2003020227A/en
Publication of JP2003020227A publication Critical patent/JP2003020227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce multiple oxide powder which has a large specific surface area and a large fine pore volume even after endurance at a high temperature, and in which, even when used as a catalyst carrying noble metals, the growth of the grains of the noble metals can be suppressed after endurance at a high temperature. SOLUTION: The powder consists of a multiple oxide of Zn oxide and the oxide of a metal M which is not allowed to enter into solid solution with the Zr oxide, and in which the Zr oxide and the oxide of metal M are uniformly dispersed on an nm scale. Since different oxides are acted as mutual barriers, sintering is suppressed. Further, fine pores formed between the oxides are made into mesofine pores on an nm scale, and a large specific surface area and a large fine pore volume can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、触媒担体として有
用な微細混合酸化物粉末とその製造方法、及びその微細
混合酸化物粉末を触媒担体とした触媒に関する。この触
媒は、メタン浄化用触媒、排ガス浄化用触媒、NOx 吸蔵
還元型触媒などに利用できる。
TECHNICAL FIELD The present invention relates to a fine mixed oxide powder useful as a catalyst carrier, a method for producing the same, and a catalyst using the fine mixed oxide powder as a catalyst carrier. This catalyst can be used as a methane purification catalyst, an exhaust gas purification catalyst, a NO x storage reduction catalyst, and the like.

【0002】[0002]

【従来の技術】従来より自動車の排ガス浄化用触媒とし
て、排ガス中のCO及びHCの酸化とNOxの還元とを同時に
行って浄化する三元触媒が用いられている。このような
三元触媒としては、例えばコーディエライトなどからな
る耐熱性ハニカム基材にγ-Al2O3からなる担体層を形成
し、その担体層に白金(Pt)やロジウム(Rh)などの貴
金属を担持させたものが広く知られている。
2. Description of the Related Art Conventionally, as a catalyst for purifying exhaust gas of automobiles, a three-way catalyst has been used which purifies the exhaust gas by simultaneously oxidizing CO and HC and reducing NO x . As such a three-way catalyst, for example, a carrier layer made of γ-Al 2 O 3 is formed on a heat-resistant honeycomb substrate made of cordierite or the like, and platinum (Pt) or rhodium (Rh) is formed on the carrier layer. It is widely known that the above noble metal is supported.

【0003】排ガス浄化触媒に用いられる担体の条件と
しては、比表面積が大きく耐熱性が高いことが挙げら
れ、一般には Al2O3、SiO2、ZrO2、TiO2などが用いられ
ることが多い。また酸素吸蔵能をもつCeO2を併用するこ
とで、排ガスの雰囲気変動を緩和することも行われてい
る。
The condition of the carrier used for the exhaust gas purifying catalyst is that it has a large specific surface area and high heat resistance, and in general, Al 2 O 3 , SiO 2 , ZrO 2 and TiO 2 are often used. . Also, by using CeO 2 which has an oxygen storage capacity together, it is possible to mitigate changes in the atmosphere of exhaust gas.

【0004】また特開平9-024274号公報には、アルミナ
とジルコニアからなる複合酸化物を担体とした触媒が開
示されている。この触媒中の担体であるアルミナとジル
コニアの複合酸化物は、AlとZrとが酸素を介して結合し
原子レベルでアルミナとジルコニアが複合されているこ
とを特徴とし、そのため酸点と塩基点とが隣接して存在
している。したがってこの触媒によれば、酸点ではHCが
活性化され、塩基点ではNOが活性化されるため、HCとNO
は隣接した状態で活性化されて容易に中間体を形成し、
HCとNOの反応選択性が向上する。またこの触媒は、耐熱
性にも優れているとの記載がある。
Further, Japanese Patent Application Laid-Open No. 9-024274 discloses a catalyst using a composite oxide composed of alumina and zirconia as a carrier. The composite oxide of alumina and zirconia, which is the carrier in this catalyst, is characterized in that Al and Zr are bonded via oxygen and alumina and zirconia are compounded at the atomic level. Exist adjacent to each other. Therefore, according to this catalyst, HC is activated at the acid site and NO is activated at the base site.
Are activated in an adjacent state to easily form an intermediate,
The reaction selectivity between HC and NO is improved. Further, it is described that this catalyst is also excellent in heat resistance.

【0005】一方、地球環境保護の観点から、排ガス中
の二酸化炭素(CO2 )の温室効果が問題となっている。
そこでCO2 の排出量を低減するために、酸素過剰雰囲気
下において希薄燃焼させるいわゆるリーンバーンが実用
化されている。このリーンバーンにおいては、燃料の使
用量が低減でき、排ガスとして排出されるCO2 量を低減
することができる。
On the other hand, from the viewpoint of protecting the global environment, the greenhouse effect of carbon dioxide (CO 2 ) in exhaust gas has become a problem.
Therefore, in order to reduce the amount of CO 2 emission, so-called lean burn in which lean combustion is performed in an oxygen excess atmosphere has been put into practical use. In this lean burn, the amount of fuel used can be reduced, and the amount of CO 2 emitted as exhaust gas can be reduced.

【0006】そしてリーンバーン用の排ガス浄化用触媒
として、特開平3-017652号公報には、アルカリ土類金属
などのNOx 吸蔵材と貴金属をアルミナなどの多孔質担体
に担持してなるNOx 吸蔵還元型触媒が開示されている。
このNOx 吸蔵還元型触媒によれば、空燃比をリーン側か
らパルス状にストイキ又はリッチ側となるように制御す
る(リッチスパイク)ことにより、リーン側でNOx がNO
x 吸蔵材に吸蔵され、それがストイキ又はリッチ側で放
出されHCやCOなどの還元成分と反応して還元浄化される
ため、リーンバーンにおいてもNOx を効率よく浄化する
ことができる。
[0006] Then as an exhaust gas purifying catalyst for lean-burn, JP-A-3-017652, composed of the the NO x storage material and the noble metals such as alkaline earth metal supported on a porous carrier such as alumina NO x An occlusion reduction type catalyst is disclosed.
According to this NO x storage reduction catalyst, the air-fuel ratio is controlled from the lean side to the stoichiometric or rich side (rich spike), so that the NO x on the lean side is NO.
Since it is stored in the x storage material, which is released on the stoichiometric or rich side and reacts with reducing components such as HC and CO for reduction and purification, NO x can be efficiently purified even in lean burn.

【0007】[0007]

【発明が解決しようとする課題】ところで直噴ガソリン
エンジンの高出力化あるいは高速走行の増加などを背景
に、近年の自動車排ガスの温度は 600〜 700℃の高温と
なっている。しかし従来の触媒においては、実際の排ガ
ス中における耐久性に乏しく、熱によって貴金属自体に
粒成長が生じて活性が低下するという問題がある。また
担体のシンタリングによって貴金属が粒成長する場合も
ある。したがって、担体のシンタリングを防止するとと
もに金属自体の粒成長を抑制することが求められてい
る。
By the way, in recent years, the temperature of exhaust gas from automobiles has risen to a high temperature of 600 to 700 ° C., against the backdrop of higher output of direct injection gasoline engines and increase in high speed running. However, the conventional catalyst has a problem that it has poor durability in actual exhaust gas, and the heat causes grain growth in the noble metal itself, resulting in a decrease in activity. In some cases, precious metal particles may grow due to sintering of the carrier. Therefore, it is required to prevent sintering of the carrier and suppress grain growth of the metal itself.

【0008】また特開平9-024274号公報には、耐熱性が
高いとの記載はあるものの、その理由については述べら
れていない。そして同公報に記載されている複合酸化物
は、Al原子とZr原子が酸素原子を介して結合しているも
のであり、ジルコニアとアルミナがそれぞれ粒子として
存在していないので、それぞれの特徴を発現させること
は困難である。また比表面積及び細孔についての記載も
ない。
Further, Japanese Patent Application Laid-Open No. 9-024274 discloses that the heat resistance is high, but the reason therefor is not mentioned. And the composite oxide described in the publication is one in which Al atoms and Zr atoms are bonded via oxygen atoms, and since zirconia and alumina do not exist as particles, respectively, each characteristic is expressed. It is difficult to get it done. Further, there is no description about the specific surface area and the pores.

【0009】そして従来のNOx 吸蔵還元型触媒において
は、このような高温雰囲気下におけるNOx 吸蔵還元能が
低いという問題がある。
The conventional NO x storage-reduction catalyst has a problem that the NO x storage reduction ability is low in such a high temperature atmosphere.

【0010】このNOx 吸蔵還元型触媒においては、排ガ
ス中のNOがNO2 に酸化され、硝酸イオンあるいは亜硝酸
イオンとしてNOx 吸蔵材に吸蔵される。そのため担体の
塩基性が高いほどNOx 吸蔵材の塩基性が効果的に発現さ
れ、NOx の吸蔵量及び吸蔵速度が向上するため、高温雰
囲気下におけるNOx 浄化能が向上すると考えられる。し
たがってNOx 吸蔵還元型触媒の担体としては塩基性の高
い担体が好ましいと考えられている。
In this NO x storage reduction catalyst, NO in the exhaust gas is oxidized to NO 2 and is stored in the NO x storage material as nitrate ions or nitrite ions. Therefore, it is considered that the higher the basicity of the carrier, the more effectively the basicity of the NO x storage material is expressed, and the more the NO x storage amount and storage rate are improved, the more the NO x purification capacity in a high temperature atmosphere is improved. Therefore, it is considered that a highly basic carrier is preferable as the carrier for the NO x storage reduction catalyst.

【0011】そこで「金属酸化物と複合酸化物」田部・
清水・笛木著、p413、講談社(1978)に記載されている
ように、アルミナよりもジルコニアの方が塩基性が高い
ので、NOx 吸蔵還元型触媒の担体としては、従来一般に
用いられているアルミナよりジルコニアを用いることが
好ましい。
Therefore, "metal oxides and complex oxides" Tabe
As described in Shimizu and Fueki, p413, Kodansha (1978), since zirconia has a higher basicity than alumina, it has been conventionally used as a carrier for NO x storage-reduction catalysts. It is more preferable to use zirconia.

【0012】しかしながらジルコニアの比表面積はアル
ミナに比べて低く、触媒担体として用いるとアルミナを
担体とした触媒に比べて活性が低いという不具合があ
る。また高比表面積をもつジルコニアを合成することも
可能であるが、アルミナの場合に比べて低い温度でシン
タリングして比表面積と細孔容積が低下するという問題
がある。
However, the specific surface area of zirconia is lower than that of alumina, and when it is used as a catalyst carrier, the activity is lower than that of a catalyst using alumina as a carrier. It is also possible to synthesize zirconia having a high specific surface area, but there is a problem that the specific surface area and pore volume are reduced by sintering at a lower temperature than in the case of alumina.

【0013】本発明はこのような事情に鑑みてなされた
ものであり、高温耐久後にも大きな比表面積と細孔容積
をもち、貴金属を担持して触媒とした場合にも高温耐久
後に貴金属の粒成長が抑制される微細混合酸化物粉末と
することを目的とする。
The present invention has been made in view of the above circumstances, and has a large specific surface area and pore volume even after high temperature durability, and even when a precious metal is supported as a catalyst, noble metal particles after high temperature durability The purpose is to obtain a fine mixed oxide powder whose growth is suppressed.

【0014】[0014]

【課題を解決するための手段】上記課題を解決する本発
明の微細混合酸化物粉末の特徴は、Zr酸化物と、Zr酸化
物と固溶しない金属Mの酸化物との微細混合物よりな
り、Zr酸化物と金属Mの酸化物とは原子レベルでは混ざ
り合わず、別々の結晶粒を構成しながらnmスケールで均
一に分散していることにある。
The fine mixed oxide powder of the present invention which solves the above-mentioned problems is characterized by a fine mixture of Zr oxide and an oxide of a metal M which does not form a solid solution with Zr oxide, The Zr oxide and the oxide of the metal M do not mix at the atomic level, but are dispersed uniformly on the nm scale while forming separate crystal grains.

【0015】FE−STEMにおいて、重なりのない一つの粒
子に対して直径 0.5nmの範囲の EDX分析を行った時の各
分析点の90%以上でZrと金属Mとが仕込み組成の±20%
以内の組成比で検出されることが望ましい。また 800℃
で5時間の焼成後に細孔径が1〜15nmの細孔容積が細孔
径が 100nm以下の細孔容積の90%以上である特性をもつ
ことが特に望ましい。そして金属Mの酸化物はアルミナ
であり、Zr酸化物が50重量%以上含まれていることが望
ましい。
In FE-STEM, Zr and metal M were ± 20% of the charged composition at 90% or more of each analysis point when EDX analysis was performed on a single particle without overlapping in the range of 0.5 nm in diameter.
It is desirable that the composition ratio be within the range. Also 800 ℃
It is particularly desirable to have the characteristic that the volume of pores having a pore diameter of 1 to 15 nm is 90% or more of the volume of pores having a pore diameter of 100 nm or less after firing for 5 hours. The oxide of the metal M is alumina, and it is desirable that the Zr oxide is contained in an amount of 50% by weight or more.

【0016】上記微細混合酸化物粉末を製造するに最適
な本発明の一つの製造方法の特徴は、Zrの化合物と酸化
物がZr酸化物と固溶しない金属Mの化合物とが溶解した
水溶液からZr酸化物前駆体及び金属Mの酸化物前駆体の
沈殿を析出させ、系内に水分が充分に存在している状態
で沈殿を焼成することにある。
One of the features of the most suitable production method of the present invention for producing the above-mentioned fine mixed oxide powder is that it is prepared from an aqueous solution in which a Zr compound and a metal M compound in which the oxide does not form a solid solution with the Zr oxide are dissolved. This is to precipitate the Zr oxide precursor and the oxide precursor of the metal M, and to calcine the precipitate in a state where water is sufficiently present in the system.

【0017】そして本発明の微細混合酸化物粉末を製造
するに最適なもう一つの製造方法の特徴は、Zrの化合物
と酸化物がZr酸化物と固溶しない金属Mの化合物とが溶
解した水溶液からZr酸化物前駆体及び金属Mの酸化物前
駆体の沈殿を析出させ、水を分散媒とした懸濁状態で沈
殿を熟成し、その後焼成することにある。
Another characteristic of the production method most suitable for producing the fine mixed oxide powder of the present invention is that an aqueous solution in which a compound of Zr and a compound of the metal M in which the oxide does not form a solid solution with the Zr oxide are dissolved. To precipitate precipitates of the Zr oxide precursor and the oxide precursor of the metal M, ripen the precipitate in a suspension state using water as a dispersion medium, and then calcine.

【0018】熟成は室温以上で行うことが好ましく、 1
00〜 200℃で行うことがより好ましく、 100〜 150℃で
行うことがさらに望ましい。
The aging is preferably carried out at room temperature or higher.
It is more preferable to carry out at 00 to 200 ° C, more preferably 100 to 150 ° C.

【0019】そして本発明の触媒の特徴は、本発明の微
細混合酸化物粉末に貴金属を担持してなることにある。
貴金属とNOx 吸蔵材とを担持したNOx 吸蔵還元型触媒と
することも好ましい。
The catalyst of the present invention is characterized in that the fine mixed oxide powder of the present invention carries a noble metal.
It is also preferable to use a NO x storage reduction catalyst in which a noble metal and a NO x storage material are supported.

【0020】[0020]

【発明の実施の形態】本発明の微細混合酸化物粉末は、
Zr酸化物と、Zr酸化物と固溶しない金属Mの酸化物との
混合物であり、Zr酸化物と金属Mの酸化物とがnmスケー
ルで均一に分散している。Zrと金属Mとがnmスケールで
均一に分散している状態は、FE−STEMにおいて、重なり
のない一つの粒子に対して直径 0.5nmの範囲の EDX分析
を行った時の各分析点の90%以上で、Zrと金属Mとが仕
込み組成の±20%以内の組成比で検出されることで確認
することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The fine mixed oxide powder of the present invention is
It is a mixture of a Zr oxide and an oxide of the metal M which does not form a solid solution with the Zr oxide, and the Zr oxide and the oxide of the metal M are uniformly dispersed on the nm scale. The state in which Zr and the metal M are evenly dispersed on the nm scale is 90% at each analysis point when EDX analysis with a diameter of 0.5 nm is performed on one particle without overlap in FE-STEM. %, It can be confirmed that Zr and metal M are detected at a composition ratio within ± 20% of the charged composition.

【0021】すなわち本発明の微細混合酸化物粉末にお
ける一次粒子は、Zr酸化物と金属Mの酸化物とからな
り、その一次粒子が凝集した二次粒子が粉末を構成して
いる。そして一次粒子では、Zrの酸化物と金属Mの酸化
物がnmスケールときわめて小さい状態で均一に存在して
いるために、酸化物どうしの間に形成される細孔もnmス
ケールの微細なメソ細孔となり、高比表面積を実現でき
る。なおメソ細孔とは、IUPACでは径が2〜50nmの細孔を
いうが、分子の吸着特性などから 1.5〜 100nmの細孔を
意味する場合もある。本発明でいうメソ細孔は、水銀ポ
ロシメータを用いて原理上測定可能な下限値 3.5nmから
100nmの範囲の細孔を意味する。
That is, the primary particles in the fine mixed oxide powder of the present invention are composed of Zr oxide and oxide of metal M, and the secondary particles obtained by aggregating the primary particles constitute the powder. In the primary particles, the oxide of Zr and the oxide of metal M are uniformly present in a very small size on the nm scale, so that the pores formed between the oxides also have fine mesoscales on the nm scale. It becomes pores and a high specific surface area can be realized. Mesopores have a diameter of 2 to 50 nm in IUPAC, but may also have a diameter of 1.5 to 100 nm due to the adsorption property of molecules. The mesopores referred to in the present invention have a measurable lower limit of 3.5 nm in principle using a mercury porosimeter.
Means pores in the 100 nm range.

【0022】そして本発明の微細混合酸化物粉末では、
互いに固溶しないZr酸化物と金属Mの酸化物が互いの障
壁として作用するために、高温時のシンタリングが抑制
され、高温耐久後にもメソ細孔の細孔容積を高く維持す
ることができる。 またこの微細混合酸化物粉末は、 80
0℃で5時間の焼成後に細孔径が1〜15nmの細孔容積が
細孔径が 100nm以下の細孔容積の90%以上であるという
特性を有している。つまり、きわめて狭い範囲にシャー
プな細孔分布を有している。そしてそれぞれの酸化物の
シンタリングが抑制されているので、細孔容積も縮小す
ることなく、高温耐久後にもnmスケールの細孔が多く存
在し、その細孔容積もきわめて大きいままの状態を維持
する。
And in the fine mixed oxide powder of the present invention,
Since the Zr oxide and the oxide of the metal M, which do not form a solid solution with each other, act as barriers to each other, sintering at high temperature is suppressed, and the pore volume of the mesopores can be kept high even after high temperature durability. . This fine mixed oxide powder is
After calcination at 0 ° C. for 5 hours, the pore volume having a pore diameter of 1 to 15 nm is 90% or more of the pore volume having a pore diameter of 100 nm or less. That is, it has a sharp pore distribution in an extremely narrow range. Since the sintering of each oxide is suppressed, the pore volume does not decrease, and there are many nm-scale pores even after high-temperature durability, and the pore volume remains extremely large. To do.

【0023】したがって、この微細混合酸化物粉末に貴
金属あるいは貴金属とNOx 吸蔵材を担持してなる本発明
の触媒においては、貴金属やNOx 吸蔵材などの触媒成分
がシャープな細孔分布をもつメソ細孔に高分散状態で安
定して担持され、かつそのメソ細孔が反応場となるた
め、活性がきわめて高い。また、高温耐久後にもメソ細
孔が大きな細孔容積で十分に存在するとともに、比表面
積も充分に大きく確保されている。そして固溶しない酸
化物どうしが互いにシンタリングを抑制し合うために、
貴金属の粒成長も抑制され、高温耐久後の活性の低下が
大きく抑制される。
[0023] Thus, in the catalyst of the present invention in the fine mixed oxide powder obtained by supporting a noble metal or noble metal and the NO x storage material, having a catalyst component sharp pore distribution, such as precious metals and the NO x storage material Since it is stably supported in the mesopores in a highly dispersed state and the mesopores serve as a reaction field, the activity is extremely high. Further, even after high-temperature durability, the mesopores are sufficiently present in a large pore volume and the specific surface area is sufficiently large. And because the oxides that do not form a solid solution suppress sintering with each other,
The grain growth of the noble metal is also suppressed, and the decrease in activity after high temperature durability is greatly suppressed.

【0024】そして本発明の微細混合酸化物粉末に貴金
属とNOx 吸蔵材を担持してなるNOx吸蔵還元型触媒によ
れば、担体にZr酸化物が含まれているため塩基性が高
く、NO x 吸蔵能が高い。しかも高温耐久後にも高い比表
面積と大きな細孔容積を有しているので、高いNOx 吸蔵
能が維持され耐久性に優れている。
Then, the fine mixed oxide powder of the present invention is added to precious metal.
Genus and nox NO with occlusion materialxWith an occlusion reduction type catalyst
In this case, since the carrier contains Zr oxide, it is highly basic.
No, no x High storage capacity. Moreover, high ratio table even after high temperature durability
High NO due to its area and large pore volumex Occlusion
Performance is maintained and durability is excellent.

【0025】すなわちこの微細混合酸化物粉末は、低温
域でHCを除去できる低温酸化触媒、NOx 吸蔵還元型触
媒、メタン酸化触媒などの担体としてきわめて有用であ
る。
That is, this fine mixed oxide powder is extremely useful as a carrier for a low temperature oxidation catalyst capable of removing HC in a low temperature range, a NO x storage reduction type catalyst, a methane oxidation catalyst and the like.

【0026】金属Mの酸化物は、Zr酸化物と固溶しない
ものであり、 Al2O3、 MgAl2O4、ZrP2O7などが挙げら
れ、このうちの一種又は複数種を用いることができる。
触媒担体として用いる場合は、比表面積が大きく耐熱性
に優れた Al2O3が特に好ましい。
The oxide of the metal M does not form a solid solution with the Zr oxide and includes Al 2 O 3 , MgAl 2 O 4 , ZrP 2 O 7, etc. One or more of these should be used. You can
When used as a catalyst carrier, Al 2 O 3 having a large specific surface area and excellent heat resistance is particularly preferable.

【0027】本発明の金属酸化物粉末におけるZr酸化物
と金属Mの酸化物との組成比は、重量比でZr酸化物:金
属Mの酸化物=50/50以上が好ましく、80/20以上が特
に望ましい。この組成比が50/50より小さくなると、ジ
ルコニアの作用が小さくなって担体の塩基性が小さくな
ってしまう。またこの組成比の上限は特に制限ないが、
95/5以下とすることが望ましい。これより金属Mの酸
化物量が少なくなると、酸化物どうしが互いにシンタリ
ングを抑制し合う効果が得られず、高温耐久性に劣るよ
うになる。例えば金属Mの酸化物がアルミナの場合に
は、重量比でZrO2/ Al2O3=90/10〜60/40とするのが
望ましい。ジルコニアの量がこの範囲より少なくなると
担体の塩基性が小さくなってしまい、アルカリ金属やア
ルカリ土類金属などのNOx 吸蔵材を担持した際の化学的
安定性も低下してしまう。またジルコニアの量がこの範
囲より多くなると高温耐久性に劣り、やはり触媒として
の浄化性能が低下してしまうことになる。
The composition ratio of the Zr oxide and the oxide of the metal M in the metal oxide powder of the present invention is preferably Zr oxide: oxide of the metal M = 50/50 or more, by weight ratio, 80/20 or more. Is especially desirable. If this composition ratio is smaller than 50/50, the action of zirconia becomes small and the basicity of the carrier becomes small. The upper limit of this composition ratio is not particularly limited,
It is desirable to set it to 95/5 or less. If the amount of the oxide of the metal M is smaller than this, the effect of mutual suppression of sintering between the oxides cannot be obtained, and the high temperature durability becomes poor. For example, when the oxide of the metal M is alumina, the weight ratio is preferably ZrO 2 / Al 2 O 3 = 90/10 to 60/40. When the amount of zirconia is less than this range, the basicity of the carrier becomes small, and the chemical stability when supporting an NO x storage material such as an alkali metal or an alkaline earth metal also deteriorates. If the amount of zirconia exceeds this range, the high temperature durability will be poor, and the purifying performance of the catalyst will also deteriorate.

【0028】そして例えば金属Mの酸化物がアルミナの
場合には、本発明の微細混合酸化物粉末は 600℃で5時
間の焼成後の平均一次粒子径が6〜8nmとなる特性をも
つことが望ましい。このような構成とすれば、高温に曝
された後にも粒成長が少なくなり、 600℃で5時間の焼
成後に細孔径が1〜15nmの細孔容積が0.09cc/g以上と
いう特性をもち、かつ 800℃で5時間の焼成後に細孔径
が1〜15nmの細孔容積が0.06cc/g以上という特性を有
するようになる。これにより高温耐久後にも細孔容積が
十分に確保される。さらに、 600℃で5時間の焼成後に
細孔径が1〜15nmの細孔容積が0.12cc/g以上であり、
800℃で5時間の焼成後に細孔径が1〜15nmの細孔容積
が0.09cc/g以上という特性をもつことがより望まし
い。また 600℃で5時間の焼成後に細孔径が1〜15nmの
細孔容積が0.18cc/g以上であり、800℃で5時間の焼
成後に細孔径が1〜15nmの細孔容積が0.12cc/g以上と
いう特性をもつことがさらに望ましい。
For example, when the oxide of the metal M is alumina, the fine mixed oxide powder of the present invention may have a characteristic that the average primary particle size after firing at 600 ° C. for 5 hours is 6 to 8 nm. desirable. With such a structure, grain growth is reduced even after being exposed to a high temperature, and after firing at 600 ° C. for 5 hours, the pore volume with a pore size of 1 to 15 nm is 0.09 cc / g or more, Further, after firing at 800 ° C. for 5 hours, the pore volume of pore diameters of 1 to 15 nm becomes 0.06 cc / g or more. This ensures a sufficient pore volume even after high temperature durability. Furthermore, the volume of pores having a pore size of 1 to 15 nm is 0.12 cc / g or more after firing at 600 ° C. for 5 hours,
It is more desirable to have the characteristic that the pore volume with a pore diameter of 1 to 15 nm is 0.09 cc / g or more after firing at 800 ° C. for 5 hours. The pore volume with a pore size of 1 to 15 nm is 0.18 cc / g or more after firing at 600 ° C for 5 hours, and the pore volume with a pore size of 1 to 15 nm is 0.12 cc / g after firing at 800 ° C for 5 hours. It is more desirable to have a characteristic of g or more.

【0029】したがって、この微細混合酸化物粉末に貴
金属を担持してなる本発明の触媒においては、高温耐久
後にも貴金属の担持サイトである細孔が十分に存在する
とともに、比表面積も充分に大きく確保され、高温耐久
後の活性の低下が抑制される。
Therefore, in the catalyst of the present invention in which the noble metal is supported on the fine mixed oxide powder, the pores which are the supporting sites of the noble metal are sufficiently present even after the high temperature durability, and the specific surface area is sufficiently large. This is ensured and the decrease in activity after high temperature durability is suppressed.

【0030】本発明の微細混合酸化物粉末を安定して製
造できる本発明の製造方法では、先ず、Zrの水溶性化合
物と、その酸化物がZr酸化物と固溶しない金属Mの水溶
性化合物とが溶解した水溶液からZr酸化物前駆体及び金
属Mの酸化物前駆体よりなる沈殿を析出させる。Zrの水
溶性化合物及び金属Mの水溶性化合物としては、一般に
塩が用いられ、塩としては、硫酸塩、硝酸塩、塩酸塩、
酢酸塩などが利用できる。また塩を均一に溶解する溶媒
としては、水、アルコール類が使用できる。さらに、例
えば硝酸アルミニウムの原料として、水酸化アルミニウ
ムと硝酸と水とを混合して用いても良い。
In the production method of the present invention capable of stably producing the fine mixed oxide powder of the present invention, first, the water-soluble compound of Zr and the water-soluble compound of the metal M whose oxide does not form a solid solution with the Zr oxide. A precipitate consisting of a Zr oxide precursor and a metal M oxide precursor is deposited from an aqueous solution in which and are dissolved. As the water-soluble compound of Zr and the water-soluble compound of metal M, a salt is generally used, and as the salt, sulfate, nitrate, hydrochloride,
Acetate can be used. Water and alcohols can be used as the solvent for uniformly dissolving the salt. Further, for example, aluminum hydroxide, nitric acid, and water may be mixed and used as a raw material of aluminum nitrate.

【0031】そしてこの溶液にアルカリ性溶液を添加す
ることで、酸化物前駆体の沈殿が析出する。アルカリ性
溶液としては、アンモニア、炭酸アンモニウム、水酸化
ナトリウム、水酸化カリウム、炭酸ナトリウムなどを溶
解した水溶液、アルコール溶液が使用できる。焼成時に
揮散するアンモニア、炭酸アンモニウムが特に好まし
い。なお、アルカリ性溶液のpHは、9以上であることが
前駆体の析出反応を促進するのでより好ましい。
Then, by adding an alkaline solution to this solution, a precipitate of the oxide precursor is deposited. As the alkaline solution, an aqueous solution in which ammonia, ammonium carbonate, sodium hydroxide, potassium hydroxide, sodium carbonate or the like is dissolved, or an alcohol solution can be used. Ammonia and ammonium carbonate that volatilize during firing are particularly preferable. In addition, the pH of the alkaline solution is preferably 9 or more because it promotes the precipitation reaction of the precursor.

【0032】そして、系内に水分が充分に存在している
状態で沈殿を焼成する。あるいは、水を分散媒とした懸
濁状態の混合物を加温する熟成工程を行うことによっ
て、沈殿を熟成した後焼成する。これにより、メカニズ
ムは不明であるが、細孔分布がシャープな微細混合酸化
物粉末が得られる。
Then, the precipitate is calcined in a state where water is sufficiently present in the system. Alternatively, the precipitate is aged and then fired by performing an aging step of heating a mixture in a suspension state using water as a dispersion medium. Thereby, although the mechanism is unknown, a fine mixed oxide powder having a sharp pore distribution can be obtained.

【0033】系内に水分が充分に存在している状態で沈
殿を焼成するには、沈殿を含む溶液ごと加熱して溶媒を
蒸発させ、そのまま焼成することができる。あるいは濾
別された沈殿物を水蒸気の存在下で焼成してもよい。こ
の場合は、飽和水蒸気雰囲気で焼成することが好まし
い。
In order to calcine the precipitate in a state where water is sufficiently present in the system, the solution containing the precipitate can be heated to evaporate the solvent and calcined as it is. Alternatively, the filtered precipitate may be calcined in the presence of steam. In this case, it is preferable to fire in a saturated steam atmosphere.

【0034】熟成工程を行った場合には、加温の熱によ
って溶解・再析出が促進されるとともに粒子の成長が生
じる。この熟成工程は、室温以上、好ましくは 100〜 2
00℃で、さらに好ましくは 100〜 150℃で行うことが望
ましい。 100℃未満の加温では熟成の促進効果が小さ
く、熟成に要する時間が長大となる。また 200℃より高
い温度では、酸化物前駆体の分解温度が高くなる場合が
あるため、酸化物とするための焼成温度が上昇し好まし
くない。そして得られた沈殿物を焼成することで、比較
的小さな粒径の一次粒子をもつ微細混合酸化物粉末が製
造される。
When the aging step is carried out, the heat of heating promotes the dissolution and reprecipitation and the growth of particles. This aging step is performed at room temperature or higher, preferably 100 to 2
It is desirable to carry out at 00 ° C, more preferably at 100 to 150 ° C. If the heating temperature is lower than 100 ° C, the aging-promoting effect is small and the aging time becomes long. On the other hand, if the temperature is higher than 200 ° C, the decomposition temperature of the oxide precursor may be high, which is not preferable because the firing temperature for forming the oxide is increased. Then, the obtained precipitate is fired to produce a fine mixed oxide powder having primary particles having a relatively small particle size.

【0035】この焼成工程は、大気中で行えばよく、そ
の温度は 300〜 800℃の範囲が望ましい。焼成温度が 3
00℃より低いと、実質上、担体としての安定性に欠け
る。また 800℃より高温での焼成は比表面積の低下をま
ねき、担体としての利用法から考えても不必要である。
The firing step may be carried out in the atmosphere, and the temperature is preferably in the range of 300 to 800 ° C. Firing temperature is 3
When it is lower than 00 ° C, the stability as a carrier is substantially lost. Further, firing at a temperature higher than 800 ° C causes a decrease in the specific surface area, and is unnecessary from the viewpoint of utilization as a carrier.

【0036】本発明の触媒は、排ガス浄化用触媒、メタ
ン浄化用触媒などとして利用できる。この触媒は、本発
明の微細混合酸化物粉末を担体とし、それに貴金属を担
持している。また貴金属に加えて、アルカリ金属やアル
カリ土類金属などのNOx 吸蔵材を担持したNOx 吸蔵還元
型触媒とすることも好ましい。なお触媒の形状として
は、ペレット形状、フォーム形状あるいはハニカム形状
など、特に制限されない。
The catalyst of the present invention can be used as an exhaust gas purifying catalyst, a methane purifying catalyst and the like. This catalyst uses the fine mixed oxide powder of the present invention as a carrier and carries a noble metal thereon. In addition to the noble metal, it is also preferable to use a NO x storage reduction type catalyst that supports a NO x storage material such as an alkali metal or an alkaline earth metal. The shape of the catalyst is not particularly limited, such as pellet shape, foam shape or honeycomb shape.

【0037】本発明の触媒は、ハニカム形状のモノリス
基材、ペレット基材あるいはフォーム基材などの基材の
表面に本発明の微細混合酸化物粉末からコート層を形成
し、そのコート層に貴金属あるいは貴金属とNOx 吸蔵材
を担持して構成される。基材の材質は、耐熱性と必要な
強度を有すればよく、コージェライトなどのセラミック
ス、金属箔などを用いることができる。
The catalyst of the present invention forms a coat layer from the fine mixed oxide powder of the present invention on the surface of a substrate such as a honeycomb-shaped monolith substrate, pellet substrate or foam substrate, and a precious metal is formed on the coat layer. Alternatively, it is constituted by supporting a noble metal and a NO x storage material. The material of the base material is only required to have heat resistance and required strength, and ceramics such as cordierite or metal foil can be used.

【0038】コート層は、本発明の微細混合酸化物粉末
とバインダ成分とを含むスラリーを調製し、ウェットコ
ート後焼成することで形成することができる。バインダ
成分としてはアルミナゾル、ジルコニアゾル、シリカゾ
ルなどが例示される。NOx 吸蔵還元型触媒の場合には、
塩基によりNOx を吸蔵するという目的からすれば、アル
ミナゾル、ジルコニアゾルなどの塩基性バインダが好ま
しく、酸性のシリカゾルは好ましくない。
The coat layer can be formed by preparing a slurry containing the fine mixed oxide powder of the present invention and a binder component, and wet-coating and firing the slurry. Examples of the binder component include alumina sol, zirconia sol, silica sol and the like. In the case of NO x storage reduction type catalyst,
For the purpose of occluding NO x with a base, basic binders such as alumina sol and zirconia sol are preferable, and acidic silica sol is not preferable.

【0039】コート層に担持される貴金属は、Pt,Rh,
Pd,Ru,Irなどから選択することができる。 550℃以上
の高温域では貴金属種による活性の程度に差がみられな
いが、 500℃以下の温度域では特にPtが酸化活性が高い
のでPtを用いることが望ましい。またPtは 500℃以下の
温度域で高いNO酸化活性を示すので、NOx 吸蔵還元型触
媒にはPtを担持することが望ましい。なお貴金属の担持
量は0.05〜20重量%の範囲で任意に選択できるが、触媒
1リットルあたり2g以上とするのが望ましい。これよ
り担持量が少ないとNOの酸化が不十分となり、NOx 吸蔵
能が低下してしまう。
The noble metal supported on the coat layer is Pt, Rh,
It can be selected from Pd, Ru, Ir, etc. There is no difference in the degree of activity due to the noble metal species in the high temperature range of 550 ° C or higher, but it is desirable to use Pt because Pt has a particularly high oxidizing activity in the temperature range of 500 ° C or lower. Further, since Pt exhibits a high NO oxidation activity in the temperature range of 500 ° C. or lower, it is desirable to support Pt on the NO x storage reduction catalyst. The amount of the noble metal supported can be arbitrarily selected within the range of 0.05 to 20% by weight, but it is preferably 2 g or more per liter of the catalyst. If the supported amount is smaller than this, the oxidation of NO will be insufficient and the NOx storage capacity will decrease.

【0040】NOx 吸蔵材としては、Li,Na,K,Csなど
のアルカリ金属、Ba,Be,Mg,Ca,Srなどのアルカリ土
類金属、Sc,Y,La,Ce,Pr,Nd,Hy,Ybなどの希土類
元素が例示される。中でもアルカリ度が高く廉価なK,
Naが特に好ましい。このNOx吸蔵材の担持量は、触媒1
リットルあたり 0.2〜2モルとするのがよい。担持量が
この範囲より少ないとNOx 吸蔵能が不十分となり、この
範囲を超えて担持すると貴金属を覆ったり、貴金属の粒
成長を促進させたりして活性が低下する場合がある。
As the NO x storage material, alkali metals such as Li, Na, K and Cs, alkaline earth metals such as Ba, Be, Mg, Ca and Sr, Sc, Y, La, Ce, Pr and Nd, Examples are rare earth elements such as Hy and Yb. Among them, K, which has high alkalinity and is inexpensive,
Na is particularly preferred. The amount of this NO x storage material supported is the amount of catalyst 1
It is preferable to use 0.2 to 2 mol per liter. If the supported amount is less than this range, the NO x storage capacity becomes insufficient, and if the supported amount exceeds this range, the activity may be reduced by covering the noble metal or accelerating grain growth of the noble metal.

【0041】[0041]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples.

【0042】(実施例1)18重量%のオキシ硝酸ジルコ
ニウム 342.3g(ZrO2として 0.5モル)と、硝酸アルミ
ニウム9水和物75.1g( Al2O3として 0.2モル)を2000
gのイオン交換水に溶解し、撹拌しながら25%アンモニ
ア水 177gを添加して中和して、ZrO2前駆体と Al2O3
駆体を共沈させた。
(Example 1) 342.3 g of 18 wt% zirconium oxynitrate (0.5 mol as ZrO 2 ) and 75.1 g of aluminum nitrate nonahydrate (0.2 mol as Al 2 O 3 ) were added to 2000
It was dissolved in g of ion-exchanged water, and 177 g of 25% ammonia water was added to the mixture while stirring to neutralize it, thereby coprecipitating the ZrO 2 precursor and the Al 2 O 3 precursor.

【0043】そして沈殿物と上澄み液を分離することな
く、 1.6気圧、 114℃の雰囲気下で時間撹拌しながら熟
成した。その後 100℃/hの昇温速度で 400℃まで昇温
し、 400℃で5時間保持して蒸発乾固した。得られた乾
固物を 600℃、 700℃、800℃及び 900℃の各温度でそ
れぞれ5時間大気中で焼成し、本実施例の微細混合酸化
物粉末を調製した。
Then, the precipitate and the supernatant liquid were aged without being separated, while being stirred under an atmosphere of 1.6 atm and 114 ° C. for hours. After that, the temperature was raised to 400 ° C. at a heating rate of 100 ° C./h, and the temperature was kept at 400 ° C. for 5 hours to evaporate to dryness. The obtained dried solid product was fired in the air at each temperature of 600 ° C., 700 ° C., 800 ° C. and 900 ° C. for 5 hours to prepare a fine mixed oxide powder of this example.

【0044】(実施例2)18重量%のオキシ硝酸ジルコ
ニウム 342.3g(ZrO2として 0.5モル)と、硝酸アルミ
ニウム9水和物75.1g( 0.2モル)、及び硝酸カルシウ
ム0.02モルを2000gのイオン交換水に溶解し、実施例1
と同様にして焼成温度の異なる4種類の微細混合酸化物
粉末を調製した。
(Example 2) 342.3 g of 18 wt% zirconium oxynitrate (0.5 mol as ZrO 2 ), 75.1 g (0.2 mol) of aluminum nitrate nonahydrate, and 0.02 mol of calcium nitrate were added to 2000 g of ion-exchanged water. Example 1
In the same manner as above, four kinds of fine mixed oxide powders having different firing temperatures were prepared.

【0045】(実施例3)実施例1と同様にして共沈さ
せ、その後沈殿物と上澄み液を分離することなく、 100
℃/hの昇温速度で 400℃まで昇温し、 400℃で5時間
保持して蒸発乾固した。得られた乾固物を 600℃、 700
℃及び 800℃の各温度でそれぞれ5時間大気中で焼成
し、本実施例の微細混合酸化物粉末を調製した。
(Example 3) Coprecipitation was carried out in the same manner as in Example 1, and thereafter 100% was obtained without separating the precipitate from the supernatant.
The temperature was raised to 400 ° C. at a temperature rising rate of ° C./h, and the mixture was kept at 400 ° C. for 5 hours and evaporated to dryness. The obtained dry solid is heated to 600 ° C, 700
The fine mixed oxide powder of this example was prepared by firing in the air for 5 hours at each temperature of 800C and 800C.

【0046】(比較例1)硝酸アルミニウムを添加せず
オキシ硝酸ジルコニウム水溶液のみから酸化物前駆体を
沈殿させたこと以外は実施例1と同様にし、同様に熟成
工程を行った後蒸発乾固し、 600℃で5時間大気中で焼
成して比較例1の微細混合酸化物粉末を調製した。
(Comparative Example 1) The same procedure as in Example 1 was carried out except that the oxide precursor was precipitated only from the aqueous zirconium oxynitrate solution without adding aluminum nitrate, and the same aging step was performed, followed by evaporation to dryness. The fine mixed oxide powder of Comparative Example 1 was prepared by firing in air at 600 ° C. for 5 hours.

【0047】(比較例2)硝酸アルミニウムを添加せず
オキシ硝酸ジルコニウム水溶液のみから酸化物前駆体を
沈殿させた。その後沈殿物と上澄み液を分離することな
く、 100℃/hの昇温速度で 400℃まで昇温し、 400℃
で5時間保持して蒸発乾固した。得られた乾固物を 600
℃で5時間大気中で焼成し、本比較例の酸化物粉末を調
製した。この酸化物粉末はZrO2のみからなる。
Comparative Example 2 An oxide precursor was precipitated only from an aqueous zirconium oxynitrate solution without adding aluminum nitrate. After that, without separating the precipitate and the supernatant, the temperature was raised to 400 ° C at a heating rate of 100 ° C / h,
It was kept for 5 hours and evaporated to dryness. The obtained dried product is 600
The oxide powder of this comparative example was prepared by baking in the atmosphere at 5 ° C. for 5 hours. This oxide powder consists only of ZrO 2 .

【0048】(比較例3)CaOを4重量%含有する市販
のZrO2粉末を用い、 600℃、 700℃、 800℃及び900℃
の各温度でそれぞれ5時間大気中で焼成して本比較例の
酸化物粉末とした。
Comparative Example 3 Using commercially available ZrO 2 powder containing 4% by weight of CaO, 600 ° C., 700 ° C., 800 ° C. and 900 ° C.
Each of these temperatures was fired for 5 hours in the air to obtain the oxide powder of this comparative example.

【0049】<試験・評価>FE−STEMを用い、実施例1
の微細混合酸化物粉末の重なりのない一つの粒子の直径
0.5nmの範囲の元素分析を行った。結果を図1に白丸で
示す。分析条件は、(株)日立製作所製「 HD-2000」を
使用し、加速電圧 200kVで測定した。この装置は EDX検
出器( NCRAN社製 Vatage EDX system)を備え、試料か
ら発生する特性X線によって高感度で元素分析ができる
ようになっている。
<Test / Evaluation> Using FE-STEM, Example 1
Of non-overlapping particles of fine mixed oxide powder
Elemental analysis was performed in the 0.5 nm range. The results are shown by white circles in FIG. As the analysis conditions, "HD-2000" manufactured by Hitachi, Ltd. was used, and the measurement was performed at an acceleration voltage of 200 kV. This device is equipped with an EDX detector (Vantage EDX system manufactured by NCRAN), and elemental analysis can be performed with high sensitivity by the characteristic X-ray generated from the sample.

【0050】図1からわかるように、直径 0.5nmのきわ
めて微小な部分においても、ZrとAlの組成分布は理論原
子比(Zr:Al=71:29)を中心として±10%以内と、狭
い範囲に集中していることが明らかである。もし例えば
ZrO2及び Al2O3が 0.5nm以上の粒子として存在するとす
れば、上記測定によってZrが 100%あるいはAlが 100%
の部分が多数検出されるはずであり、図1の黒丸と矢印
で示す範囲に分散するはずである。
As can be seen from FIG. 1, the composition distribution of Zr and Al is narrow within ± 10% around the theoretical atomic ratio (Zr: Al = 71: 29) even in a very small portion with a diameter of 0.5 nm. It is clear that they are concentrated on the range. If for example
If ZrO 2 and Al 2 O 3 exist as particles of 0.5 nm or more, Zr is 100% or Al is 100% by the above measurement.
A large number of parts should be detected and should be dispersed in the range indicated by the black circles and arrows in FIG.

【0051】また各実施例の微細混合酸化物粉末につい
て、それぞれX線回折(40kV-350mA)測定を行った。そ
の結果、ZrO2の回折線は誤差範囲内であってピークシフ
トは認められず、 Al2O3とは固溶していないことが明ら
かになった。
The X-ray diffraction (40 kV-350 mA) of each of the fine mixed oxide powders of the examples was measured. As a result, it was revealed that the diffraction line of ZrO 2 was within the error range, no peak shift was observed, and it did not form a solid solution with Al 2 O 3 .

【0052】なお元素分析とX線回折の結果から、Alは
ZrO2粒子の表面に非晶質 Al2O3状態でコートされている
か、あるいはγ-Al2O3の微小結晶として存在していると
考えられる。
From the results of elemental analysis and X-ray diffraction, Al
It is considered that the surface of the ZrO 2 particles is coated in the state of amorphous Al 2 O 3 or exists as fine crystals of γ-Al 2 O 3 .

【0053】次に、実施例及び比較例の酸化物粉末の比
表面積をそれぞれ測定し、結果を表1に示す。
Next, the specific surface areas of the oxide powders of Examples and Comparative Examples were measured, and the results are shown in Table 1.

【0054】[0054]

【表1】 [Table 1]

【0055】表1より、 600℃で焼成されたものを比較
すると、実施例1〜3の微細混合酸化物粉末は比較例に
比べて比表面積が大きく、アルミナを混合して複合化す
ることによって比表面積が大きくなったことがわかる。
また比較例1は比較例2よりも比表面積が大きくなって
いることから、熟成工程を行うことによっても比表面積
が大きくなることがわかる。
From Table 1, comparing the ones calcined at 600 ° C., the fine mixed oxide powders of Examples 1 to 3 have a larger specific surface area than the comparative examples, and by mixing alumina to form a composite. It can be seen that the specific surface area has increased.
In addition, since the specific surface area of Comparative Example 1 is larger than that of Comparative Example 2, it can be seen that the specific surface area is also increased by performing the aging step.

【0056】そして 800℃あるいは 900℃で焼成された
ものを比較すると、各実施例の微細混合酸化物粉末は、
市販の CaO安定化ジルコニア粉末である比較例3に比べ
て比表面積が大きく、耐熱性が著しく向上していること
が明らかである。
Then, comparing the ones calcined at 800 ° C. or 900 ° C., the fine mixed oxide powders of the respective examples are
It is clear that the specific surface area is large and the heat resistance is remarkably improved as compared with Comparative Example 3 which is a commercially available CaO-stabilized zirconia powder.

【0057】次に、実施例1,2及び比較例3の酸化物
粉末の細孔分布を水銀ポロシメータを用いて測定し、結
果を図2に示す。また 800℃で焼成したものについて、
水銀ポロシメータを用いて 3.5〜15nmの細孔容積を測定
し、結果を図3に示す。
Next, the pore distributions of the oxide powders of Examples 1 and 2 and Comparative Example 3 were measured using a mercury porosimeter, and the results are shown in FIG. For those baked at 800 ° C,
The pore volume of 3.5 to 15 nm was measured using a mercury porosimeter, and the results are shown in FIG.

【0058】図2より、実施例1及び実施例2の微細混
合酸化物粉末では、15nm以下の狭い範囲に細孔分布が高
度に集中し、細孔径が1〜15nmの細孔容積が細孔径が 1
00nm以下の細孔容積の95%以上を占め、きわめてシャー
プな分布を有していることがわかる。
As shown in FIG. 2, in the fine mixed oxide powders of Example 1 and Example 2, the pore distribution was highly concentrated in a narrow range of 15 nm or less, and the pore volume of 1-15 nm was the pore volume. Is 1
It can be seen that it occupies 95% or more of the pore volume of 00 nm or less and has an extremely sharp distribution.

【0059】また図3から、実施例1,2の微細混合酸
化物粉末は比較例3に比べて、 800℃で焼成後にも2倍
以上の細孔容積を有していることがわかる。
Further, it can be seen from FIG. 3 that the fine mixed oxide powders of Examples 1 and 2 have a pore volume more than double that of Comparative Example 3 even after firing at 800 ° C.

【0060】つまり実施例の微細混合酸化物粉末では、
細孔径が15nm以下の細孔が高温まで安定して存在してい
る。このような細孔は、貴金属やNOx 吸蔵材などの触媒
成分の担持場として有用であり、しかも高温まで安定し
て存在していることで、触媒成分は高温まで高分散状態
で安定して保持されると考えられる。
That is, in the fine mixed oxide powder of the example,
Micropores with a pore diameter of 15 nm or less exist stably up to high temperatures. Such pores are useful as a support site for catalyst components such as precious metals and NO x storage materials, and because they exist stably up to high temperatures, the catalyst components remain stable in a highly dispersed state up to high temperatures. Believed to be retained.

【0061】(実施例4)実施例1で調製され、 600℃
で焼成された微細混合酸化物粉末30重量部と、市販の耐
熱アルミナ粉末30重量部と、CeO2−ZrO2固溶体粉末(モ
ル比でCeO2:ZrO2=45:55)40重量部を混合し、硝酸ア
ルミニウムとベーマイト及び水を加えてスラリーを調製
した。
Example 4 Prepared in Example 1, 600 ° C.
Mix 30 parts by weight of finely mixed oxide powder calcined in, 30 parts by weight of commercially available heat-resistant alumina powder, and 40 parts by weight of CeO 2 -ZrO 2 solid solution powder (molar ratio CeO 2 : ZrO 2 = 45: 55) Then, aluminum nitrate, boehmite, and water were added to prepare a slurry.

【0062】次に、 1.3リットル 400セル/in2 のハニ
カム基材を用意し、上記スラリーを付着させて乾燥後、
500℃で3時間焼成してコート層を形成した。コート層
はハニカム基材1リットル当たり 190g形成された。
Next, a honeycomb substrate of 1.3 liter 400 cells / in 2 was prepared, and the above slurry was adhered and dried,
The coated layer was formed by baking at 500 ° C. for 3 hours. The coat layer was formed in an amount of 190 g per liter of the honeycomb substrate.

【0063】そしてジニトロジアンミン白金水溶液と硝
酸パラジウム水溶液を用いて、上記コート層にPtとPdを
それぞれ吸着担持し、それぞれ 300℃で2時間焼成し
て、実施例4の触媒を調製した。触媒1リットル当た
り、Pt及びPdはそれぞれ 1.1g担持されている。
Then, Pt and Pd were respectively adsorbed and supported on the above-mentioned coat layer using an aqueous solution of dinitrodiammine platinum and an aqueous solution of palladium nitrate, and each was baked at 300 ° C. for 2 hours to prepare a catalyst of Example 4. 1.1 g of Pt and Pd are loaded per liter of the catalyst.

【0064】(比較例4)市販の耐熱アルミナ粉末60重
量部と、CeO2−ZrO2固溶体粉末(モル比でCeO2:ZrO2
45:55)40重量部と、硝酸アルミニウムとベーマイト及
び水を加えてスラリーを調製した。このスラリーを用い
たこと以外は実施例4と同様にしてコート層を形成し、
500℃で3時間大気中で焼成した後、実施例4と同様に
PtとPdを同量担持して比較例4の触媒を調製した。
(Comparative Example 4) 60 parts by weight of commercially available heat-resistant alumina powder and CeO 2 -ZrO 2 solid solution powder (in molar ratio CeO 2 : ZrO 2 =
45:55) 40 parts by weight, aluminum nitrate, boehmite and water were added to prepare a slurry. A coat layer was formed in the same manner as in Example 4 except that this slurry was used,
After firing in air at 500 ° C. for 3 hours, as in Example 4.
The catalyst of Comparative Example 4 was prepared by loading Pt and Pd in the same amount.

【0065】<試験・評価>実施例4と比較例4の触媒
をそれぞれD4エンジンの排気系に装着し、表2に示す
A,B二つの条件で実排ガスを流した。A条件は吸気行
程で燃料を噴射する条件であり、A/F=15.0のリーン条件
である。またB条件は圧縮行程で燃料を噴射する条件で
あり、A/F=15.0ではあるが排ガス中のCO濃度が相対的に
増加している。表2には、各条件における排ガス組成を
示している。
<Test / Evaluation> The catalysts of Example 4 and Comparative Example 4 were mounted on the exhaust system of a D4 engine, respectively, and actual exhaust gas was flowed under the two conditions A and B shown in Table 2. Condition A is a condition for injecting fuel in the intake stroke and is a lean condition for A / F = 15.0. The B condition is a condition for injecting fuel in the compression stroke, and although A / F = 15.0, the CO concentration in the exhaust gas is relatively increased. Table 2 shows the exhaust gas composition under each condition.

【0066】[0066]

【表2】 [Table 2]

【0067】そして触媒への排ガス導入時からHCが50%
浄化されるまでに要した時間をそれぞれ測定し、結果を
表3に示す。また触媒への排ガス導入時から20秒後にお
けるHC浄化率を測定し、結果を表3に示す。
HC is 50% from the time when the exhaust gas is introduced into the catalyst
The time required for purification was measured, and the results are shown in Table 3. The HC purification rate was measured 20 seconds after the introduction of the exhaust gas into the catalyst, and the results are shown in Table 3.

【0068】[0068]

【表3】 [Table 3]

【0069】表3より、実施例4の触媒は比較例4の触
媒より早期にHCを浄化できることがわかり、低温浄化活
性が高いことがわかる。この差は実施例1の微細混合酸
化物粉末の有無に起因し、実施例1の微細混合酸化物粉
末を担体とすることで低温活性が向上したことが明らか
である。
From Table 3, it can be seen that the catalyst of Example 4 can purify HC earlier than the catalyst of Comparative Example 4, and that it has a high low temperature purification activity. This difference is due to the presence or absence of the fine mixed oxide powder of Example 1, and it is clear that the use of the fine mixed oxide powder of Example 1 as a carrier improved the low temperature activity.

【0070】(実施例5)実施例1で調製され 600℃で
焼成された微細混合酸化物粉末20gをイオン交換水 300
gに混合し、さらに所定濃度の硝酸パラジウム水溶液を
所定量混合した。これを蒸発乾固して、微細混合酸化物
粉末 120gに対してPdを5gの比率で含浸担持し、大気
中にて 300℃で2時間焼成した。これを圧粉成形して
0.5〜 1.0mmのペレット触媒を調製した。
Example 5 20 g of the fine mixed oxide powder prepared in Example 1 and calcined at 600 ° C. was added to 300 g of ion-exchanged water.
g, and then a predetermined amount of a palladium nitrate aqueous solution having a predetermined concentration was mixed. This was evaporated to dryness, Pd was impregnated and supported at a ratio of 5 g with respect to 120 g of the fine mixed oxide powder, and the mixture was calcined in air at 300 ° C. for 2 hours. Compacting this
A 0.5-1.0 mm pellet catalyst was prepared.

【0071】(比較例5)実施例1の微細混合酸化物粉
末に代えて、ランタナを 1.5モル%含むアルミナよりな
る耐熱アルミナ粉末を用いたこと以外は実施例5と同様
にして、比較例5のペレット触媒を調製した。
Comparative Example 5 Comparative Example 5 was carried out in the same manner as in Example 5 except that the heat-resistant alumina powder made of alumina containing 1.5 mol% of lanthana was used in place of the fine mixed oxide powder of Example 1. Pellet catalyst was prepared.

【0072】<試験・評価>実施例5及び比較例5のペ
レット触媒を、それぞれ固定床流通式反応装置に配置し
た。そして表4に示すモデルガスを触媒1gに対して7
リットル/分となるように流しながら、室温から 600℃
まで10℃/分の昇温速度で昇温し、その間のメタン浄化
率を連続的に測定した。そしてメタン50%浄化温度とメ
タン90%浄化温度を算出し、結果を表5に示す。
<Test / Evaluation> The pellet catalysts of Example 5 and Comparative Example 5 were placed in a fixed bed flow reactor. Then, the model gas shown in Table 4 was added to 7 g per 1 g of catalyst
Room temperature to 600 ° C while flowing at liter / minute
The temperature was raised up to 10 ° C./minute until the methane purification rate was continuously measured. Then, the methane 50% purification temperature and the methane 90% purification temperature were calculated, and the results are shown in Table 5.

【0073】[0073]

【表4】 [Table 4]

【0074】[0074]

【表5】 [Table 5]

【0075】表5より、実施例5の触媒は比較例5に比
べてメタン浄化活性が高く、より低温域から、メタンを
浄化できることがわかる。
From Table 5, it can be seen that the catalyst of Example 5 has a higher methane purification activity than that of Comparative Example 5, and can purify methane from a lower temperature range.

【0076】(実施例6)実施例2で調製され 800℃で
焼成された微細混合酸化物粉末 200重量部と、実施例1
で調製され 800℃で焼成された微細混合酸化物粉末 50
重量部に予めRhを10重量%担持した触媒粉末と水とを混
合し、ジルコニアバインダ(「NZS-30B」日産化学社
製)をZrO2として10重量%加えてスラリーを調製した。
Example 6 200 parts by weight of the fine mixed oxide powder prepared in Example 2 and calcined at 800 ° C. and Example 1
Finely mixed oxide powder prepared in and calcined at 800 ℃ 50
A slurry was prepared by mixing 10 parts by weight of Rh in advance by weight with a catalyst powder carrying 10% by weight of Rh and adding 10% by weight of zirconia binder (“NZS-30B” manufactured by Nissan Chemical Industries, Ltd.) as ZrO 2 .

【0077】次に35cc、 400セル/in2 のコージェライ
ト製ハニカム基材を用意し、上記スラリーを付着させて
乾燥後 500℃で1時間焼成してコート層を形成した。コ
ート層はハニカム基材1リットルあたり 250g形成し
た。
Next, a 35 cc, 400 cell / in 2 cordierite honeycomb base material was prepared, and the above slurry was adhered and dried, followed by firing at 500 ° C. for 1 hour to form a coat layer. The coat layer was formed in an amount of 250 g per liter of the honeycomb substrate.

【0078】そしてジニトロジアミン白金水溶液を用い
て上記コート層にPtを10g/L担持し 300℃で1時間焼
成した後、酢酸カリウム水溶液を用いてKを 0.6モル/
L担持し 300℃で1時間焼成して実施例6のNOx 吸蔵還
元型触媒を調製した。
Then, 10 g / L of Pt was loaded on the above coating layer using an aqueous solution of dinitrodiamine platinum and baked at 300 ° C. for 1 hour, and then K was added at 0.6 mol / L using an aqueous solution of potassium acetate.
L was carried and calcined at 300 ° C. for 1 hour to prepare a NO x storage reduction catalyst of Example 6.

【0079】(比較例6)実施例 で調製され 800℃で
焼成された微細混合酸化物粉末 200重量部に代えて、市
販のアルミナ粉末(「MI-386」WDグレース社製) 200
重量部を用い、ジルコニアゾルに代えてアルミナゾル
(「アルミナゾル 520」日産化学社製)を10重量%用い
たこと以外は実施例6と同様にして、比較例6のNOx
蔵還元型触媒を調製した。
Comparative Example 6 Instead of 200 parts by weight of the fine mixed oxide powder prepared in Example and calcined at 800 ° C., a commercially available alumina powder (“MI-386” manufactured by WD Grace) 200
A NO x storage reduction catalyst of Comparative Example 6 was prepared in the same manner as in Example 6 except that 10 parts by weight of alumina sol (“Alumina sol 520” manufactured by Nissan Chemical Industries, Ltd.) was used in place of zirconia sol in an amount of 10 parts by weight. did.

【0080】<試験・評価>実施例6及び比較例6のNO
x 吸蔵還元型触媒を、それぞれ固定床流通式反応装置に
配置し、入りガス温度 700℃で表6に示すモデルガス中
のリーンガスを10分間触媒に流通した後、同表中のリッ
チスパイクガスを3秒で流通させた。そしてリッチスパ
イクガス流通後の出ガス中のNOx 濃度を時間とともに測
定し、NOx 吸蔵曲線を作成した。
<Test / Evaluation> NO of Example 6 and Comparative Example 6
x Each of the storage reduction catalysts was placed in a fixed-bed flow reactor, and the lean gas in the model gas shown in Table 6 was passed through the catalyst for 10 minutes at an inlet gas temperature of 700 ° C. It was distributed in 3 seconds. Then, the NO x concentration in the discharged gas after flowing the rich spike gas was measured with time, and a NO x storage curve was created.

【0081】[0081]

【表6】 [Table 6]

【0082】このNOx 吸蔵曲線は例えば図4のように示
され、時間tまでに吸蔵されたNOx量は面積Aで示さ
れ、触媒に吸蔵されずに排出されたNOx 量は面積Bで示
されるので、NOx 浄化率(%)は 100×面積A/(面積
A+面積B)で算出される。そこでNOx 浄化率が95%と
なるときの時間tを求め、そのときの面積Aに相当する
NOx 吸蔵量を算出して95%NOx 吸蔵量とした。結果を初
期として図5に示す。
[0082] The the NO x storage curve is shown as in FIG. 4, for example, NO x amount occluded by time t is represented by the area A, NO x amount discharged without being occluded by the catalyst area B Therefore, the NO x purification rate (%) is calculated by 100 × area A / (area A + area B). Therefore, the time t when the NO x purification rate becomes 95% is obtained and corresponds to the area A at that time.
The NO x storage amount was calculated to be 95% NO x storage amount. The result is shown in FIG. 5 as an initial stage.

【0083】次に実施例6及び比較例6のNOx 吸蔵還元
型触媒を、それぞれ固定床流通式反応装置に配置し、表
7に示すモデルガスをリーンガス4分とリッチガス1分
で交互にそれぞれ入りガス温度 750℃で5時間流通させ
る耐久試験を行った。そして耐久試験後の両触媒につい
て上記と同様にして95%NOx 吸蔵量を測定し、結果を75
0℃耐久後として図5に示す。
Next, the NO x storage reduction catalysts of Example 6 and Comparative Example 6 were placed in a fixed bed flow reactor, and the model gases shown in Table 7 were alternately alternated between lean gas for 4 minutes and rich gas for 1 minute. A durability test was conducted in which the gas temperature was 750 ° C. for 5 hours. Then, the 95% NO x storage amount of both catalysts after the durability test was measured in the same manner as above, and the result was 75%.
It is shown in FIG. 5 after the endurance at 0 ° C.

【0084】[0084]

【表7】 [Table 7]

【0085】図5より、実施例6の触媒は初期及び耐久
後共に比較例6の触媒より高いNOx吸蔵量を示すことが
わかる。これは、本発明の微細混合酸化物粉末を担体と
したことに起因していることが明らかである。
From FIG. 5, it can be seen that the catalyst of Example 6 exhibits a higher NO x storage amount than the catalyst of Comparative Example 6 both in the initial stage and after the endurance. It is clear that this is due to the use of the fine mixed oxide powder of the present invention as the carrier.

【0086】[0086]

【発明の効果】すなわち本発明の微細混合酸化物粉末に
よれば、きわめて小さい細孔径を大きな細孔容積でもつ
とともに狭い範囲にシャープな細孔分布を有し、かつシ
ンタリングが抑制されている。したがってこの微細混合
酸化物粉末に貴金属を担持した本発明の触媒によれば、
貴金属が高分散で担持されるとともに粒成長が抑制さ
れ、かつ大きな細孔容積によってガス拡散性が向上す
る。これにより高温耐久後にも高い浄化活性が発現され
る。
The fine mixed oxide powder of the present invention has an extremely small pore size with a large pore volume, has a sharp pore distribution in a narrow range, and suppresses sintering. . Therefore, according to the catalyst of the present invention in which a noble metal is supported on this fine mixed oxide powder,
The noble metal is supported in high dispersion, grain growth is suppressed, and the large pore volume improves gas diffusivity. As a result, high purification activity is exhibited even after high temperature durability.

【0087】また本発明の微細混合酸化物粉末に貴金属
とNOx 吸蔵材を担持したNOx 吸蔵還元型触媒によれば、
高温耐久後にも高いNOx 吸蔵能を示し、排ガス温度が高
温となるエンジンにおいても排ガス中のNOx を長時間効
率よく浄化することができる。
Further, according to the NO x storage reduction type catalyst of the present invention, in which the fine mixed oxide powder is loaded with the noble metal and the NO x storage material,
It shows a high NO x storage capacity even after high-temperature durability, and it is possible to efficiently purify NO x in exhaust gas for a long time even in an engine in which the exhaust gas temperature becomes high.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の微細混合酸化物粉末のφ 0.5nmの範
囲の元素分析の結果を示し、ZrとAlの原子比の分布図で
ある。
FIG. 1 shows the result of elemental analysis of a fine mixed oxide powder of Example 1 in a range of φ 0.5 nm, and is a distribution diagram of an atomic ratio of Zr and Al.

【図2】実施例及び比較例の酸化物粉末の細孔分布を示
すグラフである。
FIG. 2 is a graph showing pore distributions of oxide powders of Examples and Comparative Examples.

【図3】実施例及び比較例の酸化物粉末の細孔容積を示
すグラフである。
FIG. 3 is a graph showing pore volumes of oxide powders of Examples and Comparative Examples.

【図4】NOx 吸蔵曲線の一例を示し、時間と出ガス中の
NOx 濃度との関係を示すグラフである。
FIG. 4 shows an example of a NO x occlusion curve, which shows that
6 is a graph showing the relationship with the NO x concentration.

【図5】実施例6と比較例6のNOx 吸蔵還元型触媒の95
%NOx 吸蔵量を示すグラフである。
5 is a graph of 95 NO x storage reduction type catalysts of Example 6 and Comparative example 6. FIG.
% Is a graph showing the the NO x storage amount.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 23/58 F01N 3/08 A 23/63 3/10 A 35/10 301 Z F01N 3/08 3/28 Q 3/10 301C 301P 3/28 B01J 23/56 301A 301 B01D 53/36 103B ZAB 102H (72)発明者 今川 晴雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 森川 彰 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 松永 真一 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 山本 敏生 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 鈴木 正 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 3G091 AA02 AA12 AA17 AA19 AA28 AB06 BA01 BA14 BA15 BA19 BA39 CB02 DA01 DA02 DA04 DB10 EA30 FB02 FB10 FB11 FB12 FC04 FC07 GA01 GA03 GA07 GA20 GB01X GB02W GB02Y GB03W GB03Y GB04W GB04Y GB05W GB06W GB07W GB10X GB16X GB17X 4D048 AA06 AA13 AA18 AB02 AB07 BA03X BA08X BA14X BA19X BA30X BA31X BA32Y BA33X BA34Y BA42X BB02 BB17 EA04 4G048 AA03 AB02 AC08 AD03 AE05 AE07 4G069 AA01 AA03 AA08 BA01B BA05B BA16B BB06A BB06B BC03B BC32A BC33A BC43B BC70A BC71A BC71B BC72A BC72B BC73A BC74A BC75A BC75B CA02 CA03 CA08 CA13 CA14 CA15 DA06 EA02Y EA19 EC13X EC14X EC15X EC16X EC18X EC18Y FA01 FA02 FA03 FB05 FB07 FB09 FB14 FB23 FB30 FB64 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01J 23/58 F01N 3/08 A 23/63 3/10 A 35/10 301 Z F01N 3/08 3 / 28 Q 3/10 301C 301P 3/28 B01J 23/56 301A 301 B01D 53/36 103B ZAB 102H (72) Inventor Haruo Imagawa 1 41, Yokomichi Nagakute-cho, Aichi-gun, Aichi Prefecture Toyota Central Research Co., Ltd. In-house (72) Akira Morikawa Akira Prefecture, Aichi-gun, Nagakute-cho, Aichi Prefecture 41 41, Yokoshiro Yokouchi, Central Research Institute of Toyota Corporation (72) Inventor Shinichi Matsunaga, Aichi-gun, Aichi-gun, Nagakute-cho, 41 1 Toyota Central Research Institute Co., Ltd. (72) Inventor Toshio Yamamoto 1 of 41 Yokomichi Nagakute-cho, Aichi-gun, Aichi Prefecture Toyonaka Co., Ltd. In-lab (72) Inventor Masa Tadashi, Nagakute-cho, Aichi-gun, Aichi 1 1 41, Yokomichi Yokomichi Toyota Central Research Institute Co., Ltd. F-term (reference) 3G091 AA02 AA12 AA17 AA19 AA28 AB06 BA01 BA14 BA15 BA19 BA39 CB02 DA01 DA02 DA04 DB10 EA30 FB02 FB10 FB11 FB12 FC04 FC07 GA01 GA03 GA07 GA20 GB01X GB02W GB02Y GB03W GB03Y GB04W GB04Y GB05W GB06W GB07W GB10X GB16X GB17X 4D048 AA06 BA04XABAXBAAX BAAX BA30XBA08XBAAX BA08X BA30X AE05 AE07 4G069 AA01 AA03 AA08 BA01B BA05B BA16B BB06A BB06B BC03B BC32.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 Zr酸化物と、該Zr酸化物と固溶しない金
属Mの酸化物との混合物であり、該Zr酸化物と該金属M
の酸化物とがnmスケールで均一に分散していることを特
徴とする微細混合酸化物粉末。
1. A mixture of a Zr oxide and an oxide of a metal M which does not form a solid solution with the Zr oxide, wherein the Zr oxide and the metal M are mixed.
A fine mixed oxide powder characterized by being uniformly dispersed with the oxide of.
【請求項2】 FE−STEMにおいて、重なりのない一つの
粒子に対して直径 0.5nmの範囲の EDX分析を行った時の
各分析点の90%以上でZrと前記金属Mとが仕込み組成の
±20%以内の組成比で検出されることを特徴とする請求
項1に記載の微細混合酸化物粉末。
2. In the FE-STEM, Zr and the metal M account for 90% or more of each analysis point when EDX analysis with a diameter of 0.5 nm is performed on one particle without overlap. The fine mixed oxide powder according to claim 1, which is detected at a composition ratio within ± 20%.
【請求項3】 800℃で5時間の焼成後に細孔径が1〜
15nmの細孔容積が細孔径が 100nm以下の細孔容積の90%
以上である特性をもつことを特徴とする請求項1〜2の
いずれかに記載の微細混合酸化物粉末。
3. The pore size is 1 to 5 after firing at 800 ° C. for 5 hours.
Pore volume of 15 nm is 90% of pore volume of 100 nm or less
The fine mixed oxide powder according to any one of claims 1 and 2, which has the above-mentioned characteristics.
【請求項4】 前記金属Mの酸化物はアルミナであり、
前記Zr酸化物が50重量%以上含まれていることを特徴と
する請求項1〜3のいずれかに記載の微細混合酸化物粉
末。
4. The oxide of the metal M is alumina,
The fine mixed oxide powder according to claim 1, wherein the Zr oxide is contained in an amount of 50% by weight or more.
【請求項5】 Zrの化合物と酸化物がZr酸化物と固溶し
ない金属Mの化合物とが溶解した水溶液からZr酸化物前
駆体及び該金属Mの酸化物前駆体の沈殿を析出させ、系
内に水分が充分に存在している状態で該沈殿を焼成する
ことを特徴とする請求項1〜4のいずれかに記載の微細
混合酸化物粉末の製造方法。
5. A Zr oxide precursor and a precipitate of the metal M oxide precursor are precipitated from an aqueous solution in which a compound of Zr and a compound of the metal M in which the oxide does not form a solid solution with the Zr oxide are dissolved to form a system. The method for producing a fine mixed oxide powder according to any one of claims 1 to 4, wherein the precipitate is calcined in a state where water is sufficiently present therein.
【請求項6】 Zrの化合物と酸化物がZr酸化物と固溶し
ない金属Mの化合物とが溶解した水溶液からZr酸化物前
駆体及び該金属Mの酸化物前駆体の沈殿を析出させ、水
を分散媒とした懸濁状態で該沈殿を熟成し、その後焼成
することを特徴とする請求項1〜4のいずれかに記載の
微細混合酸化物粉末の製造方法。
6. A Zr oxide precursor and a precipitate of the oxide precursor of the metal M are precipitated from an aqueous solution in which a compound of Zr and a compound of the metal M in which the oxide does not form a solid solution with the Zr oxide are dissolved, and water is added. The method for producing a fine mixed oxide powder according to any one of claims 1 to 4, wherein the precipitate is aged in a suspension state in which is used as a dispersion medium, and then calcined.
【請求項7】 前記熟成は室温以上で行うことを特徴と
する請求項6に記載の微細混合酸化物粉末の製造方法。
7. The method for producing a fine mixed oxide powder according to claim 6, wherein the aging is performed at room temperature or higher.
【請求項8】 前記熟成は 100〜 200℃で行うことを特
徴とする請求項6に記載の微細混合酸化物粉末の製造方
法。
8. The method for producing a fine mixed oxide powder according to claim 6, wherein the aging is performed at 100 to 200 ° C.
【請求項9】 前記熟成は 100〜 150℃で行うことを特
徴とする請求項6に記載の微細混合酸化物粉末の製造方
法。
9. The method for producing a fine mixed oxide powder according to claim 6, wherein the aging is performed at 100 to 150 ° C.
【請求項10】 請求項1〜4のいずれかに記載の微細混
合酸化物粉末を含む担体に貴金属を担持してなることを
特徴とする触媒。
10. A catalyst comprising a carrier containing the fine mixed oxide powder according to claim 1 and a noble metal supported on the carrier.
【請求項11】 請求項1〜4のいずれかに記載の微細混
合酸化物粉末を含む担体に貴金属とNOx 吸蔵材を担持し
てなることを特徴とする触媒。
11. A catalyst comprising a carrier containing the fine mixed oxide powder according to any one of claims 1 to 4, which carries a noble metal and a NO x storage material.
JP2001201240A 2001-07-02 2001-07-02 Fine mixed oxide powder, production method thereor and catalyst Pending JP2003020227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201240A JP2003020227A (en) 2001-07-02 2001-07-02 Fine mixed oxide powder, production method thereor and catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201240A JP2003020227A (en) 2001-07-02 2001-07-02 Fine mixed oxide powder, production method thereor and catalyst

Publications (1)

Publication Number Publication Date
JP2003020227A true JP2003020227A (en) 2003-01-24

Family

ID=19038239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201240A Pending JP2003020227A (en) 2001-07-02 2001-07-02 Fine mixed oxide powder, production method thereor and catalyst

Country Status (1)

Country Link
JP (1) JP2003020227A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144274A (en) * 2003-11-12 2005-06-09 Toyota Central Res & Dev Lab Inc Carrier for exhaust gas cleaning catalyst, catalyst and its usage
JP2006160578A (en) * 2004-12-09 2006-06-22 Toyota Central Res & Dev Lab Inc Composite oxide and catalyst for cleaning exhaust gas
JP2006341152A (en) * 2005-06-07 2006-12-21 Toyota Motor Corp Catalyst carrier manufacturing method and manufacturing method of exhaust gas purifying catalyst
JP2006346528A (en) * 2005-06-13 2006-12-28 Toyota Central Res & Dev Lab Inc Catalyst carrier for exhaust gas purification, catalyst for exhaust gas purification, and manufacturing method of catalyst carrier for exhaust gas purification
JP2008230876A (en) * 2007-03-19 2008-10-02 Toyota Central R&D Labs Inc Method for manufacturing metal oxide porous body having mesopore and micropore, metal oxide porous body having mesopore and micropore, and gas purification material using the same
JP2008296111A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Manufacturing method of exhaust gas purifying catalyst and exhaust gas purifying catalyst
JP2009013064A (en) * 2008-10-03 2009-01-22 Toyota Motor Corp Porous composite oxide and method of manufacturing the same
WO2013035568A1 (en) * 2011-09-06 2013-03-14 三井金属鉱業株式会社 Catalyst carrier for exhaust gas purification and catalyst for exhaust gas purification
US9561494B2 (en) 2011-03-04 2017-02-07 Umicore Shokubai Japan Co., Ltd. Catalyst for exhaust gas purification, method for producing the same, and exhaust gas purification method using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260718A (en) * 1986-05-06 1987-11-13 Shigeyuki Somiya Production of ultrafine powder of high-purity zirconia-alumina by hydrothermal process
JPH07194973A (en) * 1994-01-12 1995-08-01 Hitachi Ltd Exhaust gas purifying catalyst
JPH08325015A (en) * 1994-12-21 1996-12-10 Eniricerche Spa Sol-gel preparative method for producing sphere, microsphereand wash coat of pure and mixed zirconia oxide, useful as catalyst or catalyst carrier
JPH10202101A (en) * 1997-01-27 1998-08-04 Toyota Central Res & Dev Lab Inc Composite oxide-carrying catalyst support
JPH10273324A (en) * 1997-01-21 1998-10-13 Kyowa Chem Ind Co Ltd Amorphous basic double hydroxide and its production
JPH11130436A (en) * 1997-10-22 1999-05-18 Mitsui Mining & Smelting Co Ltd Multiple oxide, its production and catalyst for purification of exhaust gas using the same
JP2000015100A (en) * 1998-07-06 2000-01-18 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst, exhaust gas treatment method and apparatus
JP2001170500A (en) * 1999-01-12 2001-06-26 Toyota Central Res & Dev Lab Inc Porous body, method of producing the same and exhaust gas purification catalyst using the porous body
JP2002211908A (en) * 2000-11-15 2002-07-31 Toyota Central Res & Dev Lab Inc Compound oxide powder, manufacturing method thereof and catalyst

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260718A (en) * 1986-05-06 1987-11-13 Shigeyuki Somiya Production of ultrafine powder of high-purity zirconia-alumina by hydrothermal process
JPH07194973A (en) * 1994-01-12 1995-08-01 Hitachi Ltd Exhaust gas purifying catalyst
JPH08325015A (en) * 1994-12-21 1996-12-10 Eniricerche Spa Sol-gel preparative method for producing sphere, microsphereand wash coat of pure and mixed zirconia oxide, useful as catalyst or catalyst carrier
JPH10273324A (en) * 1997-01-21 1998-10-13 Kyowa Chem Ind Co Ltd Amorphous basic double hydroxide and its production
JPH10202101A (en) * 1997-01-27 1998-08-04 Toyota Central Res & Dev Lab Inc Composite oxide-carrying catalyst support
JPH11130436A (en) * 1997-10-22 1999-05-18 Mitsui Mining & Smelting Co Ltd Multiple oxide, its production and catalyst for purification of exhaust gas using the same
JP2000015100A (en) * 1998-07-06 2000-01-18 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst, exhaust gas treatment method and apparatus
JP2001170500A (en) * 1999-01-12 2001-06-26 Toyota Central Res & Dev Lab Inc Porous body, method of producing the same and exhaust gas purification catalyst using the porous body
JP2002211908A (en) * 2000-11-15 2002-07-31 Toyota Central Res & Dev Lab Inc Compound oxide powder, manufacturing method thereof and catalyst

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144274A (en) * 2003-11-12 2005-06-09 Toyota Central Res & Dev Lab Inc Carrier for exhaust gas cleaning catalyst, catalyst and its usage
JP2006160578A (en) * 2004-12-09 2006-06-22 Toyota Central Res & Dev Lab Inc Composite oxide and catalyst for cleaning exhaust gas
JP4677779B2 (en) * 2004-12-09 2011-04-27 株式会社豊田中央研究所 Composite oxide and exhaust gas purification catalyst
JP2006341152A (en) * 2005-06-07 2006-12-21 Toyota Motor Corp Catalyst carrier manufacturing method and manufacturing method of exhaust gas purifying catalyst
JP2006346528A (en) * 2005-06-13 2006-12-28 Toyota Central Res & Dev Lab Inc Catalyst carrier for exhaust gas purification, catalyst for exhaust gas purification, and manufacturing method of catalyst carrier for exhaust gas purification
JP2008230876A (en) * 2007-03-19 2008-10-02 Toyota Central R&D Labs Inc Method for manufacturing metal oxide porous body having mesopore and micropore, metal oxide porous body having mesopore and micropore, and gas purification material using the same
JP2008296111A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Manufacturing method of exhaust gas purifying catalyst and exhaust gas purifying catalyst
JP2009013064A (en) * 2008-10-03 2009-01-22 Toyota Motor Corp Porous composite oxide and method of manufacturing the same
US9561494B2 (en) 2011-03-04 2017-02-07 Umicore Shokubai Japan Co., Ltd. Catalyst for exhaust gas purification, method for producing the same, and exhaust gas purification method using the same
WO2013035568A1 (en) * 2011-09-06 2013-03-14 三井金属鉱業株式会社 Catalyst carrier for exhaust gas purification and catalyst for exhaust gas purification
US9827556B2 (en) 2011-09-06 2017-11-28 Mitsui Mining & Smelting Co., Ltd. Catalyst carrier for exhaust gas purification and catalyst for exhaust gas purification

Similar Documents

Publication Publication Date Title
EP2104567B2 (en) Method of making a NOx storage material
JP4959129B2 (en) Exhaust gas purification catalyst
JP3498453B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3664182B2 (en) High heat-resistant exhaust gas purification catalyst and production method thereof
WO2002066155A1 (en) Exhaust gas clarification catalyst
EP2611536A1 (en) Catalyst for gasoline lean burn engines with improved nh3-formation activity
WO2012161091A1 (en) Exhaust gas purifying catalyst and carrier
JP2578219B2 (en) Method for producing exhaust gas purifying catalyst
JP2003020227A (en) Fine mixed oxide powder, production method thereor and catalyst
JP6339013B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and exhaust gas purification catalyst structure
JP2002282688A (en) Catalyst carrier, its production method, catalyst, and method for cleaning exhaust gas
JPWO2018147408A1 (en) Exhaust gas purification catalyst composition, method for producing the same, and automobile exhaust gas purification catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2010022892A (en) Catalyst for cleaning exhaust gas
JP2001009279A (en) Catalyst for purification of exhaust gas, its production and method for purifying exhaust gas
JP4666007B2 (en) Exhaust gas purification catalyst
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JP2003305363A (en) Catalyst carrier and catalyst for exhaust gas treatment
JP4807620B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2003010646A (en) Apparatus and method for cleaning diesel exhaust
JP2000051700A (en) Exhaust emission purifying catalyst and its production
JP4103407B2 (en) NOx storage reduction catalyst
JP2000325787A (en) Manufacture of exhaust gas cleaning catalyst
WO2016125539A1 (en) Carrier for exhaust gas purification catalyst and exhaust gas purification catalyst
JP3817679B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120522