JPH09103679A - Exhaust gas-purifying catalyst for diesel engine - Google Patents

Exhaust gas-purifying catalyst for diesel engine

Info

Publication number
JPH09103679A
JPH09103679A JP7263257A JP26325795A JPH09103679A JP H09103679 A JPH09103679 A JP H09103679A JP 7263257 A JP7263257 A JP 7263257A JP 26325795 A JP26325795 A JP 26325795A JP H09103679 A JPH09103679 A JP H09103679A
Authority
JP
Japan
Prior art keywords
exhaust gas
particle size
catalyst
coarse
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7263257A
Other languages
Japanese (ja)
Inventor
Michio Taguchi
教夫 田口
Koji Sakano
幸次 坂野
Yoshihide Watanabe
佳英 渡邊
Koichi Kasahara
光一 笠原
Norihiko Aono
紀彦 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Cataler Industrial Co Ltd
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Industrial Co Ltd, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Cataler Industrial Co Ltd
Priority to JP7263257A priority Critical patent/JPH09103679A/en
Publication of JPH09103679A publication Critical patent/JPH09103679A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress generation of SO3 and sulfate while oxidizing and decomposing performances of SOF, HC, etc., within a low temperature range are kept at least equivalent to conventional ones. SOLUTION: A catalytic noble metal is supported containing fine particles 3 of at most 5nm mean particle size on an upper stream side of an exhaust gas flow. On a down stream side the catalytic noble metal is supported as a coarse particle 4 of at least 10nm mean particle size, and SO2 is further difficult to be oxidized than HC. Therefore, HC is selectively oxidized on the upper stream side, and oxidation of SO2 is delayed on the down stream side, and so, generation of SO3 and sulfate are suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディーゼルエンジ
ン用排ガス浄化触媒に関し、詳しくは、ディーゼルエン
ジンからの排ガス中に含まれる有害成分である一酸化炭
素(CO)、炭化水素(HC)及び可溶性有機成分(S
OF)を浄化するとともに、硫酸塩(サルフェート)の
排出量を低減する排ガス浄化触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for a diesel engine, and more specifically, carbon monoxide (CO), hydrocarbon (HC) and soluble organic compounds which are harmful components contained in the exhaust gas from a diesel engine. Ingredient (S
The present invention relates to an exhaust gas purification catalyst that purifies OF and reduces the emission amount of sulfate (sulfate).

【0002】[0002]

【従来の技術】ガソリンエンジンについては、排ガスの
厳しい規制とそれに対処できる技術の進歩とにより、排
ガス中の有害成分は確実に減少されてきている。しか
し、ディーゼルエンジンについては、有害成分がPM
(炭素微粒子、サルフェート等の硫黄系微粒子、高分子
量炭化水素微粒子等のパティキュレート・マテリアル)
として排出されるという特異な事情から、規制も技術の
進歩もガソリンエンジンに比べて遅れており、確実に排
ガスを浄化できる排ガス浄化装置の開発が望まれてい
る。
2. Description of the Related Art With respect to gasoline engines, harmful components in exhaust gas have been steadily reduced due to strict regulations on exhaust gas and advances in technology capable of coping with the regulations. However, for diesel engines, the harmful components are PM
(Particulate materials such as carbon-based particles, sulfur-based particles such as sulfate, and high-molecular-weight hydrocarbon particles)
Due to the peculiar circumstances of being discharged as gas, regulation and technological progress are behind the gasoline engine, and the development of an exhaust gas purifying device that can surely purify exhaust gas is desired.

【0003】現在までに開発されているディーゼルエン
ジン用排ガス浄化装置としては、大きく分けてトラップ
型の排ガス浄化触媒を用いたトラップ型排ガス浄化装置
と、オープン型の排ガス浄化触媒を用いたオープン型排
ガス浄化装置とが知られている。トラップ型の排ガス浄
化触媒としては、セラミック製の目封じタイプのハニカ
ム体(ディーゼルパティキュレートフィルタ(DP
F))等が知られている。この排ガス浄化触媒を用いた
排ガス浄化装置では、DPF等で排ガスを濾過してPM
を捕集し、圧損が上昇すればバーナ等で蓄積したPMを
燃焼させることによりDPF等を再生するようになって
いる。また、PMの捕集とともにCO、HC及びSOF
を酸化・分解させるべく、DPF等の担体基材にアルミ
ナ等により触媒担持層を形成し、この触媒担持層に白金
(Pt)等を担持させた排ガス浄化触媒も検討されてい
る。
[0003] As exhaust gas purifying devices for diesel engines that have been developed to date, trap type exhaust gas purifying devices using trap type exhaust gas purifying catalysts and open type exhaust gas purifying devices using open type exhaust gas purifying catalysts have been roughly classified. A purifying device is known. As a trap-type exhaust gas purifying catalyst, a ceramic plugged honeycomb body (diesel particulate filter (DP
F)) and the like are known. In an exhaust gas purifying apparatus using the exhaust gas purifying catalyst, the exhaust gas is filtered by a DPF or the like and the PM is filtered.
Is collected, and if the pressure loss increases, the PM accumulated by a burner or the like is burned to regenerate the DPF or the like. In addition to collecting PM, CO, HC and SOF
In order to oxidize and decompose the exhaust gas, an exhaust gas purifying catalyst in which a catalyst support layer is formed of alumina or the like on a carrier base material such as DPF and platinum (Pt) or the like is supported on the catalyst support layer is also under study.

【0004】一方、オープン型の排ガス浄化触媒として
は、セラミック製のストレートフロータイプのハニカム
体等からなる担体基材と、この担体基材にアルミナ等に
より形成された触媒担持層と、この触媒担持層にガソリ
ンエンジンと同様に担持されたPt等とからなるものが
知られている。このオープン型排ガス浄化装置によれ
ば、Pt等の触媒作用によりCO等の酸化・分解が可能
である。
On the other hand, as an open type exhaust gas purifying catalyst, a carrier base material made of a ceramic straight flow type honeycomb body or the like, a catalyst support layer formed of alumina or the like on the carrier base material, and the catalyst support It is known that the layer is composed of Pt and the like supported in the same manner as a gasoline engine. According to this open type exhaust gas purifying apparatus, CO and the like can be oxidized and decomposed by the catalytic action of Pt and the like.

【0005】しかし、上記白金等をもつトラップ型又は
オープン型排ガス浄化装置では、触媒担持層が排ガス中
のSO2 を吸着し、高温時にSO2 がPt等の触媒作用
により酸化されてSO3 として排出されてしまう。特
に、ディーゼルエンジンにおいては、排ガス中に酸素ガ
スも充分存在し、この酸素ガスによってSO2 が酸化さ
れてSO3 として排出されやすい。そして、SO2 はP
Mとして測定されないが、SO3 はPMとして測定され
る。また、SO3 は排ガス中に多量に存在する水蒸気と
容易に反応して硫酸ミストを形成し、サルフェートとし
て排出されてしまう。このため、これらの排ガス浄化装
置では、高温時にサルフェートの排出によりPM量が増
大するという問題がある。
However, in the above-mentioned trap type or open type exhaust gas purifying device having platinum or the like, the catalyst supporting layer adsorbs SO 2 in the exhaust gas, and at high temperature SO 2 is oxidized by the catalytic action of Pt or the like to be converted into SO 3. It will be discharged. Particularly, in a diesel engine, oxygen gas is sufficiently present in the exhaust gas, and SO 2 is easily oxidized by this oxygen gas and is easily discharged as SO 3 . And SO 2 is P
Not measured as M, but SO 3 is measured as PM. Further, SO 3 easily reacts with a large amount of water vapor present in the exhaust gas to form a sulfuric acid mist and is discharged as a sulfate. Therefore, these exhaust gas purifying devices have a problem that the amount of PM increases due to the discharge of sulfate at a high temperature.

【0006】かかる実情から、特開昭62−56783
号公報にはアルミナにPtを担持後、700〜1000
℃で熱処理することでPtをシンタリングさせ、これに
よりSO2 の酸化作用を低下させたディーゼル排気中の
微粒子除去用触媒の製造方法が開示されている。
[0006] Under such circumstances, Japanese Patent Application Laid-Open No. 62-56783.
In Japanese Patent Laid-Open Publication No. 700-1000, after supporting Pt on alumina,
A method for producing a catalyst for removing fine particles in diesel exhaust, in which Pt is sintered by heat treatment at ℃, thereby reducing the oxidizing action of SO 2 is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら特開昭6
2−56783号公報に開示の触媒では、サルフェート
の生成を抑制する効果は大きいものの、Ptの酸化活性
が低下するため低温域においてSOFやHCを酸化浄化
する作用が低いという不具合があった。本発明は、上記
の事情に鑑みてなされたものであり、低温域におけるS
OFやHC等の酸化・分解性能を従来と同等以上に維持
するとともに、SO3 及びサルフェートの生成を抑制す
ることを目的とする。なお、SOFは比較的高分子量の
炭化水素であるので、以下、低分子量のHCとSOFを
まとめてHCという。
SUMMARY OF THE INVENTION However, Japanese Unexamined Patent Publication No.
The catalyst disclosed in JP-A-2-56783 has a large effect of suppressing the formation of sulfate, but has a problem that the effect of oxidizing and purifying SOF and HC is low in a low temperature range because the oxidation activity of Pt decreases. The present invention has been made in view of the above circumstances, and S in a low temperature range is
The object is to maintain the oxidation / decomposition performance of OF, HC and the like at a level equal to or higher than that of the conventional one, and to suppress the production of SO 3 and sulfate. Since SOF is a relatively high molecular weight hydrocarbon, hereinafter, low molecular weight HC and SOF are collectively referred to as HC.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明のディーゼルエンジン用排ガス浄化触媒の特徴は、多
孔質の担体基材と、担体基材に担持された触媒貴金属
と、からなり、触媒貴金属は、排気ガス流の上流側には
平均粒径5nm以下の微細粒子を含んで担持され、下流
側には平均粒径10nm以上の粗大粒子として担持され
ていることにある。
The features of the exhaust gas purifying catalyst for a diesel engine of the present invention for solving the above-mentioned problems are characterized by comprising a porous carrier base material and a catalytic noble metal supported on the carrier base material. The noble metal is carried on the upstream side of the exhaust gas flow while containing fine particles having an average particle size of 5 nm or less, and on the downstream side as coarse particles having an average particle size of 10 nm or more.

【0009】[0009]

【発明の実施の形態】多孔質の担体基材は、アルミナ、
シリカ、チタニア、ゼオライト、シリカ−アルミナ及び
チタニア−アルミナ等の耐火性無機酸化物により形成す
ることができる。耐火性無機酸化物は、平均粒径が20
μm以下、比表面積が10m2 /g以上のものであるこ
とが好ましい。耐火性無機酸化物が20μmを超える平
均粒径であり、かつ10m2 /g未満の比表面積であれ
ば、十分なHCの浄化性能が得られない虞れがある。な
おこれらの耐火性無機酸化物からハニカム形状又はペレ
ット形状の担体基材を形成してもよいし、コーディエラ
イト又は金属から形成された基材に上記耐火性無機酸化
物をコーティングして担体基材とすることもできる。
BEST MODE FOR CARRYING OUT THE INVENTION A porous carrier substrate is alumina,
It can be formed of a refractory inorganic oxide such as silica, titania, zeolite, silica-alumina and titania-alumina. The refractory inorganic oxide has an average particle size of 20.
It is preferably μm or less and a specific surface area of 10 m 2 / g or more. If the refractory inorganic oxide has an average particle size of more than 20 μm and a specific surface area of less than 10 m 2 / g, sufficient HC purification performance may not be obtained. A honeycomb-shaped or pellet-shaped carrier substrate may be formed from these refractory inorganic oxides, or a carrier substrate formed by coating the above refractory inorganic oxide on a substrate formed of cordierite or metal. It can also be made of wood.

【0010】触媒貴金属としては、代表的なPt、パラ
ジウム(Pd)、ロジウム(Rh)の他、ルテニウム
(Ru)、オスニウム(Os)及びイリジウム(Ir)
の少なくとも一種を採用することができる。例えば、P
tの担持量は、排ガス浄化触媒の単位容積当り、0.0
1〜10.0g/Lであることが好ましい。Ptの担持
量が0.01g/L未満では、十分な酸化・分解性能が
得られない虞れがある。逆に、10.0g/Lを超えて
Ptを担持しても、酸化・分解性能の向上が僅かであ
り、排ガス浄化触媒が高価となる。特に、Ptの担持量
が0.1〜3.0g/Lである場合は酸化・分解性能と
コストとの両面で好ましい。
Typical catalyst noble metals include Pt, palladium (Pd), rhodium (Rh), ruthenium (Ru), osmium (Os) and iridium (Ir).
At least one of the above can be adopted. For example, P
The carried amount of t is 0.0 per unit volume of the exhaust gas purifying catalyst.
It is preferably from 1 to 10.0 g / L. If the amount of Pt supported is less than 0.01 g / L, sufficient oxidation / decomposition performance may not be obtained. On the contrary, even if Pt is supported in an amount of more than 10.0 g / L, the oxidation / decomposition performance is slightly improved, and the exhaust gas purifying catalyst becomes expensive. Particularly, when the supported amount of Pt is 0.1 to 3.0 g / L, it is preferable in terms of both oxidation / decomposition performance and cost.

【0011】Pdの担持量は、排ガス浄化触媒の単位容
積当り、0.01〜20.0g/Lであることが好まし
い。Pdの担持量が0.01g/L未満では、十分な酸
化・分解性能が得られない虞れがある。逆に、20.0
g/Lを超えてPdを担持しても、酸化・分解性能の向
上が僅かであり、排ガス浄化触媒が高価となる。特に、
Pdの担持量が0.5〜3.0g/Lである場合は酸化
・分解性能とコストとの両面で好ましい。
The amount of Pd supported is preferably 0.01 to 20.0 g / L per unit volume of the exhaust gas purifying catalyst. If the supported amount of Pd is less than 0.01 g / L, there is a possibility that sufficient oxidation / decomposition performance may not be obtained. Conversely, 20.0
Even if Pd is supported in excess of g / L, the oxidation / decomposition performance is slightly improved, and the exhaust gas purification catalyst becomes expensive. Especially,
When the supported amount of Pd is 0.5 to 3.0 g / L, it is preferable in terms of both oxidation / decomposition performance and cost.

【0012】Rhの担持量は、排ガス浄化触媒の単位容
積当り、0.01〜1.0g/Lであることが好まし
い。Rhの担持量が0.01g/L未満では、十分な酸
化・分解性能が得られない虞れがある。逆に、1.0g
/Lを超えてRhを担持しても、酸化・分解性能の向上
が僅かであり、排ガス浄化触媒が高価となる。特に、R
hの担持量が0.05〜0.5g/Lである場合は酸化
・分解性能とコストとの両面で好ましい。
The supported amount of Rh is preferably 0.01 to 1.0 g / L per unit volume of the exhaust gas purifying catalyst. If the supported amount of Rh is less than 0.01 g / L, there is a possibility that sufficient oxidation / decomposition performance may not be obtained. Conversely, 1.0g
Even if Rh is supported in excess of / L, the oxidation / decomposition performance is slightly improved, and the exhaust gas purification catalyst becomes expensive. In particular, R
When the supported amount of h is 0.05 to 0.5 g / L, it is preferable in terms of both oxidation / decomposition performance and cost.

【0013】ところで、SO2 とHCとの酸化され易さ
を比較すると、SO2 はHCより酸化され難い特性を有
している。つまり、SO2 とHCとが共存する排ガスに
触媒貴金属を接触させるとHCが優先的に酸化される。
したがって、HCが存在していない場合ではSO2 が酸
化され、サルフェートが生成され易くなる。この現象は
特に排ガスが高温になると顕著となる。
By the way, comparing the oxidizability of SO 2 and HC, SO 2 has a characteristic that it is harder to oxidize than HC. That is, when the catalytic noble metal is brought into contact with the exhaust gas in which SO 2 and HC coexist, HC is preferentially oxidized.
Therefore, when HC is not present, SO 2 is oxidized and sulfate is easily generated. This phenomenon becomes remarkable especially when the exhaust gas is heated to a high temperature.

【0014】また触媒貴金属においては、粒径が小さい
ほどHC、SO2 のいずれの酸化活性も増大する。一
方、粒径が大きくなると、HCの酸化活性は低温時で若
干低下するが高温時では活性低下がほとんど見られない
のに対し、SO2 の酸化活性は高温時に大きく低下す
る。そこで本発明の排ガス浄化触媒は、排ガス流の上流
側に5nm以下の粒径からなる貴金属を担持したもの
と、下流側に10nm以上の貴金属を担持したものから
なる構成としていることから、低温時においてHCを優
先的に酸化分解し、かつ高温時にサルフェートの生成を
防止することが実現可能となったものである。
In the catalytic noble metal, the smaller the particle size, the greater the oxidizing activity of both HC and SO 2 . On the other hand, as the particle size increases, the oxidizing activity of HC slightly decreases at low temperature, but the activity hardly decreases at high temperature, whereas the oxidizing activity of SO 2 greatly decreases at high temperature. Therefore, the exhaust gas purifying catalyst of the present invention has a structure in which a noble metal having a particle size of 5 nm or less is carried on the upstream side of the exhaust gas flow and a noble metal having a particle size of 10 nm or more is carried on the downstream side, so that at low temperature It is possible to preferentially oxidize and decompose HC and prevent the formation of sulfate at high temperature.

【0015】以下に本発明の詳細を説明する。本発明の
排ガス浄化用触媒では、貴金属は排気ガス流の上流側に
5nm以下の粒径の微細粒子を含んで担持されている。
触媒貴金属は粒径が小さいほど表面積が大きくなり酸化
活性が増大するので、SO2 とHCとが共存する上流側
において触媒貴金属の粒径を5nm以下とすることによ
りHCが優先的に酸化され、高いHCの浄化性能が得ら
れる。微細粒子が5nmを超える粒径となると、低温域
における酸化活性が低下するため、HCの浄化性能が低
下する。
The details of the present invention will be described below. In the exhaust gas-purifying catalyst of the present invention, the noble metal is supported on the upstream side of the exhaust gas flow, including fine particles having a particle size of 5 nm or less.
The smaller the particle size of the catalytic noble metal, the larger the surface area and the higher the oxidation activity. Therefore, by setting the particle size of the catalytic noble metal to 5 nm or less on the upstream side where SO 2 and HC coexist, HC is preferentially oxidized, High HC purification performance can be obtained. When the fine particles have a particle size of more than 5 nm, the oxidizing activity in the low temperature range is lowered, and the purification performance of HC is lowered.

【0016】なお、上流側には少なくとも粒径5nm以
下の触媒貴金属の微細粒子が担持されていればよく、5
nm以上の触媒貴金属粒子の担持を拒むものではない。
そして5nmを超える粒子が担持されていてもコストの
面を除けば特に不具合は生じない。一方、上流側で酸化
されなかったSO2 はそのまま下流側へ流れる。本発明
の排ガス浄化触媒では、触媒貴金属は排ガス流の下流側
に10nm以上の粒径の粗大粒子として担持されてい
る。したがって下流側では、高温においても酸化活性が
小さいのでSO2 は酸化されずそのまま排出され、SO
3 やサルフェートとなるのが防止されている。これによ
りPMの排出量が低減される。なお、上流側で酸化され
なかったHCが存在しても、HCはSO2 に比べ粗大な
触媒貴金属でも比較的容易に酸化されるので、存在する
HCは酸化浄化され未浄化HCが排出されるのが防止さ
れる。
It is sufficient that fine particles of catalytic noble metal having a particle diameter of 5 nm or less are carried on the upstream side.
It does not prevent the loading of catalytic noble metal particles having a size of not less than nm.
Even if particles having a size of more than 5 nm are carried, no particular problem occurs except for cost. On the other hand, SO 2 that has not been oxidized on the upstream side flows to the downstream side as it is. In the exhaust gas purifying catalyst of the present invention, the catalytic noble metal is carried on the downstream side of the exhaust gas stream as coarse particles having a particle size of 10 nm or more. Therefore, on the downstream side, since the oxidizing activity is small even at high temperature, SO 2 is not oxidized and is discharged as it is.
It is prevented from becoming 3 or sulfate. As a result, the emission amount of PM is reduced. Even if there is HC that has not been oxidized on the upstream side, HC is relatively easily oxidized even with a catalytic precious metal that is coarser than SO 2. Therefore, the existing HC is oxidized and purified and unpurified HC is discharged. Is prevented.

【0017】なお下流側に担持される触媒貴金属の粗大
粒子の粒径が10nmより小さいと、酸化活性が高くS
2 が酸化されるようになるため好ましくない。下流側
に担持される粗大粒子の粒径の上限は特に制限されない
が、60nm以下とすることが望ましい。60nmを越
えると下流側におけるHCの浄化性能まで低下し、全体
としてHCの浄化性能が低下する。
If the particle size of the coarse particles of the catalytic noble metal supported on the downstream side is smaller than 10 nm, the oxidation activity is high and S
This is not preferable because O 2 will be oxidized. The upper limit of the particle size of the coarse particles carried on the downstream side is not particularly limited, but is preferably 60 nm or less. If it exceeds 60 nm, the HC purification performance on the downstream side is also deteriorated, and the HC purification performance is deteriorated as a whole.

【0018】担体基材において、粒径が5nm以下の微
細粒子が担持される上流側と、10nm以上の粗大粒子
が担持される下流側の容積比は、上流側/下流側=1/
4〜1/1とするのが好ましい。上流側の容積がこれよ
り小さいとHCの浄化性能が低下し、上流側の容積がこ
れより大きくなるとSO2 の酸化が生じ易くなるため好
ましくない。なお、上流側と下流側は一の担体基材内で
連続していてもよいし、分離されていてもよい。また担
体基材を分離したタンデム触媒装置とし、5nm以下の
微細粒子を担持した担体基材を上流側に、10nm以上
の粗大粒子を担持した担体基材を下流側に配置して本発
明の排ガス浄化触媒とすることもできる。この場合に
も、上流側の担体基材と下流側の担体基材の容積比を上
記範囲とすることが望ましい。
In the carrier substrate, the volume ratio of the upstream side, on which fine particles having a particle size of 5 nm or less are carried, to the downstream side, on which coarse particles having a particle size of 10 nm or more are carried, is upstream / downstream = 1 /
It is preferably 4 to 1/1. If the volume on the upstream side is smaller than this, the purification performance of HC is deteriorated, and if the volume on the upstream side is larger than this, SO 2 is easily oxidized, which is not preferable. The upstream side and the downstream side may be continuous in one carrier base material or may be separated. Further, a tandem catalyst device in which a carrier substrate is separated is used, and a carrier substrate carrying fine particles of 5 nm or less is arranged on the upstream side, and a carrier substrate carrying coarse particles of 10 nm or more is arranged on the downstream side. It can also be used as a purification catalyst. Also in this case, it is desirable to set the volume ratio of the upstream carrier substrate to the downstream carrier substrate within the above range.

【0019】[0019]

〔試験例1〕[Test Example 1]

(実施例1)図1及び図2に本実施例の排ガス浄化触媒
の概略構成図を示す。この排ガス浄化触媒は、コーディ
エライト製のハニカム担体(1)と、ハニカム担体
(1)表面に被覆されたコート層(2)と、ハニカム担
体(1)全体に均一に担持された平均粒径10nm以上
の粗大Pt(3)と、ハニカム担体(1)の上流側端面
から容積で40%の範囲のコート層(2)に担持された
平均粒径5nm以下の微細Pt(4)とから構成されて
いる。
(Embodiment 1) FIG. 1 and FIG. 2 are schematic configuration diagrams of an exhaust gas purifying catalyst of this embodiment. This exhaust gas purifying catalyst comprises a cordierite honeycomb carrier (1), a coat layer (2) coated on the surface of the honeycomb carrier (1), and an average particle size uniformly supported on the entire honeycomb carrier (1). Coarse Pt (3) having a size of 10 nm or more and fine Pt (4) having an average particle size of 5 nm or less carried by the coat layer (2) in a volume range of 40% from the upstream end surface of the honeycomb carrier (1). Has been done.

【0020】この排ガス浄化触媒を製造した方法を以下
に詳細に説明することで、本実施例の排ガス浄化触媒の
構成の詳細な説明に代える。コーディエライト製のスト
レートフロータイプのハニカム担体(1)(400セル
/in2 、直径117mm、長さ120mm、容積1.
3リットル)を用意する。次に、シリカとアルミナを重
量比でSiO2 :Al2 3 =9:1となるように含む
スラリーを調製し、ハニカム担体(1)をこのスラリー
に浸漬し引き上げて余分なスラリーを吹き払った後、1
00℃で1時間乾燥後500℃で1時間焼成して、ハニ
カム担体(1)1リットル当たり100gのコート層
(2)を形成した。
The method for producing the exhaust gas purifying catalyst will be described in detail below, and will replace the detailed description of the structure of the exhaust gas purifying catalyst of this embodiment. Cordierite straight flow type honeycomb carrier (1) (400 cells / in 2 , diameter 117 mm, length 120 mm, volume 1.
3 liters) is prepared. Next, a slurry containing silica and alumina in a weight ratio of SiO 2 : Al 2 O 3 = 9: 1 was prepared, and the honeycomb carrier (1) was immersed in this slurry and pulled up to blow off excess slurry. After 1
After drying at 00 ° C for 1 hour and firing at 500 ° C for 1 hour, 100 g of the coating layer (2) per liter of the honeycomb carrier (1) was formed.

【0021】次に、コート層(2)が形成されたハニカ
ム担体(1)を所定濃度のテトラアンミンヒドロキシド
白金溶液に1時間浸漬し、引き上げた後余分な水滴を吹
き払い、100℃で1時間乾燥後300℃で1時間熱処
理してアンミン等を除去した。Ptの担持量は、ハニカ
ム担体(1)1リットル当たり1.2gである。その後
大気中において600℃で10時間の熱処理を行い、P
tをシンタリングさせて粗大Pt(3)とした。顕微鏡
観察の結果、粗大Pt(3)の平均粒径は10nmであ
った。
Next, the honeycomb carrier (1) having the coat layer (2) formed thereon is dipped in a tetraammine hydroxide platinum solution having a predetermined concentration for 1 hour, pulled up, and then excess water droplets are blown off, followed by 100 ° C. for 1 hour. After drying, heat treatment was performed at 300 ° C. for 1 hour to remove ammine and the like. The amount of Pt carried is 1.2 g per liter of the honeycomb carrier (1). After that, heat treatment is performed at 600 ° C. for 10 hours in the atmosphere, and P
The t was sintered to obtain coarse Pt (3). As a result of microscopic observation, the average particle diameter of coarse Pt (3) was 10 nm.

【0022】次に、粗大Pt(3)が担持されたハニカ
ム担体(1)の、排ガスの上流側端面から全容積の40
%の容積範囲に所定濃度のテトラアンミンヒドロキシド
白金溶液で担持した。担持の方法は、テトラアンミンヒ
ドロキシド白金溶液に担体先端を僅かに浸漬し、ドライ
ヤーで乾燥する方法でPt0.39gを含む溶液全てを
用いて担持した。微細Pt(4)の担持量は、上流側4
0%の容積部分に0.39gであり、粗大Pt(3)と
微細Pt(4)を合わせた全体の平均担持量は、ハニカ
ム担体(1)1リットル当たり1.5gである。その時
の微細Pt粒径を測定したところ3nmであった。 (実施例2)粗大Pt(3)とするための熱処理温度を
700℃としたこと以外は実施例1と同様にして実施例
2の排ガス浄化触媒を調製した。粗大Pt(3)の平均
粒径は22nmである。 (実施例3)粗大Pt(3)とするための熱処理温度を
800℃としたこと以外は実施例1と同様にして実施例
3の排ガス浄化触媒を調製した。粗大Pt(3)の平均
粒径は36nmである。 (実施例4)粗大Pt(3)とするための熱処理温度を
900℃としたこと以外は実施例1と同様にして実施例
4の排ガス浄化触媒を調製した。粗大Pt(3)の平均
粒径は60nmである。 (比較例1)粗大Pt(3)とするための熱処理温度を
500℃としたこと以外は実施例1と同様にして比較例
1の排ガス浄化触媒を調製した。粗大Pt(3)の平均
粒径は3nmである。 (比較例2)粗大Pt(3)とするための熱処理温度を
1000℃としたこと以外は実施例1と同様にして比較
例2の排ガス浄化触媒を調製した。粗大Pt(3)の平
均粒径は94nmである。 (性能試験)上記のそれぞれの排ガス浄化触媒を2.6
Lディーゼルエンジンの排気系に取付け、回転数200
0rpm、入りガス温度500℃で1時間運転するエー
ジング処理を行った後、入りガス温度を50℃ずつ降温
させて触媒前後のPMを分析するとともに触媒前後のH
C量を測定した。結果をPMゼロ%低減温度及びHC5
0%浄化温度に換算して図3に示す。
Next, the honeycomb carrier (1) carrying the coarse Pt (3) has a total volume of 40 from the end face on the upstream side of the exhaust gas.
% Of tetraammine hydroxide platinum solution was supported on the volume range. The supporting method was such that the tip of the carrier was slightly dipped in a tetraammine hydroxide platinum solution and dried with a drier to carry all the solution containing 0.39 g of Pt. The amount of fine Pt (4) loaded is 4 on the upstream side.
The volume of 0% is 0.39 g, and the total amount of coarse Pt (3) and fine Pt (4) combined is 1.5 g per liter of the honeycomb carrier (1). The fine Pt particle size at that time was measured and found to be 3 nm. (Example 2) An exhaust gas purifying catalyst of Example 2 was prepared in the same manner as in Example 1 except that the heat treatment temperature for making coarse Pt (3) was 700 ° C. The average particle size of coarse Pt (3) is 22 nm. (Example 3) An exhaust gas purifying catalyst of Example 3 was prepared in the same manner as in Example 1 except that the heat treatment temperature for making coarse Pt (3) was 800 ° C. The average particle size of the coarse Pt (3) is 36 nm. (Example 4) An exhaust gas purifying catalyst of Example 4 was prepared in the same manner as in Example 1 except that the heat treatment temperature for making coarse Pt (3) was 900 ° C. The average particle size of the coarse Pt (3) is 60 nm. (Comparative Example 1) An exhaust gas purifying catalyst of Comparative Example 1 was prepared in the same manner as in Example 1 except that the heat treatment temperature for making coarse Pt (3) was 500 ° C. The average particle size of the coarse Pt (3) is 3 nm. (Comparative Example 2) An exhaust gas purifying catalyst of Comparative Example 2 was prepared in the same manner as in Example 1 except that the heat treatment temperature for forming coarse Pt (3) was 1000 ° C. The average particle size of the coarse Pt (3) is 94 nm. (Performance test) 2.6 each of the above exhaust gas purifying catalysts was used.
Installed in the exhaust system of L diesel engine, the rotation speed is 200
After performing an aging process of operating at 0 rpm and an inlet gas temperature of 500 ° C. for 1 hour, the inlet gas temperature is lowered by 50 ° C. to analyze PM before and after the catalyst, and H before and after the catalyst is analyzed.
The amount of C was measured. The result shows that PM zero% reduction temperature and HC5
It is converted into 0% purification temperature and shown in FIG.

【0023】なお、PMゼロ%低減温度とは、高温にな
るほど増加するサルフェートの生成量がSOFなど他の
PM成分の触媒での低減量と同じ値になる温度をいい、
SOF等の低減量が同じ場合、PMゼロ%低減温度が高
温側になるほどサルフェートの生成が抑制されているこ
とを意味している。またHC50%浄化温度とは、触媒
前の排ガス中のHCの50%が浄化される温度をいい、
HC50%浄化温度が低いほどHCの酸化力が高いこと
を意味している。 (評価)図3より、粗大Pt(3)の平均粒径が3nm
の比較例1では、PMゼロ%低減温度が低くSO2 の酸
化が防止できていない。また粗大Pt(3)の平均粒径
が94nmの比較例2では、HCの浄化活性が低下して
いる。しかし各実施例の触媒では、PMゼロ%低減温度
が350℃以上と高くSO2 の酸化が防止され、かつH
C50%浄化温度が250℃未満と低温で効率良くHC
が酸化浄化されていることが明らかであり、これは粗大
Pt(3)の平均粒径を10nm〜60nmとしたこと
による作用効果であることが明らかである。 〔試験例2〕 (比較例3)実施例1で用いたコート層(2)を形成し
たハニカム担体(1)に、実施例1と同様にしてPtを
担持した。Ptの担持量はハニカム担体(1)1リット
ル当たり1.5gとなるようにした。
The PM zero% reduction temperature is a temperature at which the amount of sulfate that increases as the temperature rises becomes the same as the amount of reduction of other PM components such as SOF in the catalyst.
When the reduction amount of SOF or the like is the same, it means that the generation of sulfate is suppressed as the PM zero% reduction temperature becomes higher. The 50% HC purification temperature is the temperature at which 50% of the HC in the exhaust gas before the catalyst is purified,
The lower the 50% purification temperature of HC, the higher the oxidizing power of HC. (Evaluation) From FIG. 3, the average particle size of coarse Pt (3) is 3 nm.
In Comparative Example 1, the PM zero% reduction temperature is low and SO 2 oxidation cannot be prevented. Further, in Comparative Example 2 in which the coarse Pt (3) has an average particle size of 94 nm, the HC purification activity is reduced. However, in the catalysts of the respective examples, the PM zero% reduction temperature is as high as 350 ° C. or higher, the SO 2 oxidation is prevented, and the H 2
Efficient HC at low temperature with C50% purification temperature of less than 250 ° C
Is oxidatively purified, and it is clear that this is a function and effect obtained by setting the average particle diameter of the coarse Pt (3) to 10 nm to 60 nm. [Test Example 2] (Comparative Example 3) Pt was loaded on the honeycomb carrier (1) having the coat layer (2) used in Example 1 in the same manner as in Example 1. The loading amount of Pt was set to be 1.5 g per liter of the honeycomb carrier (1).

【0024】そして実施例1〜4及び比較例1〜2と同
様にして熱処理し、微細Pt(4)を担持せずにそれぞ
れの触媒を調製した。各触媒の粗大Pt(3)の粒径は
試験例1の対応する触媒と同様であった。それぞれの触
媒について、試験例1と同様にしてPMゼロ%低減温度
とHC50%浄化温度を測定し、結果を試験例1の結果
と合わせて図4に示す。
Then, heat treatment was carried out in the same manner as in Examples 1 to 4 and Comparative Examples 1 and 2 to prepare respective catalysts without supporting fine Pt (4). The coarse Pt (3) particle size of each catalyst was similar to the corresponding catalyst of Test Example 1. For each catalyst, the PM zero% reduction temperature and the HC 50% purification temperature were measured in the same manner as in Test Example 1, and the results are shown in FIG. 4 together with the results of Test Example 1.

【0025】図4より、比較例3のそれぞれの触媒は、
対応する実施例1〜4及び比較例1〜2の触媒に比べて
PMゼロ%低減温度は高いものの、HC50%低減温度
がかなり高くなりHC浄化性能に劣っている。これは微
細Pt(4)を担持しなかったことに起因していること
が明らかである。 (比較例4)担持されたPtの熱処理を行わなかったこ
と、Ptの担持量はハニカム担体(1)1リットル当た
り1.5gとなるようにしたこと、及び微細Pt(4)
を担持しなかったこと以外は実施例1と同様にして比較
例4の触媒を調製した。担持されたPtの粒径は0.5
nmときわめて小さい。
From FIG. 4, the respective catalysts of Comparative Example 3 were
Although the PM zero% reduction temperature is higher than the corresponding catalysts of Examples 1 to 4 and Comparative Examples 1 and 2, the HC 50% reduction temperature is considerably high and the HC purification performance is poor. It is clear that this is due to the fact that fine Pt (4) was not supported. (Comparative Example 4) The heat treatment of the carried Pt was not carried out, the carried amount of Pt was set to be 1.5 g per liter of the honeycomb carrier (1), and the fine Pt (4)
A catalyst of Comparative Example 4 was prepared in the same manner as in Example 1 except that the catalyst was not supported. The supported Pt particle size is 0.5
nm is extremely small.

【0026】そして試験例1と同様にしてPMゼロ%低
減温度とHC50%浄化温度を測定し、結果を図4に示
す。図4より、比較例4の触媒はHCの浄化性能には極
めて優れているものの、PMゼロ%低減温度が300℃
と低くSO2 の酸化を防止できていない。これは全体に
微細Ptが担持され、粗大Pt(3)を担持していない
ことに起因することが明らかである。 〔試験例3〕 (実施例5)実施例1と同様にコート層(2)が形成さ
れたハニカム担体(1)に、同様にしてPtをハニカム
担体(1)1リットル当たり1.2gとなるように担持
した。その後大気中において800℃で5時間の熱処理
を行い、Ptをシンタリングさせて粗大Pt(3)とし
た。顕微鏡観察の結果、粗大Pt(3)の平均粒径は3
6nmであった。
Then, the PM zero% reduction temperature and the HC 50% purification temperature were measured in the same manner as in Test Example 1, and the results are shown in FIG. As shown in FIG. 4, although the catalyst of Comparative Example 4 is extremely excellent in the purification performance of HC, the PM zero% reduction temperature is 300 ° C.
As a result, SO 2 cannot be prevented from being oxidized. It is clear that this is because fine Pt is supported on the entire surface and coarse Pt (3) is not supported. [Test Example 3] (Example 5) In the same manner as in Example 1, the honeycomb carrier (1) on which the coat layer (2) was formed had Pt in an amount of 1.2 g per liter of the honeycomb carrier (1). So that it was carried. After that, heat treatment was performed in the air at 800 ° C. for 5 hours to sinter Pt to obtain coarse Pt (3). As a result of microscopic observation, the average particle size of coarse Pt (3) was 3
6 nm.

【0027】次に、粗大Pt(3)が担持されたハニカ
ム担体(1)の、排ガスの上流側端面から容積の20%
の範囲を所定濃度のテトラアンミンヒドロキシド白金溶
液で担持した。担持方法は、テトラアンミンヒドロキシ
ド白金溶液に担体先端を僅かに浸漬しドライヤーで乾燥
する方法で、Pt0.39gを含む溶液全てを用いて担
持した。乾燥後300℃で1時間熱処理してアンミン等
を除去して、平均粒径0.6nmの微細Pt(4)を担
持した。微細Pt(4)の担持量は、上流側20%の容
積部分に0.39gであり、粗大Pt(3)と微細Pt
(4)を合わせた全体の平均担持量は、ハニカム担体
(1)1リットル当たり1.5gである。 (実施例6)微細Pt(4)を担持する部分を上流側4
0%の容積部分としたこと以外は実施例5と同様にし
て、実施例6の排ガス浄化触媒を調製した。 (実施例7)微細Pt(4)を担持する部分を上流側5
0%の容積部分としたこと以外は実施例5と同様にし
て、実施例7の排ガス浄化触媒を調製した。 (実施例8)微細Pt(4)を担持する部分を上流側6
0%の容積部分としたこと以外は実施例5と同様にし
て、実施例8の排ガス浄化触媒を調製した。 (性能試験及び評価)上記の実施例5〜8の触媒につい
て、試験例1と同様にしてPMゼロ%低減温度とHC5
0%浄化温度を測定し、結果を図5に示す。
Next, 20% of the volume of the honeycomb carrier (1) carrying the coarse Pt (3) from the end face on the upstream side of the exhaust gas.
The above range was supported by a tetraammine hydroxide platinum solution having a predetermined concentration. The loading method was a method in which the tip of the carrier was slightly dipped in a tetraammine hydroxide platinum solution and dried with a dryer, and all the solutions containing 0.39 g of Pt were loaded. After drying, heat treatment was performed at 300 ° C. for 1 hour to remove ammine and the like, and fine Pt (4) having an average particle size of 0.6 nm was supported. The amount of fine Pt (4) loaded was 0.39 g in the volume portion of the upstream 20%, and the amount of coarse Pt (3) and fine Pt (3)
The total average carrying amount of (4) is 1.5 g per liter of the honeycomb carrier (1). (Example 6) A portion supporting fine Pt (4) is provided on the upstream side 4.
An exhaust gas purification catalyst of Example 6 was prepared in the same manner as in Example 5 except that the volume portion was 0%. (Embodiment 7) The portion supporting the fine Pt (4) is located on the upstream side 5.
An exhaust gas purification catalyst of Example 7 was prepared in the same manner as in Example 5 except that the volume portion was 0%. (Embodiment 8) The portion carrying the fine Pt (4) is placed on the upstream side 6
An exhaust gas purification catalyst of Example 8 was prepared in the same manner as Example 5 except that the volume portion was 0%. (Performance test and evaluation) For the catalysts of Examples 5 to 8 described above, in the same manner as in Test Example 1, the PM zero% reduction temperature and HC5
The 0% purification temperature was measured, and the results are shown in FIG.

【0028】図5より、微細Pt(4)の担持部分の容
積が大きくなるにつれてPMゼロ%低減温度が低下する
傾向がみられ、実施例8ではPMゼロ%低減温度が35
0℃未満となってSO2 の酸化が生じ易くなっている。
したがって微細Pt(4)の担持部分は、上流側端面か
ら50%の容積の部分までに止めることが望ましいこと
がわかる。
From FIG. 5, it can be seen that the PM zero% reduction temperature tends to decrease as the volume of the fine Pt (4) supporting portion increases, and in Example 8, the PM zero% reduction temperature is 35%.
When the temperature is below 0 ° C., SO 2 is likely to be oxidized.
Therefore, it is understood that it is desirable to stop the portion carrying the fine Pt (4) from the upstream end surface to the portion having a volume of 50%.

【0029】なお、上記実施例では、微細Ptの担持量
を0.39g一定としたが、本発明はこれに限られるも
のではなく、この担持量は目的及び効果に応じて種々変
化させることができることはいうまでもない。また上記
実施例では、上流側に微細Ptとともに粗大Ptも担持
しているが、上流側の粗大Ptが担持されていなくても
ほぼ同様の結果を示すことがわかっている。また上記実
施例では触媒貴金属としてPtのみを用いているが、本
発明はこれに制限されるものではなく他に種々の触媒貴
金属を用いてもそれなりの効果が得られることは自明で
ある。
In the above embodiment, the amount of fine Pt carried was fixed at 0.39 g. However, the present invention is not limited to this, and the amount carried can be variously changed according to the purpose and effect. It goes without saying that you can do it. Further, in the above-mentioned embodiment, the coarse Pt is also supported on the upstream side together with the fine Pt, but it is known that the same result is obtained even if the coarse Pt on the upstream side is not supported. Further, although only Pt is used as the catalytic noble metal in the above-mentioned examples, the present invention is not limited to this, and it is obvious that the various catalytic noble metals can be used to obtain some effect.

【0030】[0030]

【発明の効果】すなわち本発明のディーゼルエンジン用
排ガス浄化触媒によれば、低温域におけるHCの酸化浄
化活性に優れるとともに、高温域におけるSO2 の酸化
が防止されサルフェートの排出を防止することができ
る。したがってHCの浄化活性を高く維持しつつ、広い
温度範囲にわたってPMの排出量を低減することができ
る。
[Effects of the Invention] According to the exhaust gas purifying catalyst for a diesel engine of the present invention, it has excellent oxidative purifying activity for HC in a low temperature range, and can prevent SO 2 from being oxidized in a high temperature range to prevent sulfate emission. . Therefore, it is possible to reduce the emission amount of PM over a wide temperature range while maintaining a high HC purification activity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の排ガス浄化触媒の構成を説
明する模式図である。
FIG. 1 is a schematic diagram illustrating a configuration of an exhaust gas purifying catalyst according to an embodiment of the present invention.

【図2】本発明の一実施例の排ガス浄化触媒の構成を説
明する図1の要部拡大断面図である。
FIG. 2 is an enlarged cross-sectional view of a main part of FIG. 1 for explaining the structure of an exhaust gas purifying catalyst according to an embodiment of the present invention.

【図3】試験例1における粗大Ptの粒径とPMゼロ%
低減温度及びHC50%浄化温度の関係を示すグラフで
ある。
FIG. 3 shows the coarse Pt particle size and PM zero% in Test Example 1.
It is a graph which shows the relationship between reduction temperature and HC50% purification temperature.

【図4】試験例1と試験例2における粗大Ptの粒径と
PMゼロ%低減温度及びHC50%浄化温度の関係を示
すグラフである。
FIG. 4 is a graph showing the relationship between the coarse Pt particle size, PM zero% reduction temperature, and HC 50% purification temperature in Test Examples 1 and 2.

【図5】試験例3における微細Ptの担持容積とPMゼ
ロ%低減温度及びHC50%浄化温度の関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between the loading volume of fine Pt, the PM zero% reduction temperature, and the HC50% purification temperature in Test Example 3.

【符号の説明】[Explanation of symbols]

1:ハニカム担体 2:コート
層 3:粗大Pt 4:微細P
1: Honeycomb carrier 2: Coat layer 3: Coarse Pt 4: Fine P
t

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田口 教夫 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 坂野 幸次 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 渡邊 佳英 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 笠原 光一 静岡県小笠郡大東町千浜7800番地 キャタ ラー工業株式会社内 (72)発明者 青野 紀彦 静岡県小笠郡大東町千浜7800番地 キャタ ラー工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norio Taguchi 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Automobile Co., Ltd. (72) Inventor Koji Sakano 1 41, Nagakute, Nagakute Town, Aichi County, Aichi Prefecture Toyota Central Research Institute Co., Ltd. (72) Inventor, Kaei Watanabe, Aichi Prefecture, Nagakute Town, Aichi Prefecture 1 41, Yokosuka, Yokouchi Central Research Co., Ltd. (72) Inventor, Koichi Kasahara Chihama, Daito Town, Ogasa County, Shizuoka Prefecture 7800 At Cataler Industry Co., Ltd. (72) Inventor Norihiko Aono Chihama, Daito Town, Ogasa County, Shizuoka Prefecture 7800 At Cataler Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多孔質の担体基材と、該担体基材に担持
された触媒貴金属と、からなり、 該触媒貴金属は、排気ガス流の上流側には平均粒径5n
m以下の微細粒子を含んで担持され、下流側には平均粒
径10nm以上の粗大粒子として担持されていることを
特徴とするディーゼルエンジン用排ガス浄化触媒。
1. A porous carrier base material and a catalytic noble metal supported on the carrier base material, wherein the catalytic noble metal has an average particle diameter of 5 n on the upstream side of the exhaust gas flow.
An exhaust gas purification catalyst for a diesel engine, characterized in that it is carried by containing fine particles of m or less, and is carried on the downstream side as coarse particles having an average particle size of 10 nm or more.
JP7263257A 1995-10-11 1995-10-11 Exhaust gas-purifying catalyst for diesel engine Pending JPH09103679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7263257A JPH09103679A (en) 1995-10-11 1995-10-11 Exhaust gas-purifying catalyst for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7263257A JPH09103679A (en) 1995-10-11 1995-10-11 Exhaust gas-purifying catalyst for diesel engine

Publications (1)

Publication Number Publication Date
JPH09103679A true JPH09103679A (en) 1997-04-22

Family

ID=17386963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7263257A Pending JPH09103679A (en) 1995-10-11 1995-10-11 Exhaust gas-purifying catalyst for diesel engine

Country Status (1)

Country Link
JP (1) JPH09103679A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006492A1 (en) * 1996-08-13 1998-02-19 Toyota Jidosha Kabushiki Kaisha Exhaust emission control catalyst for diesel engines
US6147027A (en) * 1997-09-24 2000-11-14 Toyota Jidosha Kabushiki Kaisha Alloy catalyst and process for producing the same
JP2002089240A (en) * 2000-09-08 2002-03-27 Nissan Motor Co Ltd Exhaust emission control device and exhaust emission control method using this
JP2002177788A (en) * 2000-12-06 2002-06-25 Nissan Motor Co Ltd Exhaust gas cleaning catalyst and its manufacturing method
JP2007111625A (en) * 2005-10-20 2007-05-10 Ne Chemcat Corp Oxidation catalyst for exhaust gas purification, integral-type oxidation catalyst using the same, and exhaust gas purifying method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006492A1 (en) * 1996-08-13 1998-02-19 Toyota Jidosha Kabushiki Kaisha Exhaust emission control catalyst for diesel engines
US6426316B2 (en) 1996-08-13 2002-07-30 Toyota Jidosha Kabushiki Kaisha Exhaust emission control catalyst for diesel engines
US6147027A (en) * 1997-09-24 2000-11-14 Toyota Jidosha Kabushiki Kaisha Alloy catalyst and process for producing the same
JP2002089240A (en) * 2000-09-08 2002-03-27 Nissan Motor Co Ltd Exhaust emission control device and exhaust emission control method using this
JP2002177788A (en) * 2000-12-06 2002-06-25 Nissan Motor Co Ltd Exhaust gas cleaning catalyst and its manufacturing method
JP4600710B2 (en) * 2000-12-06 2010-12-15 日産自動車株式会社 Exhaust gas purification catalyst
JP2007111625A (en) * 2005-10-20 2007-05-10 Ne Chemcat Corp Oxidation catalyst for exhaust gas purification, integral-type oxidation catalyst using the same, and exhaust gas purifying method

Similar Documents

Publication Publication Date Title
RU2392456C2 (en) Method and device for cleaning of exhaust gas
JP4501012B2 (en) Combustion catalyst for diesel exhaust gas treatment and diesel exhaust gas treatment method
EP2539040B1 (en) Improved catalyzed soot filter
CN1052262A (en) The purification method of diesel exhaust
JP4165400B2 (en) Diesel particulate matter exhaust filter carrying catalyst
JP2014140844A (en) Diesel particulate filter having ultra-thin catalyzed oxidation coating
US20040037754A1 (en) Apparatus for the removal of soot particles from the exhaust gas of diesel engines
JP2007503977A (en) Diesel particulate filter carrying a catalyst with improved thermal stability
CN106061586B (en) Improved catalyzed soot filter
JP2009160547A (en) Exhaust-gas cleaning catalyst and its production method
JP3386621B2 (en) Exhaust gas purification catalyst for diesel engines
JP4591164B2 (en) Exhaust gas purification method and exhaust gas purification device
JP3289879B2 (en) Exhaust gas purification equipment for diesel engines
JPH06182204A (en) Exhaust gas purification catalyst for diesel engine
JPH09103679A (en) Exhaust gas-purifying catalyst for diesel engine
JPH09108570A (en) Oxidation catalyst for cleaning exhaust gas and preparation thereof
JP2006081988A (en) Titania-based oxidation catalyst for cleaning exhaust gas, catalytic structure for cleaning exhaust gas and exhaust gas cleaning method
JP2827532B2 (en) Catalyst device for reducing diesel particulates
JPH0957099A (en) Exhaust gas purification catalyst for diesel engine
EP2329876B1 (en) PM clean-up system and method for manufacture thereof
JP4097362B2 (en) Exhaust gas purification catalyst and exhaust gas purification device
JPH04171215A (en) Exhaust air cleaning device for diesel engine
JP3316879B2 (en) Exhaust gas purification catalyst for diesel engines
JPH10202103A (en) Oxidation catalyst for diesel engine and production thereof
JPH06198181A (en) Catalyst for purifying exhaust gas from diesel engine