JPH04171215A - Exhaust air cleaning device for diesel engine - Google Patents

Exhaust air cleaning device for diesel engine

Info

Publication number
JPH04171215A
JPH04171215A JP2293654A JP29365490A JPH04171215A JP H04171215 A JPH04171215 A JP H04171215A JP 2293654 A JP2293654 A JP 2293654A JP 29365490 A JP29365490 A JP 29365490A JP H04171215 A JPH04171215 A JP H04171215A
Authority
JP
Japan
Prior art keywords
trap
exhaust gas
exhaust
oxidation catalyst
base metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2293654A
Other languages
Japanese (ja)
Inventor
Yukari Ito
伊藤 ゆかり
Yoshitsugu Ogura
義次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2293654A priority Critical patent/JPH04171215A/en
Publication of JPH04171215A publication Critical patent/JPH04171215A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To prevent the creation of sulfate in an oxidation catalyser and reduce the discharge amount of exhaust air particles in the atmosphere by providing a SO2 trap, which carries active alumina and base metal group metal to trap SO2 components in exhaust gas, in an exhaust gas passage on the upstream side of the oxidation catalyser. CONSTITUTION:An oxidation catalyser 3 is often used to oxidize SOF mainly containing hydro-carbon in exhaust and convert into H2O and CO2. A SO2 trap 4 traps SO2 components by creating sulfide through the combination of SO2 in exhaust gas with carried base metal group metal. As the SO2 trap has no recycling operation, base metal in the trap is consumed in such a process. A greater amount of carried base metal gives a longer life of the SO2 trap. By passing exhaust gas through the SO2 trap 4 on the upstream side of the oxidation catalyser 3, SO2 components are combined with base metal group metal in the trap 4 and excluded out of exhaust gas. In this way, exhaust gas not including SO2 components is supplied to the oxidation catalyser to prevent the creation of sulfate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はディーゼルエンジンの排気ガス中に含まれる微
粒子の量を低減する排気浄化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an exhaust gas purification device that reduces the amount of particulates contained in the exhaust gas of a diesel engine.

〔従来の技術〕[Conventional technology]

ディーゼルエンジンの排気中に含まれる排気微粒子(パ
ティキュレート)の排出量を低減する方法としては、従
来よりディーゼルパティキュレートフィルタを用いて排
気微粒子を捕集する方法が知られている。この種のディ
ーゼルパティキュレートフィルタにおいては排気黒煙を
形成するカーボン粒子を大量に処理するため、実開昭5
9−159718号公報に記載された装置のように、フ
ィルタに捕集した排気微粒子を定期的に着火、燃焼させ
てフィルタの再生を行なうことが一般的である。
As a method for reducing the amount of exhaust particulates contained in the exhaust gas of a diesel engine, a method of collecting exhaust particulates using a diesel particulate filter is conventionally known. In this type of diesel particulate filter, in order to treat a large amount of carbon particles that form exhaust black smoke, it was
As in the device described in Japanese Patent No. 9-159718, it is common to regenerate the filter by periodically igniting and burning exhaust particulates collected in the filter.

また、ディーゼルパティキュレートフィルタを用いない
方法としては、ディーゼルエンジン自体の燃焼特性を改
善することによりパティキュレートのうち排気黒煙を形
成するカーボン粒子の生成を抑制する方法がある。この
場合、排気中の未燃燃料、潤滑油、等の炭化水素を主体
とするパティキュレート成分、すなわち可溶有機成分(
SolubleOrganic Fraction :
 SOF)の量が相対的に増大するたt一般に酸化触媒
を併用して排気中のこれらSOF等を浄化する方法がと
られている。
Further, as a method that does not use a diesel particulate filter, there is a method of suppressing the generation of carbon particles that form exhaust black smoke among particulates by improving the combustion characteristics of the diesel engine itself. In this case, particulate components mainly composed of hydrocarbons such as unburned fuel and lubricating oil in the exhaust gas, that is, soluble organic components (
Soluble Organic Fraction:
Since the amount of SOF (SOF) increases relatively, a method is generally used in which an oxidation catalyst is used in combination to purify SOF and the like in the exhaust gas.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

酸化触媒を使用してSOF等を浄化する場合、特にエン
ジンの排気温度が高くなると触媒によりサルフェートが
生成し、却って大気に排出されるパティキュレートの量
が増加するという問題がある。すなわち、ディーゼルエ
ンジンの排ガス中には、燃料に含まれる硫黄分の燃焼に
よりSO□ガス成分が存在するが、このS02は高温域
では酸化触媒により容易に酸化されてS03を生成する
。S03は粒子として存在し、更に水分と結合して硫酸
ミスト等のサルフェート(硫酸化合物)粒子を生じるた
め酸化触媒で排気ガスを処理すると却ってパティキュレ
ートが増加するという結果を生じることになるのである
When using an oxidation catalyst to purify SOF, etc., there is a problem in that sulfate is produced by the catalyst especially when the engine exhaust temperature becomes high, and the amount of particulates discharged into the atmosphere increases. That is, in the exhaust gas of a diesel engine, an SO□ gas component is present due to the combustion of sulfur contained in the fuel, but this S02 is easily oxidized by an oxidation catalyst in a high temperature range to generate S03. S03 exists as particles and further combines with water to produce sulfate (sulfuric acid compound) particles such as sulfuric acid mist, so treating exhaust gas with an oxidation catalyst actually results in an increase in particulates.

上記問題を解決するた島に、特開昭59−36543号
公報、特開昭59−80330号公報、特開昭62−1
93648号公報等では、触媒自体に選択性を持たせて
SO2の酸化を抑制することによりサルフェートの生成
を防止する方法が提案されている。
To solve the above problem, Japanese Patent Application Laid-Open Nos. 59-36543, 59-80330, and 62-1
No. 93648 and other publications propose a method of preventing the formation of sulfate by imparting selectivity to the catalyst itself and suppressing the oxidation of SO2.

しかし、上記のように触媒に選択性を持たせた場合、触
媒の酸化力は低下する傾向にあるため、サルフェートの
生成は防止できるもののSOF等の処理が不充分になり
充分なパティキュレート低減効果が得られないという問
題が生じる恐れがある。
However, when the catalyst is given selectivity as described above, the oxidizing power of the catalyst tends to decrease, so although sulfate generation can be prevented, treatments such as SOF become insufficient and the particulate reduction effect is insufficient. There is a possibility that a problem may arise in which it is not possible to obtain

本発明はディーゼルエンジンの排気中のSOF等を酸化
触媒を用いて処理する排気浄化装置において、上記問題
を解決し、触媒の酸化力を高く維持したままサルフェー
トの生成を防止可能な排気浄化装置を提供することを目
的としている。
The present invention solves the above problems in an exhaust purification device that processes SOF, etc. in the exhaust of a diesel engine using an oxidation catalyst, and provides an exhaust purification device that can prevent the generation of sulfate while maintaining the high oxidizing power of the catalyst. is intended to provide.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、排気ガス中の炭化水素成分を浄化する
酸化触媒を排気ガス通路に設けたディーゼルエンジンの
排気浄化装置において、前記酸化触媒の上流側の排気ガ
ス通路に排気ガス中のSO□成分を捕集する活性アルミ
ナと卑金属系金属とを担持した5o2トラップを設けた
ことを特徴とするディーゼルエンジンの排気浄化装置が
提供される。
According to the present invention, in a diesel engine exhaust purification device in which an oxidation catalyst for purifying hydrocarbon components in exhaust gas is provided in the exhaust gas passage, SO□ in the exhaust gas is provided in the exhaust gas passage upstream of the oxidation catalyst. There is provided an exhaust gas purification device for a diesel engine characterized by providing a 5o2 trap carrying activated alumina and a base metal for trapping components.

〔作 用〕[For production]

酸化触媒の上流側で排気ガスを802トラツプを通過さ
せることにより、SO2成分はトラップの卑金属系金属
と化合して排気ガス中から除去される。
By passing the exhaust gas through the 802 trap on the upstream side of the oxidation catalyst, the SO2 component is combined with the base metal of the trap and removed from the exhaust gas.

従って酸化触媒にはSO2成分を含まない排気ガスが供
給されるため、サルフェートの発生が防止される。
Therefore, the oxidation catalyst is supplied with exhaust gas that does not contain SO2 components, thereby preventing the generation of sulfate.

〔実施例〕〔Example〕

本発明の実施例の構成を第1図に示す。図において1は
ディーゼルエンジン、2は排気管、3は酸化触媒である
。酸化触媒3はセラミック又は金属製のモノリス担体や
フオームフィルタ、ハニカムフィルタ等の担体に触媒を
担持した構造で、使用する触媒としては白金系、卑金属
系、複合酸化物系のいずれでも良い。また、4は酸化触
媒3の上流側排気管に設けられたSO□トラップである
The configuration of an embodiment of the present invention is shown in FIG. In the figure, 1 is a diesel engine, 2 is an exhaust pipe, and 3 is an oxidation catalyst. The oxidation catalyst 3 has a structure in which a catalyst is supported on a carrier such as a ceramic or metal monolith carrier, a foam filter, or a honeycomb filter, and the catalyst used may be platinum-based, base metal-based, or composite oxide-based. Further, 4 is an SO□ trap provided in the exhaust pipe on the upstream side of the oxidation catalyst 3.

So、 トラップ4は酸化触媒3と同様にセラミック又
は金属製のモノリス担体、フオームフィルタ、ハニカム
フィルタ等の担体に卑金属系金属を担持した構造であり
、使用する金属としては銅、鉄、ニッケル等が特に好ま
しい。
Similarly to the oxidation catalyst 3, the trap 4 has a structure in which a base metal is supported on a carrier such as a ceramic or metal monolith carrier, a foam filter, or a honeycomb filter, and the metals used include copper, iron, nickel, etc. Particularly preferred.

本実施例のディーゼルエンジンは渦流室式燃焼室を有す
る比較的排気黒煙の発生の少ない形式を使用しており、
酸化触媒3は主に排気ガス中の炭化水素を主成分とする
S ’OFを酸化して水とCO2とに転換するのに用い
られている。またSO。トラップ4は排気ガス中の80
2が、担持された卑金属系金属と化合して硫化物を生成
することによりS02成分を捕集する。SO□トラップ
は再生を行なわないため、トラップ中の卑金属は使用と
ともに消費されて行く。従って担持する卑金属量を多く
する程SO□トラップの寿命が増大する。
The diesel engine of this example uses a type that has a swirl chamber type combustion chamber and generates relatively little black exhaust smoke.
The oxidation catalyst 3 is mainly used to oxidize S'OF, which is mainly composed of hydrocarbons in exhaust gas, and convert it into water and CO2. SO again. Trap 4 is 80% in the exhaust gas.
2 collects the S02 component by combining with the supported base metal to generate sulfide. Since SO□ traps do not regenerate, the base metals in the traps are consumed as they are used. Therefore, the life of the SO□ trap increases as the amount of base metal supported increases.

第2図は本発明の別の実施例の構成を示す。FIG. 2 shows the configuration of another embodiment of the invention.

本実施例では排気管2にはSO□トラップ4をバイパス
するバイパス通路5と、三方切換弁6とが設けられてい
る。切換弁6は排気管2のバイパス通路5上流側の排気
温度を検知する感温部6aとアクチユエータ6bとを備
え、排気温度が所定値以下では排気ガスをバイパス通路
5を介して直接酸化触媒3に供給し、排気温度が所定値
以上になったときにのみS02トラツプ4内を排気ガス
が流れるようにしている。これは排気温度が低いときに
は酸化触媒の活性が低く SO□を含む排気ガスを直接
酸化触媒3に通してもサルフェートが生成されることが
ないためSO□ トラップ4を用いる必要がないからで
ある。サルフェート生成が開始される温度は触媒により
異なるが概略250℃程度であり、本実施例においても
排気温が250℃以上になったときに5o2トラップ4
側に排気ガスを流すようにしている。このように所定の
排気温度条件のときにのみS02トラツプを使用するよ
うにすることによりS02トラツプの使用寿命を延長す
ることができ、また排気温度が低い間はSO□トラップ
4を通さずに排気抵抗の小さい状態で運転できるた緬、
エンジンの燃費が向上する利点がある。
In this embodiment, the exhaust pipe 2 is provided with a bypass passage 5 that bypasses the SO□ trap 4 and a three-way switching valve 6. The switching valve 6 includes a temperature sensing part 6a that detects the exhaust temperature upstream of the bypass passage 5 of the exhaust pipe 2 and an actuator 6b, and when the exhaust temperature is below a predetermined value, the exhaust gas is directly transferred to the oxidation catalyst 3 via the bypass passage 5. The exhaust gas is made to flow through the S02 trap 4 only when the exhaust gas temperature reaches a predetermined value or higher. This is because when the exhaust temperature is low, the activity of the oxidation catalyst is low and no sulfate is generated even if the exhaust gas containing SO□ is passed directly through the oxidation catalyst 3, so there is no need to use the SO□ trap 4. The temperature at which sulfate generation starts varies depending on the catalyst, but is approximately 250°C, and in this example, when the exhaust temperature reaches 250°C or higher, the 5o2 trap 4
Exhaust gas is allowed to flow to the side. In this way, by using the S02 trap only under the specified exhaust temperature conditions, the service life of the S02 trap can be extended, and while the exhaust temperature is low, the exhaust air can be used without passing through the SO□ trap 4. Burmese, which can be operated with little resistance.
This has the advantage of improving engine fuel efficiency.

次に、本発明による排気浄化装置を用いた場合のパティ
キュレート除去効果について行なった試験について説明
する。
Next, a test conducted on the particulate removal effect when using the exhaust purification device according to the present invention will be described.

〔1〕S口2トラップ S[12トラツプとして以下の方法で製作したトラップ
A1及びBを用いた。
[1] Traps A1 and B manufactured by the following method were used as S-port 2 traps S [12].

(1)  SO2トラップA:容積1.7βのコージェ
ライト製モノリス担体表面に、T−アルミナ粉末、アル
ミナゾノベ硝酸アルミニウム、蒸留水から成るスラリー
を用いてT−アルミナコート層を形成し、120℃で2
時間乾燥後700℃で2時間焼成して担体容積11当り
120gのT−アルミナコート層を得た。
(1) SO2 trap A: A T-alumina coating layer was formed on the surface of a cordierite monolith carrier with a volume of 1.7β using a slurry consisting of T-alumina powder, alumina zone aluminum nitrate, and distilled water.
After drying for an hour, it was fired at 700° C. for 2 hours to obtain a T-alumina coat layer of 120 g per 11 carrier volumes.

次に上記担体を、担体容積1β尚り20gの銅が担持さ
れるように濃度調整した硝酸銅溶液に浸漬し、担体を引
き上げ余分の液滴を吹払った後乾燥させ、300℃で2
時間焼成した。
Next, the above carrier was immersed in a copper nitrate solution whose concentration was adjusted so that 20 g of copper was supported per carrier volume 1β, the carrier was pulled up, excess droplets were blown off, and then dried at 300°C for 2 hours.
Baked for an hour.

これにより担体容積1β当り120gのT−アルミナ層
と20gの銅とを担持する5o2トラップAを得た。
As a result, a 5o2 trap A was obtained which supported 120 g of T-alumina layer and 20 g of copper per carrier volume 1β.

(2)  SO。トラップB:SO□トラップAと同様
な方法でコージェライト製モノリス担体く容積1.71
)に担体容積11当り120 gのT−アルミナコート
層を形成し、これを担体容積1p当り20gのニッケル
が担持されるように濃度調整した硝酸ニッケル溶液に浸
漬した後、引き上げ、余分の液滴を吹き払った後乾燥さ
せ、300℃で2時間焼成した。
(2) SO. Trap B: A cordierite monolith carrier with a volume of 1.71 was prepared in the same manner as SO□Trap A.
) was formed with a T-alumina coating layer of 120 g per 1 p of the carrier volume, immersed in a nickel nitrate solution whose concentration was adjusted so that 20 g of nickel was supported per 1 p of the carrier volume, and then pulled up to remove excess droplets. After blowing off, it was dried and baked at 300°C for 2 hours.

これにより担体容積11当り120gのγ−アルミナ層
と20gのニッケルとを担持するSO。トラップBを得
た。
This results in SO supporting 120 g of γ-alumina layer and 20 g of nickel per 11 carrier volumes. I got Trap B.

〔2〕酸化触媒 酸化触媒として以下の方法で製作した酸化触媒C及び酸
化触媒りを用いた。
[2] Oxidation Catalyst Oxidation Catalyst C and Oxidation Catalyst R produced by the following method were used as oxidation catalysts.

(1)酸化触媒C:容積1.7βのコージェライト製モ
ノリス担体に802トラップA、Bと同様な方法で担体
容積11当り120gの量のT−アルミナ層を形成し、
この担体を担体容積11当り1gの白金が担持されるよ
うに濃度調整したジニトロジアミン白金溶液に浸漬した
後余分の液滴を吹き払い300℃で2時間焼成した。
(1) Oxidation catalyst C: A T-alumina layer in an amount of 120 g per 11 carrier volume was formed on a cordierite monolith carrier with a volume of 1.7 β in the same manner as 802 traps A and B.
This carrier was immersed in a dinitrodiamine platinum solution whose concentration was adjusted so that 1 g of platinum was supported per 11 carrier volumes, and then the excess droplets were blown off and calcined at 300° C. for 2 hours.

これにより担体容積11当り120gのγ−アルミナ層
と1gの白金を担持する酸化触媒Cを得た。
As a result, an oxidation catalyst C was obtained which supported 120 g of γ-alumina layer and 1 g of platinum per 11 carrier volumes.

(2〉酸化触媒D:容積1,71のコージェライト製モ
ノリス担体表面にTiO□粉末、TiO□ゾノペ蒸留水
から成るスラリーを用いてTiO□層を形成し、120
℃で2時間乾燥後700℃で2時間焼成し、担体容積1
1当り120gのTiO2コート層を得た。
(2> Oxidation catalyst D: A TiO□ layer was formed on the surface of a cordierite monolith carrier with a volume of 1.71 using a slurry consisting of TiO□ powder and TiO□ Zonope distilled water,
After drying at ℃ for 2 hours, baking at 700℃ for 2 hours to reduce the carrier volume to 1
120 g of TiO2 coating layer was obtained.

次に上言己担体を担体容積1β当り20gのV2O5が
担持されるように濃度調整したメタバナジン酸アンモニ
ウム溶液に浸漬し、乾燥、焼成を行なった。
Next, the above-mentioned carrier was immersed in an ammonium metavanadate solution whose concentration was adjusted so that 20 g of V2O5 was supported per 1β of the carrier volume, and then dried and fired.

更にこの担体を担体容積1β当り1gの白金が担持され
るように濃度調整したジニトロジアミン白金溶液に浸漬
し、乾燥、焼成を行なった。
Further, this carrier was immersed in a dinitrodiamine platinum solution whose concentration was adjusted so that 1 g of platinum was supported per 1β of the carrier volume, and then dried and fired.

コレニヨリN体容積1 fl 当すTio□120 g
 SV2O520g1白金1gを担持する触媒りを得た
Correniyori N body volume 1 fl corresponding Tio□120 g
A catalyst supporting 520 g of SV2O and 1 g of platinum was obtained.

[3]試験方法 (1)排気量2400ccの渦流室式ディーゼルエンジ
ンの排気系に第2TI!Jに示したようにバイパス通路
5、三方切換弁6、を設は酸化触媒3として上言己の酸
化触媒C1を使用し、So、 トラップ4として上記S
O□トラップA1とBとを使用した場合について、エン
ジン出口と酸化触媒出口との2個所でパティキュレート
量を計測した。また三方切換弁6は排気温度が250℃
以下では排気をSO□トラップ4をバイパスして流すよ
うにセットした。
[3] Test method (1) 2nd TI on the exhaust system of a 2400 cc swirl chamber diesel engine! As shown in J, the bypass passage 5 and the three-way switching valve 6 were installed, and the above-mentioned oxidation catalyst C1 was used as the oxidation catalyst 3, and the above-mentioned S was used as the trap 4.
When O□ traps A1 and B were used, the amount of particulates was measured at two locations: the engine outlet and the oxidation catalyst outlet. In addition, the exhaust temperature of the three-way switching valve 6 is 250°C.
In the following, the exhaust gas was set to flow bypassing the SO□ trap 4.

更に比較例としてSO,トラップを用いず、酸化触媒4
のみを用いた場合を酸化触媒C・Dについて計測した。
Furthermore, as a comparative example, the oxidation catalyst 4 was used without using SO or a trap.
Measurements were made for oxidation catalysts C and D using only oxidation catalysts C and D.

このとき三方切換弁6は、常時S02トラツプ4をバイ
パスして排気を直接酸化触媒に供給するようにロックし
た。以上の試験条件をまとめると以下のようになる。
At this time, the three-way switching valve 6 was locked so that the S02 trap 4 was always bypassed and the exhaust gas was directly supplied to the oxidation catalyst. The above test conditions are summarized as follows.

S02トラツプ  酸化触媒 試験IA     C 試験2B     C 比較例1  使用せず    C 比較例2  使用せず    D (2)試験に用いたディーゼルエンジンの運転モードを
第3図に示す。ディーゼルエンジン回転数は2ooor
pm一定として負荷調整により排気温度を変化させてい
る。排気温度は100℃から450℃まで図示するよう
に5分間隔でステップ状に上昇させている。また、図示
していないが30分経過後は図示したモードと対称にな
るようにステップ状に排気温度を降下させ、合計1時間
の運転を行なった。
S02 trap Oxidation catalyst test IA C Test 2B C Comparative example 1 Not used C Comparative example 2 Not used D (2) The operating mode of the diesel engine used in the test is shown in FIG. Diesel engine speed is 2ooor
The exhaust temperature is changed by load adjustment, assuming that the pm is constant. The exhaust gas temperature is increased stepwise from 100° C. to 450° C. at 5 minute intervals as shown in the figure. Although not shown, after 30 minutes, the exhaust temperature was lowered stepwise to be symmetrical to the mode shown, and the operation was performed for a total of 1 hour.

〔4〕試験結果 上記モードで1時間運転したときのそれぞれの計測結果
を第4図に示す。
[4] Test Results Figure 4 shows the measurement results obtained when the machine was operated in the above mode for one hour.

SO□トラップを用いた試験1.2では、エンジン出口
に較べて、パティキュレート量が約50%低減されてい
るのがわかる。また、比較例1ではエンジン出口に較べ
てパティキュレート量が2倍以上に増加しており、酸化
触媒CによるS03生成を示している。更に比較例2に
おいては触媒に選択性を持たせた結果、SO3は生成し
ていないが、触媒の酸化力が低下しており、パティキュ
レート低減効果も少なくなっていることがわかる。
In Test 1.2 using the SO□ trap, it can be seen that the amount of particulates was reduced by about 50% compared to the engine outlet. Furthermore, in Comparative Example 1, the amount of particulates increased by more than twice that at the engine outlet, indicating that S03 was generated by the oxidation catalyst C. Furthermore, in Comparative Example 2, as a result of imparting selectivity to the catalyst, although SO3 was not produced, the oxidizing power of the catalyst was reduced, and the particulate reduction effect was also reduced.

〔発明の効果〕〔Effect of the invention〕

本発明の排気浄化装置は、酸化触媒の上流にSO□トラ
ップを設け、予めSO,成分を排気ガスから除去するよ
うにしたことにより、酸化触媒でのサルフェート生成を
防止し、排気微粒子の大気排出量を低減する効果を有す
る。
The exhaust purification device of the present invention is equipped with an SO□ trap upstream of the oxidation catalyst to remove SO and components from the exhaust gas in advance, thereby preventing sulfate generation in the oxidation catalyst and emitting exhaust particulates into the atmosphere. It has the effect of reducing the amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による排気浄化装置の第1の実施例の構
成を示す略示図、第2図は本発明による排気浄化装置の
第2の実施例の構成を示す略示図、第3図は同上排気浄
化装置の試験時排気温度を示す図、第4図は同上試験結
果を示す図である。 l・・・ディーゼルエンジン、2・・・排気管、3・・
・酸化触媒、     、4・・・S02トラツプ、5
・・・バイパス通路、   6・・・三方切換弁、6a
・・・感温部、 6b・・・アクチユエータ。 時間(分) 第3図 1  第4図
FIG. 1 is a schematic diagram showing the configuration of a first embodiment of the exhaust gas purification device according to the present invention, FIG. 2 is a schematic diagram showing the configuration of the second embodiment of the exhaust gas purification device according to the present invention, and FIG. The figure shows the exhaust gas temperature during the test of the above exhaust gas purification device, and FIG. 4 shows the test results. l...Diesel engine, 2...Exhaust pipe, 3...
・Oxidation catalyst, 4...S02 trap, 5
...Bypass passage, 6...Three-way switching valve, 6a
... Temperature sensing part, 6b... Actuator. Time (minutes) Figure 3 1 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1. 排気ガス中の炭化水素成分を浄化する酸化触媒を
排気ガス通路に設けたディーゼルエンジンの排気浄化装
置において、 前記酸化触媒の上流側の排気ガス通路に排気ガス中のS
O_2成分を捕集する活性アルミナと卑金属系金属とを
担持したSO_2トラップを設けたことを特徴とするデ
ィーゼルエンジンの排気浄化装置。
1. In a diesel engine exhaust purification device in which an oxidation catalyst for purifying hydrocarbon components in exhaust gas is provided in the exhaust gas passage, S in the exhaust gas is disposed in the exhaust gas passage upstream of the oxidation catalyst.
An exhaust gas purification device for a diesel engine, characterized in that an SO_2 trap supporting activated alumina and base metals for collecting O_2 components is provided.
JP2293654A 1990-11-01 1990-11-01 Exhaust air cleaning device for diesel engine Pending JPH04171215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2293654A JPH04171215A (en) 1990-11-01 1990-11-01 Exhaust air cleaning device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2293654A JPH04171215A (en) 1990-11-01 1990-11-01 Exhaust air cleaning device for diesel engine

Publications (1)

Publication Number Publication Date
JPH04171215A true JPH04171215A (en) 1992-06-18

Family

ID=17797517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2293654A Pending JPH04171215A (en) 1990-11-01 1990-11-01 Exhaust air cleaning device for diesel engine

Country Status (1)

Country Link
JP (1) JPH04171215A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994012778A1 (en) * 1992-12-03 1994-06-09 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning apparatus for internal combustion engines
US5402641A (en) * 1992-07-24 1995-04-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
US5472673A (en) * 1992-08-04 1995-12-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
EP0815925A1 (en) * 1996-07-04 1998-01-07 Toyota Jidosha Kabushiki Kaisha Apparatus for purifying exhaust gas emitted from diesel engine
JP2009013968A (en) * 2007-07-09 2009-01-22 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2009013970A (en) * 2007-07-09 2009-01-22 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2010168936A (en) * 2009-01-21 2010-08-05 Hino Motors Ltd Exhaust energy recovery device for vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402641A (en) * 1992-07-24 1995-04-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
US5472673A (en) * 1992-08-04 1995-12-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
WO1994012778A1 (en) * 1992-12-03 1994-06-09 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning apparatus for internal combustion engines
US5473890A (en) * 1992-12-03 1995-12-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
EP0815925A1 (en) * 1996-07-04 1998-01-07 Toyota Jidosha Kabushiki Kaisha Apparatus for purifying exhaust gas emitted from diesel engine
JP2009013968A (en) * 2007-07-09 2009-01-22 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2009013970A (en) * 2007-07-09 2009-01-22 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2010168936A (en) * 2009-01-21 2010-08-05 Hino Motors Ltd Exhaust energy recovery device for vehicle

Similar Documents

Publication Publication Date Title
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
JP4075292B2 (en) Particulate purification catalyst
EP1979585A1 (en) Exhaust gas-purifying apparatus and exhaust gas-purifying method
US11859526B2 (en) Exhaust gas purification system for a gasoline engine
JPH10151348A (en) Oxidation catalyst
JPH10202105A (en) Oxidation catalyst for diesel exhaust gas
US10408102B2 (en) Oxidation catalyst device for exhaust gas purification
JP2012036821A (en) Exhaust emission control system of internal combustion engine
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
JPH06182204A (en) Exhaust gas purification catalyst for diesel engine
CN109310991B (en) Diesel oxidation catalytic converter
JP3289879B2 (en) Exhaust gas purification equipment for diesel engines
JPH04171215A (en) Exhaust air cleaning device for diesel engine
JP4639455B2 (en) Exhaust gas purification material
JP3780575B2 (en) Exhaust gas purification catalyst for diesel engine
JP2827532B2 (en) Catalyst device for reducing diesel particulates
JPH09108570A (en) Oxidation catalyst for cleaning exhaust gas and preparation thereof
JP3381489B2 (en) Exhaust gas purification catalyst and purification device for diesel engine
KR100648594B1 (en) Catalytic compositions for oxidizing particular matters and Catalytic soot filters employing the compositions
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JP3316879B2 (en) Exhaust gas purification catalyst for diesel engines
JP3433885B2 (en) Diesel exhaust gas purification catalyst
JPH0957099A (en) Exhaust gas purification catalyst for diesel engine
JP3503073B2 (en) Catalyst for purifying diesel engine exhaust gas
JPH09103679A (en) Exhaust gas-purifying catalyst for diesel engine