JPS61120640A - Catalyst for purifying carbon monoxide and gaseous hydrocarbon in diesel exhaust gas - Google Patents

Catalyst for purifying carbon monoxide and gaseous hydrocarbon in diesel exhaust gas

Info

Publication number
JPS61120640A
JPS61120640A JP59242298A JP24229884A JPS61120640A JP S61120640 A JPS61120640 A JP S61120640A JP 59242298 A JP59242298 A JP 59242298A JP 24229884 A JP24229884 A JP 24229884A JP S61120640 A JPS61120640 A JP S61120640A
Authority
JP
Japan
Prior art keywords
catalyst
compound
vanadium
exhaust gas
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59242298A
Other languages
Japanese (ja)
Inventor
Koichi Saito
斉藤 皓一
Kenji Ueda
健次 植田
Yasuo Ikeda
池田 康生
Tetsutsugu Ono
哲嗣 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP59242298A priority Critical patent/JPS61120640A/en
Publication of JPS61120640A publication Critical patent/JPS61120640A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To enhance the purification capacity of CO, by containing at least one component selected from metal V and a V-compound and one or more of a metal selected from Pt, Pd and Rh and/or a compound thereof as catalytically active substances. CONSTITUTION:A porous inorg. substance is supported by a honeycomb shaped monolithic carrier in a slurry form according to a coating method and this supported layer is immersed in a solution containing a compound of a platinum group metal selected from platinum, palladium and rhodium to support said compound before drying and a solution containing a vanadium compound to support said vanadium compound while the impregnated carrier is dried and baked to obtain a catalyst for purifying carbon monoxide and gaseous hydrocarbon in diesel exhaust gas. As the material of the honeycomb shaped monolithic carrier, cordierite, mulite, alumina and a heat resistant metal are generally used. As the porous inorg. substance, activated alumina, silica or titania are pref.

Description

【発明の詳細な説明】 〔産業上利用分野〕 本発明はディーゼルエンジンの排気ガス中に存在する一
酸化炭素(以下coとする)及びガス状炭化水素(以下
HCとする)の完全燃焼性能にすぐれ、かつ二酸化硫黄
(以下802とする)を三酸化硫黄(以下−803とす
る)へ変換する能力が抑制されたディーゼルエンジン排
ガス浄化用触媒に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention improves the complete combustion performance of carbon monoxide (hereinafter referred to as CO) and gaseous hydrocarbons (hereinafter referred to as HC) present in the exhaust gas of a diesel engine. The present invention relates to a catalyst for purifying diesel engine exhaust gas that has excellent properties and has a suppressed ability to convert sulfur dioxide (hereinafter referred to as 802) to sulfur trioxide (hereinafter referred to as -803).

近年ガソリンエンジンの排気ガスと同様にディーゼルエ
ンジンの排気ガスによる環境汚染が問題となっており、
その排ガス中に含まれる微粒子、Go、HC及び窒素酸
化物(以下NOxとする)の排出■規制が行なわれよう
としている。
In recent years, environmental pollution due to diesel engine exhaust gas has become a problem, as well as gasoline engine exhaust gas.
Emission regulations are about to be implemented for particulates, Go, HC, and nitrogen oxides (hereinafter referred to as NOx) contained in the exhaust gas.

一般にディーゼル車が排出するCo5HC量は対応する
ガソリン車のレベルより低い。しかしNOXのレベルは
2.0 にl /マイル程度あり、NOxを低減しよう
とするとHC排出(エミッシヨン)レベルは004a/
マイルと定められた基準以上となる可能性がある。また
ディーゼルエンジンの燃焼方式が、直噴型となった場合
、現在の副室燃焼型よりHCエミッションが増加するた
めHCの効果的な除去方法が求められている。
Generally, the amount of Co5HC emitted by diesel cars is lower than the level of corresponding gasoline cars. However, the NOx level is about 2.0 l/mile, and if you try to reduce NOx, the HC emission level will be 004a/mile.
There is a possibility that it will exceed the standard set for miles. Furthermore, when the combustion system of a diesel engine becomes a direct injection type, HC emissions will increase compared to the current pre-chamber combustion type, so an effective method for removing HC is required.

(従来の技術) 従来ディーゼルエンジンの排ガス浄化用触媒としては、
目封じ型のセラミックハニカムや、セラミックフオーム
等を使用した排気ガス中のカーボン微粒子を捕捉除去す
るための触媒が各種提案されてきているが、これらの触
媒では、CO及びガス状HCの浄化能力が不充分となる
欠点があ、つた。
(Conventional technology) Conventional catalysts for purifying exhaust gas in diesel engines include:
Various catalysts have been proposed that use sealed ceramic honeycombs, ceramic foam, etc. to capture and remove carbon particles in exhaust gas, but these catalysts have limited ability to purify CO and gaseous HC. There were some flaws that made it unsatisfactory.

例えば、特開昭55−24597号公報では、貴金属と
卑金属(Ia 、 I[a 、I[[a 、I[[b及
びva族元素)の組成の触媒を提案し、これがカーボン
微粒子中に含まれるHC燃焼能にすぐれたものであるこ
とが開示されている。
For example, JP-A-55-24597 proposes a catalyst with a composition of noble metals and base metals (Ia, I[a, I[[a, I[[b and va group elements)], which is contained in carbon fine particles. It is disclosed that it has excellent HC combustion ability.

また、特開昭58−84042号公報では、バナジン酸
銀を使用した触媒を提案し、これがディーゼル排気ガス
中のカーボン微粒子の発火点を低下させることが可能で
あると開示している。
Furthermore, Japanese Patent Application Laid-Open No. 58-84042 proposes a catalyst using silver vanadate and discloses that this can lower the ignition point of carbon particles in diesel exhaust gas.

また、特開昭59−82944号公報では銅、アルカリ
金属、モリブデン又はバナジウムと貴金属の組成の触媒
を用いカーボン微粒子の燃焼能が良くなることが開示さ
れている。しかし、これらの提案はいずれもディーゼル
排気ガス中のCO及びガス状HCの浄化については何ら
開示するところではない。わずかに特開昭59−142
851号公報においてアルミナ(A)と、チタンおよび
リンからなる複合駿化物または混合物(B)と、クロム
、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、タン
グステン、アルカリ金属、アルカリ土類金属及び希土類
から゛なる群から選ばれた少なくとも1種(C)とさら
にこれに貴金属元素を混合せしめてなるCOおよびガス
状HCの浄化能にすぐれ、かつサルフェートを抑制した
ディーゼル排ガス浄化用触媒を提案しているが、CO及
びHCの完全酸化能という点では依然として不充分とい
える。
Furthermore, Japanese Patent Laid-Open No. 59-82944 discloses that the combustion performance of carbon particles is improved by using a catalyst having a composition of copper, alkali metal, molybdenum, or vanadium and a noble metal. However, none of these proposals discloses anything about the purification of CO and gaseous HC in diesel exhaust gas. Slightly JP-A-59-142
No. 851 discloses alumina (A), a composite atomide or mixture (B) consisting of titanium and phosphorus, and chromium, manganese, iron, cobalt, nickel, copper, zinc, tungsten, alkali metals, alkaline earth metals, and rare earths. We propose a catalyst for purifying diesel exhaust gas which has excellent CO and gaseous HC purifying ability and suppresses sulfate, which is made by mixing at least one type (C) selected from the group consisting of (C) and a noble metal element. However, it can be said that the ability to completely oxidize CO and HC is still insufficient.

また、現行のガソリンエンジン用触媒をディーゼルエン
ジンに使用した場合は、CO及びガス状HCの浄化能力
はすぐれているものの同時に802も酸化され、多壷の
S03を排出するため新たな公害を引き起こす危険があ
り、そのままの採用は妥当ではない。
In addition, when current gasoline engine catalysts are used in diesel engines, although they have an excellent ability to purify CO and gaseous HC, they also oxidize 802 and emit large amounts of S03, which poses the risk of causing new pollution. Therefore, it is not appropriate to adopt it as is.

このようにディーゼルエンジンの排気ガス中のCO及び
ガス状HCの完全酸化能が高く、しかもSO2からSO
3への酸化能の低い触媒は今迄提案されていないのが現
状である。
In this way, it has a high ability to completely oxidize CO and gaseous HC in diesel engine exhaust gas, and also
Currently, no catalyst with a low ability to oxidize to 3 has been proposed so far.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記課題に対処するため鋭意研究の結果
、触媒活性元素として貴金属とバナジウムと必要により
その他の金属元素(Cr、Mn、)”e、Qo、N i
、Cu、Zn、AQ。
As a result of intensive research to address the above-mentioned problems, the present inventors have discovered that noble metals and vanadium are used as catalytically active elements, and if necessary, other metal elements (Cr, Mn, )'e, Qo, Ni
, Cu, Zn, AQ.

W、アルカリ土類金属、及び希土類元素)とを組合せる
ことにより、貴金属のCOおよびガス状のHC酸化能力
を損わずしかも、S02からSO3への酸化能力の極め
て抑制された選択性にすぐれたディーゼル排ガス中のC
O及びガス状のHC浄化用触媒を発明完成するに至った
のである。
W, alkaline earth metals, and rare earth elements), it does not impair the CO and gaseous HC oxidation ability of noble metals, and has excellent selectivity with extremely suppressed oxidation ability from SO2 to SO3. C in diesel exhaust gas
He was able to invent and complete a catalyst for purifying O and gaseous HC.

本発明者らは、また、貴金属とバンジウムとの組合せに
おいては、アルカリ金属や鉛を共存せしめると802か
ら803への酸化能が抑制できず、好ましくないことも
知見した。
The present inventors also found that in a combination of a noble metal and vandium, if an alkali metal or lead coexists, the ability to oxidize 802 to 803 cannot be suppressed, which is not preferable.

(1) a)バナジウム金属及びバナジウム化合物から
なる群から選ばれた少なくとも1種と、b)白金、パラ
ジウム及びロジウムよりなる白金族元素から選ばれた少
なくとも1種の金属及び/又はその化合物とを触媒活性
物質として含有してなることを特徴とするディーゼル排
ガス中の一酸化炭素及びガス状炭化水素浄化用触媒。
(1) a) at least one metal selected from the group consisting of vanadium metals and vanadium compounds, and b) at least one metal and/or compound thereof selected from the platinum group elements consisting of platinum, palladium, and rhodium. A catalyst for purifying carbon monoxide and gaseous hydrocarbons in diesel exhaust gas, which contains the catalyst as a catalytically active substance.

(2) a)バナジウム金属及びバナジウム化合物から
なる群から選ばれた少なくとも1種と、b)白金、パラ
ジウム及びロジウムよりなる白金族元素から選ばれた少
なくとも1種の金属及び/又はその化合物と、及びC)
クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛
、銀、タングステン、アルカリ土類金属及び希土類元素
よりなる群から選ばれた少なくとも一種の金属及び/又
はその化合物とを触媒活ア、     性物質として含
有してなることを特徴とするディーゼル排ガス中の一酸
化炭素及びガス状炭化水素浄化用触媒。
(2) a) at least one metal selected from the group consisting of vanadium metals and vanadium compounds; b) at least one metal and/or compound thereof selected from the platinum group elements consisting of platinum, palladium, and rhodium; and C)
At least one metal and/or its compound selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, tungsten, alkaline earth metals and rare earth elements as a catalytically active substance. A catalyst for purifying carbon monoxide and gaseous hydrocarbons in diesel exhaust gas.

上記(1)記載a)のバナジウム化合物としては、メタ
バナジン酸アンモニウム、二塩化バナジル、オキシ三塩
化バナジウム、硫酸バナジル、五酸化バナジウム、三酸
化バナジウム、二塩化バナジウム、三塩化バナジウム、
四塩化バナジウム及びこれらの酸化物、焼成物などが挙
げられる。
The vanadium compounds described in (1) a) above include ammonium metavanadate, vanadyl dichloride, vanadium oxytrichloride, vanadyl sulfate, vanadium pentoxide, vanadium trioxide, vanadium dichloride, vanadium trichloride,
Examples include vanadium tetrachloride, their oxides, and fired products.

バナジウム使用量は、触媒1リットル当り■2o5とし
て0.5〜50Q1好ましくは1〜30gの範囲がよい
The amount of vanadium used is preferably in the range of 0.5 to 50Q1, preferably 1 to 30g, expressed as 2o5 per liter of catalyst.

本発明に使用できる白金族元素b)は、白金(Pt)、
パラジウム(Pd)及びロジウム(Rh)のうち少くと
も一種以上が良く、その使用量は、金属元素として触媒
1リットル当り0.1〜4.0g、好ましくは0.3〜
3.0gの範囲から選ばれる。適当な白金の化合物とし
ては、塩化白金酸、ジニトロジアンミン白金、白金テト
ラミンクロライド、白金スルフィト錯塩、パラジウムの
化合物とし硝酸パラジウム、塩化パラジウム、パラジウ
ムテトラミンクロライド、パラジウムスルフィト錯塩、
ロジウムの化合物としでは、硝酸ロジウム、塩化ロジウ
ム、ヘキサアンミンロジウムクロライド、Oジウムスル
フィト錯塩及び硫酸ロジウム等から選ばれる。
Platinum group elements b) that can be used in the present invention include platinum (Pt),
At least one or more of palladium (Pd) and rhodium (Rh) is preferable, and the amount used is 0.1 to 4.0 g, preferably 0.3 to 4.0 g per liter of catalyst as a metal element.
Selected from a range of 3.0g. Suitable platinum compounds include chloroplatinic acid, dinitrodiammine platinum, platinum tetramine chloride, platinum sulfite complex salts, palladium compounds such as palladium nitrate, palladium chloride, palladium tetramine chloride, palladium sulfite complex salts,
The rhodium compound is selected from rhodium nitrate, rhodium chloride, hexaammine rhodium chloride, Odium sulfite complex salt, rhodium sulfate, and the like.

上記a)、b)成分と組合わせて用いられる上記(2)
記載のC)成分は、クロム、マンガン、鉄、コバルト、
ニッケル、銅、亜鉛、銀、タングステン、アルカリ土類
金属及び希土類元素よりなる群から選ばれた少くとも一
種の金属の化合物であり、化合物の種類としては、酸化
物、硝酸塩、ハロゲン化物、カルボン酸塩、亜硫酸塩、
硫酸塩、リン酸塩等が挙げられる。C)成分の使用量は
、触媒1リットル当り0.5〜50q、好ましくは1〜
30gが選ばれる。
The above (2) used in combination with the above components a) and b)
The listed C) components are chromium, manganese, iron, cobalt,
It is a compound of at least one metal selected from the group consisting of nickel, copper, zinc, silver, tungsten, alkaline earth metals, and rare earth elements, and the types of compounds include oxides, nitrates, halides, and carboxylic acids. salt, sulfite,
Examples include sulfates and phosphates. The amount of component C) used is 0.5 to 50q, preferably 1 to 50q per liter of catalyst.
30g is selected.

本発明では使用する触媒担体としては、ハニカム状モノ
リス担体またはペレット型担体が適する。モノリス担体
の材質は、一般に使用されるコージェライト、ムライト
、アルミナ及び耐熱性金属等であり、この場合には、担
体表面上に多孔性無機質物質を被覆せしめ、この上に触
媒成分を担持させるかまたは、触媒成分をあらかじめ担
持せしめた多孔性無機質物質を被覆せしめて用いるのが
好ましい。多孔性無機質物質としては、活性アルミナ、
シリカ、チタニア、ジルコニア、シリカ−アルミナ、ア
ルミナ−ジルコニア、アルミナ−チタニア、シリカ−チ
タニア、シリカ−ジルコニア、チタニア−ジルコニア等
が好適に用いられるが、これらに限定されるものではな
い。
As the catalyst carrier used in the present invention, a honeycomb-shaped monolithic carrier or a pellet-type carrier is suitable. The material of the monolith carrier is commonly used cordierite, mullite, alumina, heat-resistant metal, etc. In this case, the carrier surface is coated with a porous inorganic material, and the catalyst component is supported on this. Alternatively, it is preferable to use a porous inorganic material on which a catalyst component is preliminarily supported. Porous inorganic materials include activated alumina,
Silica, titania, zirconia, silica-alumina, alumina-zirconia, alumina-titania, silica-titania, silica-zirconia, titania-zirconia and the like are preferably used, but are not limited to these.

ベレット型担体としては、粒状担体であればその型状は
特定なものに限らない。たとえば、柱状、円柱状、球状
、破砕型等いずれでも良く、平均粒径は2〜5amの範
囲のものが好ましい。
The pellet type carrier is not limited to any particular shape as long as it is a granular carrier. For example, it may be columnar, cylindrical, spherical, crushed, etc., and preferably has an average particle size in the range of 2 to 5 am.

担体材質は上記多孔性無機質物質が好適であり、その物
性として、見掛比重0.8q/cc以下、BET表面積
25〜300ゴ/g、好ましくは50〜200TIL/
g、平均細孔径60〜1000人、好ましくは150〜
700人、全細孔容積本発明にかかる触媒の調製法を具
体的に示すと以下の如くである。
The carrier material is preferably the porous inorganic substance mentioned above, and its physical properties include an apparent specific gravity of 0.8 q/cc or less, a BET surface area of 25 to 300 g/g, and preferably 50 to 200 TIL/g.
g, average pore diameter of 60 to 1000, preferably 150 to
700 people, total pore volume The specific method for preparing the catalyst according to the present invention is as follows.

■ 上記多孔性無機質物質をハニカム状モノリス担体に
スラリー化して被覆担持せしめ、該担持層に白金族金属
化合物を含有する溶液を浸漬担持し、乾燥焼成した後、
バナジウム化合物を含有する溶液を浸漬担持し、乾燥焼
成して触媒を調製する。なお、上記(2)記載のC)成
分は、この後同様の方法により浸漬担持しても良いし、
バナジウム化合物の溶液に添加混合して用いても良い。
(2) The porous inorganic material is slurried and coated on a honeycomb-shaped monolithic carrier, and a solution containing a platinum group metal compound is dipped and supported on the carrier layer, followed by drying and firing.
A catalyst is prepared by impregnating and supporting a solution containing a vanadium compound, followed by drying and firing. Note that component C) described in (2) above may be supported by immersion in the same manner after this, or
It may be used by being added to and mixed with a solution of a vanadium compound.

■ 上記多孔性無機質物質に白金族金属及びバナジウム
成分を担持させた粉体をあらかじめ調製し、該粉体をハ
ニカム状、モノリス担体にスラリー化して被覆担持せし
め触媒を調製する。また該粉体は上記(2)記載のC)
成分を同様の方法により担持せしめたものでもよい。
(2) A powder in which a platinum group metal and a vanadium component are supported on the porous inorganic material is prepared in advance, and the powder is slurried on a honeycomb-shaped or monolithic carrier to coat and support the catalyst. In addition, the powder is C) described in (2) above.
The components may be supported by a similar method.

■ 上記多孔性無機質物質にあらかじめ、白金族金属を
担持させた粉体を調製し、咳粉体とバナジウム化合物を
混合してスラリー化し、ハニカム状モノリス担体に被覆
担持せしめ触媒を調製する。また上記(2)記載のC)
成分の化合物をバナジウム化合物と共に該粉体に混合し
てスラリー化し、被覆担持しても良い。
(2) Powder in which a platinum group metal is supported on the porous inorganic material is prepared in advance, and the cough powder and a vanadium compound are mixed to form a slurry, and the slurry is coated and supported on a honeycomb-shaped monolithic carrier to prepare a catalyst. Also, C) described in (2) above.
The component compounds may be mixed with the powder together with a vanadium compound to form a slurry, and the slurry may be coated and supported.

■ 多孔性無機質ベレット状担体に、白金族金属化合物
の溶液を含浸させ乾燥焼成した後、バナジウム化合物の
溶液を含浸させ、乾燥焼成して触媒を調製する。なお、
上記(2)記載のC)成分はこの後で含浸担持しても良
いし、バナジウム化合物溶液に添加混合して含浸担持し
ても良い。
(2) A porous inorganic pellet-shaped carrier is impregnated with a solution of a platinum group metal compound, dried and fired, and then impregnated with a solution of a vanadium compound, dried and fired to prepare a catalyst. In addition,
Component C) described in the above (2) may be impregnated and supported after this, or may be added and mixed to the vanadium compound solution and impregnated and supported.

また、上記■〜■において該触媒成分の担持順序を適宜
変えても差しつかえない。もちろん本発明触媒の調製法
はこれらの方法に限定されるものではなく、未発明の触
媒はその主旨に反しない限り種々のIl製法で調製する
ことが出来る。
Furthermore, in the above (1) to (2), the order of supporting the catalyst components may be changed as appropriate. Of course, the method for preparing the catalyst of the present invention is not limited to these methods, and uninvented catalysts can be prepared by various Il production methods as long as they do not contradict the spirit of the invention.

以下本発明の実施例と比較例とを示し、本発明をより具
体的に説明する。
EXAMPLES Hereinafter, the present invention will be explained in more detail by showing examples and comparative examples of the present invention.

実施例 1 市販のコージェライト製ハニカム状モノリス担体(10
5,3MIφX115JII、300セル/平方インチ
)にスラリー化した活性アルミナ粉  □体をアルミナ
として100Q被覆担持した。
Example 1 Commercially available cordierite honeycomb monolith carrier (10
Activated alumina powder (□) slurried into 5.3 MIφ

白金金属(Pt)として1gを含有するジニトロジアン
ミン白金の硝酸酸性水溶液とロジウム金属(Rh)とし
て0.1gを含有する硝酸ロジウム水溶液の混合水溶液
に該活性アルミナ層形成モノリス担体を1時間浸漬し、
活性アルミナ層にptとRhを吸着させた。これを15
0℃で3時間乾燥後500℃で2時間焼成した。
The activated alumina layer-forming monolithic support is immersed for 1 hour in a mixed aqueous solution of an acidic nitric acid aqueous solution of dinitrodiammine platinum containing 1 g as platinum metal (Pt) and an aqueous rhodium nitrate solution containing 0.1 g as rhodium metal (Rh),
PT and Rh were adsorbed onto the activated alumina layer. This is 15
After drying at 0°C for 3 hours, it was fired at 500°C for 2 hours.

Pt及びRhの担持量は触媒11当りPt1g、Rh0
.1aであった。
The amount of Pt and Rh supported is 1g of Pt and Rh0 per 11 catalysts.
.. It was 1a.

次にメタバナジン酸アンモニウム128gと浸漬し、こ
れを取り出した後余分な溶液を吹き払ったのら、これを
150℃で3時間乾燥し、500℃で2時間焼成した。
Next, it was immersed in 128 g of ammonium metavanadate, and after taking it out and blowing off the excess solution, it was dried at 150°C for 3 hours and calcined at 500°C for 2 hours.

得られた触媒のバナジウム担持量は触媒11当り五酸化
バナジウム(V20s )として5Qであった。
The amount of vanadium supported on the obtained catalyst was 5Q as vanadium pentoxide (V20s) per 11 catalysts.

町施例 2 Ptとして10gを含有するジニトロジアンミン白金の
硝酸、酸性水溶液とRhとして1gを含有する硝酸ロジ
ウム水溶液の混合水溶液11に活性アルミナ粉体1 K
gを投入し、よく混合して、150℃で5時間乾燥後、
500℃で2時間焼成してPt、Rhを含有するアルミ
ナ粉体をえた。
Town Example 2 Activated alumina powder 1K was added to a mixed aqueous solution 11 of a nitric acid, acidic aqueous solution of dinitrodiammine platinum containing 10 g as Pt and an aqueous rhodium nitrate solution containing 1 g as Rh.
g, mix well, and dry at 150°C for 5 hours.
It was fired at 500°C for 2 hours to obtain alumina powder containing Pt and Rh.

メタバナジン酸アンモニウム64.3 gとシュウ酸7
7gを水に溶解させ11とした溶液に該Pt、Rh含有
アルミナ粉体の全量を投入し、よく混合した。150℃
で5時間乾燥後500℃で2時間焼成して、Pt1Rh
、バナジウムを含有するアルミナ粉体をえた。
64.3 g of ammonium metavanadate and 7 g of oxalic acid
The entire amount of the Pt and Rh-containing alumina powder was added to a solution of 11 in which 7 g was dissolved in water and mixed well. 150℃
After drying at 500°C for 2 hours, Pt1Rh
, an alumina powder containing vanadium was obtained.

該粉体を湿式ミルでスラリー化して、実施例1で用いた
のと同じ仕様のコージェライト製ハニカム状モノリス担
体に担持し、150℃3時間乾燥後、500℃で2時間
焼成した。えられた触媒のPt、Rh及びV担持量は、
触媒11当り、Pt1g、Rh0.1gであり、VはV
205として5qであった。
The powder was made into a slurry using a wet mill, supported on a cordierite honeycomb monolithic support having the same specifications as used in Example 1, dried at 150°C for 3 hours, and then fired at 500°C for 2 hours. The amounts of Pt, Rh and V supported on the obtained catalyst are:
Per catalyst 11, Pt1g, Rh0.1g, V is V
It was 5q as 205.

実施例 3 実施例2の方法においてptとして8gを含有するジニ
トロジアンミン白金の硝酸酸性水溶液と、Pdとして3
.2gを含有する硝酸パラジウム水溶液を用いる以外は
、同様の方法で触媒を調製し、触媒11当り、P t 
0.8 Q、P d 0゜32にl、V2055gの担
持量の触媒をえた。
Example 3 In the method of Example 2, a nitric acid aqueous solution of dinitrodiammine platinum containing 8 g as Pd and 3 g as Pd were prepared.
.. A catalyst was prepared in a similar manner, except that an aqueous solution of palladium nitrate containing 2 g was used, and P t
A catalyst with a loading of 0.8 Q, P d 0°32 and 2055 g of V was obtained.

実施例 4 実施例2の方法においてPdとして10gを含有する硝
酸パラジウム水溶液と、Rhとして1gを含有する硝酸
ロジウム水溶液を用いる以外は同様の方法で触媒を調製
し、触媒11当り、Pd1a、Rh0.1g、■205
5gの担持量の触媒をえた。
Example 4 A catalyst was prepared in the same manner as in Example 2 except that an aqueous palladium nitrate solution containing 10 g of Pd and an aqueous rhodium nitrate solution containing 1 g of Rh were used. 1g, ■205
A loading of 5 g of catalyst was obtained.

実施例 5 実施例2と同様にしてえられたPt、Rhを含有するア
ルミナ粉体1Kgと市販の五酸価バナジウム粉体5og
とをボールミルで充分混合し、次いで湿式ミルでスラリ
ー化して、実施例1で用いたのと同じ仕檄のコージェラ
イト製ハニカム状モノリス担体に担持し、150℃3時
間乾燥後500℃で2時間焼成した。えられた触媒のP
t1Rh及びV担持量は触媒1j!当りPt1g、Rh
0.1g、V2055Qであった。
Example 5 1 kg of alumina powder containing Pt and Rh obtained in the same manner as in Example 2 and 5 og of commercially available pentaoxide value vanadium powder
were sufficiently mixed in a ball mill, then slurried in a wet mill, supported on a honeycomb-shaped monolithic cordierite carrier made of the same material used in Example 1, dried at 150°C for 3 hours, and then heated at 500°C for 2 hours. Fired. P of the obtained catalyst
t1Rh and V supported amount is catalyst 1j! Per Pt1g, Rh
It was 0.1 g, V2055Q.

実施例 6 実施例2におけると同様にして調製したPt。Example 6 Pt prepared as in Example 2.

Rh及び■を含有するアルミナ粉体に、以下に特定する
元素C)の水溶性塩の水溶液を含浸し、150℃で5時
間乾燥後、500℃で2時間焼成してえた粉体を湿式ミ
ルでスラリー化して、実施例1で用いたのと同じ仕様の
コージェライト製ハニカム状モノリス担体に担持し、1
50℃3時間乾燥後500℃で2時間焼成することによ
り第1表に示す触媒を調製した。ただし、クロム、マン
ガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、アルカ
リ土類金屑及び希土類元素については硝酸塩を使用し、
タングステンについてはメタタングステン酸アンモニウ
ムを使用した。
Alumina powder containing Rh and ■ is impregnated with an aqueous solution of a water-soluble salt of element C) specified below, dried at 150°C for 5 hours, and then calcined at 500°C for 2 hours. The resulting powder is wet-milled. It was made into a slurry with
The catalysts shown in Table 1 were prepared by drying at 50°C for 3 hours and then calcining at 500°C for 2 hours. However, nitrates are used for chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, alkaline earth metal scraps, and rare earth elements.
For tungsten, ammonium metatungstate was used.

えられた触媒の各成分の担持量は下記の通りであった。The supported amounts of each component in the obtained catalyst were as follows.

第1表 実施例 7 0−ヌ・ブーラン社製球状アルミナ担体(平均粒径2.
8AllI、BET表面積100メ/g、見かけ比重0
.43 g/cc、全細孔容積1.2 cc/ g)4
30Qを、ptとして1cx、Rhとして0. IQを
含むジニトロジアンミン白金の硝Ill性水溶液と、硝
酸ロジウム水溶液の混合溶液500CC中に投入、含浸
せしめた後、熱風で表面が乾燥するまで濃縮させ、続い
て150℃で2時間乾燥後、500℃で3時間焼成した
Table 1 Example 7 Spherical alumina carrier manufactured by O-Ne Boullin (average particle size 2.
8AllI, BET surface area 100m/g, apparent specific gravity 0
.. 43 g/cc, total pore volume 1.2 cc/g)4
30Q, 1cx as pt, 0. After pouring into 500 CC of a mixed solution of dinitrodiammine platinum containing IQ and rhodium nitrate aqueous solution and impregnating it, the mixture was concentrated with hot air until the surface was dry, and then dried at 150°C for 2 hours. It was baked at ℃ for 3 hours.

次いで、メタバナジン酸アンモニウム32,2Qと、シ
ュウ酸38.6 gを水に溶解させ500CCに調製し
た溶液を用いて上記Pt、Rh担持ずみの担体に含浸担
持した。150℃で3時間乾燥後、500℃で3時間焼
成し触wit当りPt1Q、RhO,IQ、V2O52
5Qを含有する球状ベレット触媒をえた。
Next, a solution prepared by dissolving ammonium metavanadate 32,2Q and 38.6 g of oxalic acid in water to give a concentration of 500 CC was used to impregnate and support the Pt and Rh supported carrier. After drying at 150℃ for 3 hours, baking at 500℃ for 3 hours to obtain Pt1Q, RhO, IQ, V2O52 per touch.
A spherical pellet catalyst containing 5Q was obtained.

比較例゛1 実施例1の方法において、■を担持しない以外はすべて
同じ方法で触媒を調製し、触[11当りアルミナ100
g、Pt1Q、Rh0.1gをそれぞれ担持したハニカ
ム触媒をえた。
Comparative Example 1 A catalyst was prepared in the same manner as in Example 1 except that ① was not supported.
A honeycomb catalyst was obtained in which 0.1 g of Pt, 1 Q of Pt, and 0.1 g of Rh were supported.

比較例 2 実施例1の方法において、Pt、Rhを担持しない以外
はすべて同じ方法で触媒を調製し、触媒1)当りアルミ
ナ100Q、12055gをそれぞれ担持したハニカム
触媒をえた。
Comparative Example 2 A catalyst was prepared in the same manner as in Example 1 except that Pt and Rh were not supported, and honeycomb catalysts were obtained in which 100Q and 12055 g of alumina were supported per catalyst 1), respectively.

比較例 3 実施例2の方法において、Pt及びRhを含有するアル
ミナ粉体に、硝酸セリウム水溶液を用いて処理し触媒1
1当りセリウム成分を酸化物として5Qとなるように担
持し、以下実施例2におけると同様に担体に被覆担持し
て、バナジウム分を含まないハニカム触媒をえた。
Comparative Example 3 In the method of Example 2, alumina powder containing Pt and Rh was treated with an aqueous cerium nitrate solution to form catalyst 1.
A honeycomb catalyst containing no vanadium was obtained by supporting a cerium component as an oxide in an amount of 5Q per unit, and coating and supporting it on a carrier in the same manner as in Example 2.

比較例 4 実施例5の方法において、■を担持しない以外はすべて
rf4mの方法で、触媒を調製し、触媒1j!当りPt
1a、Rh0.IQをそれぞれ担持したベレット触媒を
えた。
Comparative Example 4 A catalyst was prepared using the method of Example 5, except that ■ was not supported, and the catalyst was prepared using the rf4m method.Catalyst 1j! Hit Pt
1a, Rh0. A pellet catalyst supporting IQ was obtained.

〔発明の効果〕〔Effect of the invention〕

実施例 8 実施例1〜7、比較例1〜4でえられた各触媒11をそ
れぞれコンバーターに充填し、排気量2300CC,4
気筒デイーゼルエンジンを用いて触媒の評価試験を行な
った。排気ガス中のCOは150〜3001)DI、ガ
ス状HCはメタン換算で100〜300 ppmであっ
た。CO及びガス状HCの転化率はエンジン回転数25
00rl)l、トルク6 Kg・乳、入口ガス温度35
0℃の条件下で、入口ガス、出口ガスのCO濃度及びガ
ス状HCl1度を分析し、下記の算出式より求めた。な
おCOS度の分析には、非分散型赤外分析計(NDIR
)、ガス状HCの分析には、ディーゼル排ガス用高温H
C計を使用した。
Example 8 Each of the catalysts 11 obtained in Examples 1 to 7 and Comparative Examples 1 to 4 was filled into a converter, and the displacement was 2300 cc, 4
A catalyst evaluation test was conducted using a cylinder diesel engine. The CO in the exhaust gas was 150-3001) DI, and the gaseous HC was 100-300 ppm in terms of methane. The conversion rate of CO and gaseous HC is at engine speed 25
00rl)l, torque 6 Kg・milk, inlet gas temperature 35
The CO concentration and gaseous HCl concentration of the inlet gas and outlet gas were analyzed under the condition of 0° C., and calculated using the following calculation formula. For analysis of COS degree, a non-dispersive infrared analyzer (NDIR) is used.
), high-temperature H for diesel exhaust gas is used for analysis of gaseous HC.
A C meter was used.

Goの転化率(X)− HCの転化率(X)− またS02のSO3への転化率は、エンジン回転数25
0Orpm、トルク15Ny−7FL、入口ガス温度5
00℃の条件下で、入口ガス、出口ガスの802濃度を
非分散型赤外分析計(NDIR)で分析し、次の算出式
より802の転化率を求めた。
Conversion rate of Go (X) - Conversion rate of HC (X) - Also, the conversion rate of S02 to SO3 is
0Orpm, torque 15Ny-7FL, inlet gas temperature 5
The 802 concentration in the inlet gas and outlet gas was analyzed using a non-dispersive infrared analyzer (NDIR) under conditions of 00°C, and the conversion rate of 802 was determined using the following formula.

SO2の転化率(X)− 結果を次の第2表に示す。Conversion rate of SO2 (X)- The results are shown in Table 2 below.

Claims (2)

【特許請求の範囲】[Claims] (1)a)バナジウム金属及びバナジウム化合物からな
る群から選ばれた少なくとも1種と、b)白金、パラジ
ウム及びロジウムよりなる白金族元素から選ばれた少な
くとも1種の金属及び/又はその化合物とを触媒活性物
質として含有してなることを特徴とするディーゼル排ガ
ス中の一酸化炭素及びガス状炭化水素浄化用触媒
(1) a) at least one metal selected from the group consisting of vanadium metals and vanadium compounds, and b) at least one metal selected from the platinum group elements consisting of platinum, palladium, and rhodium and/or compounds thereof. A catalyst for purifying carbon monoxide and gaseous hydrocarbons in diesel exhaust gas, which contains the catalyst as a catalytically active substance.
(2)a)バナジウム金属及びバナジウム化合物からな
る群から選ばれた少なくとも1種と、b)白金、パラジ
ウム及びロジウムよりなる白金族元素から選ばれた少な
くとも1種の金属及び/又はその化合物と、及びc)ク
ロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、
銀、タングステン、アルカリ土類金属及び希土類元素よ
りなる群から選ばれた少なくとも一種の金属及び/又は
その化合物とを触媒活性物質として含有してなることを
特徴とするディーゼル排ガス中の一酸化炭素及びガス状
炭化水素浄化用触媒
(2) a) at least one metal selected from the group consisting of vanadium metals and vanadium compounds; b) at least one metal and/or compound thereof selected from the platinum group elements consisting of platinum, palladium, and rhodium; and c) chromium, manganese, iron, cobalt, nickel, copper, zinc,
Carbon monoxide in diesel exhaust gas characterized by containing at least one metal selected from the group consisting of silver, tungsten, alkaline earth metals and rare earth elements and/or a compound thereof as a catalytically active substance. Catalyst for gaseous hydrocarbon purification
JP59242298A 1984-11-19 1984-11-19 Catalyst for purifying carbon monoxide and gaseous hydrocarbon in diesel exhaust gas Pending JPS61120640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59242298A JPS61120640A (en) 1984-11-19 1984-11-19 Catalyst for purifying carbon monoxide and gaseous hydrocarbon in diesel exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59242298A JPS61120640A (en) 1984-11-19 1984-11-19 Catalyst for purifying carbon monoxide and gaseous hydrocarbon in diesel exhaust gas

Publications (1)

Publication Number Publication Date
JPS61120640A true JPS61120640A (en) 1986-06-07

Family

ID=17087149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59242298A Pending JPS61120640A (en) 1984-11-19 1984-11-19 Catalyst for purifying carbon monoxide and gaseous hydrocarbon in diesel exhaust gas

Country Status (1)

Country Link
JP (1) JPS61120640A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415991A (en) * 1987-07-10 1989-01-19 Mitsubishi Heavy Ind Ltd Catalyst for purification of oscillation medium of carbon dioxide laser
US4940686A (en) * 1989-08-07 1990-07-10 Phillips Petroleum Company Catalyst for oxidation of carbon monoxide
JPH0576759A (en) * 1991-09-20 1993-03-30 Hitachi Ltd Poisoning resistant catalyst, production thereof and method for using same
US5514354A (en) * 1989-12-09 1996-05-07 Degussa Ag Method for using a catalyst to purify exhaust gases from a diesel engine
KR20000072217A (en) * 2000-08-18 2000-12-05 김철홍 Cordierite catalyst system
KR100402430B1 (en) * 2000-10-26 2003-10-22 삼성엔지니어링 주식회사 Catalyst for decomposition of toxic pollutants and producing process thereof
WO2009013394A1 (en) 2007-07-23 2009-01-29 Ecocat Oy Catalyst for removing detrimental hydrocarbons present in effluent or process gases

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174236A (en) * 1982-04-05 1983-10-13 Bridgestone Corp Catalyst for removing particulate matter in waste gas
JPS6146246A (en) * 1984-08-08 1986-03-06 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
JPS6164331A (en) * 1984-09-07 1986-04-02 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174236A (en) * 1982-04-05 1983-10-13 Bridgestone Corp Catalyst for removing particulate matter in waste gas
JPS6146246A (en) * 1984-08-08 1986-03-06 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
JPS6164331A (en) * 1984-09-07 1986-04-02 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415991A (en) * 1987-07-10 1989-01-19 Mitsubishi Heavy Ind Ltd Catalyst for purification of oscillation medium of carbon dioxide laser
US4940686A (en) * 1989-08-07 1990-07-10 Phillips Petroleum Company Catalyst for oxidation of carbon monoxide
US5514354A (en) * 1989-12-09 1996-05-07 Degussa Ag Method for using a catalyst to purify exhaust gases from a diesel engine
JPH0576759A (en) * 1991-09-20 1993-03-30 Hitachi Ltd Poisoning resistant catalyst, production thereof and method for using same
KR20000072217A (en) * 2000-08-18 2000-12-05 김철홍 Cordierite catalyst system
KR100402430B1 (en) * 2000-10-26 2003-10-22 삼성엔지니어링 주식회사 Catalyst for decomposition of toxic pollutants and producing process thereof
WO2009013394A1 (en) 2007-07-23 2009-01-29 Ecocat Oy Catalyst for removing detrimental hydrocarbons present in effluent or process gases
EA021965B1 (en) * 2007-07-23 2015-10-30 Динекс Экокат Ой Catalyst for removing detrimental hydrocarbons present in effluent or process gases and method for manufacture of such catalyst

Similar Documents

Publication Publication Date Title
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
US4759918A (en) Process for the reduction of the ignition temperature of diesel soot
JP2716205B2 (en) Exhaust gas purification catalyst
JP2891609B2 (en) Diesel engine exhaust gas purification catalyst
JPH1033985A (en) Catalyst for purifying exhaust gas from diesel engine
JP2825420B2 (en) Diesel engine exhaust gas purification catalyst
JPS61120640A (en) Catalyst for purifying carbon monoxide and gaseous hydrocarbon in diesel exhaust gas
JPH0462778B2 (en)
CN105473226A (en) Exhaust gas purifying catalyst
JPH01254251A (en) Catalyst for purifying exhaust gas
JP2007007606A (en) Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JP4301348B2 (en) Nitrogen oxide decomposition catalyst and diesel engine exhaust gas purification method using the same
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JPH0462779B2 (en)
JPH08257405A (en) Catalyst for decomposition of nitrogen oxide and method for removing nitrogen oxide in exhaust gas from diesel engine by using the same
JPH08168650A (en) Material and method for purifying exhaust gas
JPH0975736A (en) Catalyst for purification of exhaust gas from diesel engine and method for purifying exhaust gas from diesel engine with the same
JP2003120265A (en) Catalyst for oxidizing and removing exhaust gas of diesel powered automobile, producing method thereof an using method thereof
JPH0970538A (en) Catalyst layer for denitrification, denitrification catalyst structural body and denitrification method using that
JPH11104492A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure, and exhaust gas purifying process using the layer and the structure
JPH10118489A (en) Catalyst layer for purifying exhaust gas, catalyst structure for purifying exhaust gas, and method for purifying exhaust gas thereby
JPH1066871A (en) Catalyst for cleaning exhaust gas, structural body coated with catalyst and method for cleaning exhaust gas
JPH09262469A (en) Catalyst for catalytic reduction of nox
JP2000153133A (en) Exhaust gas purification
JPH1176839A (en) Exhaust gas cleaning catalysis layer, exhaust gas cleaning catalysis coated structure, and exhaust gas cleaning method using them