JPS5952530A - Catalyst - Google Patents

Catalyst

Info

Publication number
JPS5952530A
JPS5952530A JP57165621A JP16562182A JPS5952530A JP S5952530 A JPS5952530 A JP S5952530A JP 57165621 A JP57165621 A JP 57165621A JP 16562182 A JP16562182 A JP 16562182A JP S5952530 A JPS5952530 A JP S5952530A
Authority
JP
Japan
Prior art keywords
catalyst
carrier layer
alumina
porous
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57165621A
Other languages
Japanese (ja)
Other versions
JPH035851B2 (en
Inventor
Jun Yagi
順 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57165621A priority Critical patent/JPS5952530A/en
Publication of JPS5952530A publication Critical patent/JPS5952530A/en
Publication of JPH035851B2 publication Critical patent/JPH035851B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a highly efficient catalyst, by a method wherein a porous carrier layer having a heat resistant noble metal catalyst supported is formed on the surface of an inorg. base material and a non-porous carrier layer having a heat resistant noble metal catalyst supported is formed on the surface of said porous carrier layer. CONSTITUTION:A first carrier layer is formed on the surface of a non-porous inorg. base material such as a silica fiber increased in silica purity, a metal fiber or the like. The first carrier layer comprises porous silica, porous gamma- alumina or a mixture thereof and formed by impregnating the same with palladium, platinum or a mixture thereof to be supported. In the next step, zirconia, titania, gamma-alumina or a mixture of two or more thereof having palladium, platinum or a mixture thereof to be supported preliminarily adhered thereto is adhered to the surface of the first layer to form a second carrier layer.

Description

【発明の詳細な説明】 産業上の利用分野 この発゛明は□排気ガ遺の浄化を行なうための触媒に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a catalyst for purifying exhaust gas residues.

従来例あ構成とその問題点 石油系燃料を燃焼する燃焼器にあっては、未燃焼成分あ
るいは不完全燃焼成分としての炭化水素。
Conventional configuration and its problems In combustors that burn petroleum-based fuels, hydrocarbons are unburned or incompletely burned components.

−酸化炭素等が排気ガス中に含まれ大気中に排出される
。これは燃焼器□″のバーナの良し悪しに依存して量的
な□多少はあるものの、完全にこれらの成分を皆無とす
゛る゛こ逅は□現在の燃焼バーナでは不可能であるン排
゛気ガ友が室外大気中に排出される場合には、これら成
分の大気汚染程度は一部の大型燃焼炉を除けば他の汚染
源と比較してきわめて微々たるものである。しかしなが
ら、小型の家庭用哀トーブガどにみられるように屋内排
気形の燃焼器にあっては、室丙の空気汚染は深刻な問題
となる。
- Carbon oxide, etc. are included in the exhaust gas and emitted into the atmosphere. Although the amount of this depends on the quality of the burner in the combustor □'', it is impossible to completely eliminate these components with current combustion burners. When kigayu is emitted into the outdoor atmosphere, the level of air pollution from these components is extremely small compared to other sources of pollution, with the exception of some large combustion furnaces. For indoor exhaust type combustors, such as those seen in gas stoves, indoor air pollution becomes a serious problem.

そのため、燃焼器から排出される未燃焼、不完全燃焼成
分を浄化するために、完全酸化用触媒を燃焼器の排気系
内に装着して、排気ガスを清浄化する手段がとられてい
る。このような目的のための触媒としていくつかの種類
の触媒が提案されてきた。これらは主に外観形状を異に
するものが多く、触媒そのものとしては、貴金属触媒が
その酸化特性と比較的高温に安定であるところから多く
採用されていた。しかしながら、燃焼器を小4ツ化する
という現在の商品指向の中にあっては、この種の触媒の
設置位置はますますバーナ部に近すきつつあり、その結
果より高温に耐える触媒が要望される。さらに、燃料中
に含まれる硫黄やバーナを構成する金属部品から飛散す
る金属粒子などのいわゆる触媒毒物質による被毒の影響
がよ#)顕著となシ、I!I!II媒の寿命を短かくす
ることに対する対応が望まれていた。従来、担体表面へ
の触媒の担持量を高めることが、燃焼排ガスの浄化に有
効であるところから、触媒の改良は主としてこの点に多
くの提案がなされていた。なかでも、無機質繊維を担体
とする触媒は、この典型とかえる。一方、先にのべた触
媒の寿命という面からみると、熱的に・もまた、触織毒
による被毒においても、Jυ体外表面に担持した触媒は
とくに影響を受けやすい。
Therefore, in order to purify the unburned and incompletely burned components discharged from the combustor, a complete oxidation catalyst is installed in the exhaust system of the combustor to purify the exhaust gas. Several types of catalysts have been proposed for this purpose. Many of these differ mainly in their external shapes, and as catalysts themselves, noble metal catalysts have been widely used because of their oxidation properties and stability at relatively high temperatures. However, with the current product trend of making combustors smaller and smaller, this type of catalyst is being installed closer and closer to the burner, and as a result, a catalyst that can withstand higher temperatures is required. Ru. Furthermore, the effects of poisoning by so-called catalyst poisons such as sulfur contained in fuel and metal particles scattered from metal parts that make up the burner are significant. I! It has been desired to take measures to shorten the life of the II medium. Conventionally, since increasing the amount of catalyst supported on the surface of a carrier is effective in purifying combustion exhaust gas, many proposals have been made to improve catalysts mainly in this respect. Among them, catalysts using inorganic fiber as a carrier are typical of this type. On the other hand, from the perspective of the catalyst life mentioned above, catalysts supported on the external surface of the Jυ body are particularly susceptible to thermal and poisoning by tissue poisons.

この点を改善するものとしては、多孔質担体への選択吸
着特性を利用した金属塩の細孔内吸着によシ、担体表面
よシ深部の方に触媒金属濃度を高くして触媒毒による被
毒を軽減したシ、また内部に被毒耐性の弱い触媒金属を
選択的に吸着させその表面に被毒耐性の強い他の触媒金
属を高濃度で担持した二重担持方法が提案されている。
To improve this point, the metal salt can be adsorbed into the pores of the porous carrier by utilizing its selective adsorption properties, and the concentration of the catalyst metal can be increased from the surface of the carrier to the deeper part of the carrier to avoid exposure to catalyst poison. In addition, a dual-supporting method has been proposed in which a catalytic metal with low poisoning resistance is selectively adsorbed inside, and another catalytic metal with strong poisoning resistance is supported at a high concentration on the surface.

これらはいずれも一定の効果を得るものではあるが、選
択吸着を利用するために、担体のこれら金属塩に対する
吸着能に大きく影響され、より効果的な担持を行うには
、担体の材質に制約をうけるばかシでなく、担持層は厚
さが数10〜100μ以上が必要であり、このため燃焼
排気ガスにおける完全酸化反応のような、高温、高速な
拡散律速段階における触媒反応においては外表面より内
部に担持した触媒金属が反応に寄与することなく、とく
に触媒金属が白金などの貴金属の場合には、担持金属量
当りの反応量は著しく小さくなシ、結果的に効率の低い
触媒とならざるを得ないとい゛う問題があった。
Although these methods all have certain effects, since they utilize selective adsorption, they are greatly influenced by the adsorption capacity of the carrier for these metal salts, and in order to achieve more effective loading, there are restrictions on the material of the carrier. The support layer needs to have a thickness of several tens to 100 microns or more, so that the outer surface cannot be used for catalytic reactions in high-temperature, high-speed diffusion-limited stages, such as complete oxidation reactions in combustion exhaust gas. The catalyst metal supported internally does not contribute to the reaction, and especially when the catalyst metal is a noble metal such as platinum, the amount of reaction per amount of supported metal is extremely small, resulting in a catalyst with low efficiency. There was an unavoidable problem.

発明の目的 この発明の目的は、熱的にもまた触媒毒に対する耐性に
もすぐれ、高い反応効率によって排、気ガスの浄化を高
効率で行なうことができる触媒を提供することである。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a catalyst which has excellent thermal resistance and resistance to catalyst poisons, and which can purify exhaust gases and gases with high reaction efficiency.

発明の構成 この発明の触媒は、無機質基材の表面に、耐熱性の貴金
属系触媒を担持した多孔質な第1担体層を形成し、さら
にこの第1.担体層の表面に触媒毒に対して耐性を有す
る置傘、属系触媒を担持した耐熱性で非多孔質な粒状第
2担体層を形成したものである。
Structure of the Invention In the catalyst of the present invention, a porous first carrier layer supporting a heat-resistant noble metal catalyst is formed on the surface of an inorganic base material. On the surface of the carrier layer, a heat-resistant, non-porous granular second carrier layer is formed which supports a metal-based catalyst that is resistant to catalyst poisons.

前記無mW基材としては、酸処理によりシリカ純度を高
めたシリカファイ5ツクや金属繊維等の非多孔質なもの
が使用可能であり、これらの繊維は雪のままマット状の
形態で使用してもよく、あるいは繊布や網状の形態で使
用することができる。
As the mW-free base material, non-porous materials such as silica fibers whose silica purity has been increased by acid treatment and metal fibers can be used. Alternatively, it can be used in the form of a fabric or net.

前記第1担体層は多孔質なシリカ、γ−アルミナまたは
これらの混合物からなる層であって、この層にパラジウ
ム、白金またはこれらの混合物を含浸担持したのち、こ
の表面に、あらかじめ白金。
The first carrier layer is a layer made of porous silica, γ-alumina, or a mixture thereof, and after this layer is impregnated and supported with palladium, platinum, or a mixture thereof, platinum is preliminarily applied to the surface of the layer.

ロジウムまたはこれらの混合物を付着担持したジルコニ
ア、チタニア、a−アルミナ粒子またはこれらの2種以
上を付着させて第2担体層を形成したものである。前記
第2担体層を構成するジルコニア、チタニア、a−アル
ミナなどの耐熱粒子は粒雫が0.1μ以下であることが
好ましい。
The second carrier layer is formed by adhering zirconia, titania, a-alumina particles, or two or more thereof, on which rhodium or a mixture thereof is adhered and supported. The heat-resistant particles such as zirconia, titania, and a-alumina constituting the second carrier layer preferably have a particle size of 0.1 μm or less.

前記無機質基材に含浸担持される第1担体層は、無機質
基材がそれ自体非多孔質な繊維であるところから、厚さ
がせいぜい1μ程度であり、このためこの担体層に含浸
される触媒金属の含浸深さもせいぜ、い1μ以内であシ
、さらにこの表面に付着されるジルコニアなどの耐熱性
の粒状第2担体層はその粒径が0.1μ程度でしかも非
多孔質なため、この粒子表面に付着される触媒金属は1
00尺以下の微粒子状である。そのため、拡散律速な完
全酸化反応における外表面反応に最つども適した領域に
、担持触媒金属のすべてが存在しており、触媒金属の単
位重量当シの反応量は当然のことながら大きくとれ、効
率的な触媒反応をなしうるのである。また、反応ガス中
に含まれる触媒毒に対してもより耐性の高い触媒金属を
外表面に配置することによって、触媒寿命を長くするこ
とができ、また熱的にはより耐熱性の高い触媒金属を多
孔質担体に含浸させ、耐熱性の低い触媒金属を耐熱性の
高い担体に担持させることによって、全体としての耐熱
性が高められることから、熱的にも触媒毒による被毒に
も強くかつ活性が高く、さらに触媒金属の単位重量当り
の反応量の大きい触媒を得ることができるのである。
The first carrier layer impregnated and supported on the inorganic base material has a thickness of about 1 μm at most since the inorganic base material itself is a non-porous fiber, and therefore the catalyst impregnated in this carrier layer has a thickness of about 1 μm at most. The depth of metal impregnation is at most 1 μm or less, and the heat-resistant granular second carrier layer, such as zirconia, attached to this surface has a particle size of about 0.1 μm and is non-porous. The catalyst metal attached to the particle surface is 1
It is in the form of fine particles of less than 00 shaku. Therefore, all of the supported catalyst metal is present in the region most suitable for the outer surface reaction in the diffusion-controlled complete oxidation reaction, and the reaction amount per unit weight of catalyst metal is naturally large. This allows for efficient catalytic reactions. In addition, by placing a catalyst metal on the outer surface that is more resistant to catalyst poisons contained in the reaction gas, the life of the catalyst can be extended. By impregnating a porous carrier with catalyst metal and supporting a catalyst metal with low heat resistance on a carrier with high heat resistance, the overall heat resistance is increased. This makes it possible to obtain a catalyst with high activity and a large amount of reaction per unit weight of catalytic metal.

実施例の説明 実施例1: 酸処理によってシリカ純度を高めた無アル
カリガラス繊維を織布状に織ったシリカクロスを900
℃から1300℃の高温で1時間未満の間焼きなましだ
ものを、基材として用い、これをイオン交換水100部
に対しベーマイト・アルミナゲルを15部の割合で分散
させた懸濁液中に浸漬し、120℃で数時間乾燥したの
ち、500℃から700℃で1〜3時間大気雰囲気中で
焼成し、シリカクロス表面にT−アルミナのコーティン
グ層を形成した。このアルミナの担持量は基材のクロス
重量に対し15重量%であり、走査電子顕微鏡観察では
、この層厚はシリカクロスを形成するシリカフィラメン
ト径約9μに対し、0.5〜1.5μであった。つぎに
このアルミナ担持クロスを、塩化パラジウム水溶液に浸
漬し、120℃で30分から1時間乾燥後、600℃か
ら700℃で1〜2時間大気雰囲気中で燃焼し、パラジ
ウムを担持させた。
Description of Examples Example 1: Silica cloth made of alkali-free glass fibers with increased silica purity by acid treatment was woven into a woven fabric.
Annealed material for less than 1 hour at a high temperature of 1300°C to 1300°C is used as a base material, and this is immersed in a suspension of boehmite/alumina gel dispersed in a ratio of 15 parts to 100 parts of ion-exchanged water. After drying at 120°C for several hours, it was fired in the air at 500°C to 700°C for 1 to 3 hours to form a T-alumina coating layer on the surface of the silica cloth. The amount of alumina supported is 15% by weight based on the weight of the cloth of the base material, and scanning electron microscopy reveals that this layer thickness is 0.5 to 1.5μ compared to the diameter of the silica filaments forming the silica cloth, which is approximately 9μ. there were. Next, this alumina-supporting cloth was immersed in an aqueous palladium chloride solution, dried at 120°C for 30 minutes to 1 hour, and then burned in the air at 600°C to 700°C for 1 to 2 hours to support palladium.

パラジウム担持量は担体重量に対し0.06重量%であ
った。一方、平均粒径が0.5μの酸化ジルコニウム2
0部をイオン交換水100部に懸濁したものに、硝酸ジ
ルコニウム1部と塩化白金酸0.5部を混合し、充分に
攪拌混合ののち、p過によシ固形物を戸別し、このもの
を120℃で1時間乾燥後、600℃から700℃で2
時間大気雰囲気中で焼成したものを20部とシ、これに
ベーマイト・アルミナゲル5部と硝酸アルミニウム 3
 部を混合しイオン交換水100部に懸濁した混合液に
、パラジウムを担持した前記クロスを浸漬し、これを1
20℃で1時間乾燥後600℃から7oo℃で2時間大
気雰囲気中で焼成した。
The amount of palladium supported was 0.06% by weight based on the weight of the carrier. On the other hand, zirconium oxide 2 with an average particle size of 0.5μ
0 part suspended in 100 parts of ion-exchanged water, 1 part of zirconium nitrate and 0.5 part of chloroplatinic acid were mixed. After drying at 120℃ for 1 hour, drying at 600℃ to 700℃ for 2 hours.
20 parts of the product fired in the atmosphere for 1 hour, 5 parts of boehmite alumina gel and 3 parts of aluminum nitrate.
The palladium-supported cloth was immersed in a mixture of 100 parts of ion-exchanged water and 100 parts of ion-exchanged water.
After drying at 20° C. for 1 hour, it was fired at 600° C. to 70° C. for 2 hours in the air.

カくシて、図面に示すように、シリカクロス1にパラジ
ウムを担持したγ−アルミナの第1担体層2および白金
を担持したジルコニア粒子の第2担体層3がこの順で形
成されたクロス触媒を得た。
Specifically, as shown in the drawing, a cloth catalyst in which a first carrier layer 2 of γ-alumina supporting palladium and a second carrier layer 3 of zirconia particles supporting platinum are formed in this order on a silica cloth 1. I got it.

この触媒を分析したところ、基材のシリカクロス重量に
対してアルミナ19重量%、ジルコニア5重量%、パラ
ジウム0.06重量%、白金0.01重量%であった。
Analysis of this catalyst revealed that it contained 19% by weight of alumina, 5% by weight of zirconia, 0.06% by weight of palladium, and 0.01% by weight of platinum based on the weight of the silica cloth of the base material.

実施例2: 実施例1におけるパラジウムに代えて白金
を、また白金に代えてロジウムをそれぞれ実施例1と同
様な方法で担持したクロス触媒を得た。このものの分析
では、アルミナ21重量%。
Example 2: A cross catalyst was obtained in the same manner as in Example 1, except that platinum was supported in place of palladium in Example 1, and rhodium was supported in place of platinum. Analysis of this material reveals that it is 21% by weight of alumina.

ジルコニア6重量%、白金0.08重量%、ロジウム0
.01 重量%であった。
Zirconia 6% by weight, platinum 0.08% by weight, rhodium 0
.. 01% by weight.

実施例3: 実施例1において、γ−アルミナにパラジ
ウムを担持させたのち、ジルコニア粉体に代えてチタニ
ア粉体を用いてこれに白金を担持させたのち、実施例1
と同様にして白金担持チタニア微粒子をバワジウム担持
γ−アルミナ層上に付着担持させてクロス触媒を得た。
Example 3: In Example 1, after palladium was supported on γ-alumina, titania powder was used instead of zirconia powder to support platinum, and then Example 1
In the same manner as above, platinum-supported titania fine particles were adhered and supported on a Bawadium-supported γ-alumina layer to obtain a cross catalyst.

この触媒を分析したところ、アルミナ18重量%、チタ
ニア7重量%、パラジウム0.05重景チ、白金0.0
1重量%であ一足。   ゛ 実施例4: 実施例2におけるジルコニアに代えてa−
アルミナ微粒子を担持させたほかは実施例2と同様にし
て触媒を得た。このものの分析では、アルミナ20重量
%、α−アルミナ6重量%。
Analysis of this catalyst revealed that 18% by weight of alumina, 7% by weight of titania, 0.05% of palladium, and 0.0% of platinum.
A pair of 1% by weight.゛Example 4: In place of zirconia in Example 2, a-
A catalyst was obtained in the same manner as in Example 2 except that fine alumina particles were supported. Analysis of this material shows 20% by weight of alumina and 6% by weight of α-alumina.

パラジウム0.07重量%、白金0.02重量%であっ
た比較例1: 実施例で用いたと同じシリカクロスの表
面に、常法によりγ−アルミナをコーティングしたのち
、塩化白金酸溶液に浸漬し、ついで乾燥、焼成して白金
を担持した触媒を得た。この触媒を分析したところ、γ
−アルミナは、基材のクロス重景恍対し、18重量%、
白金0.05重量%であった。
Comparative Example 1 containing 0.07% by weight of palladium and 0.02% by weight of platinum: The surface of the same silica cloth used in the example was coated with γ-alumina by a conventional method, and then immersed in a chloroplatinic acid solution. Then, it was dried and calcined to obtain a platinum-supported catalyst. Analysis of this catalyst revealed that γ
- Alumina is 18% by weight relative to the base material cloth
The platinum content was 0.05% by weight.

比較例2:゛焼結アルミナ・ベレット(径3胡。Comparative Example 2: Sintered alumina pellet (3 mm diameter.

長す5 tnm ) ?:ベーマイト・アルミナゾルに
浸漬し、乾燥9焼成によシペレット表面にγ−アルミナ
層を形成したものに、浸漬法によシ塩化白金酸を含浸し
、乾燥、焼成によって白金を担持させた。このものを分
析したところ、基材のベレット重量に対しγ−アルミナ
の担持量は17重量%、白金は0.1重量%であった。
length 5 tnm)? : A γ-alumina layer was formed on the surface of the pellet by immersing it in boehmite alumina sol, drying and calcination, and then impregnated with dichloroplatinic acid by the immersion method, and supporting platinum by drying and calcination. Analysis of this material revealed that the supported amount of γ-alumina was 17% by weight and the amount of platinum supported was 0.1% by weight based on the pellet weight of the base material.

実施例1〜4および比較例1〜2で得たそれぞれの触媒
i−川用て、これらの触媒に、COを1100pp。
For each of the catalysts obtained in Examples 1-4 and Comparative Examples 1-2, 1100 pp of CO was added to these catalysts.

C3H6を50ppm、C6H14を30 ppm含み
酸素を17チ、残量をチッ素ガスとしたモデルガスを空
間速度5X10 h  、線速度2. OCR7秒の条
件で通過させて各成分濃度の減少率を調べた。試験に反
応ガス温度を600〜700℃とし、初期ガス通過時お
よび500時間反応継続後の各成分の減少率を調べた。
A model gas containing 50 ppm of C3H6, 30 ppm of C6H14, 17 g of oxygen, and the remaining amount of nitrogen gas has a space velocity of 5 x 10 h and a linear velocity of 2. The rate of decrease in the concentration of each component was examined by passing the sample under OCR conditions of 7 seconds. In the test, the reaction gas temperature was set at 600 to 700°C, and the reduction rate of each component was investigated during the initial gas passage and after continuing the reaction for 500 hours.

その結果を第1表に示す。The results are shown in Table 1.

第1表 一方、発熱量3000kcal/時間の灯油燃焼バーナ
を用い、このバーナからの排気ガスが全量通過するよう
に実施例1〜4および比較例1〜2で得た各触媒をそれ
ぞれ空間速度が3X10 h  となるように装着して
触媒通過m後のCOと全炭化水素濃度(THC)+7)
浄化率を調べた。試験は使用開始直後(フレッノ:L)
における初期浄化率と1000時間継続燃焼後の浄化率
とについて調べ、触媒層の温度を600〜800℃とし
た。その結果を第2表に示す。
Table 1 On the other hand, using a kerosene-burning burner with a calorific value of 3000 kcal/hour, each catalyst obtained in Examples 1 to 4 and Comparative Examples 1 to 2 was adjusted to a space velocity such that the entire amount of exhaust gas from the burner passed through. 3 x 10 h CO and total hydrocarbon concentration (THC) after passing through the catalyst + 7)
The purification rate was investigated. The test was conducted immediately after the start of use (Freno: L)
The initial purification rate and the purification rate after 1000 hours of continuous combustion were investigated, and the temperature of the catalyst layer was set at 600 to 800°C. The results are shown in Table 2.

第2表 これらの試験結果から、実施例1〜4で得た触媒はいず
れも比較例1〜2のものに比して排出ガスの浄化性能圧
すぐれていることがわかる。とくに、第2表に示す10
00時間燃焼継続後の実施例と比較例との特性差は大き
く、燃焼ノく−ナよシ排出される不完全燃焼成分以外の
他の成分、とりわけ重金属微粉末やSOXなどの触媒毒
に対する耐性の程度に差が生じたものと考えられる。こ
れは使用後の触媒の分析により定性的に、比較例のもの
に触媒成分以外の鉄やマンガン、硫黄などが実施例1〜
4のものより顕著に確認されたからである。
Table 2 From these test results, it can be seen that the catalysts obtained in Examples 1 to 4 all have superior exhaust gas purification performance compared to those of Comparative Examples 1 and 2. In particular, the 10 shown in Table 2
There is a large difference in the characteristics between the example and the comparative example after 00 hours of continuous combustion, and the resistance to other components other than the incomplete combustion components that are emitted during combustion, especially to catalyst poisons such as heavy metal fine powder and SOX. This is thought to be due to the difference in the degree of Qualitatively, analysis of the catalyst after use revealed that iron, manganese, sulfur, etc. other than catalyst components were present in the comparative example.
This is because it was confirmed more markedly than that of No. 4.

なお、これらの実施例において蝶、基材としてシリカク
ロスを用いた場合について説明したが、その他のアルミ
ナ繊維やシリかアルミナ繊維などの無機質繊維を用いた
場合もほぼ同様な結果が得られた。また、第1担体層を
多孔質担体で、また第2担体層を非多孔質担体で形成し
ているが、多孔質担体としてはベット比表面積が30〜
150n?/fで、また非多孔質担体としては10 n
V?以下であることが必要である。また、そのポアー分
布としては、多孔質担体では50〜500λに分布して
い゛ることか好ましく、また非多孔質担体としては50
0^以゛上であることが好ましい。前:ホの実施例1〜
4の第1担体層(いずれもγ−アルミナ)の状態での比
表面積は70〜100 n?/lの範囲にあったしまた
第2担体層を付着したのち比表面積では40〜70 m
e/s’になっていた。この第2担体微粉末のみでは0
.1〜8 tt?/fであった。
In addition, in these examples, the case where silica cloth was used as the base material was explained, but almost the same results were obtained when other inorganic fibers such as alumina fibers and silica alumina fibers were used. Furthermore, the first carrier layer is formed of a porous carrier and the second carrier layer is formed of a non-porous carrier, but the porous carrier has a bed specific surface area of 30 to 30.
150n? /f and as a non-porous support 10 n
V? It is necessary that the following is true. In addition, the pore distribution is preferably 50 to 500λ for a porous carrier, and 50 to 500λ for a non-porous carrier.
It is preferable that it is above 0^. Previous: E Example 1~
The specific surface area of the first carrier layer of No. 4 (all γ-alumina) is 70 to 100 n? /l, and after the second carrier layer was attached, the specific surface area was 40 to 70 m
It was e/s'. With only this second carrier fine powder, 0
.. 1~8tt? /f.

発明の効果 この発明の触媒は、熱的にもまた触媒毒に対する耐性に
もすぐれ、しかもその高い反応効率によって排気ガスの
浄化を高効率で行なうことができるという効果がある。
Effects of the Invention The catalyst of the present invention has excellent thermal resistance and resistance to catalyst poison, and has the effect that exhaust gas can be purified with high efficiency due to its high reaction efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を示す断面図である。 1・・・シリカクロス(無機質基材)、2・・・第1担
体層、3・・・第2担体層 2 2 159−
The drawing is a sectional view showing an embodiment of the present invention. 1... Silica cloth (inorganic base material), 2... First carrier layer, 3... Second carrier layer 2 2 159-

Claims (3)

【特許請求の範囲】[Claims] (1)  無機質基材の表面に形成され耐熱性の貴金属
系触媒を担持した多孔質な第1担体層と、この第1担体
層の表面に形成され触媒毒に対して耐性を有する貴金属
系触媒を担持し庭耐熱性で非多元質な粒状第2担体層と
を備えた触媒。
(1) A porous first carrier layer formed on the surface of an inorganic base material and supporting a heat-resistant noble metal catalyst, and a noble metal catalyst resistant to catalyst poisons formed on the surface of this first carrier layer. and a heat-resistant, non-polymerized granular second support layer.
(2)  前記第1担体層がγ−アルミナ層であシ、前
記第2担体層が第1担体ノーの表面に付着□したジルコ
ニア粒子、チタニア粒子またはa−アルミナ粒子である
特許請求の範囲第(1)項記載の触媒。
(2) The first carrier layer is a γ-alumina layer, and the second carrier layer is zirconia particles, titania particles, or a-alumina particles attached to the surface of the first carrier. The catalyst described in (1).
(3)  前記耐熱性の貴金属系触媒が白金、パラジウ
ムまたはそれらの混合物であり、前記触媒毒に対する耐
性を有する貴金属系触媒が白金、ロジウムまた癲それら
の混合物である特許請求の範囲第(4)  前記無#&
質基材が高シリカ純度のシリカファイバである特許請求
の範囲第(1) *記載の触媒。
(3) Claim 4, wherein the heat-resistant noble metal catalyst is platinum, palladium, or a mixture thereof, and the noble metal catalyst resistant to catalyst poison is platinum, rhodium, or a mixture thereof. Said no#&
The catalyst according to claim 1, wherein the silica substrate is a silica fiber with high silica purity.
JP57165621A 1982-09-20 1982-09-20 Catalyst Granted JPS5952530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57165621A JPS5952530A (en) 1982-09-20 1982-09-20 Catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57165621A JPS5952530A (en) 1982-09-20 1982-09-20 Catalyst

Publications (2)

Publication Number Publication Date
JPS5952530A true JPS5952530A (en) 1984-03-27
JPH035851B2 JPH035851B2 (en) 1991-01-28

Family

ID=15815836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57165621A Granted JPS5952530A (en) 1982-09-20 1982-09-20 Catalyst

Country Status (1)

Country Link
JP (1) JPS5952530A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898014A (en) * 1996-09-27 1999-04-27 Engelhard Corporation Catalyst composition containing oxygen storage components
US5948723A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Layered catalyst composite
US5948377A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Catalyst composition
US5981427A (en) * 1996-09-04 1999-11-09 Engelhard Corporation Catalyst composition
US6087298A (en) * 1996-05-14 2000-07-11 Engelhard Corporation Exhaust gas treatment system
US6110862A (en) * 1998-05-07 2000-08-29 Engelhard Corporation Catalytic material having improved conversion performance
US6248688B1 (en) 1996-09-27 2001-06-19 Engelhard Corporation Catalyst composition containing oxygen storage components
US6921738B2 (en) * 1996-12-06 2005-07-26 Engelhard Corporation Catalytic metal plate
EP1977819A2 (en) 1996-12-06 2008-10-08 Basf Catalysts Llc Catalytic metal plate
US7678347B2 (en) 2005-07-15 2010-03-16 Basf Catalysts Llc High phosphorous poisoning resistant catalysts for treating automobile exhaust
US7749472B2 (en) 2006-08-14 2010-07-06 Basf Corporation Phosgard, a new way to improve poison resistance in three-way catalyst applications
WO2011057649A1 (en) * 2009-11-12 2011-05-19 Umicore Ag & Co. Kg Improved diesel oxidation catalytic converter
US8568674B1 (en) 2012-08-10 2013-10-29 Basf Corporation Diesel oxidation catalyst composites

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087298A (en) * 1996-05-14 2000-07-11 Engelhard Corporation Exhaust gas treatment system
US5948723A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Layered catalyst composite
US5948377A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Catalyst composition
US5981427A (en) * 1996-09-04 1999-11-09 Engelhard Corporation Catalyst composition
US5989507A (en) * 1996-09-04 1999-11-23 Engelhard Corporation Catalyst composition
US6248688B1 (en) 1996-09-27 2001-06-19 Engelhard Corporation Catalyst composition containing oxygen storage components
US5898014A (en) * 1996-09-27 1999-04-27 Engelhard Corporation Catalyst composition containing oxygen storage components
US6921738B2 (en) * 1996-12-06 2005-07-26 Engelhard Corporation Catalytic metal plate
EP1977819A2 (en) 1996-12-06 2008-10-08 Basf Catalysts Llc Catalytic metal plate
US6110862A (en) * 1998-05-07 2000-08-29 Engelhard Corporation Catalytic material having improved conversion performance
US7678347B2 (en) 2005-07-15 2010-03-16 Basf Catalysts Llc High phosphorous poisoning resistant catalysts for treating automobile exhaust
EP2781261A1 (en) 2005-07-15 2014-09-24 BASF Catalysts LLC High phosphorous poisoning resistant catalysts for treating automobile exhaust
US7749472B2 (en) 2006-08-14 2010-07-06 Basf Corporation Phosgard, a new way to improve poison resistance in three-way catalyst applications
WO2011057649A1 (en) * 2009-11-12 2011-05-19 Umicore Ag & Co. Kg Improved diesel oxidation catalytic converter
US9011783B2 (en) 2009-11-12 2015-04-21 Umicore Ag & Co. Kg Diesel oxidation catalyst
US8568674B1 (en) 2012-08-10 2013-10-29 Basf Corporation Diesel oxidation catalyst composites

Also Published As

Publication number Publication date
JPH035851B2 (en) 1991-01-28

Similar Documents

Publication Publication Date Title
KR100903468B1 (en) Combustion catalyst for treating diesel exhaust gas and method for treating diesel exhaust gas
JP4087897B2 (en) Improved oxidation catalyst and method of use
JP3956437B2 (en) Exhaust gas purification catalyst
KR100584799B1 (en) Catalytic Material Having Improved Conversion Performance
JP3953630B2 (en) Automobile exhaust catalyst and its production method
JP5982987B2 (en) Exhaust gas purification catalyst containing exhaust gas purification catalyst material
JP6753811B2 (en) Exhaust gas purification catalyst
JP2934906B2 (en) Multifunctional catalyst for treating internal combustion engine exhaust gas containing U, U promoter and precious metal and method for preparing the same
JPS6146175B2 (en)
JPS5952530A (en) Catalyst
JPH03161052A (en) Exhaust gas cleaning catalyst and its preparation
JP2014091119A (en) Catalyst for combustion of methane and production method of the same
JPH03207445A (en) Multi-functional catalyst for conversion of contaminant containing ce and u as well as metal exhausted from internal combustion engine, and preparation of said catalyst
JPS63205141A (en) Catalyst for purifying exhaust gas
JPS63156545A (en) Catalyst for purifying exhaust gas
JP2006314894A (en) Production method of catalyst for cleaning emission gas
JPS6051543A (en) Oxidizing catalyst
KR860002188B1 (en) Catalysts
JPS60202745A (en) Catalyst for high-temperature combustion
JP6167834B2 (en) Exhaust gas purification catalyst
JPH0472577B2 (en)
KR20030024085A (en) A catalyst for reduction of emitted gases from automobile with lean-burn engine and the manufacturing method thereof
JPS60212235A (en) Preparation of catalyst
JPH0523217Y2 (en)
JPS598421B2 (en) Catalyst for exhaust gas purification