JPS60202745A - Catalyst for high-temperature combustion - Google Patents

Catalyst for high-temperature combustion

Info

Publication number
JPS60202745A
JPS60202745A JP5557784A JP5557784A JPS60202745A JP S60202745 A JPS60202745 A JP S60202745A JP 5557784 A JP5557784 A JP 5557784A JP 5557784 A JP5557784 A JP 5557784A JP S60202745 A JPS60202745 A JP S60202745A
Authority
JP
Japan
Prior art keywords
catalyst
layer
heat
combustion
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5557784A
Other languages
Japanese (ja)
Inventor
Tetsutsugu Ono
哲嗣 小野
Shoichi Ichihara
市原 昭一
Shin Yamauchi
慎 山内
Kazuo Hata
和男 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIKAI SYST SHINKO KYOKAI
Original Assignee
KIKAI SYST SHINKO KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIKAI SYST SHINKO KYOKAI filed Critical KIKAI SYST SHINKO KYOKAI
Priority to JP5557784A priority Critical patent/JPS60202745A/en
Publication of JPS60202745A publication Critical patent/JPS60202745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To obtain the titled catalyst for the high-temp. combustion of hydrocarbonic fuel having high activity and excellent resistance to heat and thermal shock by providing a single coating layer of a heat-resistant metallic oxide to a monolithic carrier, and depositing an active component such as platinum at the inside of the surface layer of said coatng layer. CONSTITUTION:A single coatin layer of an active heat-resistant metallic oxide such as alumina is provided to a monolithic carrier of cordierite, etc., and >=1 kind of active component selected from a group consisting of Pt and Pd is deposited at the inside of said coatig layer >=2mu off the surface layer to an amt. of 1-50g per 1l completed catalyst. The catalyst thus obtained has high activity and excellent resistance to heat and thermal shock without any increase in pressure drop, and the catalyst for the high-temp. combustion of hydrocarbonic fuel can be obtained.

Description

【発明の詳細な説明】 10発明の背景 技術分野 本発明は、炭化水素系燃料を接触的に完全燃焼させる触
媒に関する。詳しく述べると、本発明は、燃料を触媒上
で接触的に完全燃焼Vしめ、窒素酸化物(以下、NOX
とする)、−酸化炭素(以下。
DETAILED DESCRIPTION OF THE INVENTION 10. Background Technical Field of the Invention The present invention relates to a catalyst for completely catalytically burning a hydrocarbon fuel. Specifically, the present invention catalytically and completely burns fuel on a catalyst to remove nitrogen oxides (hereinafter referred to as NOX).
), -carbon oxide (hereinafter referred to as

する)等の有害成分を実質的に含有しない燃焼ガスを得
、その熱量を各種の1ネルギー源として用 ′いるため
の触媒において特に高活性でかつ、耐熱性に優れた触媒
に関するものである。
The present invention relates to a catalyst that is particularly highly active and has excellent heat resistance in order to obtain combustion gas that does not substantially contain harmful components such as carbon dioxide and other harmful components, and to use its heat as a variety of energy sources.

先行技術 炭化水素系燃料を燃焼範囲に入らない低濃度で空気と混
合した希薄混合気体を触媒層へ導入し、接触燃焼せしめ
て高湿の燃焼ガスをえるための触媒燃焼システムは公知
である。
Prior Art A catalytic combustion system is known in which a dilute mixture of hydrocarbon fuel mixed with air at a low concentration that does not fall within the combustible range is introduced into a catalyst layer and catalytically combusted to obtain highly humid combustion gas.

さらに、かかる触媒燃焼システムを用いて、例えば60
0℃から1,500℃の燃焼ガスを得る場合、たとえ酸
素源に空気を用いてもNOXが(Jとんどないし全く発
生することがなく、またC01J3よびU I−I C
も実質的に含有しないこともよくλ11られている。
Furthermore, using such a catalytic combustion system, e.g.
When obtaining combustion gas at a temperature of 0°C to 1,500°C, even if air is used as the oxygen source, little or no NOx (J) is generated, and CO1J3 and U I-I C
It is also well known that λ11 does not contain substantially any of the following.

このクリーンな高温カスを利用し、熱または動力を得る
システムは各種提案されており、一般産業排ガスの処理
および熱または動力回収システムは一部実用化されるに
至っている。また、近年になり、発電用ガスタービン等
の一次動力源としで利用するシステムも提案されつつあ
る。
Various systems for obtaining heat or power using this clean high-temperature waste have been proposed, and some systems for treating general industrial exhaust gas and for recovering heat or power have been put into practical use. Furthermore, in recent years, systems have been proposed that are used as primary power sources such as gas turbines for power generation.

これらのシステムにJ3いて使用される触媒は、低温着
火性に優れているとともに、高活性でかつ耐熱性に優れ
ている必要があり、特に−次動力源用として用いられて
いる場合、その熱効率向上のため1.000℃〜1.3
00℃あるいはそれ以上の高温に耐える必要があり、ま
た高線速下で圧力損失を小さくする必要から小さい容積
の触媒で完全燃焼させるため高活性であることが要求さ
れる。
The catalysts used in these systems need to have excellent low-temperature ignition properties, high activity, and excellent heat resistance, and especially when used as a secondary power source, their thermal efficiency must be 1.000℃~1.3 for improvement
It is necessary to withstand high temperatures of 00° C. or higher, and it is also required to have high activity in order to achieve complete combustion with a small volume of catalyst because it is necessary to reduce pressure loss at high linear velocity.

耐熱性に優れた燃焼用触媒としては、酸化コバルト、酸
化クロム、酸化ニラウール等の各種金属酸化物が提案さ
れているが、これらの触媒は着火温度が高く、特に高線
速下に難燃性のメタンあるいはメタンを主成分とする天
然ガスを燃料として用いた場合には、800℃以上の高
温でないと着火することはできない。まに1前段にパラ
ジウム。
Various metal oxides such as cobalt oxide, chromium oxide, and nira wool oxide have been proposed as combustion catalysts with excellent heat resistance, but these catalysts have high ignition temperatures and are not flame retardant, especially at high linear speeds. When methane or natural gas containing methane as a main component is used as a fuel, it cannot be ignited unless it is at a high temperature of 800°C or higher. Palladium in the first stage.

白金等の着火用触媒を用いて、低い着火温度で燃焼させ
ることは可能であるが、この場合は、完全燃焼に至らし
めるにはかなり長い触媒層長が必要になり、この結果、
圧力損失が増大し、特に−次動力源発生用ガスタービン
に用いるには好ましくない。
It is possible to burn at a low ignition temperature using an ignition catalyst such as platinum, but in this case, a considerably long catalyst layer length is required to achieve complete combustion, and as a result,
Pressure loss increases, and this is not preferable, especially for use in gas turbines for generating second-order power sources.

一方、白金、パラジウム等の貴金属を活性成分とづる触
媒は、高活性であり、高線速下に短い触媒層長で完全燃
焼に至らしめることができるが、これらの触媒の場合で
も、特に触媒入口線速が10111/secを越える高
線速上にメタンあるいはメタンを主成分といる天然ガス
を燃料として用いる場合は、パラジウム、白金等が完成
触媒1℃あたり1〜50(lの高い担持量の触媒である
必要がある。このような高′a度担持の貴金属系触媒は
、1゜000℃以上の高温になると貴金属成分が触媒表
面で凝集し、数十ミクロンの塊となって活性低下を来た
すとか、またこれらの凝集塊は高線速の燃焼ガスによっ
て物理的に吹き飛ばされて活性成分が減少し、最終的に
は失活してしまう。
On the other hand, catalysts containing noble metals such as platinum and palladium as active ingredients are highly active and can achieve complete combustion at high linear velocity and with a short catalyst layer length. When methane or natural gas containing methane as a main component is used as a fuel at a high linear velocity exceeding 10111/sec, palladium, platinum, etc. can be loaded in a high amount of 1 to 50 (l) per 1°C of the finished catalyst. It is necessary that the catalyst be a catalyst with a high degree of a content.When a high temperature of 1°000°C or higher is reached, the noble metal component aggregates on the catalyst surface, forming lumps of several tens of microns, and the activity decreases. In addition, these agglomerates are physically blown away by the high linear velocity combustion gas, reducing the active ingredients and eventually deactivating them.

この失活現象と類似の現象は、特開昭58−3゜641
号の公報中にも記載されており、その対策としてアルミ
ナ、ジルコニア等の耐熱性酸化物を二次的に被覆するこ
とが提案され、このように二次被覆することによって、
上述のごとき移動、凝縮、脱落による貴金属の損失に対
し、その効果が認められることが確認できた。
A phenomenon similar to this deactivation phenomenon is described in Japanese Patent Application Laid-Open No. 58-3゜641.
As a countermeasure to this problem, it has been proposed to cover the surface with a heat-resistant oxide such as alumina or zirconia.
It was confirmed that this method was effective against the loss of precious metals due to migration, condensation, and shedding as described above.

しかしながら、空隙の多い触媒表面にアルミナ等の耐熱
性酸化物をλ9く均一に被覆することは極めて困難であ
り、全体を被M”J−るためには相当量の耐熱性酸化物
の被覆が必要となり、その結果、モノリス型触媒の場合
その間孔率が低下して圧力損失が増大するばかりでなく
、特に高線速の場合、触媒活性成分が存在する内層まで
燃料ガス成分が拡散しに(なり、結果的に活性は低水準
になってようことが判明した。
However, it is extremely difficult to uniformly coat a heat-resistant oxide such as alumina with a thickness of λ9 on the catalyst surface, which has many voids, and a considerable amount of heat-resistant oxide is required to cover the entire surface. As a result, in the case of monolithic catalysts, not only the porosity decreases and the pressure loss increases, but also, especially at high linear speeds, the fuel gas components diffuse into the inner layer where the catalytically active components are present ( As a result, it was found that the activity was at a low level.

■0発明の目的 したがって、本発明の目的は、炭化水素系燃料の高湿燃
焼用触媒を提供することにある。本発明の他の目的は、
高活性でかつ耐熱性および耐熱衝撃性に優れ、また圧力
損失の増大をきたさない炭化水素系燃料の燃焼用触媒を
提供することにある。
(1) Object of the Invention Therefore, an object of the present invention is to provide a catalyst for high-humidity combustion of hydrocarbon fuel. Another object of the invention is to
It is an object of the present invention to provide a catalyst for combustion of hydrocarbon fuels which is highly active, has excellent heat resistance and thermal shock resistance, and does not cause an increase in pressure loss.

これらの諸口的は、モノリス型担体の上に耐熱性金属酸
化物の単一被覆層を設番〕、該被覆層の表層より2μl
it以上の内側に貴金属触媒活性成分を担持したことを
特徴とづる炭化水素系燃料燃焼用触媒により達成される
In various cases, a single coating layer of a heat-resistant metal oxide is provided on a monolithic support, and 2 μl is added from the surface layer of the coating layer.
This is achieved by a hydrocarbon fuel combustion catalyst characterized in that a noble metal catalytic active component is supported on the inner surface of the catalyst.

■8発明の具体的構成 本発明による触媒においで、触媒活性成分として使用さ
れる貴金属としては、例えば、白金、パラジウム等があ
る。
(8) Specific structure of the invention In the catalyst according to the invention, noble metals used as catalytically active components include, for example, platinum and palladium.

本発明に基づく触媒は、また、低温名犬性にも優れ、軽
油、プロパン等の易燃竹燃斜の場合は、単独で十分使用
することができるが、さらに低温着火性をめられる場合
やメタン、天然ガス等の難燃性燃料を用いる場合は、パ
ラジウムを活性主成分とづる着火触媒と組み合わせて用
いることが好ましい。
The catalyst according to the present invention also has excellent low-temperature properties and can be used alone in the case of easily combustible bamboo combustible materials such as light oil and propane, but in cases where low-temperature ignitability is required or when methane When using a flame-retardant fuel such as natural gas, it is preferable to use it in combination with an ignition catalyst containing palladium as the active main component.

また、燃焼ガス温度がざらに高湿になる場合は、後段に
前述のごとき金属酸化物触媒を組み合わせて用いてもよ
い。
Further, when the temperature of the combustion gas becomes extremely humid, a metal oxide catalyst as described above may be used in combination at the latter stage.

本発明の触媒の形状は、圧ツノ損失を少なくする目的か
らモノリスタイプのものが好ましい。またそのセルサイ
ズは、燃焼効率が低下しない限り大きいものが好ましく
、同一セルサイズでもよいし、また異なるセルナイズの
ものを組み合せて採用してもよい。
The shape of the catalyst of the present invention is preferably a monolith type for the purpose of reducing pressure loss. Further, the cell size is preferably large as long as the combustion efficiency does not decrease, and the cell size may be the same or a combination of cells with different cell sizes may be employed.

本発明に使用されるモノリス担体は、通常当該分野で使
用されるものであればいずれも使用可能であり、特に二
l−ジェライト、ムライ]〜、α−アルミナ、ジルコニ
ア7、チタニア、リン酸チタン。
The monolithic carrier used in the present invention can be any carrier commonly used in the field, and in particular, dil-gelite, murai], α-alumina, zirconia 7, titania, titanium phosphate. .

マグネシウムアルミニラムチタネ−1〜、ムライト。Magnesium aluminum titanium 1~, mullite.

アルミニウムヂタネート、ペタライト、スボジュメン、
アルミノシリクート、ケイ酸マグネシウム。
Aluminum ditanate, petalite, subodumene,
Aluminosilicate, magnesium silicate.

ジルコニア−スピネル、ジルコン−ムライト、炭化ケイ
素、窒化ケイ素等の耐熱性セラミックス質のものやカン
タル、フエクラロイ等の金属製のものが使用される。
Heat-resistant ceramic materials such as zirconia-spinel, zircon-mullite, silicon carbide, and silicon nitride, and metal materials such as Kanthal and Feclaroy are used.

上記モノリス担体に、アルミナ、シリカ−アルミナ、マ
グネシウム、ヂタニア、ジルコニア、シリカ−マグネシ
ウムなどの活性耐熱性金属酸化物をコートして使用する
。特にアルミナまたはジルコニアか好ましく、更にアル
カリ土類金属酸化物。
The monolithic support is used by coating an active heat-resistant metal oxide such as alumina, silica-alumina, magnesium, ditania, zirconia, silica-magnesium, or the like. Particularly preferred are alumina or zirconia, and more preferably alkaline earth metal oxides.

希土類金属酸化物を添加し、安定化して用いるとより好
ましい。
It is more preferable to add a rare earth metal oxide to stabilize it before use.

これら金属酸化物被覆は、完成触媒1λ当り20〜50
0(]、好ましくは50〜300gであり、モノリス担
体の表面に10〜250μm、好ましくは25〜150
μmの厚みの被覆層を設りる。
These metal oxide coatings have a concentration of 20 to 50% per λ of finished catalyst.
0(], preferably 50 to 300 g, and 10 to 250 μm, preferably 25 to 150 μm, on the surface of the monolithic carrier.
A coating layer with a thickness of μm is provided.

ついで、白金、パラジウム等の活性成分を各種の塩の水
溶液で被覆層内部へ担持Jる。この深さ。
Then, an active ingredient such as platinum or palladium is supported inside the coating layer using an aqueous solution of various salts. This depth.

ずなわち活性成分を含有しない層のI9さは被覆層の種
類、粗度、活性成分の種類、担持量あるいはその使用温
度等で規定される活性成分の表面への移動速度および燃
料ガスの拡散速度によって最適に決定されるが、通常2
〜100μロ1.好ましくは5〜50μmが選択される
In other words, the I9 quality of a layer that does not contain an active ingredient is determined by the type of coating layer, its roughness, the type of active ingredient, the amount supported, or the temperature at which it is used, and the rate of movement of the active ingredient to the surface and the diffusion of fuel gas. Optimally determined by speed, but typically 2
~100μro1. Preferably, 5 to 50 μm is selected.

触媒活性成分を触媒の内側へ担持する方法は各種あり、
例えば米国特許第3,259.589号明細書に示され
るシュウ耐、クエン酸等の二塩基酸を活性成分の塩の水
溶液と混合し、それらの競争吸着を利用づる方法は、自
動巾排ガス処理用触媒において一部応用されている。
There are various methods for supporting catalytically active components inside the catalyst.
For example, a method disclosed in U.S. Pat. No. 3,259,589 in which a dibasic acid such as citric acid is mixed with an aqueous solution of a salt of an active ingredient and their competitive adsorption is utilized is an automatic exhaust gas treatment method. Some applications have been made in industrial catalysts.

しかしながら、これはペレッ1ヘタイブを中心としたも
ので、かつ低い貴金属担持量においてなされているもの
であり、(の使用目的も鉛、リン。
However, this is mainly based on pellets with a low loading of precious metals (lead, phosphorus, etc.).

硫黄等の被毒物質から触媒活性成分を保護するのを目的
・とじたものであって、本発明のごどき貴金属成分の凝
集および凝集塊の脱落防止を目的とし、高濃度の貴金属
担持するモノリス型触媒へ適用することは全く新規なも
ので゛あるといえる。
It is intended to protect catalytic active components from poisonous substances such as sulfur, and is intended to prevent the agglomeration of precious metal components and the falling off of agglomerates as in the present invention. It can be said that the application to type catalysts is completely new.

本発明において用いられる触媒活性成分の内層へのJf
]持方法としては、上述の二塩基酸との競争吸着を利用
することもできるが、上記二塩基酸あるいは無水トリメ
リット酸等の多塩基酸を水溶液の形であらかじめ表層に
担持し、これらの溶融温度、昇華温度または分解温度以
下で乾燥し、次いで活性成分の塩の水溶液に浸漬しII
I持覆る方法、上記2法に;J5いて二塩基酸に代えて
、リン酸、硫酸、ホウ酸等の無機多塩基酸を用いる方法
、あるいは各種ワックスのエマルジョンをあらかじめ表
層にIp持し、乾燥後に活性成分の塩の水溶液に浸漬し
、減圧によって強制的に内層へ浸入せしめる方法等があ
り、これも活性成分の塩の種類、担持量、被覆層の種類
によってR適な方法を選択づることができる。
Jf to the inner layer of the catalytically active component used in the present invention
] Competitive adsorption with the above-mentioned dibasic acid can also be used as a method of adsorption; II by drying below the melting temperature, sublimation temperature or decomposition temperature and then immersing in an aqueous solution of the salt of the active ingredient.
I-covering method, the above two methods; J5 method using an inorganic polybasic acid such as phosphoric acid, sulfuric acid, or boric acid instead of a dibasic acid, or applying an emulsion of various waxes on the surface layer in advance and drying. There are methods such as immersing the active ingredient in an aqueous solution of the salt of the active ingredient and forcibly infiltrating the inner layer under reduced pressure.This method also requires selecting the appropriate method depending on the type of salt of the active ingredient, the amount supported, and the type of coating layer. I can do it.

ついで、空気中あるいは還元雰囲気ガス中で300〜1
200℃、好ましくは300〜900℃で焼成すること
によって触媒を活性化して完成触媒を得る。
Then, in air or in a reducing atmosphere gas, 300 to 1
The catalyst is activated by calcination at 200°C, preferably between 300 and 900°C to obtain the finished catalyst.

■、発明の具体的効果 以下に本発明を実施例等にJ、りさらに具体的に説明す
るが、本発明はこれにの実施例のみに限定されるもので
はない。
(2) Concrete Effects of the Invention The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples.

実施例 1 200セル/′平方インヂの開孔部を右1−る直径25
.4mm、長さ50mmのコージエライトハニカム担体
に、5重量%のセリアを含有するアルミナ粉末のスラリ
ーを被覆処理し、空気中700℃にて焼成して担体1℃
当り100gを被覆担持せしめ、平均約50μmの厚さ
の被覆層を19だ。
Example 1 200 cells/' square inch opening with a diameter of 25
.. A cordierite honeycomb carrier with a diameter of 4 mm and a length of 50 mm was coated with a slurry of alumina powder containing 5% by weight of ceria, and fired in air at 700°C to form a carrier of 1°C.
19 coats each carrying 100 g and having an average thickness of about 50 μm.

ついで、0.259の無水トリメリット酸を加熱溶解し
た水溶液30ccに浸漬し、10分間約80℃に加熱後
100℃で乾燥することにより担体1℃当り10gのト
リメリット酸を表層部に担持せしめた。ついで、塩化白
金酸を含有する水溶液に浸漬し、乾燥して、空気中で7
00℃で焼成し、白金どして担体1℃当り10oを担持
せしめた触媒 を 冑 lこ 。
Next, the carrier was immersed in 30 cc of an aqueous solution in which 0.259 trimellitic anhydride was heated and dissolved, heated to about 80°C for 10 minutes, and then dried at 100°C, so that 10 g of trimellitic acid was supported on the surface layer per 1°C of the carrier. Ta. Then, it was immersed in an aqueous solution containing chloroplatinic acid, dried, and left in the air for 7 days.
The catalyst was calcined at 00°C and loaded with platinum at an amount of 10o/°C.

この触媒のEPMAによる分析の結果、被覆層の表層か
ら約20μmの間には白金はほとんど存在しなかった。
As a result of analysis of this catalyst by EPMA, it was found that almost no platinum existed within about 20 μm from the surface of the coating layer.

実施例 2 実施例1と同様にして平均約50μmの厚さの被覆層を
14た。ついで、これを塩化白金酸と白金1g当り0.
05gのリン酸を含有する水溶液に浸漬し、乾燥して空
気中で700℃で焼成し、担体1a当り10gの白金を
世すぜしめた触媒を得た。この触媒は、EPMAによる
分析の結果、被覆層の表層から約10μm1の間には白
金はほとんど存在しなかった。
Example 2 In the same manner as in Example 1, 14 coating layers having an average thickness of about 50 μm were formed. Next, this was mixed with chloroplatinic acid at a concentration of 0.0% per 1g of platinum.
The catalyst was immersed in an aqueous solution containing 0.5 g of phosphoric acid, dried and calcined in air at 700° C. to obtain a catalyst containing 10 g of platinum per 1a of support. As a result of EPMA analysis of this catalyst, it was found that almost no platinum existed within about 10 μm from the surface of the coating layer.

比較例 1 実施例1と同様にして平均約50μmの厚さの被覆層を
1qた。ついで、これを塩化白金酸を含有する水溶液に
浸漬し、乾燥して空気中700℃で焼成し、白金として
担体1℃当り10(+を担持せしめた触媒を得た。
Comparative Example 1 In the same manner as in Example 1, 1 q of coating layers having an average thickness of about 50 μm were formed. Next, this was immersed in an aqueous solution containing chloroplatinic acid, dried, and calcined in air at 700°C to obtain a catalyst on which 10(+) of platinum was supported per 1°C of the carrier.

比較例 2 比較例1の触媒に、さらに同一のスラリーを被覆処理し
、空気中700℃で焼成して担体11当り30(]を再
度被覆担持せしめた触媒を得た。この触媒は部分的に二
次被覆層が存在しない所があった。
Comparative Example 2 The catalyst of Comparative Example 1 was further coated with the same slurry and calcined in air at 700°C to obtain a catalyst again coated with 30 ( ] per 11 carriers. This catalyst was partially coated with the same slurry. There were some places where the secondary coating layer did not exist.

比較例 3 比較例2と同様にして担体1℃当り60(]を再度被覆
担持せしめた触媒を得た。この触媒でも極一部に二次被
覆層が存在しない所が認められた。
Comparative Example 3 A catalyst was obtained in the same manner as in Comparative Example 2, in which 60 (]/C of the carrier was again coated and supported. Even in this catalyst, it was observed that the secondary coating layer was not present in a very small portion.

実施例 3 実施例1 ”−2J3よび比較例1〜3の触媒を電気炉
中で1,100℃で200時間曝露したのち触媒表層で
の白金粒子の凝集状態を電子顕微鏡で観察した。ついで
、常温で入口線速4Qm/secの空気流のに24時間
ざらし、その後内筒型燃焼器に充填し、3容量%のメタ
ンを含有するメタン−空気混合器を1時間あたり13.
8NI113導入し、予熱温度を徐々に−F昇ぜしめ、
メタンの燃焼率を測定した。この場合、触媒層入口にお
(プる線速は500℃において20m/secであった
。さらに、そののら白金担持量を螢光X線分析により分
析した。その結果は第1表に示すとおりであり、比較例
1の触媒は、凝集した白金塊が吹き飛ばされ、その結果
活性低下してJ5す、また、比較例2の触媒は二次被覆
が十分ではなく、比較例3の触媒は二次被覆層が厚遇き
′てぎて内部へのガスの拡散が十分でなく、その結−果
、低活性である。
Example 3 The catalysts of Example 1 "-2J3 and Comparative Examples 1 to 3 were exposed in an electric furnace at 1,100°C for 200 hours, and then the state of agglomeration of platinum particles on the catalyst surface layer was observed using an electron microscope. It is exposed to an air flow with an inlet linear velocity of 4 Qm/sec at room temperature for 24 hours, and then charged into an internal cylinder type combustor, and a methane-air mixer containing 3% by volume of methane is heated at 13% per hour.
Introducing 8NI113 and gradually raising the preheating temperature to -F.
The combustion rate of methane was measured. In this case, the linear velocity at the inlet of the catalyst layer was 20 m/sec at 500°C.Furthermore, the amount of platinum supported thereon was analyzed by fluorescent X-ray analysis.The results are shown in Table 1. In the catalyst of Comparative Example 1, the agglomerated platinum lumps were blown away, and as a result, the activity decreased and the secondary coating was insufficient, and in the catalyst of Comparative Example 3, the secondary coating was insufficient. The secondary coating layer is too thin to allow sufficient gas diffusion into the interior, resulting in low activity.

一方、実施例1および2の触媒は、上記のごとき問題は
なく、耐熱性に優れた高活性触媒であるといえる。
On the other hand, the catalysts of Examples 1 and 2 do not have the above problems and can be said to be highly active catalysts with excellent heat resistance.

(以下余白)(Margin below)

Claims (1)

【特許請求の範囲】 (1〉モノリス型担体に耐熱性金属酸化物の単一被覆層
を設(〕、該被覆層の表層より2μm以上の内側に活性
成分を担持したことを特徴とする耐熱性に優れた炭化水
素系燃料燃焼用触媒。 (2)炭化水素系燃料がメタンあるいはメタンを主成分
とした天然ガスであることを特徴とする特許請求の範囲
第1項に記載の触媒。 (3)活性成分を完成触媒1℃当り1〜50g担持する
ことを特徴とする特許請求の範囲第1項または第2項に
記載の触媒。 (L4)活性成分が白金およびパラジウムよりなる群か
ら選ばれた少なくとも1種のものである特許請求の範囲
第1項ないし第3項のいずれか一つに記載の触媒。
[Scope of Claims] (1) A heat-resistant product characterized in that a monolithic carrier is provided with a single coating layer of a heat-resistant metal oxide (), and an active ingredient is supported on the inside of the coating layer by 2 μm or more from the surface layer. (2) The catalyst according to claim 1, wherein the hydrocarbon fuel is methane or natural gas containing methane as a main component. ( 3) The catalyst according to claim 1 or 2, characterized in that the active component is supported in an amount of 1 to 50 g per 1° C. of the finished catalyst. (L4) The active component is selected from the group consisting of platinum and palladium. The catalyst according to any one of claims 1 to 3, which is at least one type of catalyst.
JP5557784A 1984-03-23 1984-03-23 Catalyst for high-temperature combustion Pending JPS60202745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5557784A JPS60202745A (en) 1984-03-23 1984-03-23 Catalyst for high-temperature combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5557784A JPS60202745A (en) 1984-03-23 1984-03-23 Catalyst for high-temperature combustion

Publications (1)

Publication Number Publication Date
JPS60202745A true JPS60202745A (en) 1985-10-14

Family

ID=13002584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5557784A Pending JPS60202745A (en) 1984-03-23 1984-03-23 Catalyst for high-temperature combustion

Country Status (1)

Country Link
JP (1) JPS60202745A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634852A (en) * 1986-06-25 1988-01-09 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for combustion
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
WO1998026867A1 (en) * 1996-12-16 1998-06-25 Asahi Kasei Kogyo Kabushiki Kaisha Noble metal support
US6602822B2 (en) * 1998-03-24 2003-08-05 Ngk Insulators, Ltd. Catalyst for exhaust gas purification and exhaust gas purification system using the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634852A (en) * 1986-06-25 1988-01-09 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for combustion
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5405260A (en) * 1990-11-26 1995-04-11 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
WO1998026867A1 (en) * 1996-12-16 1998-06-25 Asahi Kasei Kogyo Kabushiki Kaisha Noble metal support
US6228800B1 (en) 1996-12-16 2001-05-08 Asahi Kasei Kogyo Kabushiki Kaisha Noble metal support
KR100328008B1 (en) * 1996-12-16 2002-03-09 야마모토 카즈모토 Noble metal support
CN1124178C (en) * 1996-12-16 2003-10-15 旭化成株式会社 Noble metal support type products
JP2008161869A (en) * 1996-12-16 2008-07-17 Asahi Kasei Chemicals Corp Noble metal support, and method of producing acrylic acid ester and/or methacrylic acid ester
US6602822B2 (en) * 1998-03-24 2003-08-05 Ngk Insulators, Ltd. Catalyst for exhaust gas purification and exhaust gas purification system using the same

Similar Documents

Publication Publication Date Title
EP2275203B1 (en) Particulate combustion catalyst, particulate filter and exhaust gas purifying apparatus
JPH08509655A (en) Stabilized catalyst support and improved support geometry for catalytic combustion systems
JPS6133233A (en) Combustion catalyst for methane fuel and combustion system using said catalyst
JPS60202745A (en) Catalyst for high-temperature combustion
JPS5952530A (en) Catalyst
JPS6279847A (en) Catalyst system for combustion of lower hydrocarbon fuel and combustion method using said system
KR860002188B1 (en) Catalysts
JPS6380848A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPH0512021B2 (en)
JPH02268830A (en) Catalyst for combustion of kerosene type fuel
JPS61252409A (en) Method of igniting methane fuel
JPS60205116A (en) Combustion catalyst system and combustion therewith
JPS59160536A (en) Combustion-catalyst and its manufacture
JPS6380849A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JP2557371B2 (en) Gas turbine combustor catalyst and method for producing the same
JP2585212B2 (en) Gas turbine combustor
JPH07112542B2 (en) Method for producing oxidation catalyst
JPH0215254B2 (en)
JPH09296907A (en) Combustion method for flammable gas
JPS6377542A (en) Catalytic body for combustion of kerosine-based fuel
JPS62149346A (en) Catalyst for combustion
JP3244935B2 (en) Combustible gas combustion method
JPS634852A (en) Catalyst for combustion
JPH06159631A (en) Method for igniting combustion gas
JPH0765734B2 (en) Hydrocarbon fuel catalytic combustor