JPS62149346A - Catalyst for combustion - Google Patents

Catalyst for combustion

Info

Publication number
JPS62149346A
JPS62149346A JP60289207A JP28920785A JPS62149346A JP S62149346 A JPS62149346 A JP S62149346A JP 60289207 A JP60289207 A JP 60289207A JP 28920785 A JP28920785 A JP 28920785A JP S62149346 A JPS62149346 A JP S62149346A
Authority
JP
Japan
Prior art keywords
catalyst
gas
combustion
sectional area
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60289207A
Other languages
Japanese (ja)
Inventor
Makoto Horiuchi
真 堀内
Kazuo Hata
和男 秦
Shoichi Ichihara
市原 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP60289207A priority Critical patent/JPS62149346A/en
Publication of JPS62149346A publication Critical patent/JPS62149346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To permit the perfect combustion of a combustible gas by depositing a refractory metallic oxide and catalyst component on a carrier and making the sectional area of the catalysts successively smaller from a gas inlet side toward outlet side with respect to the flow of the fuel-contg. gas. CONSTITUTION:The refractory metallic oxide and catalytically active component are deposited on the monolith type catalyst carrier formed to have the sectional area of the catalyst successively smaller from the gas inlet side toward the outlet side with respect to the flow of the fuel-contg. gas to produce the catalyst for combustion. The catalyst carrier consisting of cordierite, mullite, alpha-alumina, etc., is adequate and the ratio between the sectional area (a) in the gas inlet of the catalyst carrier and the sectional area (b) in the outlet is adequately specified to a 1/4<b/a<1 range. Noble metals such as Pt and Pd alone or the alloys thereof are adequate for the catalytically active component and alumina, silica-alumina, magnesia, etc., are adequate for the refractory metallic oxide.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、−酸化炭素(CO)、水素(Hz)、炭化前
tl C)等の可燃性ガス、とくにメタン含有ガスを触
媒上で接触燃焼せしめ、窒素酸化物(NOx)、−酸化
炭素(CO)、未燃焼炭化水素(Ul−IC)等の有害
成分を実質的に含有しない燃焼ガスを得、その熱量を各
種の一次エネルギー源として用いるだめの燃焼用触媒に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention provides a method for contacting flammable gases such as -carbon oxide (CO), hydrogen (Hz), and methane-containing gases over a catalyst. By combustion, we obtain combustion gas that does not substantially contain harmful components such as nitrogen oxides (NOx), -carbon oxides (CO), and unburned hydrocarbons (Ul-IC), and use its calorific value as a source of various primary energy sources. This invention relates to the combustion catalyst used.

〈従来の技術〉 燃料を燃焼範囲に入らない低い濃度で空気と混合した希
薄混合気体を触媒層へ導入し、触媒上で接触燃焼せしめ
高温の燃焼ガスをえるだめの触媒燃焼システムは公知で
ある。
<Prior art> A catalytic combustion system is known in which a dilute gas mixture of fuel mixed with air at a low concentration that does not fall within the combustible range is introduced into a catalyst layer and catalytically combusted on the catalyst to produce high-temperature combustion gas. .

さらに、かかる触媒燃焼システムを用いて、たとえば6
00℃から1500℃の燃焼ガスをえる場合、たとえ酸
素源に空気を用いてもNOxがほとんどないしは全く発
生することがなく、またC01U1)Cも実質的に含有
しないものとしてえられることもよく知られるところで
ある。
Furthermore, using such a catalytic combustion system, e.g.
It is well known that when obtaining combustion gas between 00°C and 1500°C, little or no NOx is generated even if air is used as the oxygen source, and it can be obtained without substantially containing C01U1)C. This is where you will be exposed.

このクリーンな高温燃焼ガスを利用し、熱または動力を
えるシステムは各種提案され、一般産業排ガスの処理お
よび熱動力回収システノ・はすでに発電用ガスタービン
などの一次動力源用としてこの高温燃焼ガスを利用する
研究がなされるようになりつつある。
Various systems have been proposed that utilize this clean, high-temperature combustion gas to generate heat or power, and systems for general industrial exhaust gas treatment and thermal power recovery systems have already utilized this high-temperature combustion gas for primary power sources such as gas turbines for power generation. Research is beginning to be conducted on its use.

これらの接触燃焼システムには、アルミナ、ジルコニア
等の耐火性金属酸化物と、触媒活性成分であるPL、P
d、1?11等の貴金属あるいはコバルト、ニッケル等
の卑金属の酸化物、さらにはLaCo0J等の複合酸化
物とをモノリス型4U′!体に担持せしめた触媒体が用
いられている。
These catalytic combustion systems contain refractory metal oxides such as alumina and zirconia, and catalytically active components PL and P.
Oxides of noble metals such as d, 1 to 11, base metals such as cobalt and nickel, and composite oxides such as LaCo0J are used in a monolith type 4U'! A catalyst body supported on a body is used.

く本発明が解決しようとする問題点〉 上記の如き触媒系を用い、ガスタービン等の一次動力源
として利用するシステムにおいては、タービンの特性上
触媒の使用条件は、lO〜20気圧の高圧下であり、又
一方圧力損失を小さくし、燃焼器を小容量に保つために
触媒容量はできるだけ小さくすることが求められており
、その結果、線法として10〜1100(7秒)、空間
速度として80万〜600万(hr””’)と非常に過
酷な条件となる。
Problems to be Solved by the Present Invention> In a system using the catalyst system as described above and used as a primary power source such as a gas turbine, the conditions for using the catalyst are under high pressure of 10 to 20 atmospheres due to the characteristics of the turbine. On the other hand, in order to reduce pressure loss and keep the combustor to a small capacity, the catalyst capacity is required to be as small as possible.As a result, the linear method is 10 to 1100 (7 seconds), and the space velocity is 800,000 to 6,000,000 hours (hr""'), which is extremely harsh conditions.

かかる高圧の条件下で、可燃性ガス、特にメタ犬に伴い
、貴金属等の活性成分ならびに触媒容:」1の増大が不
可欠となり、いまだ実用的に完成されたシステムを得る
には至っていない。
Under such high pressure conditions, with flammable gases, especially meth, it is essential to increase the active components such as precious metals and the catalyst capacity, and a practically completed system has not yet been obtained.

そこで本発明の目的は、上記の如き高圧下のガスタービ
ンに適用可能な条件下においても、より小さい触媒容量
で、メタン等の可燃性ガスを接触燃焼せしめ、CO,N
Ox 、 UllC等の有害成分を実質的に含有しない
完全燃焼に至らしめつる燃焼用触媒を提供することにあ
る。
Therefore, an object of the present invention is to catalytically burn combustible gases such as methane with a smaller catalyst capacity even under the conditions applicable to high-pressure gas turbines as described above.
It is an object of the present invention to provide a vine combustion catalyst that achieves complete combustion substantially free of harmful components such as Ox and UllC.

く問題点を解決するための手段〉 かかる目的を達成するために、本発明者らは可燃性ガス
のなかで最も難燃性であるメタンを用い、常圧から高圧
にわたる各種の条件下での接触燃焼に関して鋭意検討し
たところ、メタンの燃焼反応すなわち酸化反応は、ガス
入口側、すなわち前段部の低温域触媒においては、主に
触媒表面上での不均一反応に依存しており、一方ガス出
口側すなわち後段部の高温域においては、主に気相中で
の均一反応に依存しており、同−線速下での加圧による
ガス密度ならびにガス流量の増大に伴い、前段部の触媒
表面上での不均一反応は、燃料ガスの物質移動による拡
散律速から、触媒表面上での反行 応律速に移屓し、燃焼効率の低下を招くものであり、一
方後段部の気相中での均一燃焼反応は、燃焼効率の向上
を招くものであることを見い出し本発明を完成するに至
った。
Means for Solving Problems〉 In order to achieve the above object, the present inventors used methane, which is the most flame-retardant among combustible gases, and conducted experiments under various conditions ranging from normal pressure to high pressure. A thorough study of catalytic combustion revealed that the combustion reaction, or oxidation reaction, of methane mainly depends on a heterogeneous reaction on the catalyst surface at the gas inlet side, that is, at the low-temperature region catalyst in the front stage, while at the gas outlet In the high temperature region of the side, that is, the rear stage, it mainly depends on a homogeneous reaction in the gas phase, and as the gas density and gas flow rate increase due to pressurization at the same linear velocity, the catalyst surface in the front stage The heterogeneous reaction above shifts from rate-limiting diffusion due to mass transfer of fuel gas to rate-limiting reaction on the catalyst surface, leading to a decrease in combustion efficiency.On the other hand, in the gas phase in the latter stage, The present inventors have discovered that the uniform combustion reaction of , which leads to an improvement in combustion efficiency, has led to the completion of the present invention.

すなわち本発明の燃焼用触媒は、例えば第1図第2図に
示しだ如く、燃料−空気混合気体の流れに対して入口側
から出口1F!+1にかけて触媒断面積を順次小さくし
たことを特徴とし、その結果加圧下において活性低下を
招く前段部において空間速度を下げ、かつ活性物質であ
る貴金属等の金属表面積を高めることによって燃焼効率
の向上を計ると共に、加圧下において燃焼効率の向上を
招く後段部においては、触媒容量ならびに活性物質相持
量を減少させることによって、燃焼器形状に適した小容
量の燃焼用触媒で、高圧下の条件に訃いても完全燃焼に
至らしめることが可能となることを見出したのである。
That is, the combustion catalyst of the present invention, as shown in FIGS. 1 and 2, for example, allows the fuel-air mixture to flow from the inlet side to the outlet 1F! The catalyst is characterized in that the cross-sectional area of the catalyst is gradually reduced over the +1 stage, and as a result, the space velocity is lowered in the front stage, where activity decreases under pressure, and the surface area of the active material, such as noble metal, is increased, thereby improving combustion efficiency. At the same time, in the latter stage, which improves combustion efficiency under pressure, by reducing the catalyst capacity and the amount of active material retained, a small-capacity combustion catalyst suitable for the combustor shape can be used to withstand high-pressure conditions. They discovered that it is possible to achieve complete combustion even when

さらに本発明における燃焼用触媒を具体的に説明する。Furthermore, the combustion catalyst in the present invention will be specifically explained.

本発明における燃焼用触媒は、入口側から出口側にかけ
て触媒断面積を順次小さくせしめてなる。
The combustion catalyst of the present invention has a catalyst cross-sectional area that is gradually decreased from the inlet side to the outlet side.

具体的には、該触媒体は前段から後段にかけて数段に分
けて別個に調製し、各触媒を直結してまたは空間を設け
て設置してもよいしあるいは一体物の触媒体として完成
触媒としてもよい。
Specifically, the catalyst body may be prepared separately in several stages from the first stage to the second stage, and each catalyst may be directly connected or installed with a space provided, or it may be prepared as a complete catalyst as an integrated catalyst body. Good too.

触媒の担体としては、圧力損失を少くする目的から、モ
ノリスタイプのものが好ましい。モノリス担体は通常当
該分野で使用されるものであればいずれも使用可能であ
り、とくにコージェライト、ムライト、α−アルミナ、
ジルコニア、チタニア、リン酸チタン、アルミニウムチ
タネート、ぜタライト、スポジュメン、アルミノシリケ
ート、ケイ酸マクネンウム、シルコニアースヒネル、ジ
ルコン−ムライト、炭化ケイ素、窒化ケイ素などの耐熱
性セラミック實のものやカンタル、フェクラロイ等の金
属製のものが使用される。
As the catalyst carrier, a monolith type carrier is preferable for the purpose of reducing pressure loss. Any monolithic support commonly used in the field can be used, especially cordierite, mullite, α-alumina,
Heat-resistant ceramic materials such as zirconia, titania, titanium phosphate, aluminum titanate, zetalite, spodumene, aluminosilicate, macanenium silicate, silconium arsenal, zircon-mullite, silicon carbide, silicon nitride, Kanthal, feclaroy, etc. metal ones are used.

モノリス担体1体のセルサイズは、燃焼効率が低下しな
い限り大きいものが好−ましく、各触媒層は同一セルサ
イズでもよいし、寸だ異るセルサイズのものを組合せて
用いてもよく、通常−平一方インチあたり1O−l10
0セルのものが用いられる。
The cell size of one monolithic carrier is preferably large as long as the combustion efficiency does not decrease, and each catalyst layer may have the same cell size or may use a combination of cell sizes that are quite different. Normal - 1O-l10 per flat inch
A cell with 0 cells is used.

全触媒層長は特に使用される入口線速によって異るが、
圧力損失を少くする必要から通常50〜:300 mm
が採用され、各層の長さも圧ブハ燃料濃度、入口線速、
入口温度等の使用条件によって最適に選択さ、Fするが
、通常各層共10〜200朋が採用される。
The total catalyst bed length varies depending on the inlet linear velocity used, but
Normally 50 to 300 mm due to the need to reduce pressure loss
is adopted, and the length of each layer also depends on the pressure, fuel concentration, inlet linear velocity,
F is optimally selected depending on usage conditions such as inlet temperature, but usually 10 to 200 F is adopted for each layer.

としては、圧損の影響、燃焼器の形状ならびに使<−<
1の範囲にあることが好ましい。
The following are the effects of pressure drop, combustor shape and usage.
It is preferable that it is in the range of 1.

触媒活性成分としては、白金(Pt)、パラジウム(P
(,1)、ロジウム(Rh)等の貴金属の単体又は合金
の性能が最も秀れているが、その他ニッケル(Ni)、
コバルト(Co)、りoム(Cr)、鉄(Ii’e)、
錫(Sn )等の金属酸化物やL;IC0OJ、 Cu
Cr0. 、 Mnl?、、O,、等の複合酸化物をも
貴金属とfil用することによって活性成分としての効
果を有する。
As catalyst active components, platinum (Pt), palladium (P
(,1), noble metals such as rhodium (Rh) alone or alloys have the best performance, but others such as nickel (Ni),
Cobalt (Co), rim (Cr), iron (Ii'e),
Metal oxides such as tin (Sn), L; IC0OJ, Cu
Cr0. , Mnl? , , O, etc. also have the effect as an active ingredient by using them as fils with noble metals.

これらの活性成分とアルミナ、ンリカーアルミナ、マダ
イ・シア、チタニア、ジルコニア、シリカ−マグネノア
などの耐火性金属酸化物を前記モノリス担体に担持して
触媒化する。
These active ingredients and a refractory metal oxide such as alumina, liquor alumina, red sea bream/sea, titania, zirconia, silica-magnenoir, etc. are supported on the monolithic carrier and catalyzed.

」二記耐火性金属酸化物は、バリウム、ストロンチウム
等のアルカリ土類金属酸化物、ラノタ/、ネオジウム、
セリウム、プラセオジウムなどの希土類金属酸化物を添
加し安定化して用いるとより好ましい。
``Refractory metal oxides include alkaline earth metal oxides such as barium and strontium, lanota, neodymium,
It is more preferable to add and stabilize rare earth metal oxides such as cerium and praseodymium.

触媒成分の担持方法としては、耐火性金属酸化物をコー
ティングし、そのあと活性成分を水溶性の塩の形で含浸
せしめても良いし、あるいはあらかじめ活性成分を耐火
性金属酸化物に担持又は混合して、その後モノリス担体
に担持しても良い。
The catalyst component may be supported by coating the refractory metal oxide and then impregnating the active component in the form of a water-soluble salt, or by supporting or mixing the active component with the refractory metal oxide in advance. Then, it may be supported on a monolithic carrier.

これら触媒成分は、使用条件に応じて入口側から出口側
にかけて最適に選定し組み合わせることによって本発明
は、さらに効果的なものとなる。
The present invention becomes even more effective by optimally selecting and combining these catalyst components from the inlet side to the outlet side depending on the conditions of use.

触媒成分の相持量は、必須成分である貴金属としては、
全触媒体当り02〜15重量%、好ましくは05〜8重
量係、その他界金属の酸化物および複合酸化物としては
、全触媒体当り2.0〜35.0重量係の範囲で、その
使用条件に応じて最適に担持される。
The amount of catalyst components supported is as follows for precious metals, which are essential components.
02 to 15% by weight, preferably 05 to 8% by weight based on the total catalyst body, and 2.0 to 35.0% by weight based on the total catalyst body for other world metal oxides and composite oxides, depending on the usage conditions. Optimally supported depending on the situation.

本発明の触媒を用いた燃焼システムに用いられる燃料は
、メタンないしメタンを主成分として含有する燃料であ
る。代表的なものは、天然ガスである。天然ガスは産地
により成分比は若干具るものの、はぼ8Oチ以上のメタ
ンを含有している。
The fuel used in the combustion system using the catalyst of the present invention is methane or a fuel containing methane as a main component. A typical example is natural gas. Although the composition ratio of natural gas varies slightly depending on the region of production, it contains more than 80% of methane.

まだ活性汚泥処理などからの醗酵メタンや石炭ガス化に
よる低カロリーメタンガスなども本発明で用いられる燃
料である。またより易燃性のプロパン、軽油等も当然使
用することができる。
Fermented methane from activated sludge treatment and low-calorie methane gas from coal gasification are also fuels that can be used in the present invention. Naturally, more flammable propane, light oil, etc. can also be used.

本発明の触媒あるいは触媒を用いた燃焼システムは、前
述したように発電用ガスタービンシステムに最適に組み
込まれるものであるが、それ以外にも発電用ボイラ、熱
回収用ボイラ、ガスエンジンからのガスの後処理による
熱回収、都市ガス暖房など熱・動力回収を効率よく行う
7ステムに有利に組み込まれる。
The catalyst of the present invention or the combustion system using the catalyst can be optimally incorporated into a gas turbine system for power generation as described above, but it can also be incorporated into a power generation boiler, a heat recovery boiler, or a combustion system that uses gas from a gas engine. It can be advantageously incorporated into the 7-Stem system, which efficiently recovers heat and power through post-processing and city gas heating.

〈実施例〉 以下に本発明を実施例により、さらに詳細に説明するが
、本発明はこれらの実施例のみに限定されるものではな
い。
<Examples> The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 250セル/平方インチの開孔部を有する直径30 m
m s長さ20朋のコージェライトハニカム担体に、7
重(7i′%酸化ランタンならびに3重量製酸化ネオジ
ウムを含有するアルミナ粉末を被覆処理し、乾燥した後
空気中600℃にて焼成することにより完成触媒当り酸
化ランタン、酸化ネオジウムアルミナ粉末として16重
fi%被覆担持せしめた。
Example 1 30 m diameter with 250 cells/in2 aperture
7 m on a cordierite honeycomb carrier with a length of 20 m
By coating alumina powder containing 7i'% lanthanum oxide and 3% neodymium oxide, drying and then calcining in air at 600°C, 16% lanthanum oxide and neodymium oxide alumina powder can be obtained per finished catalyst. % coverage was carried out.

次いでこの担体を硝酸パラジウムおよび塩化白金酸を含
有する水溶液に浸漬し、乾燥した後、空気中600℃に
て焼成することにより、完成触媒当りパラジウムとして
35重量係、白金として06重量係担持せしめて完成触
媒を得た。
Next, this carrier was immersed in an aqueous solution containing palladium nitrate and chloroplatinic acid, dried, and then calcined in air at 600°C, so that 35 parts by weight of palladium and 06 parts by weight of platinum were supported per finished catalyst. A finished catalyst was obtained.

実施例2 250セル/モ方インチの開孔部を有する直径25mm
、長さ25mmのコージェライトハニカム担体に、実施
例1と同様にして、10重量%酸化セル す1クム含有アルミナ粉末と酸化ニッケl粉末との混合
スラリーを被覆処理し、完成触媒当り酸化セリウム含有
アルミナ粉末として166重量%酸化ニッケルとして・
1重量%担持せしめた。
Example 2 25 mm diameter with 250 cells/inch aperture
A cordierite honeycomb carrier having a length of 25 mm was coated with a mixed slurry of alumina powder containing 10% by weight of 1 cum of oxidized cells and nickel oxide powder in the same manner as in Example 1, so that each finished catalyst contained cerium oxide. As alumina powder, 166% by weight as nickel oxide.
It was supported at 1% by weight.

次いでこの担体を硝酸パラジウムおよびジニトロジアミ
ノ白金を含有する水溶液に浸漬し、乾燥した後空気中で
700℃にて焼成することにより完成触媒当りパラジウ
ムとして3重量%、白金として0.5重量%担持せしめ
て完成触媒を得た。
Next, this carrier was immersed in an aqueous solution containing palladium nitrate and dinitrodiaminoplatinum, dried, and then calcined in air at 700°C to support 3% by weight of palladium and 0.5% by weight of platinum per finished catalyst. A finished catalyst was obtained.

実施例3 200セル/平方インチの開孔部を有する直径20mr
n、長さ30mmのムライトハニカム担体に、ジルコニ
ア粉のスラリーと平均0.5ミクロンの粒径を有する白
金ブラック粉末を充分混合して被覆処理し、乾燥した後
空気中900℃にて焼成することにより完成触媒当りジ
ルコニア粉末として255重量%白金として2.0重量
%を担持せしめて完成触媒を得た。
Example 3 20 mr diameter with 200 cells/in2 aperture
n. A mullite honeycomb carrier with a length of 30 mm is coated with a slurry of zirconia powder and a platinum black powder having an average particle size of 0.5 microns, and after drying, it is fired at 900°C in the air. A finished catalyst was obtained by loading 255% by weight of zirconia powder and 2.0% by weight of platinum per finished catalyst.

実施例4 200セル/平方インチの開孔部を有する直径18mm
、長さ20朋のムライトハニカム担体に、5重量部酸化
イツトリウムを含有するジルコニア粉末と、酸化クロム
粉末との混合スラリーを被覆処理し、乾燥した後空気中
1000°Cて焼成して完成触媒当り酸化イツトリウム
含有ジルコニアとして155重量%酸化クロムとして1
0重間%担持せしめて完成触媒を得た。
Example 4 18 mm diameter with 200 cells/in2 aperture
A mullite honeycomb carrier with a length of 20 mm was coated with a mixed slurry of zirconia powder containing 5 parts by weight of yttrium oxide and chromium oxide powder, dried, and then calcined in air at 1000°C to produce a finished catalyst. 155% by weight as zirconia containing yttrium oxide 1 as chromium oxide
A completed catalyst was obtained by carrying 0% by weight.

比較例1 250セル/平方インチの開孔部を有する直径が23.
4 mm、長さが3’3mmであるコージェライト・・
ニカム担体を用いた以外は、実施例1と全く同様にして
完成触媒を得た。
Comparative Example 1 23.5 mm diameter with 250 cells/in2 apertures.
Cordierite with a length of 4 mm and a length of 3'3 mm.
A finished catalyst was obtained in exactly the same manner as in Example 1, except that a nicum carrier was used.

比較例2 250セル/平方インチの開孔部を有する直径が23.
4 mm 、長さが28皿であるコージェライトハニカ
ム担体を用いた以外は、実施例2と全く同様にして完成
触媒を得た。
Comparative Example 2 23.5 mm diameter with 250 cells/in2 apertures.
A finished catalyst was obtained in exactly the same manner as in Example 2, except that a cordierite honeycomb carrier having a diameter of 4 mm and a length of 28 plates was used.

比較例3 200セル/平方インチの開孔部を有する直径が2 :
3.4 mm、長さが22朋であるムライトハニカム4
11体を用いた以外は、実施例3と全く同様にして完成
触媒を得た。
Comparative Example 3 2 diameter with 200 cells/inch square aperture:
Mullite honeycomb 4 with a length of 3.4 mm and a length of 22 mm
A completed catalyst was obtained in exactly the same manner as in Example 3, except that 11 catalysts were used.

比較例1 200セル/V一方イ/チの開孔部を有する直径が23
・I mm、長さが12+nmであるムライトハニカム
担体を用いた以外は、実施例4と全く同様にして完成触
媒を得だ。
Comparative Example 1 200 cells/V with a diameter of 23
A finished catalyst was obtained in exactly the same manner as in Example 4, except that a mullite honeycomb carrier having a length of 1 mm and a length of 12+ nm was used.

実施例5 十分に保温された、管径を入口から出口にかけて順次小
さくした燃焼器を用い、入口側から1段目に実施例1で
得られた触媒を、2段目に実施例2で得られた触媒を、
3段月に実施例3で得られた触媒を、4段目に実施例・
1で得られた触媒をそれぞれ10朋の間隔をおいて充填
し、 入口温度:(50”Cにおいて3.(51容−t
1i%(li’) ) タフ 全含有するメクノー空気
混合気体を10気圧の加圧下で、1112ノ間当り20
0 Nm3(ST l)) 導入シテ燃焼効率と各段触
媒層出口温度を測定した。この場合触媒容量は約41i
であった。
Example 5 Using a sufficiently insulated combustor with pipe diameters gradually decreasing from the inlet to the outlet, the catalyst obtained in Example 1 was placed in the first stage from the inlet side, and the catalyst obtained in Example 2 was placed in the second stage. The catalyst that was
The catalyst obtained in Example 3 was used in the third stage, and the catalyst obtained in Example 3 was used in the fourth stage.
The catalysts obtained in step 1 were packed at intervals of 10 mm, and the inlet temperature was 3. (51 volume-t at 50"C).
1i% (li')) Tough The Mekno-air mixture gas containing the entire mixture was 20 per 1112 minutes under a pressure of 10 atmospheres.
0 Nm3 (ST l)) The introduction combustion efficiency and the outlet temperature of each stage catalyst layer were measured. In this case, the catalyst capacity is approximately 41i
Met.

その結果は表1に示した。The results are shown in Table 1.

比較例5 十分に保温された円筒形燃焼器を用い、入口側から1段
目に比較例1で得られた触媒を、2段目に比較例2で得
られた触媒を、3段目に比較例3で得られた燃焼を、4
段目に比較例4で得られた触媒をそれぞれ10mmの間
隔をおいて充填し、入口温度350℃において36・1
容量係のメタンを含有するメタン−空気混合気体をlO
負気圧加圧下で1時間当り200 Nm’ (STI’
 )導入して・燃焼効率ならびに各段触媒層出口温度を
測定した。
Comparative Example 5 Using a sufficiently warmed cylindrical combustor, the catalyst obtained in Comparative Example 1 was placed in the first stage from the inlet side, the catalyst obtained in Comparative Example 2 was placed in the second stage, and the catalyst obtained in Comparative Example 2 was placed in the third stage from the inlet side. The combustion obtained in Comparative Example 3 was
The catalyst obtained in Comparative Example 4 was filled in each stage with an interval of 10 mm, and at an inlet temperature of 350°C,
A methane-air mixture containing methane by volume is 1O
200 Nm'(STI') per hour under negative pressure
) The combustion efficiency and the outlet temperature of each stage catalyst layer were measured.

この場合触媒入口線速は約30m/秒であり、またここ
で用いた各段触媒の容量ならびに全触媒層長は実施例5
の場合とほぼ同等であった。
In this case, the catalyst inlet linear velocity was about 30 m/sec, and the capacity of each stage catalyst and the total catalyst layer length used in Example 5 were as follows.
It was almost the same as in the case of .

その結果は表1に示した。The results are shown in Table 1.

実施例6 200セル/平方インチの開孔部を有する直径30mm
、長さ30mmのコージェライト/・ニカムJ′I′i
体にlO重h+、 <酸化ランタン含有アルミナ粉末と
酸化ニッケル粉末との混合スラリーを被覆処理し乾燥し
た後空気中700 ”Cで焼成して完成触媒当り、酸化
ランタン含有アルミナとして15重量係、酸化ニッケル
として15重重量板覆担持せしめた。
Example 6 30 mm diameter with 200 cells/in2 aperture
, 30mm long cordierite/・Nicum J'I'i
The body is coated with a mixed slurry of lanthanum oxide-containing alumina powder and nickel oxide powder, dried, and then calcined in air at 700"C. Nickel was supported on a 15-weight plate.

次いでこの担体を硝酸パラジウムおよび塩化白金酸を含
有する水溶液に浸漬し、乾燥した後空気中900 ’C
にて焼成することにより、完成触媒当りパラジウムとし
て25重量係、白金として0.5重量係担持せしめて完
成触媒を得た。
The carrier was then immersed in an aqueous solution containing palladium nitrate and chloroplatinic acid, dried and then heated at 900'C in air.
By firing the catalyst, a finished catalyst was obtained in which 25 parts by weight of palladium and 0.5 parts by weight of platinum were carried per finished catalyst.

実施例7 200セル/平方インチの開孔部を有する直径が22.
5mm、長さが30龍のコージェライトハニカム担体を
用いた以外は、実施例1と全く同様にして完成触媒を得
た。
Example 7 A 22.5 mm diameter cell with 200 cells/in2 apertures.
A completed catalyst was obtained in exactly the same manner as in Example 1, except that a cordierite honeycomb carrier of 5 mm and 30 mm in length was used.

実施例8 200セル/V方インチの開孔部を有する直径が15m
m、長さが30mmのコージェライトハニカム担体を用
いた以外は、実施例1と全く同様にして完成触媒を1(
tだ。
Example 8 15 m diameter with 200 cells/V inch opening
The completed catalyst was prepared in exactly the same manner as in Example 1 except that a cordierite honeycomb carrier having a length of 30 mm and a length of 30 mm was used.
It's T.

比I咬例6 直径が23.:3mm、長さが:30 mmのコージェ
ライト・・ニカム担体を用いた以外は、実施例1と全く
同様にして完成触媒を得だ。
Ratio I bite case 6 Diameter is 23. A finished catalyst was obtained in exactly the same manner as in Example 1, except that a cordierite-nicum carrier having a length of 3 mm and a length of 30 mm was used.

実施例9 十分に保温された管径を入口から出口にわたって順次小
さくした燃焼器を用い、入口側から1段目に実施例6で
えられた触媒を、2段目に実施例7でえられた触媒を、
3段目に実施例8でえらJした触媒をそれぞれIOmr
nの間隔をおいて充填し、入口温度350°Cにおいて
3.01容量係のメタンを含有するメタン−空気混合気
体を8気圧の加圧下で1時間当り107Ni(STP)
導入して燃焼効率と各段触媒層出口温度を測定した。こ
の場合触媒容量は約38.4C1)Lであった。
Example 9 Using a combustor whose tube diameter was kept sufficiently warm and gradually reduced from the inlet to the outlet, the catalyst obtained in Example 6 was placed in the first stage from the inlet side, and the catalyst obtained in Example 7 was placed in the second stage. The catalyst
The catalyst selected in Example 8 was placed in the third stage at IOmr.
A methane-air mixture gas containing 3.01 volumes of methane was charged at intervals of n at an inlet temperature of 350°C, and was heated to 107Ni (STP) per hour under a pressure of 8 atmospheres.
The combustion efficiency and outlet temperature of each stage catalyst layer were measured. In this case the catalyst capacity was approximately 38.4C1)L.

その結果は表2に示した。The results are shown in Table 2.

比較例7 十分に保温された円筒形燃焼器を用い、比較例6と全く
同じ触媒3個をそれぞれ10mmの間隔をおいて充填し
、入口温度350℃において:3.0容量飴のメタンを
含有するメタン−空気混合気体を8気圧の加圧下で1時
間当り107 Nmj(STP)導入して燃焼効率なら
びに各段触媒層温度を測定した。この場合触媒容量は実
施例9とほぼ同等な381dであり、捷だ触媒層入口線
速は約20m/秒であった。
Comparative Example 7 Using a sufficiently warmed cylindrical combustor, three catalysts exactly the same as those in Comparative Example 6 were filled at 10 mm intervals, and at an inlet temperature of 350°C: Contains 3.0 volume of methane. A methane-air mixture gas was introduced under a pressure of 8 atmospheres at a rate of 107 Nmj (STP) per hour, and the combustion efficiency and temperature of each stage catalyst layer were measured. In this case, the catalyst capacity was 381 d, which is almost the same as in Example 9, and the linear velocity at the entrance of the shredded catalyst layer was about 20 m/sec.

その結果は表2に示した。The results are shown in Table 2.

表   1 表   2 〈発明の効果〉 以上実施例より明らかなように、触媒層入口から出口に
向って触媒断面積を順次小さくすることによって、より
小さい触媒容量で高圧、高空間速度の条件下で、CO,
NOx、 UHCを実質に含有しない触媒燃焼による完
全燃焼が可能となり、ガスタービン等の燃焼部への触媒
燃焼の適応が可能となる。
Table 1 Table 2 <Effects of the invention> As is clear from the above examples, by sequentially decreasing the catalyst cross-sectional area from the inlet to the outlet of the catalyst layer, the catalyst can be used under conditions of high pressure and high space velocity with a smaller catalyst capacity. , CO,
It becomes possible to achieve complete combustion by catalytic combustion that does not substantially contain NOx and UHC, and it becomes possible to apply catalytic combustion to combustion parts such as gas turbines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、本発明触媒の一例を示すものである
FIG. 1 and FIG. 2 show an example of the catalyst of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)耐火性金属酸化物と触媒活性成分を担持したモノ
リス型可燃性ガス燃焼用触媒において、燃料含有気体の
流れに対してガス入口側から出口側にかけて該触媒断面
積を順次小さくせしめることを特徴とする燃焼用触媒。
(1) In a monolithic combustible gas combustion catalyst that supports a refractory metal oxide and a catalytically active component, the cross-sectional area of the catalyst is made gradually smaller from the gas inlet side to the outlet side with respect to the flow of fuel-containing gas. Characteristic combustion catalyst.
(2)該触媒がガスタービン用の燃焼用触媒であること
を特徴とする特許請求の範囲(1)記載の燃焼用触媒。
(2) The combustion catalyst according to claim (1), wherein the catalyst is a combustion catalyst for a gas turbine.
(3)燃料にメタン含有撚料を用いることを特徴とする
特許請求の範囲(1)または(2)記載の燃焼用触媒。
(3) The combustion catalyst according to claim (1) or (2), characterized in that a methane-containing twist material is used as the fuel.
JP60289207A 1985-12-24 1985-12-24 Catalyst for combustion Pending JPS62149346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60289207A JPS62149346A (en) 1985-12-24 1985-12-24 Catalyst for combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60289207A JPS62149346A (en) 1985-12-24 1985-12-24 Catalyst for combustion

Publications (1)

Publication Number Publication Date
JPS62149346A true JPS62149346A (en) 1987-07-03

Family

ID=17740162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60289207A Pending JPS62149346A (en) 1985-12-24 1985-12-24 Catalyst for combustion

Country Status (1)

Country Link
JP (1) JPS62149346A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163889A (en) * 1993-08-05 1995-06-27 Sulzer Chemtech Ag Catalytic converter for exhaust gas from automobil, etc
CN104084199A (en) * 2014-07-29 2014-10-08 东南大学 Monolithic catalyst for methane catalytic combustion and preparation method thereof
KR20150002637A (en) * 2012-04-04 2015-01-07 존슨 맛쎄이 퍼블릭 리미티드 컴파니 High temperature combustion catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163889A (en) * 1993-08-05 1995-06-27 Sulzer Chemtech Ag Catalytic converter for exhaust gas from automobil, etc
KR20150002637A (en) * 2012-04-04 2015-01-07 존슨 맛쎄이 퍼블릭 리미티드 컴파니 High temperature combustion catalyst
JP2015514009A (en) * 2012-04-04 2015-05-18 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company High temperature combustion catalyst
CN104084199A (en) * 2014-07-29 2014-10-08 东南大学 Monolithic catalyst for methane catalytic combustion and preparation method thereof
CN104084199B (en) * 2014-07-29 2016-03-23 东南大学 For the integral catalyzer and preparation method thereof of methane catalytic combustion

Similar Documents

Publication Publication Date Title
JPH0153579B2 (en)
EP0198948A2 (en) Catalytic combustor for combustion of lower hydrocarbon fuel
JPS6257887B2 (en)
JPS61252408A (en) Method of igniting methane fuel
JPS6014938A (en) Combustion catalyst for gas turbine
JPH0156324B2 (en)
JPS6366258B2 (en)
JPS6279847A (en) Catalyst system for combustion of lower hydrocarbon fuel and combustion method using said system
JPS61252409A (en) Method of igniting methane fuel
JPH0156326B2 (en)
JPS6380848A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPS62149346A (en) Catalyst for combustion
JPS61237905A (en) Combustion method of methane fuel by contact combustion catalyst system
JPH0156325B2 (en)
JPS6352283B2 (en)
JPH0156327B2 (en)
JPS6380849A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPS63267804A (en) Oxidizing catalyst for high temperature service
JPS6380847A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPH0156329B2 (en)
JPH0512021B2 (en)
JPS6280420A (en) Combustion catalyst system for low class hydro-carbon fuel and combustion method of using same
JPS6060424A (en) Catalytic combustion apparatus
JPH02268830A (en) Catalyst for combustion of kerosene type fuel
JP6997948B2 (en) Combustion catalyst