JPH0153579B2 - - Google Patents

Info

Publication number
JPH0153579B2
JPH0153579B2 JP59153100A JP15310084A JPH0153579B2 JP H0153579 B2 JPH0153579 B2 JP H0153579B2 JP 59153100 A JP59153100 A JP 59153100A JP 15310084 A JP15310084 A JP 15310084A JP H0153579 B2 JPH0153579 B2 JP H0153579B2
Authority
JP
Japan
Prior art keywords
catalyst
combustion
temperature
palladium
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59153100A
Other languages
Japanese (ja)
Other versions
JPS6133233A (en
Inventor
Makoto Horiuchi
Tetsutsugu Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP59153100A priority Critical patent/JPS6133233A/en
Publication of JPS6133233A publication Critical patent/JPS6133233A/en
Publication of JPH0153579B2 publication Critical patent/JPH0153579B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B51/00Other methods of operating engines involving pretreating of, or adding substances to, combustion air, fuel, or fuel-air mixture of the engines
    • F02B51/02Other methods of operating engines involving pretreating of, or adding substances to, combustion air, fuel, or fuel-air mixture of the engines involving catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はメタン系燃料を接触燃焼させる触媒お
よびそれを用いた燃焼方法に関する。 詳しく述べると、本発明は難燃性のメタンある
いはメタンを主成分とする天然ガス燃料を触媒上
で接触燃焼せしめ窒素酸化物(以下NOxとす
る)、一酸化炭素(以下COとする)、未燃焼炭化
水素(以下UHCとする)等の有害成分を実質的
に含有しない燃焼ガスを得、その熱量を各種のエ
ネルギー源として用いるための触媒およびそれを
用いた燃焼方法を提供するものである。 更に詳しく述べると、本発明は高線速下、炭化
水素類の中で比較的難燃性といわれるメタンある
いはメタンを主成分とする天燃ガス燃料を触媒に
よつて低温で着火せしめ、2次燃焼が誘発される
のに十分な温度にまで昇温し、次いで必要に応じ
2次燃料を導入して残存未燃焼料と2次燃料を燃
焼させて、目的とする温度、あるいはそれ以上の
高温に上げる燃焼方法に好適に用いられる触媒お
よびそれを用いた燃焼方法を提供するものであ
る。 燃料を燃焼範囲に入らない低い温度で空気と混
合した希薄混合気体を触媒層へ導入し、触媒上で
接触燃焼せしめ高温の燃焼ガスをえるための触媒
燃焼方法は公知である。 さらに、かかる触媒燃焼方法を用いてたとえば
600℃から1500℃の燃焼ガスをえる場合、たとえ
酸素源に空気を用いてもNOxがほとんどないし
は全く発生することがなく、またCO、UHCも実
質的に含有しないものとしてえられることもよく
知られるところである。 このクリーンな高温燃焼ガスを利用し、熱また
は動力をえるシステムは各種提案され、一般産業
排ガスの処理および熱動力回収システムはすでに
実用化されるに至つている。 また近年になり、高まるNOx規制への対応か
ら、発電用ガスタービンなどの一次動力源用とし
てこの高温燃焼ガスを利用する研究がなされるよ
うになりつつある。 これらの目的に使用される場合、燃焼ガスは、
1000〜1300℃の高温に達せしめるのが通常であ
り、ガスタービンの効率向上のため、更に高温に
なる傾向にある。 かかる条件下で、触媒を使用すると通常の触媒
は高温のために急速に劣化し更に最悪の場合は触
媒担体がメルトダウンし、飛散し、タービンのブ
レードなどを損傷してしまう可能性がある。 上記の如き触媒の劣化、損傷を避け、同等の目
的をえる燃焼方法として、触媒層において燃料の
一部を燃焼させ、2次燃焼が誘発される温度にま
でガス温度を上昇せしめ、次いで触媒層後方で残
存未燃燃料を2次燃焼させるか、または必要であ
れば2次燃料を導入して残存未燃燃料と新たに添
加した2次燃料を、2次的に燃焼させて目的とす
る温度、あるいはそれ以上の温度のクリーンな燃
焼ガスをえる燃焼方法が見出された。 この場合、触媒層での燃焼は、ガス温度を2次
燃焼が誘発される温度にまで上昇させるのを目的
としており必ずしも触媒層で完全燃焼させる必要
はなく、2次燃焼が誘発される温度以上にガス温
度が到達すれば、触媒の劣化、損傷を避けるため
にも、また、2次燃焼を安定して維持させるため
にも、触媒層中でより高温にする必要はなく、む
しろ残存未燃燃料が多い方が好ましい。 燃料は目的とする温度がえられるよう全量を触
媒層へ導入し、一部を燃焼させて上昇し、ついで
残存未燃燃料を2次燃焼させてもよいが、燃料の
一部を残しておき、これを2次燃料として触媒層
後方から導入して残存未燃燃料と合せて2次燃焼
させてもよい。この場合触媒層温度を必要以上の
高温とすることも避けられ、よつて触媒の劣化、
損傷を避けることができる利点がある。 2次燃焼を誘発させるのに必要な温度は、燃料
の種類、残存燃料濃度(理論断熱燃焼ガス温度)、
線速度によつて決まるが、燃料の種類により大巾
に異なることになる。 すなわち、プロパン、軽油等の易燃性の燃料の
場合は通常の使用条件下では約700℃程度でも十
分であるが、難燃性のメタン、あるいはメタンを
主成分とする天燃ガスを燃料とする場合は使用条
件によつて異なるものの750℃〜1000℃の高温が
必要である。 最近の燃料事情から、この目的に使用される燃
料はメタンあるいはメタンを主成分とする天燃ガ
スが中心であり、本発明はこの難燃性の燃料を高
線速下にできるだけ低温で着火せしめ、燃焼ガス
温度を750℃以上、とくに850〜950℃の温度にま
で上昇せしめる触媒を提供することを目的とす
る。 本発明目的に好適に用いられる触媒としては、
貴金属系触媒がふさわしく、特にパラジウムを主
活性成分とする触媒が望ましい。 パラジウムを活性成分とする触媒は特にメタン
の低温着火性にすぐれ、かつ1000℃程度の耐熱性
にもすぐれた触媒である。 しかしながら、従来のパラジウムを活性成分と
する触媒を本発明目的に使用した場合、低温着火
性能は必ずしも十分でなく触媒層入口付近におい
ては500℃以下の温度で高濃度の酸素にさらされ
るためパラジウムは酸化されメタンの着火性能を
失い、また一方、触媒層出口付近では高温にな
り、パラジウムの酸化状態が変化することによる
と考えられる理由から触媒による燃焼反応は抑制
され、燃焼ガス温度は750℃以上の高温には上昇
しないという欠点があることを見い出した。 本発明者らはこのパラジウムを主活性成分とす
る触媒のすぐれた特徴に注目し、従来の触媒にみ
られる欠点を克服するため鋭意研究の結果、本発
明を完成するに至つたものである。 すなわち、本発明による触媒は活性成分とし
て、パラジウム、白金およびニツケル酸化物を含
有し、触媒1当りに、パラジウムを2〜300g
の範囲、このパラジウムに対白金を0.2〜50重量
%およびニツケル酸化物を5〜300gの範囲で担
持せしめてなることを特徴とするメタン系燃料の
燃焼用モノリス型触媒である。 本発明によれば、ニツケル酸化物の添加により
メタンの低温着火性能が向上し、かつ白金の存在
によりパラジウムの酸化物化によるメタン着火性
能の低下が防止され、長時間に亘り低温着火性能
を維持しつづける触媒を提供することができる。
また、ニツケルが酸化物として存在するためパラ
ジウムに安定して酸素が供給されることにより、
燃焼がより促進され燃焼ガスは容易に750℃以上、
とくに850〜950℃の温度に到達することが可能に
なることを見出したのである。 本発明と類似の性能は、同一出願人による特願
昭59−51186号(特開昭60−196511号)の燃焼用
触媒システムによつても達成が可能であるが、本
発明はニツケル酸化物の添加により更に低温着火
性が向上し、かつ一種類の触媒で同等以上の性能
が達成されるため、触媒層長を短くし、圧力損失
を低減させることが可能となる利点がえられる。 触媒の形状は圧力損失を少くする目的から、モ
ノリスタイプのものが好ましい。モノリス担体は
通常当該分野で使用されるものであればよいずれ
も使用可能であり、とくにコージエライト、ムラ
イト、α−アルミナ、ジルコニア、チタニア、リ
ン酸チタン、アルミニウムチタネート、ベタライ
ト、スポジユメン、アルミノシリケート、ケイ酸
マグネシウム、ジルコニア−スピネル、ジルコン
−ムライト、炭化ケイ素、窒化ケイ素などの耐熱
性セラミツク質のものやカンタル、フエクラロイ
等の金属製のものが使用される。 モノリス担体のセルサイズは、燃焼効率が低下
しない限り大きいものが好ましく、触媒層は同一
セルサイズでもよいし、また異なるセルサイズの
ものを組合せて用いてもよく、通常一平方インチ
あたり40〜400セルのものが用いられる。 触媒層長は特に使用される入口線速によつて異
なるが、圧力損失を少くする必要から、通常50〜
500mmが採用される。 触媒は通常上記モノリス担体に、アルミナ、シ
リカ−アルミナ、マグネシア、チタニア、ジルコ
ニア、シリカ−マグネシアなどの活性耐火性金属
酸化物をコートして使用する。特アルミナ、チタ
ニアまたはジルコニアが好ましく、更にマグネシ
ウム、カルシウム、ストロンチウム、バリウム等
のアルカリ土類金属の酸化物、あるいはランタ
ン、イツトリウム、セリウム、サマリウム、ネオ
ジム、プラセオジム等の希土類金属の酸化物の1
種または2種以上を添加し、安定化して用いると
より好ましい。 そのあと、パラジウム、白金およびニツケル酸
化物の活性成分を水溶性の塩の形で含浸せしめ触
媒化する。あるいはあらかじめ活性成分を活性耐
火性金属酸化物に担体せしめ、そののちモノリス
担体にコートすることによつて触媒化することも
でき、また、活性成分金属の微粉末(ただし、ニ
ツケルを除く)や酸化物、水酸化物を活性耐火性
金属酸化物と混合し、モノリス担体にコートする
ことによつて触媒化することもできる。 パラジウムは完成触媒1あたり2〜300g、
好ましくは10〜150g担体され、また、白金はパ
ラジウムに対し、重量比で0.2〜50%、好ましく
は0.5〜30%添加して用いられる。また、ニツケ
ル酸化物の担持量は完成触媒1あたり5〜300
g、好ましくは10〜200gが適している。 本発明の触媒を用いた燃焼方法に用いられる燃
料は、メタンないしメタンを主成分として含有す
る燃料である。代表的なものは、天燃ガスであ
る。天燃ガスは産地により成分比は若干異なるも
のの、ほぼ80%以上のメタンを含有している。ま
た、活性汚泥処理などからの醗酵メタンや石炭ガ
ス化による低カロリーガスなども本発明で用いら
れる燃料である。またより易燃性のプロパン、軽
油等も当然使用することができる。 本発明の触媒あるいは触媒を用いた燃焼方法
は、前述したように発電用ガスタービンシステム
に最適に組み込まれるものであるが、それ以外に
も発電用ボイラ、熱回収用ガスタービンおよびボ
イラ、ガスエンジンからのガスも後処理による熱
回収、郡市ガス暖房など熱・動力回収を効率よく
行なうために利用される。 以下に本発明を実施例等によりさらに具体的に
説明するが、本発明はこれらの実施例のみに限定
されるものではない。 実施例 1 200セル/平方インチの開孔部を有する直径
25.4mm、長さ50mmのコージエライトハニカム担体
に、5重量%の酸化ランタンを含有するアルミナ
粉末の水性スラリーを被覆処理し、空気中900℃
にて燃成して担体1あたり100gを被覆担持せ
しめた。 次いで硝酸ニツケルを含有する水溶液に浸漬、
乾燥し、空気中700℃で燃成し、担体1あたり
30gのニツケル酸化物を担持せしめた。 次いでこれを硝酸パラジウムおよび塩化白金酸
を含有する水溶液に浸漬し、乾燥して空気中700
℃で燃成し、担体1あたりパラジウムとして20
g、白金として4gを担持せしめて完成触媒をえ
た。 実施例 2 長さ30mmとした以外は実施例1で用いたのと同
様の担体を用い5重量%の酸化ランタンを含有す
るアルミナ粉末のスラリーを被覆処理し空気中
800℃にて燃成して担体1あたり150gの酸化ラ
ンタン含有アルミナを被覆担持せしめた。 次いで、実施例1におけると同様にして、担体
1あたりニツケル酸化物として50g、パラジウ
ムとして50g、白金として5g含有の触媒活性物
質を担持せしめて完成触媒をえた。 実施例 3 実施例1で用いたのと同じ材質および仕様のハ
ニカム担体に70重量%酸化ランタン、3重量%酸
化ネオジムを含有するアルミナ粉末のスラリーを
被覆処理し、空気中1000℃で燃成して担体1あ
たり120g被覆担持せしめた。 次いでこれを硝酸パラジウム、ジニトロジアミ
ノ白金および硝酸ニツケルを含有する水溶液に浸
漬、乾燥し空気中800℃で燃成することにより、
担体1あたりパラジウムとして25g、白金とし
て5g、ニツケル酸化物を40g含有の触媒活性物
質を担持せしめて完成触媒をえた。 実施例 4 実施例1で用いたのと同様のハニカム担体に5
重量%酸化ランタン含有するアルミナ粉末と酸化
ニツケル粉末のスラリーを被覆処理し、空気中
900℃で燃成して担体1あたり150gの5重量%
酸ランタン含有アルミナ粉末と50gの酸化ニツケ
ルを被覆担持せしめた。 次いで、これを硝酸パラジウムおよびジニトロ
ジアミノ白金を含有する水溶液に浸漬、乾燥し、
空気中700℃で燃成することにより担体1あた
りパラジウムとして20g、白金として4g担持せ
しめて完成触媒をえた。 実施例 5 100セル/平方インチの開孔部を有する直径
25.4mm、長さ50mmのムライトハニカム担体に、3
重量%酸化イツトリウムを含有するジルコニア粉
末と酸化ニツケル粉末のスラリーを被覆処理し、
空気中1000℃で焼成して担体1あたり200gの
3重量%酸化イツトリウム含有ジルコニアと50g
の酸化ニツケルを被覆担持した。 次いでこれを硝酸パラジウムおよび塩化白金酸
を含有する水溶液に浸漬し、乾燥して空気中700
℃で焼成し、担体1あたり、パラジウムとして
20g、白金として2gを担持せしめて完成触媒を
えた。 実施例 6 100セル/平方インチの開孔部を有する直径
25.4mm、長さ50mmのアルミニウムチタネートハニ
カム担体に5重量%酸化ランタン含有アルミナ粉
末、チタニア粉末および水酸化ニツケル粉末の混
合物のスラリーを被覆処理し、空気中900℃で焼
成して担体1あたり75gの5重量%酸化ランタ
ン含有アルミナ、75gのチタニアおよび40gの酸
化ニツケルを被覆担持した。 次いでこれを硝酸パラジウムおよびジニトロジ
アミノ白金を空気する水溶液に浸漬し、乾燥して
空気中700℃で焼成し担体1あたりパラジウム
20g、白金として4gを担持せしめて完成触媒を
えた。 比較例 1 ニツケルを含有しない他は実施例1におけると
同様にして完成触媒をえた。 比較例 2 白金を含有しない他は実施例1におけると同様
にして完成触媒をえた。 実施例 7 十分に保温された円筒型燃焼器を用い実施例1
でえられた触媒を充填し、入口温度350℃におい
て3容量%のメタンを含有するメタン−空気混合
気体を1時間あたり16.7Nm3導入して燃焼効率と
触媒層出口温度を測定した。この場合、触媒層入
口線速は約30m/秒であつた。 その結果、燃焼効率は約79%で、触媒層出口温
度は約900℃であつた。 次いで、メタン濃度を4.1容量%にすると、燃
焼効率は100%となり、未燃焼炭化水素、一酸化
水素、窒素酸化物を実質的に含有しないクリーン
な燃焼ガスがえられた。この場合、触媒層後方
100mmの点の温度は約1300℃に達していたが、触
媒層出口温度は約91℃であつた。 引きつづき、3容量%相当分のメタンを触媒層
上流から、残り1.1容量%相当分のメタンを触媒
層出口より30mm後方から導入して、同様の燃焼実
験を行つた。 その結果、触媒層出口温度は約900℃であり、
クリーンな約1300℃の燃焼ガスがえられた。 また、この性能は1000時間にわたり維持継続さ
れた。 実施例 8 実施例1〜6および比較例1〜2の各触媒を円
筒型燃焼器に充填し、3容量%のメタンを含有す
るメタン−空気混合気を1時間あたり5.57Nm3
入し、入口温度を徐々に上昇させつつ燃焼効率を
測定した。 次いで入口温度を350℃とし、燃焼効率および
燃焼層出口温度を測定しつつ、連続して48時間燃
焼させた。この場合、触媒層入口線速は平均10
m/秒であつた。 その結果、各触媒の性能は表−1のとおりとな
り、本発明による触媒は短い触媒層長で、メタン
を低い予熱温度で着火せしめ、燃焼ガスを750℃
以上、850〜950℃に上昇させることができ、か
つ、その性能を長時間持続することができること
が判明した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for catalytically burning methane-based fuel and a combustion method using the same. Specifically, the present invention catalytically burns flame-retardant methane or natural gas fuel mainly composed of methane on a catalyst to produce nitrogen oxides (hereinafter referred to as NOx), carbon monoxide (hereinafter referred to as CO), and nitrogen oxides. The present invention provides a catalyst and a combustion method using the catalyst for obtaining combustion gas that does not substantially contain harmful components such as combustion hydrocarbons (hereinafter referred to as UHC) and using its calorific value as various energy sources. More specifically, the present invention involves igniting methane, which is said to be relatively flame-retardant among hydrocarbons, or a natural gas fuel containing methane as its main component at a low temperature using a catalyst at high linear velocity. The temperature is raised to a temperature sufficient to induce combustion, and then secondary fuel is introduced as necessary to combust the remaining unburned fuel and secondary fuel to reach the target temperature or higher. The present invention provides a catalyst suitable for use in the combustion methods listed above and a combustion method using the same. A catalytic combustion method is known in which a dilute gas mixture in which fuel is mixed with air at a low temperature below the combustion range is introduced into a catalyst layer and catalytically combusted on the catalyst to obtain high-temperature combustion gas. Furthermore, using such a catalytic combustion method, e.g.
It is well known that when obtaining combustion gas between 600°C and 1500°C, little or no NOx is generated even if air is used as the oxygen source, and it also contains virtually no CO or UHC. This is where you will be exposed. Various systems have been proposed that utilize this clean, high-temperature combustion gas to generate heat or power, and general industrial exhaust gas treatment and thermal power recovery systems have already been put into practical use. In addition, in recent years, in response to increasing NOx regulations, research has begun to be conducted on the use of this high-temperature combustion gas as a primary power source such as gas turbines for power generation. When used for these purposes, the combustion gases are
It is normal to reach a high temperature of 1000 to 1300 degrees Celsius, and there is a tendency to raise the temperature even higher to improve the efficiency of gas turbines. When a catalyst is used under such conditions, a conventional catalyst deteriorates rapidly due to the high temperature, and in the worst case, the catalyst carrier may melt down and fly off, damaging turbine blades and the like. As a combustion method that avoids catalyst deterioration and damage as described above and achieves the same purpose, a part of the fuel is combusted in the catalyst layer, the gas temperature is raised to a temperature that induces secondary combustion, and then the catalyst layer is heated to a temperature that induces secondary combustion. Remaining unburned fuel is secondary combusted at the rear, or if necessary, secondary fuel is introduced and the remaining unburned fuel and newly added secondary fuel are combusted secondary to reach the desired temperature. A combustion method has been discovered that produces clean combustion gas at a temperature of , or even higher. In this case, the purpose of combustion in the catalyst layer is to raise the gas temperature to a temperature that induces secondary combustion, and it is not necessarily necessary to completely burn the gas in the catalyst layer, but to raise the gas temperature to a temperature that induces secondary combustion. Once the gas temperature reaches More fuel is preferable. The entire amount of fuel may be introduced into the catalyst layer to obtain the desired temperature, a portion of it may be combusted and rise, and the remaining unburned fuel may be subjected to secondary combustion, but some of the fuel may be left behind. This may be introduced as a secondary fuel from the rear of the catalyst layer and combined with the remaining unburned fuel for secondary combustion. In this case, it is possible to avoid raising the temperature of the catalyst layer higher than necessary, thereby preventing deterioration of the catalyst and
This has the advantage of avoiding damage. The temperature required to induce secondary combustion depends on the type of fuel, the residual fuel concentration (theoretical adiabatic combustion gas temperature),
It is determined by the linear velocity, but it will vary widely depending on the type of fuel. In other words, in the case of easily flammable fuels such as propane and diesel oil, a temperature of approximately 700°C is sufficient under normal usage conditions, but when using flame-retardant methane or natural gas whose main component is methane as fuel, In this case, a high temperature of 750°C to 1000°C is required, depending on the usage conditions. Due to recent fuel circumstances, the fuel used for this purpose is mainly methane or natural gas containing methane as its main component, and the present invention aims to ignite this flame-retardant fuel at a high linear velocity and at as low a temperature as possible. An object of the present invention is to provide a catalyst that can raise the temperature of combustion gas to 750°C or higher, particularly to a temperature of 850 to 950°C. Catalysts suitably used for the purpose of the present invention include:
Noble metal catalysts are suitable, and catalysts containing palladium as the main active component are particularly preferred. Catalysts containing palladium as an active component are particularly excellent in low-temperature ignition of methane, and also have excellent heat resistance of about 1000°C. However, when conventional catalysts containing palladium as an active ingredient are used for the purpose of the present invention, low-temperature ignition performance is not necessarily sufficient and palladium is exposed to high concentrations of oxygen at temperatures below 500°C near the entrance of the catalyst layer. The methane is oxidized and loses its ignition performance, and on the other hand, the combustion reaction by the catalyst is suppressed due to the high temperature near the outlet of the catalyst layer, which is thought to be due to a change in the oxidation state of palladium, and the combustion gas temperature is over 750℃. It was discovered that the drawback is that it does not rise to high temperatures. The present inventors have focused on the excellent characteristics of a catalyst containing palladium as the main active component, and have completed the present invention as a result of intensive research aimed at overcoming the drawbacks of conventional catalysts. That is, the catalyst according to the invention contains palladium, platinum and nickel oxide as active components, with 2 to 300 g of palladium per catalyst.
This is a monolithic catalyst for combustion of methane-based fuel, characterized in that palladium is supported with 0.2 to 50% by weight of platinum and 5 to 300 g of nickel oxide. According to the present invention, the low-temperature ignition performance of methane is improved by the addition of nickel oxide, and the presence of platinum prevents the deterioration of methane ignition performance due to palladium oxidation, maintaining low-temperature ignition performance for a long time. The following catalyst can be provided.
In addition, since nickel exists as an oxide, oxygen is stably supplied to palladium.
Combustion is further promoted and combustion gas easily reaches temperatures above 750℃.
In particular, they found that it is possible to reach temperatures of 850-950°C. Performance similar to that of the present invention can also be achieved by the combustion catalyst system disclosed in Japanese Patent Application No. 59-51186 (Japanese Unexamined Patent Publication No. 60-196511) filed by the same applicant. By adding , the low-temperature ignitability is further improved, and the same or higher performance is achieved with one type of catalyst, so there is an advantage that the catalyst layer length can be shortened and pressure loss can be reduced. The shape of the catalyst is preferably a monolith type for the purpose of reducing pressure loss. Any monolithic support commonly used in the field can be used, in particular cordierite, mullite, alpha alumina, zirconia, titania, titanium phosphate, aluminum titanate, betalite, spodiumen, aluminosilicate, silica. Heat-resistant ceramic materials such as magnesium oxide, zirconia-spinel, zircon-mullite, silicon carbide, and silicon nitride, and metal materials such as Kanthal and Feclaroy are used. The cell size of the monolithic carrier is preferably large as long as the combustion efficiency is not reduced, and the catalyst layer may have the same cell size or a combination of different cell sizes, usually 40 to 400 cells per square inch. A cell type is used. The length of the catalyst layer varies depending on the inlet linear velocity used, but it is usually 50 to 50 mm due to the need to reduce pressure loss.
500mm is adopted. The catalyst is usually used by coating the above-mentioned monolithic support with an active refractory metal oxide such as alumina, silica-alumina, magnesia, titania, zirconia, or silica-magnesia. Alumina, titania or zirconia are particularly preferred, and oxides of alkaline earth metals such as magnesium, calcium, strontium and barium, or oxides of rare earth metals such as lanthanum, yttrium, cerium, samarium, neodymium and praseodymium are preferred.
It is more preferable to add a species or two or more species for stabilization. Thereafter, the active components palladium, platinum and nickel oxide in the form of water-soluble salts are impregnated and catalyzed. Alternatively, it is possible to catalyze the active ingredient by first supporting it on an active refractory metal oxide and then coating it on a monolithic carrier. The hydroxides can also be catalyzed by mixing them with active refractory metal oxides and coating them on a monolithic support. Palladium is 2-300g per finished catalyst,
Preferably, 10 to 150 g of platinum is used as a carrier, and platinum is added in a weight ratio of 0.2 to 50%, preferably 0.5 to 30%, based on palladium. In addition, the amount of nickel oxide supported is 5 to 300 per finished catalyst.
g, preferably 10 to 200 g. The fuel used in the combustion method using the catalyst of the present invention is methane or a fuel containing methane as a main component. A typical example is natural gas. Natural gas contains approximately 80% or more methane, although the composition ratio varies slightly depending on the region of production. Furthermore, fermented methane from activated sludge treatment and low-calorie gas from coal gasification are also fuels that can be used in the present invention. Naturally, more flammable propane, light oil, etc. can also be used. The catalyst of the present invention or the combustion method using the catalyst can be optimally incorporated into a gas turbine system for power generation as described above, but it is also applicable to boilers for power generation, gas turbines and boilers for heat recovery, and gas engines. The gas from the area is also used for efficient heat and power recovery through post-processing and gas heating in districts and cities. EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples. Example 1 Diameter with 200 cells/in2 aperture
A cordierite honeycomb carrier measuring 25.4 mm and 50 mm in length was coated with an aqueous slurry of alumina powder containing 5% by weight of lanthanum oxide and heated at 900°C in air.
The mixture was combusted to coat and support 100 g per carrier. Then immersed in an aqueous solution containing nickel nitrate,
Dry and combust in air at 700℃, per carrier
30g of nickel oxide was supported. This was then immersed in an aqueous solution containing palladium nitrate and chloroplatinic acid, dried and heated in air at 700 °C.
20% palladium per carrier
g and 4 g of platinum were supported to obtain a completed catalyst. Example 2 A carrier similar to that used in Example 1 except that the length was 30 mm was coated with a slurry of alumina powder containing 5% by weight of lanthanum oxide, and the carrier was exposed to air.
The mixture was burned at 800°C to coat and support 150g of lanthanum oxide-containing alumina per carrier. Next, in the same manner as in Example 1, catalytically active substances containing 50 g of nickel oxide, 50 g of palladium, and 5 g of platinum were supported on each carrier to obtain a completed catalyst. Example 3 A honeycomb carrier made of the same material and specifications as those used in Example 1 was coated with an alumina powder slurry containing 70% by weight lanthanum oxide and 3% by weight neodymium oxide, and then burned in air at 1000°C. A coating of 120 g was carried on each carrier. Next, this was immersed in an aqueous solution containing palladium nitrate, dinitrodiaminoplatinum, and nickel nitrate, dried, and burned in air at 800°C.
A completed catalyst was obtained by supporting a catalytically active material containing 25 g of palladium, 5 g of platinum, and 40 g of nickel oxide per carrier. Example 4 A honeycomb carrier similar to that used in Example 1 was coated with 5
Coated with a slurry of alumina powder and nickel oxide powder containing lanthanum oxide in weight percent, and exposed to air.
Burned at 900℃, 5% by weight of 150g per carrier
Alumina powder containing lanthanum acid and 50 g of nickel oxide were coated and supported. Next, this was immersed in an aqueous solution containing palladium nitrate and dinitrodiaminoplatinum, dried,
By burning in air at 700°C, 20 g of palladium and 4 g of platinum were supported per carrier to obtain a completed catalyst. Example 5 Diameter with 100 cells/in2 aperture
3 on a mullite honeycomb carrier with a length of 25.4 mm and a length of 50 mm.
A slurry of zirconia powder and nickel oxide powder containing yttrium oxide in a weight percent is coated,
Calcined at 1000℃ in air, 200g of zirconia containing 3% by weight of yttrium oxide and 50g of zirconia per carrier.
It was coated with nickel oxide. This was then immersed in an aqueous solution containing palladium nitrate and chloroplatinic acid, dried and heated in air at 700 °C.
Calculated at °C, per 1 carrier, as palladium
A completed catalyst was obtained by supporting 20g of platinum and 2g of platinum. Example 6 Diameter with 100 cells/in2 aperture
A 25.4 mm x 50 mm long aluminum titanate honeycomb carrier was coated with a slurry of a mixture of alumina powder, titania powder, and nickel hydroxide powder containing 5% by weight of lanthanum oxide, and calcined in air at 900°C to obtain 75 g per carrier. Alumina containing 5% by weight of lanthanum oxide, 75 g of titania and 40 g of nickel oxide were coated and supported. Next, this was immersed in an aqueous solution of palladium nitrate and dinitrodiaminoplatinum in air, dried, and calcined in air at 700°C to obtain palladium per carrier.
A completed catalyst was obtained by supporting 20g of platinum and 4g of platinum. Comparative Example 1 A finished catalyst was obtained in the same manner as in Example 1 except that it did not contain nickel. Comparative Example 2 A finished catalyst was obtained in the same manner as in Example 1 except that it did not contain platinum. Example 7 Example 1 using a cylindrical combustor with sufficient heat insulation
The obtained catalyst was filled, and a methane-air mixture gas containing 3% by volume of methane was introduced at an inlet temperature of 350° C. at 16.7 Nm 3 per hour, and the combustion efficiency and catalyst bed outlet temperature were measured. In this case, the linear velocity at the entrance of the catalyst layer was about 30 m/sec. As a result, the combustion efficiency was approximately 79%, and the catalyst layer outlet temperature was approximately 900°C. Next, when the methane concentration was increased to 4.1% by volume, the combustion efficiency was 100%, and a clean combustion gas containing virtually no unburned hydrocarbons, hydrogen monoxide, or nitrogen oxides was obtained. In this case, the rear of the catalyst layer
The temperature at the 100 mm point reached approximately 1300°C, but the catalyst layer outlet temperature was approximately 91°C. Subsequently, a similar combustion experiment was conducted by introducing methane equivalent to 3% by volume from upstream of the catalyst bed and the remaining methane equivalent to 1.1% by volume from 30 mm behind the outlet of the catalyst bed. As a result, the catalyst bed outlet temperature was approximately 900℃,
Clean combustion gas of approximately 1300℃ was obtained. Moreover, this performance was maintained for 1000 hours. Example 8 Each of the catalysts of Examples 1 to 6 and Comparative Examples 1 to 2 was packed into a cylindrical combustor, and a methane-air mixture containing 3% by volume of methane was introduced at 5.57 Nm 3 per hour. Combustion efficiency was measured while gradually increasing the temperature. Next, the inlet temperature was set to 350°C, and combustion was continued for 48 hours while measuring the combustion efficiency and combustion layer outlet temperature. In this case, the average linear velocity at the entrance of the catalyst layer is 10
m/sec. As a result, the performance of each catalyst is as shown in Table 1.The catalyst of the present invention has a short catalyst layer length, ignites methane at a low preheating temperature, and heats the combustion gas to 750℃.
As described above, it has been found that the temperature can be raised to 850 to 950°C and the performance can be maintained for a long time. 【table】

Claims (1)

【特許請求の範囲】 1 活性成分として、パラジウム、白金およびニ
ツケル酸化物を含有し、触媒1当りに、パラジ
ウムを2〜300gの範囲、このパラジウムに対し
白金を0.2〜50重量%およびニツケル酸化物を5
〜300gの範囲で担持せしめてなることを特徴と
するメタン系燃料の燃焼用モノリス型触媒。 2 活性成分がアルミナ、チタニア、ジルコニア
よりなる群から選ばれた少くとも1種の活性耐火
性金属酸化物によつて被覆されたモノリス担体上
に分散担持されてなることを特徴とする特許請求
の範囲1記載の触媒。 3 活性耐火性金属酸化物がランタン、イツトリ
ウム、セリウム、サマリウム、ネオジム、プラセ
オジム、マグネシウム、カルシウム、ストロンチ
ウム、バリウムよりなる群から選ばれた少くとも
一種の酸化物によつて安定化されてなることを特
徴とする特許請求の範囲2記載の触媒。 4 活性成分として、パラジウム、白金およびニ
ツケル酸化物を含有し、触媒1当りに、パラジ
ウムを2〜300gの範囲、このパラジウムに対し
白金を0.2〜50重量%およびニツケル酸化物を5
〜300gの範囲で担持せしめてなるメタン系燃料
の燃焼用モノリス型触媒を用い、該触媒層におい
て燃料の一部のみを燃焼せしめて2次燃焼が誘発
される温度にまで燃焼ガスを昇温せしめることを
特徴とするメタン系燃料の燃焼方法。 5 2次燃焼が誘発される温度に昇温されたガス
にさらに2次燃料を供給して2次燃焼せしめるこ
とを特徴とする特許請求の範囲4項記載の燃焼方
法。
[Claims] 1 Contains palladium, platinum, and nickel oxide as active ingredients, with palladium in the range of 2 to 300 g per catalyst, platinum in an amount of 0.2 to 50% by weight relative to the palladium, and nickel oxide. 5
A monolithic catalyst for combustion of methane-based fuel, characterized in that it is supported in a range of ~300g. 2. A patent claim characterized in that the active ingredient is dispersed and supported on a monolithic carrier coated with at least one active refractory metal oxide selected from the group consisting of alumina, titania, and zirconia. Catalyst according to scope 1. 3. The active refractory metal oxide is stabilized by at least one oxide selected from the group consisting of lanthanum, yttrium, cerium, samarium, neodymium, praseodymium, magnesium, calcium, strontium, and barium. The catalyst according to claim 2, characterized in that: 4 Contains palladium, platinum and nickel oxide as active ingredients, with palladium in the range of 2 to 300 g per catalyst, platinum in the range of 0.2 to 50% by weight and nickel oxide in the range of 5 to 50 g per catalyst.
Using a monolithic catalyst for combustion of methane-based fuel supported in the range of ~300g, only part of the fuel is combusted in the catalyst layer, and the temperature of the combustion gas is raised to a temperature that induces secondary combustion. A method of burning methane-based fuel characterized by the following. 5. The combustion method according to claim 4, characterized in that secondary combustion is caused by further supplying secondary fuel to the gas heated to a temperature that induces secondary combustion.
JP59153100A 1984-07-25 1984-07-25 Combustion catalyst for methane fuel and combustion system using said catalyst Granted JPS6133233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59153100A JPS6133233A (en) 1984-07-25 1984-07-25 Combustion catalyst for methane fuel and combustion system using said catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59153100A JPS6133233A (en) 1984-07-25 1984-07-25 Combustion catalyst for methane fuel and combustion system using said catalyst

Publications (2)

Publication Number Publication Date
JPS6133233A JPS6133233A (en) 1986-02-17
JPH0153579B2 true JPH0153579B2 (en) 1989-11-14

Family

ID=15554971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59153100A Granted JPS6133233A (en) 1984-07-25 1984-07-25 Combustion catalyst for methane fuel and combustion system using said catalyst

Country Status (1)

Country Link
JP (1) JPS6133233A (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284215A (en) * 1985-10-07 1987-04-17 Mitsubishi Heavy Ind Ltd Catalyst combustion method
JPS62261803A (en) * 1986-05-09 1987-11-14 Toyo C C I Kk Contact burning method
JPS634852A (en) * 1986-06-25 1988-01-09 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for combustion
US5062141A (en) * 1988-06-02 1991-10-29 Ricoh Company, Ltd. Method of segmenting characters in lines which may be skewed, for allowing improved optical character recognition
JPH01157952U (en) * 1989-02-20 1989-10-31
US5131224A (en) * 1990-07-23 1992-07-21 General Motors Corporation Method for reducing methane exhaust emissions from natural gas fueled engines
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
FR2743511B1 (en) * 1996-01-15 1998-02-27 Inst Francais Du Petrole CATALYTIC COMBUSTION PROCESS WITH STAGE FUEL INJECTION
DE69939011D1 (en) * 1998-03-09 2008-08-14 Osaka Gas Co Ltd METHOD OF REMOVING METHANE FROM EXHAUST GASES
KR100387049B1 (en) * 2000-11-23 2003-06-12 주식회사 베스트코리아 Catalyst manufacturing method for Brown gas
KR100555984B1 (en) 2004-07-27 2006-03-03 김병훈 composition for elevation of fuel ratio and cooling water in radiator utilizing the same
GB2406803A (en) 2004-11-23 2005-04-13 Johnson Matthey Plc Exhaust system comprising exotherm-generating catalyst
CN113908820A (en) * 2021-09-30 2022-01-11 北京动力机械研究所 Low-temperature combustion flame-stabilizing catalyst, combustor and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892729A (en) * 1981-11-25 1983-06-02 Toshiba Corp Gas turbine combustor
JPS59169536A (en) * 1983-03-16 1984-09-25 Toshiba Corp High temperature combustion catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892729A (en) * 1981-11-25 1983-06-02 Toshiba Corp Gas turbine combustor
JPS59169536A (en) * 1983-03-16 1984-09-25 Toshiba Corp High temperature combustion catalyst

Also Published As

Publication number Publication date
JPS6133233A (en) 1986-02-17

Similar Documents

Publication Publication Date Title
JPH0153579B2 (en)
Arai et al. Research and development on high temperature catalytic combustion
EP0198948A2 (en) Catalytic combustor for combustion of lower hydrocarbon fuel
JPS61252408A (en) Method of igniting methane fuel
JPS6257887B2 (en)
JPS60196511A (en) Catalyst system for combustion and burning method used in said system
JPS61237905A (en) Combustion method of methane fuel by contact combustion catalyst system
JPH0156326B2 (en)
JPH0156325B2 (en)
JPH0156328B2 (en)
JPS6352283B2 (en)
JPS61252409A (en) Method of igniting methane fuel
JPS6380848A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPH0545295B2 (en)
JPH0156327B2 (en)
JPH0156330B2 (en)
JPH0545293B2 (en)
JPH0156329B2 (en)
JP2001227330A (en) Engine system
JPH0512021B2 (en)
JPH02268830A (en) Catalyst for combustion of kerosene type fuel
JPS6060424A (en) Catalytic combustion apparatus
JPS60147243A (en) Gas turbine combustor
JPS60205129A (en) Combustor for gas-turbine
JPS634852A (en) Catalyst for combustion