JPH0545293B2 - - Google Patents

Info

Publication number
JPH0545293B2
JPH0545293B2 JP61224835A JP22483586A JPH0545293B2 JP H0545293 B2 JPH0545293 B2 JP H0545293B2 JP 61224835 A JP61224835 A JP 61224835A JP 22483586 A JP22483586 A JP 22483586A JP H0545293 B2 JPH0545293 B2 JP H0545293B2
Authority
JP
Japan
Prior art keywords
combustion
platinum
catalyst
gas
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61224835A
Other languages
Japanese (ja)
Other versions
JPS6380847A (en
Inventor
Makoto Horiuchi
Kazuo Tsucha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP61224835A priority Critical patent/JPS6380847A/en
Publication of JPS6380847A publication Critical patent/JPS6380847A/en
Publication of JPH0545293B2 publication Critical patent/JPH0545293B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はメタン系燃料特にメタンを主成分と
し、エタン、プロパン、ブタン等の低級炭化水素
からなる天然ガスを触媒上で接触燃焼せしめ、窒
素酸化物(以下、NOxという)、一酸化炭素(以
下COという)、未燃焼炭化水素(以下、UHCと
いう)等の有害成分を実質的に含有しないクリー
ンな燃焼ガスを得、その熱量を各種の一次エネル
ギー源として、特に発電用ガスタービンに用いる
ための、燃焼用触媒システムおよびそれを用いた
燃焼方法に関するものである。 <従来の技術> 燃料を燃焼範囲に入らない低い濃度で空気と混
合した希薄混合気体を触媒層へ導入し、触媒上で
接触燃焼せしめ高温の燃焼ガスをえるための触媒
燃焼システムは公知である。 さらに、かかる触媒燃焼システムを用いて、た
とえば600℃から1500℃の燃焼ガスをえる場合、
たとえば酸素源に空気を用いてもNOxがほとん
どないしは全く発生することがなく、またCO,
UHCも実質的に含有しないものとしてえられる
こともよく知られるところである。 このクリーンな高温燃焼ガスを利用し、熱また
は動力をえるシステムは各種提案され、一般産業
排ガスの処理および熱動力回収システムはすでに
実用化されるに至つている。 特に近年になり、高まるNOx規制への対応か
ら、発電用ガスタービンなどの一次動力源用とし
てこの高温燃焼ガスを利用する研究がなされるよ
うになりつつある。 これらの接触燃焼システムには、アルミナ、ジ
ルコニア等の耐火性金属酸化物と、触媒活性成分
である白金、パラジウム、ロジウム等の貴金属あ
るいはコバルト、ニツケル等の卑金属の酸化物、
さらにはLaCoO3等の複合酸化物とをモノリス型
担体に担持せしめた触媒体等が提案されている。 <本発明が解決しようとする問題点> 上記の如き触媒系を用い、ガスタービン等の一
次動力源として利用するシステムにおいては、タ
ービンの特性上触媒の使用条件は、5〜30気圧の
もとで1000〜1300℃の高温に達せしめるのが通常
であり、ガスタービンの効率向上のため、更に高
温、高圧になる傾向にある。 かかる条件下で、触媒を使用すると通常の触媒
は高温のために急速に劣化し更に最悪の場合は触
媒担体がメルトダウンし、飛散し、タービンのブ
レードなどを損傷してしまう可能性がある。 上記の如き触媒の劣化、損傷を避け、同等の目
的をえる燃焼方法として、触媒層において燃料の
一部を接触燃焼させ、2次気相燃焼が誘発される
温度にまでガス温度を上昇せしめ、次いで触媒層
後方で残存未燃燃料を2次気相燃焼させるか、ま
たは必要であれば2次燃料を導入して残存未燃燃
料と新たに添加した2次燃料を、2次的に気相燃
焼させて目的とする温度、あるいはそれ以上の温
度のクリーンな燃焼ガスをえる燃焼方法が見出さ
れた。 この場合、触媒層での燃焼は、ガス温度を2次
気相燃焼が誘発される温度にまで上昇させるのを
目的としており必ずしも触媒層で完全燃焼させる
必要はなく、2次気相燃焼が誘発される温度以上
にガス温度が到達すれば、触媒の劣化、損傷を避
けるためにも、また、2次気相燃焼を安定して維
持されるためにも、触媒層中でより高温にする必
要はなく、むしろ残存未燃燃料が多い方が好まし
い。 燃料は目的とする温度がえられる全量を触媒層
へ導入し、一部を接触燃焼させて昇温し、ついで
残存未燃燃料を2次気相燃焼させてもよいが、燃
料の一部を残しておき、これを2次燃料として触
媒層後方から導入して残存未燃燃料と合わせて2
次接触燃焼させてもよい。この場合、触媒層温度
を必要以上の高温とすることも避けられ、触媒の
劣化、損傷を避けることが出来、より好ましい。 ここで、2次気相燃焼を誘発させるのに必要な
温度は、燃料の種類、残存燃料濃度(理論断熱燃
焼ガス温度)、線速等によつて決まるが、燃料の
種類により大幅に異なる。 すなわち、プロパン、軽油等の易燃性の燃料の
場合は、通常の使用条件下では約700℃程度でも
十分であるが、難燃性のメタン、あるいはメタン
を主成分とする天然ガスを燃料とする場合は、使
用条件によつて異なるものの750〜1000℃の高温
が必要である。また、ガスタービンとしての機能
を有するためには、圧力損失を小さくし、燃焼器
を小容量に保つて、燃焼負荷率を大きくすること
が求められており触媒容量はできるだけ小さくす
る必要があり、その結果触媒層入口の線速は5〜
40m/秒(500℃換算)、空間速度は80〜600万
(時間)と従来の触媒反応にはない、非常に過酷
な条件で使用されることになる。 かかる高圧の条件下で、可燃性ガス、特にメタ
ン等の難燃性ガスを触媒層において燃料を一部接
触燃焼せしめ、2次気相燃焼が誘発される温度に
までガス温度を上昇せしめ、次いで触媒層後方で
残存未燃燃料を2次気相燃焼させるか、または必
要であれば2次燃料を導入して残存未燃燃料と新
たに添加して2次燃料を、2次的に気相燃焼させ
る2段燃焼方法により、完全燃焼せしめようとす
る場合、加圧による燃料流量の増大に伴い、触媒
での燃焼効率が大きく低下し、いまだ実用的に完
成された触媒体を得るには至つていない。 <発明の目的> そこで本発明の目的は、上記の如き高圧下のガ
スタービンの実使用条件下においても、より小さ
い触媒容量で難燃性のメタン系燃料をより低温で
着火せしめ、燃焼ガス温度を750〜1000℃の温度
にまで上昇せしめ、かつ耐久性を有し、CO,
NOx,UHC等の有害成分を実質的に含有しない
燃焼用触媒システムを提供しもつてその有効な利
用方法を提供することにある。 <問題点を解決するための手段> かかる目的を達成するために、本発明者らは可
燃性ガスのなかで最も難燃性であるメタンを用
い、常圧から高圧にわたる各種の条件下での接触
燃焼に関して検討した。その結果、メタンの燃焼
反応はガス入口側、すなわち前段部の低温域触媒
においては、主に触媒表面上での不均一反応に依
存しており、一方、ガス出口側すなわち後段部の
高温域においては、主として気相中での均一反応
に依存しているという知見を得た。つまり、同一
線速下では加圧によるガス密度ならびにガス流量
の増大に伴い、前段部の触媒表面上での不均一反
応は、燃焼ガスの物質移動による拡散律速から、
触媒表面上での反応律速に移行し、燃焼効率の大
きな低下を招くものであり、一方、後段部の気相
中での燃焼反応は、燃焼効率の向上を招くもので
あることを見い出した。 そして、上記のようなメタンの燃焼反応に適す
る触媒層を鋭意検討した結果、本発明を完成する
に至つた。 すなわち、本発明の燃焼用触媒システムは3層
の触媒層に分けられ、メタン系燃料と分子状酸素
とを含有する高圧、高線速の可燃性混合ガスの流
れに対して、ガス入口側にパラジウムおよび白金
を活性成分とする、あるいはパラジウム白金およ
びニツケル酸化物を活性成分とする前段触媒層、
次いで白金を活性成分とする中段触媒層、最後に
ガス出口側に白金およびパラジウムを活性成分と
する後段触媒層を組合せた触媒システムからな
り、該触媒システムに担持されたパラジウムおよ
び白金の合計の全担持量が担体容積1あたり10
〜100gの範囲であることを特徴とし、前段触媒
層で比較的低温から着火せしめ、燃焼ガス温度を
750〜1000℃まで上昇させうるように各々最適に
設計して成るものであり、かつ1000℃を越える高
温にはならないようにして成るものである。 その結果、メタンの燃焼反応に対する触媒活性
が大幅に向上して、高圧下において燃焼性能の低
下を招く空間速度の増大(接触時間の短縮)、入
口高線速の影響に対しても2段燃焼方法により完
全燃焼せしめることが可能になり、触媒容量を小
さくして燃焼負荷率を向上出来、実際のガスター
ビン燃焼器への実用化が可能となることを見い出
したのである。 さらに本発明における燃焼用触媒システムを具
体的に説明する。 パラジウムを活性主成分とする触媒は特にメタ
ンの低温着火性にすぐれ、かつ1000℃程度の高温
での耐熱性にもすぐれた触媒として知られる。 しかしながら、従来のパラジウムを活性成分と
する触媒を本発明目的に使用した場合、触媒層入
口付近においては500℃以下の温度で高濃度の酸
素にさらされるため、パラジウムは酸化されメタ
ンの着火性能を失い、一方、触媒層出口付近の高
温域においては、パラジウムの酸化状態が変化す
ることによると考えられる理由から、触媒による
燃焼反応は抑制され燃焼ガス温度は実質750℃以
上の高温には上昇しないという欠点がある。これ
に対し、本発明によれば燃焼用触媒システムのガ
ス入口側、すなわち前段触媒層は主としてパラジ
ウムを活性成分としたものであり、少量の白金の
存在により、パラジウムの酸化物化によるメタン
着火性能の低下が防止され、長時間にわたり低温
着火性能を維持しつづけることができる。さらに
ニツケル酸化物が添加されているのが好ましく、
この場合ニツケルが酸化物として存在することに
より、パラジウムに安定して空気から酸素が供給
されるため、燃焼ガス温度を高線速、高圧下で
500〜700℃、条件によつては750℃まで昇温せし
め、続いて存在する中段触媒層での燃焼反応を容
易に開始せしめ得るものである。 また、白金を活性成分とする中段触媒層におい
て、さらに燃焼活性が向上し650〜900℃の範囲の
温度にまで昇温せしめられる。 さらに、燃焼用触媒システムのガス出口側、す
なわち後段触媒層は白金およびパラジウムを活性
成分としたものであり、白金によつて燃焼はさら
に促進されて燃焼ガスは900〜1000℃の温度に至
らしめることが可能になる。多くの場合、触媒温
度が1000℃以上の高温域にさらされると白金は酸
化されてPtO2になり昇華飛散されるが、パラジ
ウムが共存することにより白金の昇華が防止れ、
燃焼活性が高水準に安定して維持される。 以上のように、本発明になる触媒システムはそ
れぞれの貴金属の特性を生かしてあるいは組合せ
て3段構成からなることを特徴としており、メタ
ン系燃料を高圧、高線速下で300〜400℃の低温で
着火せしめ、750〜1000℃の燃焼ガス温度を得る
ための燃焼活性を有し、かつ1000℃以上の耐熱性
を有しているのである。 しかし、パラジウムのみを活性成分とする触媒
では、前述したように燃焼経過とともに着火性能
を失ない、またその特性のため燃焼ガス温度は、
実質的に750℃以上の高温には上昇しない。パラ
ジウム−ニツケル酸化物系触媒でもパラジウムの
みの時と同様に着火性能を失なう。また、白金の
みでは燃焼がメタンや天然ガスのようなメタン系
燃焼の場合には300〜400℃では着火不能であり、
実質的に500℃以上の着火温度が必要となるが、
燃焼活性は優れており、特に高圧、高線速の燃焼
条件下での燃焼活性は充分に有している。また、
パラジウム−白金−ニツケル酸化物またはパラジ
ウム−白金系触媒では充分な着火性能を有する
が、燃焼ガス温度を高線速、加圧燃焼条件下で2
次気相燃焼が誘発される温度以上にすることはで
きない。 以上のように、1段構成のものにはそれぞれ欠
点を有しており、特に高圧燃焼条件においては、
実用触媒とはなりえず、好ましくない。 前段触媒層および中段触媒層の白金族元素の担
持量は担体容積1あたり20〜100g、好ましく
は30〜80gである。前段触媒層における白金に対
するパラジウムの担持比は1〜25、好ましくは2
〜10である。また、前段触媒層にニツケル酸化物
が添加されている場合、その担持量はパラジウム
に安定して空気から酸素を供給せしめるためには
担体容積1あたり10〜150gが適当であり、好
ましくは50〜120gである。後段触媒層の白金族
元素の担持量は担体容積1あたり10〜80g、好
ましくは20〜50gで白金とパラジウムが共存する
場合には、白金に対するパラジウムの担持比は
0.1〜10、好ましくは0.2〜5である。 後触媒体は前段から後段にかけて複数段に分け
て別個に調製し、各触媒を直結してまたは空間を
設けて設置してもよいしあるいは一体物の触媒体
として完成触媒としてもよい。 複数段に分けて別個に調製した場合、白金族元
素の担持量が担体容量1あたり10gを下回る触
媒が存在しても、完成した触媒体として白金族元
素の全担持量が10g以上であれば、当然使用する
ことが可能である。 白金族元素の全担持量が10gを下回る場合は、
加圧によるガス密度および流量の増大に伴い、燃
焼せしめようとするメタン分子数に対して活性物
質の量が不足することになる。そのためメタンの
着火温度が本発明の前段触媒層の着火温度である
300〜400℃に比較して高くなり、予備燃焼のため
にパイロツトバーナーが必要となると共に、着火
せしめるためパイロツトバーナー部での予備燃焼
の比率が高くなり、NOxの発生量が増大する。 さらにたとえ着火しても、その燃焼活性は低
く、燃料の吹き抜けが多くなり、燃焼ガス温度が
十分に上昇しないため、あとに続く触媒後段部で
の燃焼反応に至らしめることが困難となる。加え
て、後段部触媒も低活性のため、燃焼は不十分で
燃料の吹き抜けが非常に多く、完全燃焼は不可能
となり、また、2次気相燃焼が誘発される温度に
までガス温度を上昇せしめることも非常に困難と
なる。従つて、白金族元素の全担持量が10g以下
の触媒体が常圧下では高活性であつても、加圧下
では充分な燃焼活性を有さない。 一方、白金族元素の全担持量が100gを越える
場合は、分散性が低下するものの活性物質の増加
による燃焼活性が向上し燃焼ガス温度を1000℃以
下に抑制することはできず、急激な活性低下をき
たすとともに触媒が非常に高価となるので好まし
くない。 触媒の担体としては、圧力損失を少くする目的
から、モノリスタイプのものが好ましい。モノリ
ス担体は通常当該分野で使用されるものであれば
いずれも使用可能であり、とくにコージエライ
ト、ムライト、α−アルミナ、ジルコニア、チタ
ニア、リン酸チタン、アルミニウムチタネート、
ペタライト、スポジユメン、アルミノシリケー
ト、ケイ酸マグネシウム、ジルコニア−スピネ
ル、ジルコン−ムライト、炭化ケイ素、窒化ケイ
素などの耐熱性セラミツク質のものやカンタル、
フエクラロイ等の金属製のものが使用される。 モノリス担体のセルサイズは、燃焼効率が低下
しない限り大きいものが好ましく、各触媒層は同
一セルサイズでもよいし、また異なるセルサイズ
のものを組合せて用いてもよく、通常一平方イン
チあたり40〜400セルのものが用いられる。 全触媒層長は特に使用される入口線速によつて
異なるが、圧力損失を少くする必要から通常50〜
300mmが採用され、各層の長さも圧力、燃料濃度、
入口線速、入口温度等の使用条件によつて最適に
選択されるが、通常各層共10〜200mmが採用され
る。 白金族元素としては白金、パラジウムが特に優
れるが、その他ロジウム、イリジウム等を添加し
てもよい。 また、ニツケル、コバルト、鉄、クロム等の金
属酸化物やCoNiO2,LaCoO3等の複合酸化物も
白金族元素と併用することによつて活性物質とし
ての効果を発揮する。 これらの活性成分とアルミナを前記モノリス担
体に担持して触媒化する。またシリカ−アルミ
ナ、マグネシア、チタニア、ジルコニア、シリカ
−マグネシアなどの耐火性金属酸化物も用いるこ
とができる。 上記耐火性金属酸化物は、バリウム、ストロン
チウム等のアルカリ土類金属酸化物、ランタン、
ネオジム、セリウム、プラセオジムなどの希土類
金属酸化物あるいはシリカ酸化物を添加し安定化
して用いると好ましい。 特にアルミナの場合、ランタン、セリウム、サ
マリウム、ネオジム、プラセオジム、カルシウ
ム、ストロンチウム、バリウムおよびシリカより
なる群から選ばれた少なくとも1種の酸化物によ
つて安定化されたものを用いるとより好ましい。 触媒成分の担持方法としては、耐火性金属酸化
物をコーテイングし、そのあと活性成分を水溶性
の塩の形で含浸せしめても良いし、あるいはあら
かじめ活性成分を耐火性金属酸化物に担持又は混
合して、その後モノリス担体に担持しても良い。 水溶性塩としては、硝酸塩、硫酸塩、リン酸
塩、ハロゲン化物、ジニトロアミノ塩等がある。
一例を挙げると、例えば硝酸パラジウム、塩化パ
ラジウム、ジニトロジアミノ白金、塩化白金酸等
があり、これらの水溶液を担体に含浸せしめて
400〜1000℃、好ましくは600〜900℃の温度で1
〜24時間、好ましくは2〜6時間焼成することに
よりえられる。 活性成分である白金については0.01〜5ミクロ
ンの平均粒子径を有する白金ブラツクとして活性
耐火性金属酸化物と共に担持せしめることもでき
る。 またニツケル源としては硝酸ニツケル、塩化ニ
ツケル、酢酸ニツケルがあり、酸化ニツケルをそ
のまま用いてもよい。 これらの触媒成分は、使用条件に応じて入口側
から出口側にかけて最適に選定し組み合わせるこ
とによつて、本発明はさらに効果的なものとな
る。 本発明の燃焼用触媒システムに用いられる燃料
はメタン系燃料、特にメタンを主成分とし、エタ
ン、プロパン、ブタン等の低級炭化水素からなる
天然ガスである。また、活性汚泥処理などからの
醗酵メタンや石炭ガス化による低カロリーメタン
ガスなども本発明で用いられる燃料である。また
より易燃性のプロパン、軽油等も当然使用するこ
とができる。 本発明の燃焼用触媒システムは、前述したよう
に発電用ガスタービンシステムに最適に組み込ま
れるものであるが、それ以外にも発電用ボイラ、
熱回収用ボイラ、ガスエンジンからのガスの後処
理による熱回収、都市ガス暖房など熱・動力回収
を効率よく行うシステムに有利に組み込まれる。 <実施例> 以下に本発明を実施例により、さらに詳細に説
明するが、本発明はこれらの実施例のみに限定さ
れるものではない。 実施例 1 200セル/平方インチの開孔部を有する直径
25.4mm、長さ50mmのコージエライトハニカム担体
に5重量%の酸化ランタンを含有するアルミナ粉
末と酸化ニツケル粉末との混合のスラリーを被覆
処理し乾燥した後、空気中700℃にて燃成して、
担体容積1あたり酸化ランタン含有アルミナと
して100g、酸化ニツケルとして100gを被覆担持
せしめた。 次いで、これを硝酸パラジウムおよび塩化白金
酸を含有する水溶液に浸漬し、150℃で乾燥し、
空気中900℃で5時間焼成し、担体容積1あた
りパラジウムとして50g、白金として10g担持せ
しめて完成触媒を得た。 実施例 2 28.8重量%の酸化ニツケルと2重量%酸化セリ
ウムおよび1重量%酸化ストロンチウムを含有す
るアルミナ粉末に硝酸パラジウムと塩化白金酸を
含有する水溶液に浸漬させて乾燥後空気中にて
600℃で3時間焼成しパラジウムとして24重量%、
白金として、3.9重量%を担持せしめた。 次いでこのパラジウムおよび白金担持アルミナ
粉末スラリーを200セル/平方インチの開孔部を
有する直径25.4mm、長さ50mmのムライトハニカム
担体に被覆処理し乾燥したのち、空気中で700℃
で5時間焼成することにより、担体容積1あた
りパラジウムとして50g、白金として8g、酸化ニ
ツケルとして60g担持せしめて完成触媒を得た。 実施例 3 実施例1と同様の担体に5重量%の酸化ランタ
ンを含有するアルミナ粉末のスラリーを実施例1
と同様にして単体容積1あたり酸化ランタン含
有アルミナとして150gを被覆担持せしめた。 次いで実施例1と同様にして担体容積1あた
りパラジウムとして50g、白金として10g担持せ
しめて完成触媒を得た。 実施例 4 実施例1と同様の担体に7重量%の酸化ランタ
ンと3重量%の酸化ネオジムを含有するアルミナ
粉末のスラリーを実施例1と同様にして担体容積
1あたり酸化ランタンおよび酸化ネオジム含有
アルミナとして120g/を被覆担持せしめた。 次いで実施例1と同様にして担体容積1あた
りパラジウムとして60g、白金として30g担持せ
しめて完成触媒を得た。 実施例 5 400セル/平方インチの開孔部を有する直径
25.4mm、長さ50mmのアルミニウムチタネート担体
に8重量%の酸化ランタンおよび2重量%の酸化
ケイ素を含有するアルミナ粉末のスラリーを実施
例1と同様にして担体容積1あたり、酸化ラン
タンおよび酸化ケイ素含有アルミナとして150g
を被覆担持せしめた。 次いで実施例1と同様のパラジウムおよび白金
含有水溶液を用い空気中で600℃で5時間焼成し、
パラジウムとして40g、白金として20g担持せし
めて完成触媒を得た。 実施例 6 実施例1と同様の担体に実施例5と同様の酸化
ランタンおよび酸化ケイ素含有アルミナ粉末を
150g/被覆担持せしめた。 次いでこれをジニトロジアミノ白金を含有する
硝酸水溶液に浸漬し、乾燥したのち、空気中で
900℃にて5時間焼成し、担体容積1あたり白
金として20g担持せしめて完成触媒を得た。 実施例 7 400セル/平方インチの開孔部を有する直径
25.4mm、長さ50mmのコージエライトハニカム担体
に4重量%の酸化バリウムと2重量%の酸化プラ
セオジムを含有するアルミナ粉末のスラリーと平
均0.2ミクロンの粒径を有する白金ブラツク粉末
を充分混合して被覆処理し、乾燥した後空気中で
700℃にて焼成して、担体容積1あたり白金と
して30g担持せしめて完成触媒を得た。 比較例 1 実施例1と同様にして担体容積1あたりパラ
ジウムとして5g、白金として1g、酸化ニツケル
として100g担持せしめて完成触媒を得た。 比較例 2 実施例3と同様にして担体容積1あたりパラ
ジウムとして5g、白金として1g担持せしめて完
成触媒を得た。 比較例 3 実施例4と同様にして担体容積1あたりパラ
ジウムとして4g、白金として2g担持せしめて完
成触媒を得た。 比較例 4 実施例6と同様にして担体容積1あたり白金
として2g担持せしめて完成触媒を得た。 比較例 5 実施例4と同様にして担体容積1あたりパラ
ジウムとして60g、白金として150g担持せしめて
完成触媒を得た。 実施例 8 十分に保温された円筒型燃焼器を用い、ガス入
口側に実施例1、次いで実施例6、ガス出口側に
実施例4で得られた触媒を充填し、入口温度350
℃において3容量%のメタンを含有するメタン−
空気混合ガスを15気圧の加圧下で1時間あたり
167Nm2(STP)導入して燃焼実験を行ない燃焼
効率と触媒層出口温度を測定した。この場合、触
媒層入口線速は約20m/秒(500℃換算)であつ
た。 その結果、燃焼効率は約72%で触媒層出口温度
は約850℃であつた。 次いで、メタン濃度を4.1容量%にすると、燃
焼効率は100%となり、UHC,CO,NOxを実質
的に含有しないクリーンな燃焼ガスがえられた。
この場合、触媒層後方100mmの点の温度は約1300
℃に達していたが、触媒層出口温度は約870℃で
あつた。 引きつづき、3容量%相当分のメタンを触媒層
上流から、残り1.1容量%相当分のメタンを触媒
層出口より30mm後方から導入して、同様の燃焼実
験を行つた(実験番号1)。 その結果、触媒層出口温度は約860℃であり、
クリーンな約1300℃の燃焼ガスがえられた。また
この性能は1000時間にわたり維持継続した。な
お、実験番号1の燃焼実験の結果の詳細は、表−
1に示した。 実施例 9 十分に保温された円筒型燃焼器を用い、表−1
の実験番号2〜6に示すように実施例1〜7で得
られた完成触媒を、各々ガス入口側からガス出口
側に充填し、以下、実施例8においての実験番号
1と同様の燃焼実験を行い、その結果を表−1に
合わせて示した。 比較例 6 実施例8において、表−1の実験番号7〜9記
載の完成触媒を充填した以外は、実施例9と同様
にして触媒実験を行い、その結果を表−1に合わ
せて示した。 <効 果> この表−1より、以下の効果が示される。本発
明による触媒体を用いれば(実験番号1〜6)触
媒層温度は活性低下をおこさない1000℃以下に維
持されているにもかかわらず約1300℃のクリーン
な燃焼ガスがえられたのに対し、ガス入口側に比
較例1あるいは2、次いで比較例4、ガス出口側
に比較例3で得られた触媒を用いた場合(実験番
号7〜8)触媒層出口温度は450〜475℃で2次気
相燃焼が誘発される温度には上昇できず、触媒層
後方100mmの点の温度は445〜470で燃焼効率も約
10〜13%であつた。 さらに後段触媒に比較例5で得られた触媒を用
いた実験番号9の結果はパラジウムおよび白金の
全担持量が担体容積1あたり100gを上回り、
後段触媒層温度は940℃であつたが24時間後から
後段触媒層に活性低下がおこり、100時間で白金
族元素の凝集が顕著に認められた。 【表】
Detailed Description of the Invention <Industrial Field of Application> The present invention involves catalytically burning methane-based fuel, particularly natural gas containing methane as the main component and lower hydrocarbons such as ethane, propane, and butane, on a catalyst to produce nitrogen. We obtain clean combustion gas that does not substantially contain harmful components such as oxides (hereinafter referred to as NOx), carbon monoxide (hereinafter referred to as CO), and unburned hydrocarbons (hereinafter referred to as UHC), and the calorific value of the gas is converted into various types. The present invention relates to a combustion catalyst system and a combustion method using the same for use as a primary energy source, particularly in a gas turbine for power generation. <Prior art> A catalytic combustion system is known in which a dilute gas mixture of fuel mixed with air at a low concentration that does not fall within the combustible range is introduced into a catalyst layer and catalytically combusted on the catalyst to obtain high-temperature combustion gas. . Furthermore, when using such a catalytic combustion system to obtain combustion gas at a temperature of, for example, 600°C to 1500°C,
For example, even if air is used as an oxygen source, little or no NOx is generated, and CO,
It is also well known that it can be obtained without substantially containing UHC. Various systems have been proposed that utilize this clean, high-temperature combustion gas to generate heat or power, and general industrial exhaust gas treatment and thermal power recovery systems have already been put into practical use. Particularly in recent years, in response to increasing NOx regulations, research has begun to be conducted on the use of this high-temperature combustion gas as a primary power source such as gas turbines for power generation. These catalytic combustion systems include refractory metal oxides such as alumina and zirconia, and oxides of noble metals such as platinum, palladium, and rhodium, or base metals such as cobalt and nickel, which are catalytically active components.
Furthermore, a catalyst body in which a composite oxide such as LaCoO 3 is supported on a monolithic carrier has been proposed. <Problems to be Solved by the Present Invention> In a system using the catalyst system as described above and used as a primary power source such as a gas turbine, the catalyst is used under conditions of 5 to 30 atmospheres due to the characteristics of the turbine. It is normal for gas turbines to reach high temperatures of 1,000 to 1,300 degrees Celsius, and in order to improve the efficiency of gas turbines, there is a trend toward even higher temperatures and pressures. When a catalyst is used under such conditions, a conventional catalyst deteriorates rapidly due to the high temperature, and in the worst case, the catalyst carrier may melt down and fly off, damaging turbine blades and the like. As a combustion method that avoids catalyst deterioration and damage as described above and achieves the same purpose, a part of the fuel is catalytically burned in the catalyst layer, and the gas temperature is raised to a temperature that induces secondary gas phase combustion. Next, the remaining unburned fuel is subjected to secondary gas phase combustion behind the catalyst layer, or if necessary, secondary fuel is introduced and the remaining unburned fuel and the newly added secondary fuel are burned in the gas phase. A combustion method has been discovered that produces clean combustion gas at or above the desired temperature. In this case, the purpose of combustion in the catalyst layer is to raise the gas temperature to a temperature that induces secondary gas phase combustion, and it is not necessarily necessary to completely burn the gas in the catalyst layer, but to induce secondary gas phase combustion. If the gas temperature reaches a temperature higher than the specified temperature, it is necessary to increase the temperature in the catalyst layer in order to avoid deterioration and damage to the catalyst and to maintain stable secondary gas phase combustion. Rather, it is preferable to have a large amount of remaining unburned fuel. The entire amount of fuel that can reach the desired temperature may be introduced into the catalyst layer, a portion of which may be catalytically combusted to raise the temperature, and the remaining unburnt fuel may be subjected to secondary gas phase combustion. This is then introduced from the rear of the catalyst layer as a secondary fuel, and combined with the remaining unburned fuel, it is
Subsequent catalytic combustion may be performed. In this case, it is possible to avoid setting the catalyst layer temperature to an unnecessarily high temperature, and it is possible to avoid deterioration and damage to the catalyst, which is more preferable. Here, the temperature required to induce secondary gas phase combustion is determined by the type of fuel, residual fuel concentration (theoretical adiabatic combustion gas temperature), linear velocity, etc., and varies significantly depending on the type of fuel. In other words, in the case of easily flammable fuels such as propane and diesel oil, a temperature of about 700°C is sufficient under normal usage conditions, but when using flame-retardant methane or natural gas whose main component is methane, In this case, a high temperature of 750 to 1000°C is required, depending on the usage conditions. In addition, in order to function as a gas turbine, it is necessary to reduce pressure loss, keep the combustor to a small capacity, and increase the combustion load factor, so the catalyst capacity must be as small as possible. As a result, the linear velocity at the entrance of the catalyst layer is 5~
It will be used under extremely harsh conditions that are not found in conventional catalytic reactions, with a space velocity of 40 m/s (500°C equivalent) and a space velocity of 8 to 6 million hours. Under such high-pressure conditions, a part of the fuel is catalytically combusted with flammable gas, especially a flame-retardant gas such as methane, in the catalyst layer, the gas temperature is raised to a temperature that induces secondary gas phase combustion, and then The remaining unburned fuel is burned in the gas phase behind the catalyst layer, or if necessary, the secondary fuel is introduced and added to the remaining unburned fuel to burn the secondary fuel in the gas phase. When attempting to achieve complete combustion using a two-stage combustion method, the combustion efficiency of the catalyst decreases significantly as the fuel flow rate increases due to pressurization, and it is still difficult to obtain a practically completed catalyst body. It's not on. <Object of the invention> Therefore, the object of the present invention is to ignite flame-retardant methane fuel at a lower temperature with a smaller catalyst capacity even under the above-mentioned actual operating conditions of a gas turbine under high pressure, thereby reducing the combustion gas temperature. It can raise the temperature to 750 to 1000℃, has durability, and has CO,
The object of the present invention is to provide a combustion catalyst system that does not substantially contain harmful components such as NOx and UHC, and to provide an effective method for using the system. <Means for solving the problem> In order to achieve this objective, the present inventors used methane, which is the most flame-retardant among combustible gases, and conducted experiments under various conditions ranging from normal pressure to high pressure. We investigated catalytic combustion. As a result, the combustion reaction of methane mainly depends on the heterogeneous reaction on the catalyst surface at the gas inlet side, that is, the low-temperature region catalyst in the front stage, while on the gas outlet side, that is, in the high-temperature region in the rear stage. It was found that the reaction mainly depends on a homogeneous reaction in the gas phase. In other words, under the same linear velocity, as the gas density and gas flow rate increase due to pressurization, the heterogeneous reaction on the catalyst surface in the front stage is controlled by diffusion due to the mass transfer of the combustion gas.
It has been found that the rate-limiting reaction occurs on the surface of the catalyst, leading to a large decrease in combustion efficiency, while the combustion reaction in the gas phase in the latter stage leads to an improvement in combustion efficiency. As a result of extensive research into a catalyst layer suitable for the combustion reaction of methane as described above, the present invention was completed. That is, the combustion catalyst system of the present invention is divided into three catalyst layers, and one layer is placed on the gas inlet side for the flow of a high pressure, high linear velocity combustible mixed gas containing methane fuel and molecular oxygen. A front catalyst layer containing palladium and platinum as active ingredients, or palladium platinum and nickel oxide as active ingredients,
Next, the catalyst system consists of a middle catalyst layer containing platinum as an active component, and finally a rear catalyst layer containing platinum and palladium as active components on the gas outlet side. Loading amount is 10 per carrier volume
It is characterized by a range of ~100g, and ignites from a relatively low temperature in the front catalyst layer, reducing the combustion gas temperature.
Each of them is optimally designed so that the temperature can be raised to 750 to 1000°C, and the temperature does not exceed 1000°C. As a result, the catalytic activity for the methane combustion reaction is greatly improved, and the two-stage combustion is able to overcome the effects of increased space velocity (reduced contact time) and high linear velocity at the inlet, which degrade combustion performance under high pressure. They discovered that this method makes it possible to achieve complete combustion, reduce the catalyst capacity and improve the combustion load factor, and make it possible to put it into practical use in actual gas turbine combustors. Furthermore, the combustion catalyst system according to the present invention will be specifically explained. Catalysts containing palladium as the main active component are known to have particularly excellent low-temperature ignition of methane, as well as excellent heat resistance at high temperatures of around 1000°C. However, when a conventional catalyst containing palladium as an active ingredient is used for the purpose of the present invention, it is exposed to a high concentration of oxygen at a temperature of 500°C or less near the entrance of the catalyst layer, so palladium is oxidized and impairs the methane ignition performance. On the other hand, in the high temperature region near the outlet of the catalyst layer, the combustion reaction by the catalyst is suppressed and the combustion gas temperature does not actually rise to a high temperature of 750℃ or higher, probably due to a change in the oxidation state of palladium. There is a drawback. In contrast, according to the present invention, the gas inlet side of the combustion catalyst system, that is, the front catalyst layer, mainly contains palladium as an active ingredient, and the presence of a small amount of platinum improves methane ignition performance by converting palladium into oxide. This prevents deterioration and allows low-temperature ignition performance to be maintained for a long period of time. It is preferable that nickel oxide is further added,
In this case, since nickel exists as an oxide, oxygen is stably supplied to palladium from the air, so the combustion gas temperature can be controlled at high linear velocity and under high pressure.
The temperature can be raised to 500 to 700°C, or up to 750°C depending on the conditions, and then the combustion reaction can be easily started in the middle catalyst layer. Furthermore, in the middle catalyst layer containing platinum as an active ingredient, the combustion activity is further improved and the temperature can be raised to a temperature in the range of 650 to 900°C. Furthermore, the gas outlet side of the combustion catalyst system, that is, the latter stage catalyst layer, contains platinum and palladium as active ingredients, and platinum further promotes combustion and brings the combustion gas to a temperature of 900 to 1000°C. becomes possible. In many cases, when the catalyst temperature is exposed to a high temperature range of 1000℃ or higher, platinum is oxidized to PtO 2 and sublimated and scattered, but the coexistence of palladium prevents platinum from sublimating.
Combustion activity is stably maintained at a high level. As described above, the catalyst system of the present invention is characterized by a three-stage configuration that takes advantage of or combines the characteristics of each precious metal, and methane-based fuel is heated at 300 to 400°C under high pressure and high linear velocity. It ignites at low temperatures, has combustion activity to obtain a combustion gas temperature of 750 to 1000°C, and has heat resistance of 1000°C or higher. However, as mentioned above, a catalyst containing only palladium as an active ingredient does not lose its ignition performance as the combustion progresses, and due to its characteristics, the combustion gas temperature
Virtually no temperature rises above 750°C. Even a palladium-nickel oxide catalyst loses ignition performance in the same way as palladium alone. In addition, platinum alone cannot ignite methane-based combustion such as methane or natural gas at 300 to 400 degrees Celsius.
In practice, an ignition temperature of 500℃ or higher is required, but
It has excellent combustion activity, especially under high pressure and high linear velocity combustion conditions. Also,
Palladium-platinum-nickel oxide or palladium-platinum catalysts have sufficient ignition performance, but when the combustion gas temperature is lowered to 2.
The temperature cannot exceed the temperature at which secondary gas phase combustion is induced. As mentioned above, each one-stage configuration has its own drawbacks, especially under high-pressure combustion conditions.
It cannot be used as a practical catalyst and is not preferred. The amount of platinum group elements supported in the front catalyst layer and the middle catalyst layer is 20 to 100 g, preferably 30 to 80 g per carrier volume. The supporting ratio of palladium to platinum in the front catalyst layer is 1 to 25, preferably 2.
~10. In addition, when nickel oxide is added to the front catalyst layer, the amount of nickel oxide supported is suitably 10 to 150 g per carrier volume, preferably 50 to 150 g, in order to stably supply oxygen from air to palladium. It is 120g. The amount of platinum group elements supported in the latter catalyst layer is 10 to 80 g per carrier volume, preferably 20 to 50 g. When platinum and palladium coexist, the supporting ratio of palladium to platinum is
It is 0.1-10, preferably 0.2-5. The post-catalyst body may be prepared separately from a plurality of stages from the first stage to the second stage, and each catalyst may be directly connected or installed with a space provided therebetween, or it may be made into a complete catalyst as an integrated catalyst body. When prepared separately in multiple stages, even if there is a catalyst in which the amount of platinum group elements supported is less than 10 g per carrier volume, as long as the total amount of platinum group elements supported as a completed catalyst is 10 g or more. , of course, can be used. If the total amount of platinum group elements supported is less than 10g,
As the gas density and flow rate increase due to pressurization, the amount of active substance becomes insufficient relative to the number of methane molecules to be combusted. Therefore, the ignition temperature of methane is the ignition temperature of the front catalyst layer of the present invention.
The temperature is higher than that of 300 to 400°C, and a pilot burner is required for pre-combustion, and the ratio of pre-combustion in the pilot burner section for ignition increases, increasing the amount of NOx generated. Furthermore, even if it ignites, its combustion activity is low, fuel blows through frequently, and the temperature of the combustion gas does not rise sufficiently, making it difficult to cause a combustion reaction in the subsequent stage of the catalyst. In addition, the downstream catalyst also has low activity, resulting in insufficient combustion and a large amount of fuel blow-through, making complete combustion impossible and increasing the gas temperature to a temperature that induces secondary gas phase combustion. It is also very difficult to restrain them. Therefore, even if a catalyst having a total amount of platinum group elements supported of 10 g or less has high activity under normal pressure, it does not have sufficient combustion activity under pressure. On the other hand, if the total amount of platinum group elements supported exceeds 100g, although the dispersibility decreases, the combustion activity increases due to the increase in active substances, and the combustion gas temperature cannot be suppressed to below 1000℃, resulting in rapid activation. This is not preferable because it causes a decrease in the catalyst and the catalyst becomes very expensive. As the catalyst carrier, a monolith type carrier is preferable for the purpose of reducing pressure loss. Any monolith support commonly used in the field can be used, especially cordierite, mullite, α-alumina, zirconia, titania, titanium phosphate, aluminum titanate,
Heat-resistant ceramics such as petalite, spodium, aluminosilicate, magnesium silicate, zirconia-spinel, zircon-mullite, silicon carbide, silicon nitride, and kanthal,
A metal material such as Feclaroy is used. The cell size of the monolithic carrier is preferably large as long as combustion efficiency is not reduced, and each catalyst layer may have the same cell size or may be a combination of different cell sizes. A 400 cell type is used. The total catalyst layer length varies depending on the inlet linear velocity used, but is usually 50 to 50 mm due to the need to reduce pressure loss.
300mm is adopted, and the length of each layer also depends on pressure, fuel concentration,
It is optimally selected depending on usage conditions such as inlet linear speed and inlet temperature, but usually 10 to 200 mm is used for each layer. Platinum and palladium are particularly preferred as platinum group elements, but other elements such as rhodium and iridium may also be added. Furthermore, metal oxides such as nickel, cobalt, iron, and chromium, and composite oxides such as CoNiO 2 and LaCoO 3 also exhibit effects as active substances when used in combination with platinum group elements. These active ingredients and alumina are supported on the monolithic carrier and catalyzed. Refractory metal oxides such as silica-alumina, magnesia, titania, zirconia, and silica-magnesia can also be used. The above refractory metal oxides include alkaline earth metal oxides such as barium and strontium, lanthanum,
It is preferable to add a rare earth metal oxide such as neodymium, cerium, or praseodymium or silica oxide to stabilize the material. In particular, in the case of alumina, it is more preferable to use alumina stabilized with at least one oxide selected from the group consisting of lanthanum, cerium, samarium, neodymium, praseodymium, calcium, strontium, barium and silica. The catalyst component may be supported by coating with a refractory metal oxide and then impregnated with the active component in the form of a water-soluble salt, or by supporting or mixing the active component with the refractory metal oxide in advance. Then, it may be supported on a monolithic carrier. Examples of water-soluble salts include nitrates, sulfates, phosphates, halides, and dinitroamino salts.
Examples include palladium nitrate, palladium chloride, dinitrodiaminoplatinum, chloroplatinic acid, etc., and a carrier is impregnated with an aqueous solution of these.
1 at a temperature of 400-1000℃, preferably 600-900℃
It is obtained by baking for 24 hours, preferably 2 to 6 hours. The active ingredient, platinum, can also be supported together with the active refractory metal oxide in the form of platinum black having an average particle size of 0.01 to 5 microns. Nickel sources include nickel nitrate, nickel chloride, and nickel acetate, and nickel oxide may be used as is. The present invention can be made more effective by optimally selecting and combining these catalyst components from the inlet side to the outlet side depending on the usage conditions. The fuel used in the combustion catalyst system of the present invention is methane-based fuel, particularly natural gas containing methane as a main component and lower hydrocarbons such as ethane, propane, and butane. Furthermore, fermented methane from activated sludge treatment and low-calorie methane gas from coal gasification are also fuels that can be used in the present invention. Naturally, more flammable propane, light oil, etc. can also be used. The combustion catalyst system of the present invention is optimally incorporated into a power generation gas turbine system as described above, but can also be incorporated into a power generation boiler,
It can be advantageously incorporated into systems that efficiently recover heat and power, such as heat recovery boilers, heat recovery through after-treatment of gas from gas engines, and city gas heating. <Examples> The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples. Example 1 Diameter with 200 cells/in2 aperture
A cordierite honeycomb carrier measuring 25.4 mm and 50 mm in length was coated with a slurry of a mixture of alumina powder and nickel oxide powder containing 5% by weight of lanthanum oxide, dried, and then combusted in air at 700°C. hand,
100 g of lanthanum oxide-containing alumina and 100 g of nickel oxide were coated and supported per carrier volume. Next, this was immersed in an aqueous solution containing palladium nitrate and chloroplatinic acid, dried at 150°C,
The catalyst was calcined in air at 900° C. for 5 hours, and 50 g of palladium and 10 g of platinum were supported per carrier volume to obtain a completed catalyst. Example 2 Alumina powder containing 28.8% by weight of nickel oxide, 2% by weight of cerium oxide, and 1% by weight of strontium oxide was immersed in an aqueous solution containing palladium nitrate and chloroplatinic acid, dried, and then left in air.
24% by weight of palladium after firing at 600℃ for 3 hours.
3.9% by weight of platinum was supported. Next, this palladium and platinum-supported alumina powder slurry was coated on a mullite honeycomb carrier with a diameter of 25.4 mm and a length of 50 mm having pores of 200 cells/square inch, dried, and heated at 700°C in air.
By calcining for 5 hours, a completed catalyst was obtained in which 50 g of palladium, 8 g of platinum, and 60 g of nickel oxide were supported per carrier volume. Example 3 A slurry of alumina powder containing 5% by weight of lanthanum oxide was prepared in Example 1 on the same carrier as in Example 1.
In the same manner as above, 150 g of lanthanum oxide-containing alumina was coated and supported per unit volume. Next, in the same manner as in Example 1, 50 g of palladium and 10 g of platinum were supported per volume of the carrier to obtain a completed catalyst. Example 4 A slurry of alumina powder containing 7% by weight of lanthanum oxide and 3% by weight of neodymium oxide was added to the same carrier as in Example 1, and alumina containing lanthanum oxide and neodymium oxide was added per carrier volume in the same manner as in Example 1. As a result, 120 g/l was loaded on the coating. Next, in the same manner as in Example 1, 60 g of palladium and 30 g of platinum were supported per carrier volume to obtain a completed catalyst. Example 5 Diameter with 400 cells/in2 aperture
A slurry of alumina powder containing 8% by weight of lanthanum oxide and 2% by weight of silicon oxide was added to an aluminum titanate carrier having a size of 25.4 mm and a length of 50 mm in the same manner as in Example 1 to obtain lanthanum oxide and silicon oxide containing per carrier volume. 150g as alumina
was coated and supported. Next, using the same palladium and platinum-containing aqueous solution as in Example 1, it was calcined in air at 600°C for 5 hours.
A completed catalyst was obtained by supporting 40 g of palladium and 20 g of platinum. Example 6 The same lanthanum oxide and silicon oxide-containing alumina powder as in Example 5 was added to the same carrier as in Example 1.
150g/coating was carried. Next, this was immersed in a nitric acid aqueous solution containing dinitrodiaminoplatinum, dried, and then immersed in air.
The catalyst was calcined at 900° C. for 5 hours, and 20 g of platinum was supported per volume of the carrier to obtain a completed catalyst. Example 7 Diameter with 400 cells/in2 aperture
A slurry of alumina powder containing 4% by weight of barium oxide and 2% by weight of praseodymium oxide and platinum black powder having an average particle size of 0.2 microns were thoroughly mixed in a cordierite honeycomb carrier of 25.4 mm and 50 mm in length. After coating and drying in the air
The catalyst was calcined at 700° C. and 30 g of platinum was supported per volume of the carrier to obtain a completed catalyst. Comparative Example 1 In the same manner as in Example 1, 5 g of palladium, 1 g of platinum, and 100 g of nickel oxide were supported per volume of the carrier to obtain a completed catalyst. Comparative Example 2 In the same manner as in Example 3, 5 g of palladium and 1 g of platinum were supported per volume of the carrier to obtain a completed catalyst. Comparative Example 3 In the same manner as in Example 4, 4 g of palladium and 2 g of platinum were supported per volume of the carrier to obtain a completed catalyst. Comparative Example 4 In the same manner as in Example 6, 2 g of platinum was supported per volume of the carrier to obtain a completed catalyst. Comparative Example 5 In the same manner as in Example 4, 60 g of palladium and 150 g of platinum were supported per volume of the carrier to obtain a finished catalyst. Example 8 Using a sufficiently warmed cylindrical combustor, the gas inlet side was filled with the catalyst obtained in Example 1, then Example 6, and the gas outlet side was filled with the catalyst obtained in Example 4, and the inlet temperature was 350.
Methane containing 3% by volume methane at °C
Air mixed gas per hour under pressure of 15 atmospheres
Combustion experiments were conducted by introducing 167Nm 2 (STP) and the combustion efficiency and catalyst layer outlet temperature were measured. In this case, the linear velocity at the entrance of the catalyst layer was approximately 20 m/sec (calculated at 500°C). As a result, the combustion efficiency was about 72% and the catalyst bed outlet temperature was about 850°C. Next, when the methane concentration was increased to 4.1% by volume, the combustion efficiency became 100%, and clean combustion gas containing virtually no UHC, CO, or NOx was obtained.
In this case, the temperature at a point 100mm behind the catalyst layer is approximately 1300.
℃, but the catalyst layer outlet temperature was approximately 870℃. Subsequently, a similar combustion experiment was conducted by introducing methane equivalent to 3% by volume from upstream of the catalyst bed and the remaining methane equivalent to 1.1% by volume from 30 mm behind the outlet of the catalyst bed (Experiment No. 1). As a result, the catalyst bed outlet temperature was approximately 860℃,
Clean combustion gas of approximately 1300℃ was obtained. This performance was maintained for 1000 hours. For details of the results of the combustion experiment of experiment number 1, see Table-
Shown in 1. Example 9 Using a cylindrical combustor with sufficient heat insulation, Table 1
As shown in Experiment Nos. 2 to 6, the completed catalysts obtained in Examples 1 to 7 were filled from the gas inlet side to the gas outlet side, and the following combustion experiments were conducted in the same manner as Experiment No. 1 in Example 8. The results are shown in Table 1. Comparative Example 6 In Example 8, a catalyst experiment was conducted in the same manner as in Example 9, except that the completed catalysts listed in experiment numbers 7 to 9 in Table 1 were filled, and the results are shown in Table 1. . <Effects> From this Table-1, the following effects are shown. If the catalyst according to the present invention was used (experiment numbers 1 to 6), a clean combustion gas of about 1300°C could be obtained even though the catalyst bed temperature was maintained at 1000°C or less without causing a decrease in activity. On the other hand, when the catalyst obtained in Comparative Example 1 or 2 was used on the gas inlet side, followed by Comparative Example 4, and the catalyst obtained in Comparative Example 3 was used on the gas outlet side (experiment numbers 7 to 8), the catalyst layer outlet temperature was 450 to 475°C. The temperature cannot rise to the point where secondary gas-phase combustion is induced, and the temperature at a point 100 mm behind the catalyst layer is 445 to 470, and the combustion efficiency is approximately
It was 10-13%. Furthermore, the results of Experiment No. 9 using the catalyst obtained in Comparative Example 5 as the latter stage catalyst showed that the total supported amount of palladium and platinum exceeded 100 g per carrier volume.
Although the temperature of the latter catalyst layer was 940°C, the activity of the latter catalyst layer decreased after 24 hours, and significant aggregation of platinum group elements was observed after 100 hours. 【table】

Claims (1)

【特許請求の範囲】 1 メタン系燃料と分子状酸素とを含有する5〜
30気圧の高圧、500℃換算で5〜40m/秒の可燃
性混合ガスの流れに対して、ガス入口側にパラジ
ウムおよび白金を活性成分とする、あるいはパラ
ジウム、白金およびニツケル酸化物を活性成分と
する前段触媒層、次いで白金を活性成分とする中
段触媒層、最後にガス出口側に白金およびパラジ
ウムを活性成分とする後段触媒層を組合せた触媒
システムからなり、該触媒システムに担持された
パラジウムおよび白金の合計の全担持量が担体容
積1あたり10〜100gの範囲であることを特徴
とする高圧メタン系燃料の燃焼用触媒システム。 2 該前段触媒層のパラジウムの担持量は白金の
担持量に対して1〜25なる担持比であることを特
徴とする特許請求の範囲1記載の触媒システム。 3 該後段触媒層のパラジウムの担持量は白金の
担持量に対して0.1〜10なる担持比であることを
特徴とする特許請求の範囲1記載の触媒システ
ム。 4 各触媒中の活性成分がアルミナによつて被覆
されたモノリス担体に分散担持されてなることを
特徴とする特許請求の範囲1記載の触媒システ
ム。 5 該アルミナ被覆層がランタン、セリウム、サ
マリウム、ネオジム、プラセオジム、カルシウ
ム、ストロンチウム、バリウムおよびケイ素より
なる群から選ばれた少なくとも1種の元素の酸化
物によつて安定化されてなることを特徴とする特
許請求の範囲1記載の触媒システム。 6 該触媒システムがガスタービンの燃料燃焼用
触媒システムに用いられてなることを特徴とする
特許請求の範囲1記載の触媒システム。 7 メタン系燃料と分子状酸素とを含有する5〜
30気圧の高圧、500℃換算で5〜40m/秒の高線
速の可燃性混合ガスの流れに対してガス入口側に
パラジウムおよび白金を活性成分とする、あるい
はパラジウム、白金およびニツケル酸化物を活性
成分とする前段触媒層、次いで白金を活性成分と
する中段触媒層、最後にガス出口側に白金および
パラジウムを活性成分とする後段触媒層を組合せ
た触媒システムからなり、該触媒システムに担持
された白金およびパラジウムの合計の全担持量が
担体容積1あたり10〜100gの範囲である高圧
メタン系燃料の燃焼用触媒システムを用い、該触
媒システムにおいてメタン系燃料の一部のみを接
触燃焼せしめて、2次気相燃焼が誘発される温度
にまで燃焼ガスを昇温させることを特徴とする燃
焼方法。 8 特許請求の範囲7記載の燃焼方法において、
燃焼ガス温度を前段触媒層において、500〜750
℃、中段触媒層において650〜900℃、後段触媒層
において750〜1000℃の範囲の温度にまで昇温さ
せることを特徴とする燃焼方法。 9 2次気相燃焼が誘発される温度に昇温された
ガスにさらに2次燃料を供給して、2次気相燃焼
せしめることを特徴とする特許請求の範囲7記載
の燃焼方法。
[Claims] 1. 5- containing methane-based fuel and molecular oxygen.
For the flow of combustible mixed gas at a high pressure of 30 atm and a flow rate of 5 to 40 m/sec at 500°C, the gas inlet side contains palladium and platinum as active ingredients, or palladium, platinum and nickel oxide as active ingredients. The catalyst system consists of a front catalyst layer containing platinum as an active component, a middle catalyst layer containing platinum as an active component, and finally a rear catalyst layer having platinum and palladium as active components on the gas outlet side. A catalyst system for combustion of high-pressure methane fuel, characterized in that the total amount of platinum supported is in the range of 10 to 100 g per carrier volume. 2. The catalyst system according to claim 1, wherein the amount of palladium supported in the first catalyst layer is at a ratio of 1 to 25 to the amount of platinum supported. 3. The catalyst system according to claim 1, wherein the amount of palladium supported in the latter catalyst layer is at a ratio of 0.1 to 10 relative to the amount of platinum supported. 4. The catalyst system according to claim 1, wherein the active components in each catalyst are dispersed and supported on a monolithic carrier coated with alumina. 5. The alumina coating layer is stabilized by an oxide of at least one element selected from the group consisting of lanthanum, cerium, samarium, neodymium, praseodymium, calcium, strontium, barium and silicon. A catalyst system according to claim 1. 6. The catalyst system according to claim 1, wherein the catalyst system is used as a fuel combustion catalyst system for a gas turbine. 7 5~ containing methane fuel and molecular oxygen
For the flow of a combustible mixed gas at a high pressure of 30 atm and a high linear velocity of 5 to 40 m/s at 500°C, palladium and platinum are used as active ingredients on the gas inlet side, or palladium, platinum and nickel oxide are added to the gas inlet side. The catalyst system consists of a front catalyst layer containing platinum as an active component, a middle catalyst layer containing platinum as an active component, and finally a rear catalyst layer containing platinum and palladium as active components on the gas outlet side. Using a catalyst system for combustion of high-pressure methane-based fuel in which the total amount of platinum and palladium supported is in the range of 10 to 100 g per carrier volume, only a part of the methane-based fuel is catalytically combusted in the catalyst system. , a combustion method characterized by raising the temperature of combustion gas to a temperature that induces secondary gas phase combustion. 8. In the combustion method according to claim 7,
Set the combustion gas temperature at the front catalyst layer to 500 to 750.
A combustion method characterized by raising the temperature to a temperature in the range of 650 to 900°C in the middle catalyst layer and 750 to 1000°C in the latter catalyst layer. 9. The combustion method according to claim 7, characterized in that secondary fuel is further supplied to the gas heated to a temperature that induces secondary gas phase combustion to cause secondary gas phase combustion.
JP61224835A 1986-09-25 1986-09-25 Catalytic system for combustion of high pressure methane based fuel and combustion method using the same Granted JPS6380847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61224835A JPS6380847A (en) 1986-09-25 1986-09-25 Catalytic system for combustion of high pressure methane based fuel and combustion method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61224835A JPS6380847A (en) 1986-09-25 1986-09-25 Catalytic system for combustion of high pressure methane based fuel and combustion method using the same

Publications (2)

Publication Number Publication Date
JPS6380847A JPS6380847A (en) 1988-04-11
JPH0545293B2 true JPH0545293B2 (en) 1993-07-08

Family

ID=16819925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61224835A Granted JPS6380847A (en) 1986-09-25 1986-09-25 Catalytic system for combustion of high pressure methane based fuel and combustion method using the same

Country Status (1)

Country Link
JP (1) JPS6380847A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it

Also Published As

Publication number Publication date
JPS6380847A (en) 1988-04-11

Similar Documents

Publication Publication Date Title
US5551239A (en) Catalytic combustion system including a separator body
JPH0153579B2 (en)
EP0198948A2 (en) Catalytic combustor for combustion of lower hydrocarbon fuel
EP0685055B1 (en) Improved catalyst configuration for catalytic combustion systems
JPS61252408A (en) Method of igniting methane fuel
JPS6257887B2 (en)
JPH0156328B2 (en)
JPH0156324B2 (en)
JPS6380848A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPH0545295B2 (en)
JPH0156326B2 (en)
JPH0663627B2 (en) Combustion method of methane fuel by catalytic combustion catalyst system
JPH0545293B2 (en)
JPH0156325B2 (en)
JPS61252409A (en) Method of igniting methane fuel
JPS6352283B2 (en)
JPH0156330B2 (en)
JPH0156329B2 (en)
JPH0156327B2 (en)
JP2001227330A (en) Engine system
JPH02268830A (en) Catalyst for combustion of kerosene type fuel
JPS60147243A (en) Gas turbine combustor
JPS634852A (en) Catalyst for combustion
JP4226143B2 (en) Catalytic combustion apparatus and combustion control method thereof
JPS62149346A (en) Catalyst for combustion