JPH06159631A - Method for igniting combustion gas - Google Patents
Method for igniting combustion gasInfo
- Publication number
- JPH06159631A JPH06159631A JP32045292A JP32045292A JPH06159631A JP H06159631 A JPH06159631 A JP H06159631A JP 32045292 A JP32045292 A JP 32045292A JP 32045292 A JP32045292 A JP 32045292A JP H06159631 A JPH06159631 A JP H06159631A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- catalyst
- oxides
- palladium
- alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Gas Burners (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は可燃性ガス、例えば一酸
化炭素、水素、炭化水素などのガスを触媒を用いて燃焼
させる方法に関し、特に最も燃焼しにくいチタンを低温
から高温の幅広い温度範囲で安定して燃焼させうる触媒
燃焼方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for burning a combustible gas such as carbon monoxide, hydrogen and hydrocarbons using a catalyst, and particularly titanium, which is the most difficult to burn, in a wide temperature range from low temperature to high temperature. The present invention relates to a catalytic combustion method capable of stable combustion.
【0002】[0002]
【従来の技術】従来から、メタンなど低級炭化水素ガス
を燃料として用い、しかも一般的には触媒条件範囲とは
いえない希釈状態で燃焼反応させて高温のガスを得るた
めの触媒燃焼法は従来より知られている。この従来法に
おける燃焼用触媒としてはハニカム型のコージェライト
やムライトなどのセラミックスを基材とし、この基材に
アルミナ、シリカ、チタニア、ジルコニア単独またはこ
れらの酸化物のうち少なくとも2種以上の酸化物からな
る複合酸化物を含有する担体をウォッシュコートし、活
性成分として酸化パラジウムなどの貴金属酸化物を担持
させた触媒などが提案されている。2. Description of the Related Art Conventionally, a catalytic combustion method for obtaining a high-temperature gas by using a lower hydrocarbon gas such as methane as a fuel and performing a combustion reaction in a diluted state that is not generally within the range of catalyst conditions has been conventionally known. Better known. As the combustion catalyst in this conventional method, a honeycomb type ceramic such as cordierite or mullite is used as a base material, and alumina, silica, titania, zirconia alone or at least two or more oxides of these oxides are used as the base material. There has been proposed a catalyst in which a carrier containing a complex oxide composed of 1 is wash-coated and a noble metal oxide such as palladium oxide is supported as an active component.
【0003】また、最近ではアルミナ、シリカ、チタニ
ア、ジルコニア単独またはこれらの酸化物のうち少なく
とも2種以上の酸化物からなる複合酸化物及び希土類元
素の酸化物を含有する担体に酸化パラジウムを担持させ
た触媒などが提案されている。Recently, palladium oxide is supported on a carrier containing alumina, silica, titania, zirconia alone or a composite oxide consisting of at least two or more kinds of these oxides and an oxide of a rare earth element. Catalysts have been proposed.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上述し
た触媒を単独で使用する可燃性ガスの燃焼法において、
希土類元素の酸化物を含有しない担体を用いた触媒は低
温着火性には優れているが、800℃以上で酸化パラジ
ウムの凝集が起こり活性が低下するし、また耐熱性のあ
る希土類元素の酸化物を添加した担体を使用した触媒で
は逆に低温着火性が悪いという問題点がある。However, in the combustible gas combustion method using the above-mentioned catalyst alone,
A catalyst using a carrier containing no rare earth element oxide has excellent low-temperature ignitability, but the activity of the rare earth element oxide is reduced due to aggregation of palladium oxide at 800 ° C or higher, and heat resistance. On the contrary, a catalyst using a carrier to which is added has a problem that the low temperature ignitability is poor.
【0005】本発明は上記技術水準に鑑み、低温でも可
燃性ガスを燃焼させることができ、しかも高温において
も安定して完全酸化燃焼させうる方法を提供するもので
ある。In view of the above-mentioned state of the art, the present invention provides a method capable of combusting a combustible gas even at a low temperature and stably performing a complete oxidative combustion at a high temperature.
【0006】[0006]
【問題点を解決するための手段】本発明はパラジウム含
有触媒を用いて可燃性ガスを燃焼させる方法において、
耐熱性セラミックスを基材とし、これにアルミナ、シリ
カ、チタニア、ジルコニア単独またはこれらの酸化物の
うちの少なくとも2種以上の酸化物からなる複合酸化物
を含有する担体に、酸化パラジウムを担持させた触媒を
前段に、また耐熱性セラミックスを基材とし、これにア
ルミナ、シリカ、チタニア、ジルコニア単独またはこれ
らの酸化物のうち少なくとも2種以上の酸化物からなる
複合酸化物及び希土類元素の酸化物を含有する担体に、
酸化パラジウム及び酸化マグネシウムを担持させた触媒
を後段に配置することを特徴とする可燃性ガスの燃焼方
法である。The present invention provides a method for burning a flammable gas using a palladium-containing catalyst,
Palladium oxide was carried on a carrier containing heat-resistant ceramics as a base material and containing alumina, silica, titania, zirconia alone or a composite oxide consisting of at least two or more kinds of these oxides. A catalyst is provided in the preceding stage, and a heat-resistant ceramic is used as a base material, and alumina, silica, titania, zirconia alone or a composite oxide composed of at least two kinds of these oxides and an oxide of a rare earth element are added thereto. The carrier to contain,
A combustible gas combustion method, characterized in that a catalyst supporting palladium oxide and magnesium oxide is arranged in a subsequent stage.
【0007】本発明でいう触媒とはペレット(球または
円筒など)状またはハニカムタイプの担体に酸化パラジ
ウムを0.01重量%〜30重量%(全触媒重量基準)
担持させたもの、あるいは酸化パラジウムを上記担持量
及び酸化マグネシウムを0.01〜20重量%担持させ
たものである。The catalyst referred to in the present invention is a pellet (sphere or cylinder) or honeycomb type carrier containing 0.01% by weight to 30% by weight of palladium oxide (based on the total weight of the catalyst).
It is a supported one or a supported amount of palladium oxide and 0.01 to 20% by weight of magnesium oxide.
【0008】ここでいう担体とは、ムライト、コージェ
ライト、アルミニウムチタネート、ジルコニア、ジルコ
ニアスピネルなどの耐熱性セラミックスを基材とし、こ
れにアルミナ、シリカ、チタニア、ジルコニア単独また
はこれらの酸化物のうち少なくとも2種以上の酸化物か
らなる複合酸化物をハニカムタイプの耐熱性セラミック
ス基材100重量部当たり10〜50重量部、さらに希
土類元素の酸化物を含有したものについては上記酸化物
または複合酸化物に対し1〜20重量%含有したものを
ウォッシュコートしたものを意味する。The term "carrier" as used herein means a heat-resistant ceramic such as mullite, cordierite, aluminum titanate, zirconia or zirconia spinel as a base material, on which alumina, silica, titania or zirconia alone or at least one of these oxides is used. 10 to 50 parts by weight of a composite oxide composed of two or more kinds of oxides per 100 parts by weight of a honeycomb-type heat-resistant ceramic substrate, and the above oxide or composite oxide for those containing an oxide of a rare earth element. The content of 1 to 20% by weight is wash-coated.
【0009】[0009]
【作用】本発明の可燃性ガスの触媒燃焼方法において
は、前段(ガス入口側)にアルミナ、シリカ、チタニ
ア、ジルコニア単独またはこれらの酸化物のうち少なく
とも2種以上の酸化物からなる複合酸化物を含有した担
体に活性成分の酸化パラジウムを担持した触媒を、後段
に上記担体に希土類元素の酸化物を含有した担体に酸化
パラジウム及び酸化マグネシウムを担持した触媒を配置
するので、低温着火性がよく、高温でも安定して燃焼さ
せることができる。最も燃焼しにくいメタンの燃焼を例
に説明すると前段の触媒で400℃以下でメタンの酸化
を開始させ、前段の触媒層温度を700℃以下になるよ
うに制御し、後段の触媒で700〜1000℃の温度範
囲になるように制御することにより常に安定した燃焼を
保つことができる。以下、実施例により本発明を具体的
に説明する。In the method for catalytically burning combustible gas according to the present invention, alumina, silica, titania, zirconia alone or a composite oxide composed of at least two kinds of these oxides is provided in the preceding stage (gas inlet side). A catalyst containing palladium oxide as an active ingredient supported on a carrier containing a catalyst, and a catalyst containing palladium oxide and magnesium oxide supported on a carrier containing an oxide of a rare earth element in the above carrier are arranged at a later stage, so that the low temperature ignitability is good. It can be burned stably even at high temperature. Taking the combustion of methane, which is the most difficult to burn, as an example, the oxidization of methane is started at 400 ° C or lower by the catalyst of the first stage, the temperature of the catalyst layer of the first stage is controlled to be 700 ° C or less, and the catalyst of the second stage is 700-1000. Stable combustion can always be maintained by controlling the temperature range to be in the temperature range of ° C. Hereinafter, the present invention will be specifically described with reference to examples.
【0010】[0010]
(例1)1000℃で24時間焼成したγ−アルミナ粉
末(粒径60μm、比表面積70m2 /g)を1平方イ
ンチ当り200個の開口部(200セル)を有するコー
ジェライト製ハニカム基材へウォッシュコートし、50
0℃,5時間焼成して担体1を調製した。γ−アルミナ
のコート量はハニカム基材100重量部当り40重量部
であった。γ−アルミナの代わりに、シリカ(比表面積
78m2 /g)、チタニア(比表面積51m2 /g)、
ジルコニア(比表面積44m2 /g)、シリカ−アルミ
ナ複合酸化物(比表面積94m2 /g)を用いた以外は
同様の方法で担体2〜5を調製した。担体1〜5を酸化
パラジウム水溶液に浸漬し、乾燥後、500℃、5時間
焼成して酸化パラジウム10重量%(触媒全重量基準)
担持した触媒1〜5を調製した。(Example 1) γ-alumina powder (particle size 60 μm, specific surface area 70 m 2 / g) calcined at 1000 ° C. for 24 hours was made into a cordierite honeycomb substrate having 200 openings (200 cells) per square inch. Washcoat 50
Carrier 1 was prepared by baking at 0 ° C. for 5 hours. The coating amount of γ-alumina was 40 parts by weight per 100 parts by weight of the honeycomb substrate. Instead of γ-alumina, silica (specific surface area 78 m 2 / g), titania (specific surface area 51 m 2 / g),
Carriers 2 to 5 were prepared in the same manner except that zirconia (specific surface area 44 m 2 / g) and silica-alumina composite oxide (specific surface area 94 m 2 / g) were used. The carriers 1 to 5 were immersed in an aqueous palladium oxide solution, dried, and then calcined at 500 ° C. for 5 hours to give 10% by weight of palladium oxide (based on the total weight of the catalyst).
Supported catalysts 1-5 were prepared.
【0011】四塩化チタン溶液500gをイオン交換水
に溶解させ、pH=3になるようにイオン交換水を加え
る。次にγ−アルミナ165gを加え、3時間攪はん
後、アンモニア水をpH=9になるまで滴下する。1時
間そのまま攪はん後、沈殿物をろ過、洗浄し、さらに乾
燥器で一昼夜乾燥後、電気炉で500℃,5時間焼成続
いて1000℃,24時間焼成してチタニア−アルミナ
複合酸化物(TiO2 :Al2 O3 =56:44重量
比)を調製した。これをコージェライト製ハニカム基材
にウォッシュコートし、500℃,5時間焼成してコー
ジェライト製ハニカム基材100重量部当りチタニア、
アルミナ複合酸化物40重量部の担体6を調製した。担
体6を硝酸パラジウム水溶液に浸漬し、乾燥後、500
℃,5時間焼成して酸化パラジウム10重量%(触媒全
重量基準)担持した触媒6を調製した。500 g of titanium tetrachloride solution is dissolved in ion-exchanged water, and ion-exchanged water is added so that pH = 3. Next, 165 g of γ-alumina is added, and after stirring for 3 hours, aqueous ammonia is added dropwise until pH = 9. After stirring for 1 hour as it is, the precipitate is filtered, washed, dried in a drier for a whole day and night, and calcined in an electric furnace at 500 ° C. for 5 hours and then at 1000 ° C. for 24 hours to obtain a titania-alumina composite oxide ( TiO 2 : Al 2 O 3 = 56: 44 weight ratio) was prepared. This was wash-coated on a cordierite honeycomb base material and fired at 500 ° C. for 5 hours to obtain titania per 100 parts by weight of the cordierite honeycomb base material.
Carrier 6 containing 40 parts by weight of alumina composite oxide was prepared. The carrier 6 is dipped in an aqueous solution of palladium nitrate and dried, and then 500
A catalyst 6 supporting 10% by weight of palladium oxide (based on the total weight of the catalyst) was prepared by firing at 5 ° C. for 5 hours.
【0012】オキシ塩化ジルコニウム106gをイオン
交換水に溶解させ、pH=2になるようにイオン交換水
を加える。次にγ−アルミナ365gを加え、3時間攪
はん後、アンモニア水をpH=9になるまで滴下する。
1時間そのまま攪はん後、沈殿物をろ過、洗浄し、さら
に乾燥器で一昼夜乾燥後、電気炉で500℃,5時間焼
成続いて1000℃,24時間焼成してジルコニア−ア
ルミナ複合酸化物(ZrO2 :Al2 O3 =10:90
重量比)を調製した。これをコージェライト製ハニカム
基材にウォッシュコートし、500℃,5時間焼成して
コージェライト製ハニカム基材100重量部当りジルコ
ニア−アルミナ複合酸化物40重量部の担体7を得た。
担体7を硝酸パラジウム水溶液に浸漬し、乾燥後500
℃,5時間焼成して酸化パラジウム10重量%(触媒全
重量基準)担持させた触媒7を得た。106 g of zirconium oxychloride is dissolved in ion-exchanged water, and ion-exchanged water is added so that pH = 2. Next, γ-alumina (365 g) is added, and the mixture is stirred for 3 hours, and aqueous ammonia is added dropwise until pH = 9.
After stirring for 1 hour as it is, the precipitate is filtered, washed, dried in a drier for a whole day and night, and calcined in an electric furnace at 500 ° C. for 5 hours and then at 1000 ° C. for 24 hours to obtain a zirconia-alumina composite oxide ( ZrO 2 : Al 2 O 3 = 10: 90
(Weight ratio) was prepared. This was wash-coated on a cordierite honeycomb substrate and fired at 500 ° C. for 5 hours to obtain a carrier 7 of 40 parts by weight of zirconia-alumina composite oxide per 100 parts by weight of the cordierite honeycomb substrate.
The carrier 7 is immersed in an aqueous solution of palladium nitrate, dried and then 500
The mixture was calcined at 5 ° C. for 5 hours to obtain a catalyst 7 supporting 10% by weight of palladium oxide (based on the total weight of the catalyst).
【0013】(例2)例1で焼成した担体1〜7を用
い、硝酸ランタン、硝酸セリウム、硝酸ネオジムの各水
溶液または混合水溶液に浸漬後、100℃で乾燥、50
0℃で焼成し、希土類元素の酸化物1〜20wt%を含有
した担体8〜14を調製した。担体8〜14を硝酸パラ
ジウム、硝酸マグネシウム水溶液に浸漬し乾燥後、50
0℃で焼成したものを、さらに1000℃で5時間焼成
して酸化パラジウム10wt%及び酸化マグネシウム1〜
20wt%を担持した触媒8〜14を調製した。(Example 2) Using the carriers 1 to 7 calcined in Example 1, they were immersed in an aqueous solution of lanthanum nitrate, cerium nitrate, neodymium nitrate or a mixed aqueous solution, and then dried at 100 ° C, 50
By firing at 0 ° C., carriers 8 to 14 containing 1 to 20 wt% of a rare earth element oxide were prepared. Carriers 8 to 14 are immersed in an aqueous solution of palladium nitrate or magnesium nitrate, dried, and then 50
What was calcined at 0 ° C. was further calcined at 1000 ° C. for 5 hours to obtain 10 wt% of palladium oxide and 1 to magnesium oxide.
Catalysts 8-14 carrying 20 wt% were prepared.
【0014】(例3)触媒1〜7を前段(ガス入り口
側)、触媒8〜14を後段(ガス出口側)に配置し、メ
タン3%(残部空気)、ガス空間速度300,000h
-1の条件で、触媒層入口温度を2℃/min で昇温させ、
メタンが急激に反応を開始する着火温度と入口温度35
0℃でのメタン燃焼率を測定した結果及び触媒層出口温
度を900℃に保ちながら100時間の耐久性(エージ
ング)試験を行った後の試験結果を表1に示す。(Example 3) Catalysts 1 to 7 are arranged in the front stage (gas inlet side), catalysts 8 to 14 are arranged in the rear stage (gas outlet side), methane 3% (remainder air), gas space velocity 300,000 h.
Under the condition of -1 , raise the catalyst layer inlet temperature at 2 ° C / min,
Ignition temperature and inlet temperature at which methane suddenly starts reaction 35
Table 1 shows the measurement results of the methane combustion rate at 0 ° C. and the test results after a durability (aging) test for 100 hours while maintaining the catalyst layer outlet temperature at 900 ° C.
【0015】[0015]
【表1】 [Table 1]
【0016】(比較例)希土類元素の酸化物及び酸化マ
グネシウムを含有していない触媒1〜7を前段及び後段
に、希土類元素の酸化物及び酸化マグネシウムを含有す
る触媒8〜14を前段及び後段に配置し、例3と同様の
試験を行った結果を表2に示す。(Comparative Example) Catalysts 1 to 7 containing no rare earth element oxide and magnesium oxide in the front and rear stages, and catalysts 8 to 14 containing rare earth element oxide and magnesium oxide in the front and rear stages. Table 2 shows the result of the arrangement and the same test as in Example 3.
【0017】[0017]
【表2】 [Table 2]
【0018】表2のように希土類元素の酸化物及び酸化
マグネシウムを含有しない触媒を組み合わせた場合、着
火温度は350℃以下であるが、燃焼率は急激に低下し
た。また希土類元素の酸化物及び酸化マグネシウムを含
有する触媒を組み合わせた場合、着火温度は380℃以
上になり低温燃焼が困難であった。When a catalyst containing no rare earth element oxide and no magnesium oxide was combined as shown in Table 2, the ignition temperature was 350 ° C. or lower, but the burning rate decreased sharply. Further, when a catalyst containing a rare earth element oxide and magnesium oxide was combined, the ignition temperature was 380 ° C. or higher, and low temperature combustion was difficult.
【0019】[0019]
【発明の効果】以上詳述したように、本発明によれば酸
化開始温度が低く(着火性がよく)しかも高温において
も安定して可燃性ガスを完全燃焼させる方法を提供する
ことができる。As described in detail above, according to the present invention, it is possible to provide a method of completely burning a combustible gas with a low oxidation starting temperature (good ignitability) and at a high temperature.
Claims (1)
を燃焼させる方法において、耐熱性セラミックスを基材
とし、これにアルミナ、シリカ、チタニア、ジルコニア
単独またはこれらの酸化物のうちの少なくとも2種以上
の酸化物からなる複合酸化物を含有する担体に、酸化パ
ラジウムを担持させた触媒を前段に、また耐熱性セラミ
ックスを基材とし、これにアルミナ、シリカ、チタニ
ア、ジルコニア単独またはこれらの酸化物のうち少なく
とも2種以上の酸化物からなる複合酸化物及び希土類元
素の酸化物を含有する担体に、酸化パラジウム及び酸化
マグネシウムを担持させた触媒を後段に配置することを
特徴とする可燃性ガスの燃焼方法。1. A method of burning a flammable gas using a palladium-containing catalyst, wherein a heat-resistant ceramic is used as a base material, and alumina, silica, titania, zirconia alone or at least two or more kinds of these oxides are used. In a carrier containing a complex oxide consisting of an oxide of the above, a catalyst supporting palladium oxide in the preceding stage, and a heat resistant ceramics as a base material, alumina, silica, titania, zirconia alone or these oxides Combustion of a flammable gas, characterized in that a catalyst containing palladium oxide and magnesium oxide is disposed in a subsequent stage on a carrier containing a composite oxide composed of at least two or more kinds of oxides and an oxide of a rare earth element. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32045292A JPH06159631A (en) | 1992-11-30 | 1992-11-30 | Method for igniting combustion gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32045292A JPH06159631A (en) | 1992-11-30 | 1992-11-30 | Method for igniting combustion gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06159631A true JPH06159631A (en) | 1994-06-07 |
Family
ID=18121611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32045292A Withdrawn JPH06159631A (en) | 1992-11-30 | 1992-11-30 | Method for igniting combustion gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06159631A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007536074A (en) * | 2004-05-05 | 2007-12-13 | シーメンス パワー ジェネレーション インコーポレイテッド | Catalytically active coating and method of depositing on a substrate |
EP2374536A1 (en) * | 2010-04-08 | 2011-10-12 | Ford Global Technologies, LLC | Palladium-containing oxidation catalyst on ternary Al-Ti-Zr-oxide |
-
1992
- 1992-11-30 JP JP32045292A patent/JPH06159631A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007536074A (en) * | 2004-05-05 | 2007-12-13 | シーメンス パワー ジェネレーション インコーポレイテッド | Catalytically active coating and method of depositing on a substrate |
EP2374536A1 (en) * | 2010-04-08 | 2011-10-12 | Ford Global Technologies, LLC | Palladium-containing oxidation catalyst on ternary Al-Ti-Zr-oxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6133233A (en) | Combustion catalyst for methane fuel and combustion system using said catalyst | |
JPS61252408A (en) | Method of igniting methane fuel | |
JPS61252409A (en) | Method of igniting methane fuel | |
JP3872153B2 (en) | Exhaust gas purification catalyst | |
JPH0820054B2 (en) | Catalytic combustion method of combustible gas | |
JP3576312B2 (en) | Combustible gas combustion method | |
JPH06159631A (en) | Method for igniting combustion gas | |
JPS63267804A (en) | Oxidizing catalyst for high temperature service | |
JPH02268830A (en) | Catalyst for combustion of kerosene type fuel | |
JPS6380849A (en) | Catalytic system for combustion of high pressure methane based fuel and combustion method using the same | |
JPH0352642A (en) | Production of catalyst for combustion | |
JPH0512021B2 (en) | ||
JPH06331112A (en) | Burning method of combustible gas | |
JPH05296423A (en) | Method for igniting combustible gas | |
JPH06331113A (en) | Burning method of combustible gas | |
JP3244935B2 (en) | Combustible gas combustion method | |
JPS60205129A (en) | Combustor for gas-turbine | |
JPH09262472A (en) | Combustion method of combustible gas | |
JPH0949609A (en) | Burning method for combustible gas | |
JP3244938B2 (en) | Combustible gas combustion method | |
JPH0949608A (en) | Burning method for combustible gas | |
JPH05309272A (en) | Production of oxidation catalyst | |
JPS63267805A (en) | Oxidizing catalyst for high temperature service | |
JPH07293834A (en) | Method of burning combustible gas | |
JPS634852A (en) | Catalyst for combustion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000201 |