JPS60205116A - Combustion catalyst system and combustion therewith - Google Patents

Combustion catalyst system and combustion therewith

Info

Publication number
JPS60205116A
JPS60205116A JP59059350A JP5935084A JPS60205116A JP S60205116 A JPS60205116 A JP S60205116A JP 59059350 A JP59059350 A JP 59059350A JP 5935084 A JP5935084 A JP 5935084A JP S60205116 A JPS60205116 A JP S60205116A
Authority
JP
Japan
Prior art keywords
catalyst
layer
temperature
combustion
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59059350A
Other languages
Japanese (ja)
Other versions
JPS6352283B2 (en
Inventor
Makoto Horiuchi
真 堀内
Tetsutsugu Ono
哲嗣 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP59059350A priority Critical patent/JPS60205116A/en
Publication of JPS60205116A publication Critical patent/JPS60205116A/en
Publication of JPS6352283B2 publication Critical patent/JPS6352283B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To ignite natural gas at low temperature and raise a temperature of ignited gas up to a temperature of 750-1,000 deg.C by a method wherein a first layer is provided with a catalyst layer having as active component palladium and platinum, a second layer is provided with a catalyst layer having as active component platinum and a third layer is provided with a catalyst layer having as active component palladium or both palladium and platinum in an order from the inlet side, respectively. CONSTITUTION:A first layer catalyst having a superior characteristic of ignition at low temperature and having as active component palladium and platinum, a second layer catalyst having as active component platinum and a third layer catalyst having as active component palladium or both palladium and platinum are combined to each other. At the first layer catalyst near the inlet of the catalyst system, a reduction in igniting characteristic of methane is prevented and it is possible to increase the temperature of combustion gas up to 700- 800 deg.C, then it is increased up to 750-900 deg.C through the second layer catalyst and finally the combustion gas is reached to a temperature of 800-1,000 deg.C through the third layer catalyst.

Description

【発明の詳細な説明】 本発明は燃料を接触燃焼させる触媒システムおよびそれ
を用いた燃焼方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst system for catalytically combusting fuel and a combustion method using the same.

詳しく述べると、本発明は難燃性のメタンあるいはメタ
ンを主成分とする天然ガス燃料を触媒上で接触燃焼せし
め窒素酸化物(以下NOxとする−)、−酸化炭素(以
下COとする)、未燃焼炭化水素(以下UHCとする)
等の有害成分を実質的に含有しないだり焼ガスを得、そ
の熱量を各種のエネルギー源として用いるだめの触媒シ
ステムおよびそれを用いた燃焼方法を提供するものであ
る。
Specifically, the present invention catalytically burns flame-retardant methane or natural gas fuel mainly composed of methane on a catalyst to produce nitrogen oxides (hereinafter referred to as NOx), -carbon oxides (hereinafter referred to as CO), Unburned hydrocarbons (hereinafter referred to as UHC)
The object of the present invention is to provide a catalyst system that obtains incinerated gas substantially free of harmful components such as, and uses the calorific value as various energy sources, and a combustion method using the same.

更に詳しく述べると、本発明は高線速下、炭化水素類の
中で比較的難燃性といわれるメタンあるいはメタンを主
成分とする天然ガス燃料を触媒によって低温で着火せし
め、2次燃焼が誘発されるのに十分な温度に壕で昇温し
、次いで必要に応じて2次燃料を導入して残存未燃燃料
と二次燃料を燃焼させて、目的とする温度、あるいはそ
れ以上の高温に上げる燃焼システムに好適に用いられる
触媒システムおよびそれる用いた燃焼方法を提供するも
のである。
More specifically, the present invention uses a catalyst to ignite methane, which is said to be relatively flame-retardant among hydrocarbons, or natural gas fuel containing methane as its main component at a low temperature under high linear velocity, thereby inducing secondary combustion. The temperature is raised in the trench to a temperature sufficient to achieve the target temperature, and then secondary fuel is introduced as necessary to burn the remaining unburned fuel and secondary fuel to reach the target temperature or higher. The object of the present invention is to provide a catalyst system suitably used in a combustion system for increasing the temperature and a combustion method using the catalyst system.

燃料を燃焼範囲に入らない低い濃度で空気と混合した希
薄混合気体を触媒層へ導入し、触媒上で接触燃焼せしめ
高温の燃焼ガスをえるだめの触媒燃焼システムは公知で
ある。
A catalytic combustion system is known in which a dilute gas mixture of fuel mixed with air at a low concentration that does not fall within the combustible range is introduced into a catalyst layer and catalytically combusted on the catalyst to produce high-temperature combustion gas.

さらに、かかる触媒燃焼システムを用いてたとえば60
0℃から1500℃の燃焼ガスをえる場合、たとえ酸素
源に空気を用いてもNOxがほとんどないしは全く発生
することがなく、才だco、UHCも実質的に含有しな
いものとしてえられることもよく知られるところである
Furthermore, using such a catalytic combustion system, e.g.
When obtaining combustion gas at a temperature of 0°C to 1500°C, little or no NOx is generated even if air is used as the oxygen source, and it is often obtained as a combustion gas that does not substantially contain UHC. It is well known.

このクリーンな高温燃焼ガスを利用し、熱または動力を
えるシステムは各種提案され、一般厘業排ガスの処理お
よび熱動力回収システムはすでに実用化されるに至って
いる。
Various systems have been proposed to generate heat or power using this clean, high-temperature combustion gas, and systems for treating general commercial exhaust gas and for recovering heat and power have already been put into practical use.

また近年になり、高まるNOx規制への対応から、発1
L用ガスタービンなどの一次動力源用としてこの高温燃
焼ガスを利用する何列がなされるようになりつつある。
In addition, in recent years, in response to increasing NOx regulations,
More and more systems are being developed that utilize this high-temperature combustion gas as a primary power source for L-type gas turbines and the like.

これらの目的に使用される場合、撚モ・1−ガスは10
00〜1300℃の高温に達せしめるのが通常であり、
ガスタービンの効率向上のため、更に高温になる傾向に
ある。
When used for these purposes, the stranded mo.1-gas is 10
It is normal to reach a high temperature of 00 to 1300℃,
In order to improve the efficiency of gas turbines, there is a trend towards higher temperatures.

かかる条件下で、触媒を使用すると通常の触媒は高温の
ために急速に劣化し更に最悪の場合は触媒担体がメルト
ダウンし、飛散し、タービンのブレードなどを損傷して
し捷う可能性がある。
If a catalyst is used under such conditions, a normal catalyst will deteriorate rapidly due to high temperatures, and in the worst case scenario, the catalyst carrier may melt down and fly off, damaging turbine blades and other parts. be.

上記の如き触媒の劣化、損傷を避け、同等の目的をえる
燃焼方法として、触媒層において燃料の一部を燃焼させ
、2次燃焼が誘発される温度にまでガス温度を上昇せし
め、次いで触媒層後方で残存未燃燃料を2次燃焼させる
か、またけ必要であれt′;lI′2次燃料全燃料して
残存未燃燃料と新たに添加した2次燃料を、2次的に燃
焼させて目的とする温度、あるいはそれ以上の温度のク
リーンな燃焼ガスをえる燃焼方法が見出された。
As a combustion method that avoids catalyst deterioration and damage as described above and achieves the same purpose, a part of the fuel is combusted in the catalyst layer, the gas temperature is raised to a temperature that induces secondary combustion, and then the catalyst layer is heated to a temperature that induces secondary combustion. Either perform secondary combustion of the remaining unburned fuel at the rear, or perform secondary combustion of the remaining unburned fuel and newly added secondary fuel by burning all of the secondary fuel if necessary. A combustion method has been discovered that produces clean combustion gas at or above the desired temperature.

この場合、触媒層での燃焼は、ガス温度を2次燃焼が誘
発される温度にまで上昇させるのを目的としており必ず
しも触媒層で完全燃焼させる必要はなく、2次燃焼が誘
発される温度以上にガス温度が到達すれば、触媒の劣化
、損傷を避けるためにも、また、2次燃Iεを安定して
維持させるためにも、触媒層中でより高&11、にする
必要はなく、むしろ残存未燃燃料が多い方が好捷しい。
In this case, the purpose of combustion in the catalyst layer is to raise the gas temperature to a temperature that induces secondary combustion, and it is not necessarily necessary to completely burn the gas in the catalyst layer, but to raise the gas temperature to a temperature that induces secondary combustion. If the gas temperature reaches The more unburned fuel remaining, the better.

燃料は目的とする温度かえられる全h;゛を触媒層へ導
入し、 fjμを燃焼させて昇1品し、ついで残存未燃
燃料を2次燃焼させてもよいが、燃料の一部を残してお
き、これを2次燃料として触媒層後方から導入して残存
未燃燃料と合せて2次燃焼させてもよい。この場合触奴
層温変を必要以」二の高融とすることも避けられ、触媒
の劣化、損<1を避けることが出来、よシ好ま【7い。
The entire amount of fuel whose temperature can be changed to the desired temperature may be introduced into the catalyst layer, and fjμ may be combusted to form a catalytic product, and then the remaining unburned fuel may be subjected to secondary combustion, but some of the fuel may be left behind. This may then be introduced as a secondary fuel from behind the catalyst layer and combined with the remaining unburned fuel for secondary combustion. In this case, it is possible to avoid making the melting layer temperature change as high as necessary, and deterioration of the catalyst and loss of <1 can be avoided, which is preferable.

2次灯焼を誘発させるのに心安な温度は、燃料の種類、
残存燃料濃度(理論断熱燃焼ガス温度)、線速等によっ
て決まるが、燃料のJ+Ii力1によシ犬巾に異る。
The safe temperature for inducing secondary ignition depends on the type of fuel,
It is determined by the residual fuel concentration (theoretical adiabatic combustion gas temperature), linear velocity, etc., but varies greatly depending on the J+Ii force 1 of the fuel.

すなわち、プロパン、軽油等の易燃性の燃料の場合は通
常の使用条件下では約700°C程度でも十分であるが
、難燃性のメタン、あるいはメタンを主成分とする天然
ガスを燃料とする場合は使用条件によって異るものの7
50〜1000℃の高温が必要である。
In other words, in the case of easily flammable fuels such as propane and diesel oil, a temperature of about 700°C is sufficient under normal usage conditions, but when using flame-retardant methane or natural gas whose main component is methane, 7, although it varies depending on the conditions of use.
High temperatures of 50-1000°C are required.

最近の燃料事情から、この目的に使用される燃料はメタ
ンあるいはメタンを主成分とする天然ガスが中心であり
、本発明はとの難燃性の燃料を高線速下にできるだけ低
温で着火せしめ、燃焼ガス温度を750〜1000℃の
温度にまで上昇せしめる触媒を提供することを目的とす
る。
Due to recent fuel circumstances, the fuel used for this purpose is mainly methane or natural gas containing methane as its main component, and the present invention aims at igniting the flame-retardant fuel at a high linear velocity and at as low a temperature as possible. The object of the present invention is to provide a catalyst that can raise the combustion gas temperature to a temperature of 750 to 1000°C.

本目的に好適に用いられる触媒としては、貴金属系触媒
がふされしく、特にパラジウムを活性成分とする触媒が
望ましい。
As a catalyst suitably used for this purpose, a noble metal catalyst is suitable, and a catalyst containing palladium as an active component is particularly desirable.

パラジウムを活性成分とする触媒は特にメタンの低温着
火性にすぐれ、かつ1000℃程度の耐熱性にもすぐれ
た触媒である。
A catalyst containing palladium as an active component is particularly excellent in low-temperature ignition of methane and has excellent heat resistance at about 1000°C.

しかしながら、パラジウムを活性成分とする触媒を本発
明目的に使用した場合、触媒層入口付近においては50
08C以下の温度で高旋度の酸素にさらされるためパラ
ジウムは酸化されメタンの着火性能を失い、また一方、
触媒層出口付近では高温になり、パラジウムの酸化状態
が変化することによると考えられる理由から触媒による
燃焼反応は抑制され、燃焼ガス温度は750℃以上の高
温には上昇しないという欠点があることを見い出した。
However, when a catalyst containing palladium as an active component is used for the purpose of the present invention, 50%
Palladium is oxidized and loses its ability to ignite methane when exposed to high rotation oxygen at temperatures below 0.8C;
The temperature near the outlet of the catalyst layer becomes high, and the combustion reaction by the catalyst is suppressed, probably due to a change in the oxidation state of palladium, and the temperature of the combustion gas does not rise above 750°C. I found it.

本発明者らはこのパラジウムを活性成分とする触媒のす
ぐれた特徴に注目し、従来の触媒にみられる欠点を克服
するため鋭意研究の結果、本発明を完成するに至ったも
のである。
The present inventors have focused on the excellent characteristics of a catalyst containing palladium as an active ingredient, and have completed the present invention as a result of intensive research aimed at overcoming the drawbacks of conventional catalysts.

即ち、本発明による触媒システムは活性成分としてパラ
ジウムおよび白金より成る低温着火性にすぐれた第1層
触媒と、次いで存在する活性成分として白金より成る第
2層触媒と更に次いで存在する活性成分としてパラジウ
ムあるいはパラジウムと白金より成る第3層触媒を最適
に組合せて成るものである。
That is, the catalyst system according to the present invention includes a first layer catalyst having excellent low-temperature ignitability which is made of palladium and platinum as active ingredients, a second layer catalyst which is made of platinum as an active ingredient, and then a second layer catalyst which is made of platinum as an active ingredient. Alternatively, it is formed by optimally combining a third layer catalyst made of palladium and platinum.

本発明によれば、触媒システム入口付近の第1層触媒で
は少址の白金の存在により、パラジウムの酸化物化によ
るメタン着火性能の低下が防止され、長時間に亘り低温
着火性能を維持しつづけ、かつ燃焼ガス温度を700〜
SOO℃まで上昇させることが出来、次いで存在する白
金を活性成分とする第2層触媒によって燃焼ガス温度を
750〜900℃まで上昇せしめ、ノくラジウムの酸化
状態の変化に起因すると考えられる燃焼が抑制される温
度域を避けて第3層へ引きつがれる。
According to the present invention, the presence of a small amount of platinum in the first layer catalyst near the entrance of the catalyst system prevents deterioration of methane ignition performance due to palladium oxidation, and maintains low-temperature ignition performance for a long time. And the combustion gas temperature is 700~
The temperature of the combustion gas was then raised to 750-900°C by the second layer catalyst containing platinum as an active ingredient, and combustion, which is thought to be caused by a change in the oxidation state of radium, occurred. It is carried to the third layer avoiding the temperature range where it is suppressed.

史についで存在する耐熱性にすぐれた第3層触媒によっ
て燃焼が促進され燃焼ガスは800〜1000℃の温度
に到達することが可能になることを見出したのである。
It was discovered that combustion is promoted by the third-layer catalyst, which has existed for a long time and has excellent heat resistance, and the combustion gas can reach a temperature of 800 to 1000°C.

その結果、触媒層全体として、メタンあるいはメタンを
主成分とする天然ガス燃料を低温で着火させ、800〜
1000℃の温度にまで燃焼ガスを上昇せしめることが
可能となり、かつ、その性能を長時間に亘り維持しつづ
けることが可能となったのである。
As a result, the catalyst layer as a whole was able to ignite methane or natural gas fuel containing methane as its main component at a low temperature.
It has become possible to raise the temperature of combustion gas to 1000°C, and to maintain this performance for a long time.

各層触媒は別個に調製し、各触媒を直結してまたはその
間に空間を設けて設置してもよいし、あるいは一体物の
触媒において各層の触媒を担持して完成触媒をえてもよ
い。
Each layer catalyst may be prepared separately and each catalyst may be directly connected or installed with a space provided between them, or a complete catalyst may be obtained by supporting the catalysts of each layer in an integrated catalyst.

触媒の形状は圧力損失を少くする目的から、モノリスタ
イプのものが好ましい。モノリス担体は通常当該分野で
使用されるものであればいずれも使用可能であり、とく
にコージェライト、ムライト、α−アルミナ、ジルコニ
ア、チタニア、リン酸チタン、アルミニウム、チタネー
ト、ベタライト、スボジュメン、アルミノシリケート、
ケイ酸マグネシウム、ジルコニア−スピネル、ジルコン
−ムライト、炭化ケイ素、窒化ケイ素などの耐熱性セラ
ミック賀のものやカンクル、フエクラロイ等の金ム1製
のものが使用される。
The shape of the catalyst is preferably a monolith type for the purpose of reducing pressure loss. Any monolith carrier commonly used in the field can be used, in particular cordierite, mullite, α-alumina, zirconia, titania, titanium phosphate, aluminum, titanate, betalite, subodumene, aluminosilicate,
Heat-resistant ceramic materials such as magnesium silicate, zirconia-spinel, zircon-mullite, silicon carbide, and silicon nitride, and metal materials such as Kankle and Feclaroy are used.

モノリス担体のセルサイズは、燃焼効率が低下しない限
り太きいものが好ましく、各触媒層は同一セルサイズで
もよいし、また異るセルサイズのものを組合せて用いて
もよく、通常−平方インチあたり40〜400セルのも
のが用し)られる。
The cell size of the monolithic carrier is preferably large as long as the combustion efficiency is not reduced.Each catalyst layer may have the same cell size or may be a combination of different cell sizes.Usually - per square inch 40 to 400 cells are used).

全触媒層長は特に使用される入口6速によって異るが、
圧力損失を少くする必要から通′1・K50〜5000
が採用され、触媒各層の長さも入口線速、入口温度等の
使用条件によって最適に選択されるが、通常各層共25
〜250龍が採用される。
The total catalyst layer length varies depending on the inlet 6 speed used, but
Due to the need to reduce pressure loss, 1/K50~5000
The length of each catalyst layer is optimally selected depending on the usage conditions such as inlet linear velocity and inlet temperature, but usually each layer is 25 mm long.
~250 dragons will be adopted.

第11−に用いられる触媒は通常上記モノリス担体に、
アルミナ、シリカ−アルミナ、マグネシア、チタニア、
ジルコニア、シリカ−マグネシアなどの活性耐火性金属
酸化物をコートして使用する。特にアルミナまたはジル
コニアが好ましく、更にバリウム、ストロンチウムなど
のアルカリ土類金属酸化物、ランタン、セリウム、ネオ
ジム、プラセオジムなどの希土類金属酸化物を添加し、
安定化して用いるとよシ好ましい。
The catalyst used in No. 11- is usually on the above-mentioned monolithic carrier,
Alumina, silica-alumina, magnesia, titania,
Used by coating with active refractory metal oxide such as zirconia or silica-magnesia. In particular, alumina or zirconia is preferred, and alkaline earth metal oxides such as barium and strontium, and rare earth metal oxides such as lanthanum, cerium, neodymium, and praseodymium are added.
It is preferable to use it after stabilizing it.

そのあと、パラジウムおよび白金の活性主成分を水溶性
の塩の形で含浸せしめ触媒化する。
Thereafter, the active principal components of palladium and platinum are impregnated and catalyzed in the form of water-soluble salts.

あるいはあらかじめ活性主成分を活性、耐火性金属酸化
物に担持せしめ、そののちモノリス担体にコートするこ
とによって触媒化することもできる。
Alternatively, the active main component can be supported on an active, refractory metal oxide in advance and then catalyzed by coating it on a monolithic carrier.

パラジウムは完成触媒11あたり2〜1002、好まし
くは5〜502担持され、また、白金はパラジウムに対
し、重坑比で02〜50%、好ましくは05〜30%添
加して用いられる。
Palladium is supported in a proportion of 2 to 1,002, preferably 5 to 50, per finished catalyst 11, and platinum is added in an amount of 02 to 50%, preferably 05 to 30%, based on palladium.

第2層に用いられる触媒も同様にして白金を担持して触
媒化することができるが、この場合触媒が高活性すぎ、
触媒層で温度が1000℃以上に昇温して白金の昇華な
どの失活現象を引きおこす可能性がある。これを甘け、
触媒I8譚、度を950℃以下に保つためには、白金の
担持量を減少させる方法、出来上がシ触媒を使用に先た
ち1000℃をこえる高温で焼成しておく方法、白金ブ
ラック等の粗大化された白金粒子を用いる方法、触媒の
セルサイズと層長な最適に選択する方法等が見出されて
いるが、これらはその使用条件、すなわち燃料の種類、
4度(理論断熱燃焼ガス温度)、口達等によって最適に
選択することができる。
The catalyst used in the second layer can be catalyzed by supporting platinum in the same way, but in this case the catalyst is too highly active,
There is a possibility that the temperature in the catalyst layer may rise to 1000° C. or higher, causing deactivation phenomena such as sublimation of platinum. Please take this lightly
Catalyst I8: In order to keep the temperature below 950℃, there is a method of reducing the amount of platinum supported, a method of firing the finished catalyst at a high temperature exceeding 1000℃ before use, a method of using platinum black, etc. Methods using coarsened platinum particles, methods of optimally selecting catalyst cell size and layer length, etc. have been discovered, but these methods depend on the conditions of use, i.e., the type of fuel,
4 degrees (theoretical adiabatic combustion gas temperature), the temperature can be optimally selected depending on the temperature, etc.

また第3層に用いられる触媒も第1 )1“dに用いら
れる触媒と同様にしてパラジウムあるいはパラジウムと
白金を担持して触媒化することが出来、この場合、パラ
ジウム9担持量は完成触媒11あたり2〜200り、好
ましくは5〜1002、白金の担持量はO〜202、好
ましくはO〜10fが適している。
In addition, the catalyst used in the third layer can be catalyzed by supporting palladium or palladium and platinum in the same manner as the catalyst used in the first layer 1). In this case, the amount of palladium 9 supported is 11 Appropriately, the supported amount of platinum is 0 to 202 f, preferably 0 to 10 f, preferably 5 to 100 f.

また、各層の触媒共活性耐火性金属酸化物を用いずモノ
リス担体に直接担持してもよい。
Alternatively, the catalyst may be directly supported on a monolithic carrier without using the catalyst-coactive refractory metal oxide in each layer.

本発明の触媒を用いた燃焼システムに用いられる燃料は
、メタンないしメタンを主成分として含有する燃料であ
る。代表的なものは、天然ガスである。天然ガスは産地
によシ成分比は若干異るものの、はぼ80%以上のメタ
ンを含有している。また活性汚泥処理などからの1Δ醇
メタンや石炭ガス化による低カロリーメタンガスなども
本発明で用いられる燃料である。またより易燃性のプロ
パン、軽油等も当然使用することができる。
The fuel used in the combustion system using the catalyst of the present invention is methane or a fuel containing methane as a main component. A typical example is natural gas. Natural gas contains more than 80% methane, although the composition ratio varies depending on the region of production. In addition, 1Δ methane from activated sludge treatment and low-calorie methane gas from coal gasification are also fuels that can be used in the present invention. Naturally, more flammable propane, light oil, etc. can also be used.

本発明の触媒あるいは触媒を用いた燃焼システムは、前
述したように発電用ガスタービンシステムに最適に組み
込まれるものであるが、それ以外にも発電用ボイラ、熱
回収用ボイラ、ガスエンジンからのガスの後処理による
熱回収、都市ガス暖房など熱・動力回収を効率よく行な
うために利用される。
The catalyst of the present invention or the combustion system using the catalyst can be optimally incorporated into a gas turbine system for power generation as described above, but it can also be incorporated into a power generation boiler, a heat recovery boiler, or a combustion system that uses gas from a gas engine. It is used to efficiently recover heat and power through post-processing, city gas heating, etc.

以下に本発明を実施例等によりさらに具体的に説明する
が、本発明はこれらの実施例のみに限定されるものでは
ない。
EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 200セル/平方インチの開孔部を有する直径25.4
ml、長さ50韻のコージェライト/Sニカム担体に、
5重量%の酸化ランタンを含有するアルミナ粉末のスラ
リーを被覆処理し、空気中900℃にて焼成して担体1
1あたり100りを被覆担持せしめた。
Example 1 25.4 diameter with 200 cells/inch square aperture
ml, length 50 rhymes cordierite/S nicum carrier,
A slurry of alumina powder containing 5% by weight of lanthanum oxide was coated and fired at 900°C in air to form carrier 1.
The coating amount was 100 grams per one coat.

次いでこれを硝酸パラジウムおよび塩化白金酸を含有す
る水溶液に浸偵し、乾燥して空気中700℃で焼成し、
担体11あたり、パラジウムとして102、白金として
22を担持せしめて完成触媒をえた。
This was then soaked in an aqueous solution containing palladium nitrate and chloroplatinic acid, dried and calcined in air at 700°C.
A complete catalyst was obtained by loading 102 pieces of palladium and 22 pieces of platinum on 11 pieces of carrier.

実施例2 実施例1と同様にして担体xllあたシ1001の5重
its酸化ランタン含有アルミナ粉末を核種担持せしめ
た。
Example 2 In the same manner as in Example 1, a 5-layer ITS lanthanum oxide-containing alumina powder of Xll Atashi 1001 was loaded with a nuclide.

次いでこれを塩化白金酸を含有する水溶液に浸漬し、乾
燥して空気中900℃で焼成し、白金として担体11あ
たり22担持せしめて、完成触媒をえた。
Next, this was immersed in an aqueous solution containing chloroplatinic acid, dried, and calcined in air at 900° C., so that 22 platinum particles were supported per 11 supports to obtain a completed catalyst.

実施例3 実施例1と同様にして7重括チの酸化ネオジムを含有す
るアルミナ粉末を担体11あたシ1502被覆担持せし
めた。
Example 3 In the same manner as in Example 1, alumina powder containing 7 blocks of neodymium oxide was supported on the carrier 11 and covered with 1502.

次いで実施例1と同様にして担体11あたりパラジウム
として202、白金として52を担持せしめて完成触媒
をえた。
Next, in the same manner as in Example 1, 20 2 of palladium and 52 of platinum were supported on carrier 11 to obtain a completed catalyst.

実施例4 7重量%酸化ランタン、3重量%ネオジム酸化物含有ア
ルミナ粉末を用い実施例1と同様にして該アルミナ粉末
を担体1!あたり120?被覆担持せしめた。
Example 4 Using alumina powder containing 7% by weight of lanthanum oxide and 3% by weight of neodymium oxide, the alumina powder was used as carrier 1! in the same manner as in Example 1. 120 per? It was coated.

次いでこれをジニトロ ジアミノ白金の硝酸溶液を含有
する水溶液に浸漬し、乾燥して空気中1150℃で焼成
することにより、担体11あたり白金として15Fを担
持せしめて完成触媒をえた。
Next, this was immersed in an aqueous solution containing a nitric acid solution of dinitrodiaminoplatinum, dried, and calcined in air at 1150°C, thereby supporting 15F as platinum on the carrier 11 to obtain a completed catalyst.

実施例5 40セル/平方インチの開孔部を有する直径25゜4龍
、長さ15龍のムライトハニカム担体に10重量−酸化
ランタン、20重量%酸化セリウムを含有するアルミナ
粉末のスラリーを被覆処理し、空気中1000℃゛で焼
成して担体1ノあたシ802を被り担持せしめた。
Example 5 A mullite honeycomb carrier having a diameter of 25° and a length of 15 mm with openings of 40 cells/square inch was coated with a slurry of alumina powder containing 10% by weight of lanthanum oxide and 20% by weight of cerium oxide. Then, it was calcined in air at 1000° C., and the support 1 was covered with a sheet 802 to support it.

次いで実施例4と同様にして担体11あたり白金として
15fを担持せしめて完成触媒をえた。
Next, in the same manner as in Example 4, 15f of platinum was supported on the carrier 11 to obtain a completed catalyst.

実施例6 夾流側工と同様のハニカム担体に5■(fIi′チのセ
リウム限化物を含有するアルミナ粉末のスラリーと、平
均粒径5μを有する白金粉末を充分混合して被覆処理し
、乾燥、900℃にて焼成することにより担体11あた
り1002の5重i%セリウム酸化物含有アルミナとシ
02の白金を担持せしめて完成触媒をえた。
Example 6 A honeycomb carrier similar to that used in the flow side work was coated with a slurry of cerium-limited alumina powder containing 5 μm (fIi') and platinum powder having an average particle size of 5 μm, and then coated and dried. By firing at 900° C., 1002 of alumina containing 5wt i% cerium oxide and 02 of platinum were supported on carrier 11 to obtain a completed catalyst.

実施例7 白金を含有しない他は実施例1と全く同様にして完成触
媒をえた。
Example 7 A finished catalyst was obtained in exactly the same manner as in Example 1 except that platinum was not contained.

実施例8 白金を含有しない他は実施例3と全く同様にして完成触
媒をえた。
Example 8 A finished catalyst was obtained in exactly the same manner as in Example 3 except that it did not contain platinum.

比較例1 800℃で焼成した他は実施例4と全く同様にして担体
11あたり白金として152担持せしめて完成触媒をえ
た。
Comparative Example 1 A completed catalyst was obtained in exactly the same manner as in Example 4 except that the catalyst was calcined at 800° C., and 152 platinum was supported on carrier 11.

実施例9 十分に保温された円筒型燃焼器を用い、上流側より第1
層に実施例1でえられた触媒、第2層に実施例2でえら
れた触妓、第3層に実施例1でえられた触媒を充填し、
入口温度350℃において3容量矛のメタンを含有する
メタン−空気混合気体を1時間あたシ16.7NIIL
′導入して燃焼効率と触媒層出口温度を測定した。この
場合、触媒層入口線速は約30m/秒であった。
Example 9 Using a cylindrical combustor with sufficient heat insulation, the first
The layer was filled with the catalyst obtained in Example 1, the second layer was filled with the catalyst obtained in Example 2, the third layer was filled with the catalyst obtained in Example 1,
At an inlet temperature of 350°C, a methane-air mixture containing 3 volumes of methane was heated to 16.7 NIIL per hour.
'The combustion efficiency and catalyst bed outlet temperature were measured. In this case, the linear velocity at the entrance of the catalyst layer was about 30 m/sec.

その結果、燃焼効率は約81条で、触媒層出口温度は約
920℃であった。
As a result, the combustion efficiency was about 81 degrees, and the catalyst layer outlet temperature was about 920°C.

次いで、メタン濃I支を41容量係にすると、燃焼効率
は100%となり、未燃焼炭化水素、−酸化炭素、窒素
酸化物を実質的に含有しないクリーンな燃焼ガスかえら
れた。この場合、触媒層後方100龍の点の温度は約1
300℃に達していたが、触媒層出口温度は約925℃
であった。
Next, when the methane concentrate was increased to 41 volumes, the combustion efficiency became 100%, and a clean combustion gas containing substantially no unburned hydrocarbons, carbon oxides, or nitrogen oxides was produced. In this case, the temperature at a point 100 meters behind the catalyst layer is approximately 1
The temperature reached 300℃, but the catalyst layer outlet temperature was about 925℃.
Met.

引きつづき、3容量チ相当分のメタンを触媒ノー上流か
ら、残り1.1容量チ相当分のメタンを触媒層出口より
30nz後方からへ;ス大して、同様の燃焼実験を行っ
た。
Subsequently, a similar combustion experiment was carried out by introducing methane equivalent to 3 volumes from upstream of the catalyst nozzle and the remaining methane equivalent from 1.1 volumes from 30 nz behind the catalyst bed outlet.

その結果、触媒層出口減反は約920℃であり、クリー
ンな約1300”Cの燃焼ガスかえられた。またこの性
hdは500時間にわたり維持継続した。
As a result, the velcro reduction at the outlet of the catalyst bed was about 920°C, and clean combustion gas of about 1300''C was returned.This property hd was maintained continuously for 500 hours.

実施例10 実施例7と同様にして表−1のとおりの触媒を用い、3
容量チ相描分のメタンを触媒層上流から、残り1.1容
量チ相当分のメタンを触媒層出口よ#)30m後方から
導入して燃焼実験を行った。
Example 10 In the same manner as in Example 7, using the catalysts shown in Table 1, 3
A combustion experiment was carried out by introducing methane equivalent to the capacity of the catalyst layer from upstream of the catalyst layer, and introducing methane equivalent to the remaining 1.1 volume from 30 m behind the catalyst layer outlet.

結果は表−1のとおりであり、本発明による触媒システ
ムを用いれば触媒層温度値活性低下をおこさない100
0℃以下に維持されているKもかかわらず約1300℃
のクリーンな燃焼ガスがえられたのに対し、上流側に比
較例1の触媒を用いた触媒Zステムでは急速に着火不能
になり、また下流側に比較例2の触媒を用いた触媒シス
テムでは、高活性すぎ、触媒層温度が高温になシ、その
結果、活性は急速に低下し、又、白金の昇華現象が認め
られた。
The results are shown in Table 1, and the use of the catalyst system according to the present invention shows that the temperature value of the catalyst layer does not decrease in activity.
Approximately 1300℃ despite K being maintained below 0℃
However, the catalyst Z stem using the catalyst of Comparative Example 1 on the upstream side rapidly became unable to ignite, and the catalyst system using the catalyst of Comparative Example 2 on the downstream side However, the activity was too high and the catalyst layer temperature was not high enough, resulting in a rapid decrease in activity and a sublimation phenomenon of platinum was observed.

Claims (6)

【特許請求の範囲】[Claims] (1)燃焼−空気混合気体の流れに対して、入口側より
第1層にパラジウムおよび白金を活性成分とする触媒層
、第2層に白金を活性成分とする触媒層、第3層にパラ
ジウムまたはパラジウムおよび白金を活性成分とする触
媒層を設けてなることを特徴とする燃焼用触媒システム
(1) From the inlet side, the first layer is a catalyst layer containing palladium and platinum as active ingredients, the second layer is a catalyst layer containing platinum as an active ingredient, and the third layer is palladium. Alternatively, a combustion catalyst system comprising a catalyst layer containing palladium and platinum as active ingredients.
(2)各活性成分がアルミナによって被粉されたモノリ
ス担体に分散担持されてなることを特徴とする特許請求
の範囲(1)記載の触媒システム。
(2) The catalyst system according to claim (1), wherein each active ingredient is dispersed and supported on a monolithic carrier coated with alumina.
(3) アルミナ被覆層がランタン、イツトリウム、セ
リウム、サマリウム、ネオジムおよびプラセオジムより
なる群から選ばれた少なくとも1種の酸化物によって安
定化されてなることを特徴とする特許請求の範囲(2)
記載の触媒システム。
(3) Claim (2) characterized in that the alumina coating layer is stabilized with at least one oxide selected from the group consisting of lanthanum, yttrium, cerium, samarium, neodymium, and praseodymium.
Catalyst system as described.
(4)特許請求の範囲m、(2)または(3)記載の触
媒システムを用い、該システムにおいて燃料の一部のみ
を燃焼せしめて2次燃焼が誘発される温度にまで燃焼ガ
スを昇温させることを特徴とする燃焼方法。
(4) Using the catalyst system according to claim m, (2) or (3), the combustion gas is heated to a temperature at which only a part of the fuel is combusted and secondary combustion is induced in the system. A combustion method characterized by:
(5) 特許請求の範囲(4)記載の燃焼方法において
、燃焼ガス温度を第1触媒層において700〜800℃
、第2触媒層において750〜900℃、第3触媒層に
おいて800〜1000℃まで上昇させることを特徴と
する燃焼方法。
(5) In the combustion method described in claim (4), the combustion gas temperature is set at 700 to 800°C in the first catalyst layer.
, a combustion method characterized by raising the temperature to 750 to 900°C in the second catalyst layer and to 800 to 1000°C in the third catalyst layer.
(6)2次燃焼が誘発される温度に昇のされたガスにさ
らに2次燃料を供給して2次燃焼せしめることを特徴と
する特許請求の範囲(4)および(5)記載の方法。
(6) The method according to claims (4) and (5), characterized in that secondary combustion is caused by further supplying secondary fuel to the gas whose temperature has been raised to a temperature that induces secondary combustion.
JP59059350A 1984-03-29 1984-03-29 Combustion catalyst system and combustion therewith Granted JPS60205116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59059350A JPS60205116A (en) 1984-03-29 1984-03-29 Combustion catalyst system and combustion therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059350A JPS60205116A (en) 1984-03-29 1984-03-29 Combustion catalyst system and combustion therewith

Publications (2)

Publication Number Publication Date
JPS60205116A true JPS60205116A (en) 1985-10-16
JPS6352283B2 JPS6352283B2 (en) 1988-10-18

Family

ID=13110743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059350A Granted JPS60205116A (en) 1984-03-29 1984-03-29 Combustion catalyst system and combustion therewith

Country Status (1)

Country Link
JP (1) JPS60205116A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624350U (en) * 1992-07-23 1994-03-29 岡谷電機産業株式会社 Discharge type surge absorber with safety mechanism

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5405260A (en) * 1990-11-26 1995-04-11 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process

Also Published As

Publication number Publication date
JPS6352283B2 (en) 1988-10-18

Similar Documents

Publication Publication Date Title
JPH0153579B2 (en)
Arai et al. Research and development on high temperature catalytic combustion
EP0198948A2 (en) Catalytic combustor for combustion of lower hydrocarbon fuel
JPS61252408A (en) Method of igniting methane fuel
JPS6257887B2 (en)
JPS60196511A (en) Catalyst system for combustion and burning method used in said system
JPS60205116A (en) Combustion catalyst system and combustion therewith
JPS60205115A (en) Combustion catalyst system and combustion therewith
JPH0156328B2 (en)
JPH0156326B2 (en)
JPS61237905A (en) Combustion method of methane fuel by contact combustion catalyst system
JPS61252409A (en) Method of igniting methane fuel
JPS6014938A (en) Combustion catalyst for gas turbine
JPS6380848A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPH0545295B2 (en)
JPH0156330B2 (en)
JPH0156327B2 (en)
JPS6280419A (en) Combustion catalyst system for low class hydro-carbon fuel and combustion method of using this system
JPH0545293B2 (en)
JP2001227330A (en) Engine system
JPS62216642A (en) Catalytic material for gas turbine combustor
JPH0512021B2 (en)
JPS60147243A (en) Gas turbine combustor
JPH02268830A (en) Catalyst for combustion of kerosene type fuel
JPS60205129A (en) Combustor for gas-turbine