JPS60205115A - Combustion catalyst system and combustion therewith - Google Patents

Combustion catalyst system and combustion therewith

Info

Publication number
JPS60205115A
JPS60205115A JP59059349A JP5934984A JPS60205115A JP S60205115 A JPS60205115 A JP S60205115A JP 59059349 A JP59059349 A JP 59059349A JP 5934984 A JP5934984 A JP 5934984A JP S60205115 A JPS60205115 A JP S60205115A
Authority
JP
Japan
Prior art keywords
catalyst
temperature
combustion
platinum
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59059349A
Other languages
Japanese (ja)
Other versions
JPH0156325B2 (en
Inventor
Makoto Horiuchi
真 堀内
Tetsutsugu Ono
哲嗣 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP59059349A priority Critical patent/JPS60205115A/en
Publication of JPS60205115A publication Critical patent/JPS60205115A/en
Publication of JPH0156325B2 publication Critical patent/JPH0156325B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To ignite natural gas at low temperature and increase the temperature of ignited gas up to 750-1,000 deg.C by a method wherein a catalyst layer having as active component palladium and platinum is arranged at a front stage and another catalyst layer having as an active component a platinum is arranged at a rear stage in respect to a flow of fuel-air mixture gas. CONSTITUTION:A catalyst is divided into two layers, each of the catalysts which can be ignited at a relative low temperature applied in a front stage layer and a high combustible catalyst to be applied in a rear stage layer in which a combustion gas temperature can be increased up to 750-1,000 deg.C is properly designed. As the catalyst to be used in the front stage layer, the active component is composed of palladium and platinum, the catalyst to be applied in the rear stage layer is composed of platinum as an active component and they are prevented from being over a high temperature of more than 1,000 deg.C. As a result, it becomes possible to ignite methane or natural gas fuel having as its major component methane at a low temperature and to raise the combustion gas up to a temperature of 750-1,000 deg.C and it is possible to continue its performance for a long period of time.

Description

【発明の詳細な説明】 本発明は燃料を接触燃焼させる触、謀システムおよびそ
れを用いた燃焼方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalytic combustion system for catalytically burning fuel and a combustion method using the same.

詳しく述べると、本発明は難燃性のメタンあるいはメタ
ンを主成分とする天然ガス燃料を触媒上で接触燃焼せし
め窒素酸化物(以下NOxとする)、−酸化炭素(以下
COとする)、未燃燻炭化水素(以下UHCとする)等
の有害成分を実質的に含有しない燃焼ガスを得、その熱
量を各種のエネルギー源として用いるだめの触媒システ
ムおよびそれを用いた燃焼方法を提供するものである。
Specifically, the present invention catalytically burns flame-retardant methane or natural gas fuel mainly composed of methane on a catalyst to produce nitrogen oxides (hereinafter referred to as NOx), -carbon oxides (hereinafter referred to as CO), and nitrogen oxides. The present invention provides a catalyst system that obtains combustion gas that does not substantially contain harmful components such as combustible hydrocarbons (hereinafter referred to as UHC), and uses its calorific value as various energy sources, and a combustion method using the same. be.

さらに詳しく述べると、本発明は高線速下、炭化水素類
の中で比較的難燃性といわれるメタンあるいはメタンを
主成分とする天然ガス燃料を触媒によって低温で着火せ
しめ、2次燃焼が誘発されるのに十分な温度Kまで昇温
し、次いで必要に応じて2次燃料を導入して残存未燃燃
料と二次燃料を燃焼させて、目的とする温度、あるいは
それ以上の高温に上げる燃焼システムに好適に用いられ
る触媒システムおよびそれを用いた燃焼方法を提供する
ものである。
More specifically, the present invention uses a catalyst to ignite methane, which is said to be relatively flame-retardant among hydrocarbons, or natural gas fuel containing methane as its main component at a low temperature under high linear velocity, thereby inducing secondary combustion. The temperature is raised to a temperature K sufficient to achieve the target temperature, then secondary fuel is introduced as necessary to combust the remaining unburned fuel and the secondary fuel, and the temperature is raised to the target temperature or higher. The present invention provides a catalyst system suitably used in a combustion system and a combustion method using the same.

燃料を燃焼範囲に入らない低い濃度で空気と混合した希
薄混合気体を触媒層へ導入し、触媒上で接触燃焼せしめ
高温の燃焼ガスをえるだめの触媒燃焼システムは公知で
ある。
A catalytic combustion system is known in which a dilute gas mixture of fuel mixed with air at a low concentration that does not fall within the combustible range is introduced into a catalyst layer and catalytically combusted on the catalyst to produce high-temperature combustion gas.

さらに、かかる触媒燃焼システムを用いて、たとえば6
00℃から150−0℃の燃焼ガスをえる場合、たとえ
酸素源に空気を用い−CもNOxがほとんどないしは全
く発生することがなく、またC01UHCも実質的に含
有しないものとしてえられることもよく知られるところ
である。
Furthermore, using such a catalytic combustion system, e.g.
When obtaining combustion gas from 00°C to 150-0°C, even if air is used as the oxygen source, -C generates little or no NOx, and it is often obtained that does not substantially contain CO1UHC. It is well known.

このクリーンな高温燃焼ガスを利用し、熱または動力を
えるシステムは各種提案され、一般産業排ガスの処理お
よび熱動力回収システムはすでに実用化されるに至って
いる。
Various systems have been proposed that utilize this clean, high-temperature combustion gas to generate heat or power, and general industrial exhaust gas treatment and thermal power recovery systems have already been put into practical use.

また近年になり、高まるNOx規制への対応から、発電
用ガスタービンなどの一次動力源用としてこの高温燃焼
ガスを利用する研究がなされるようになりつつある。
In addition, in recent years, in response to increasing NOx regulations, research has been conducted to utilize this high-temperature combustion gas as a primary power source such as a gas turbine for power generation.

これらの目的に使用される場合、燃焼ガスは1000〜
1300℃の高温に達せしめるのが通常であり、ガスタ
ービンの効率向上のため、さらに高温になる傾向にある
When used for these purposes, the combustion gas is
It is normal to reach a high temperature of 1,300°C, and there is a tendency to raise the temperature even higher to improve the efficiency of gas turbines.

かかる条件下で、触媒を使用すると通常の触媒は高温の
だめに急速に劣化し、さらに最悪の場合は触媒担体がメ
ルトダウンし、飛散し、タービンのブレードなどを損傷
してしまう可能性がある。
When a catalyst is used under such conditions, a typical catalyst will deteriorate rapidly due to the high temperatures, and in the worst case scenario, the catalyst carrier may melt down and fly off, damaging turbine blades and other parts.

上記の如き触媒の劣化、損傷を避け、同等の目的をえる
燃焼方法として、触媒層において燃料の一部を燃焼させ
、2次燃焼が誘発される温度に4でガス温度を上昇せし
め、次いで触媒層後方で残存未燃燃料を2次燃焼させる
か、または必要であれば2次燃料を導入して残存未燃燃
料と新たに添加した2次燃料を、2次的に燃焼させて目
的とする温度、あるいはそれ以上の温度のクリーンな燃
焼ガスをえる燃焼方法が見出された。
As a combustion method that avoids catalyst deterioration and damage as described above and achieves the same purpose, a part of the fuel is combusted in the catalyst layer, the gas temperature is raised to a temperature that induces secondary combustion, and then the catalyst The remaining unburned fuel is secondaryly combusted behind the layer, or if necessary, secondary fuel is introduced and the remaining unburned fuel and newly added secondary fuel are combusted secondarily to achieve the desired purpose. A combustion method has been discovered that produces clean combustion gases at or above temperatures.

この場合、触媒層での燃焼は、ガス温度を2次燃焼が誘
発される温度にまで上昇させるのを目的としており必ず
しも触媒層で完全燃焼させる必要はなく、2次燃焼が誘
発される温度以上にガス温度が到達すれば、触媒の劣化
、損傷を避けるためにも、また、2次燃焼を安定して維
持させるためにも、触媒層中でより高温にする必要はな
く、むしろ残存未燃燃料が多い方が好ましい。
In this case, the purpose of combustion in the catalyst layer is to raise the gas temperature to a temperature that induces secondary combustion, and it is not necessarily necessary to completely burn the gas in the catalyst layer, but to raise the gas temperature to a temperature that induces secondary combustion. Once the gas temperature reaches More fuel is preferable.

燃料は目的とする温度かえられる全量を触媒層へ導入し
、一部を燃焼させて昇温し、ついで残存未燃燃料を2次
燃焼させてもよいが、燃料の一部を残しておき、これを
2次燃料として触媒層後方から導入して残存未燃燃料と
合せて2次燃焼させてもよい。この場合触媒層温度を必
要以上の高温とすることも避けられ、触媒の劣化、損傷
を避けることが出来、より好ましい。
The entire amount of fuel capable of changing the desired temperature may be introduced into the catalyst layer, a portion of the fuel may be combusted to raise the temperature, and the remaining unburnt fuel may be subjected to secondary combustion, but some of the fuel may be left behind. This may be introduced as a secondary fuel from behind the catalyst layer and combined with the remaining unburned fuel for secondary combustion. In this case, it is possible to avoid setting the temperature of the catalyst layer higher than necessary, and it is possible to avoid deterioration and damage to the catalyst, which is more preferable.

2次燃焼を誘発させるのに必要な温度は、燃料の種類、
残存燃料濃度(理論断熱燃焼ガス温度)、線速等によっ
て決まるが、燃料の種類によシ大巾に異る。
The temperature required to induce secondary combustion depends on the type of fuel,
It is determined by the residual fuel concentration (theoretical adiabatic combustion gas temperature), linear velocity, etc., but varies widely depending on the type of fuel.

すガわち、プロパン、軽油等の易燃性の燃料の場合は通
常の使用条件下では約700℃程度でも十分であるが、
難燃性のメタン、あるいはメタンを主成分とする天然ガ
スを燃料とする場合は使用条件によって異るものの75
0°C〜1000℃の高温が必要である。
In other words, in the case of easily flammable fuels such as propane and light oil, a temperature of about 700°C is sufficient under normal usage conditions.
If flame-retardant methane or natural gas whose main component is methane is used as fuel, 75
High temperatures of 0°C to 1000°C are required.

最近の燃料事情から、この目的に使用される燃料はメタ
ンあるいはメタンを主成分とする天然ガスが中心であり
、本発明はとの難燃性の燃料を高線速下にできるだけ低
温で着火せしめ、燃焼ガス温度を750〜1000℃の
温度にまで上昇せしめる触媒を提供することを目的とす
る。
Due to recent fuel circumstances, the fuel used for this purpose is mainly methane or natural gas containing methane as its main component, and the present invention aims at igniting the flame-retardant fuel at a high linear velocity and at as low a temperature as possible. The object of the present invention is to provide a catalyst that can raise the combustion gas temperature to a temperature of 750 to 1000°C.

本目的に好適に用いられる触媒としては、貴金属系触媒
がふされしい。
The catalyst preferably used for this purpose is a noble metal catalyst.

パラジウムを活性成分とする触媒は特にメタンの低温着
火性にすぐれ、かつ1000℃程度の耐熱性にもすぐれ
た触媒である。
A catalyst containing palladium as an active component is particularly excellent in low-temperature ignition of methane and has excellent heat resistance at about 1000°C.

しかしながら、従来のパラジウムを活性成分とする触媒
を本発明目的に使用した場合、触媒層入口付近において
は500°C以下の温度で高濃度の酸素罠さらされるた
めパラジウムは酸化されメタンの着火性能を失い、また
一方、触媒層出口付近では高温になり、パラジウムの酸
化状態が変化することKよると考えられる理由から触媒
による燃焼反応は抑制され、燃焼ガス温度は750℃以
上の高温には上昇しないという欠点があることを見い出
した。
However, when a conventional catalyst containing palladium as an active ingredient is used for the purpose of the present invention, the palladium is oxidized and impairs the methane ignition performance because it is exposed to a high concentration of oxygen trap at a temperature of 500°C or less near the inlet of the catalyst layer. On the other hand, the combustion reaction by the catalyst is suppressed and the combustion gas temperature does not rise to a high temperature of 750℃ or higher, due to the high temperature near the outlet of the catalyst layer, which is thought to be due to a change in the oxidation state of palladium. I found out that there is a drawback.

一方、白金を活性成分とする触媒は、メタンの着火温度
は500℃以上と高いものの、着火と同時にメタンを1
00%完全燃焼せしめることが可能であり、その結果、
触媒層は1000℃を超える高温になり、白金は酸化物
となって昇華するなどして失活してしまうという欠点が
あった。
On the other hand, catalysts containing platinum as an active component have a high methane ignition temperature of over 500°C, but methane can be ignited at 1
It is possible to achieve 00% complete combustion, and as a result,
There was a drawback that the catalyst layer was heated to a high temperature exceeding 1000° C., and the platinum turned into an oxide and sublimated, resulting in deactivation.

本発明者らはこれら貴金属系触媒のすぐれた特徴に注目
し、従来の触媒にみられる欠点を克服するため鋭意研究
の結果、本発明を完成するに至ったものである。
The present inventors have focused on the excellent features of these noble metal catalysts, and have completed the present invention as a result of intensive research aimed at overcoming the drawbacks of conventional catalysts.

即ち、本発明による触媒システムは触媒を2層に分は前
段層に用いられる比較的低温で着火しうる触媒と後段層
に用いられる750〜1000℃まで燃焼ガス温度を上
昇させうる高温燃焼性触媒を各々最適に設計して成るも
のであシ、前段ff1K用いられる触媒としては、活性
成分としてパラジウムと白金より成るもので、後段層に
用いられる触媒は活性成分として白金より成り、かつ、
1000℃以上の高温にはならないようにして成るもの
である。
That is, the catalyst system according to the present invention has two catalyst layers: a catalyst that can be ignited at a relatively low temperature used in the first layer, and a high-temperature combustible catalyst that can raise the combustion gas temperature to 750 to 1000 degrees Celsius used in the second layer. The catalyst used in the first stage ff1K consists of palladium and platinum as active components, and the catalyst used in the second stage consists of platinum as an active component, and
It is constructed in such a way that it does not reach a high temperature of 1000°C or higher.

本発明によれば、触媒システム入口付近の前段触媒では
少量の白金の存在により、パラジウムの酸化物化による
メタン着火性能の低下が防止され、長時間に亘り低温着
火性能を維持しつづけ、かつ燃焼ガス温度を700〜8
00℃甘で上昇させることが出来、また触媒層出口付近
の後段触媒では白金の存在により燃焼が更に促進され燃
焼ガスは750〜1000℃の温度に到達することが可
能になることを見出したのである。
According to the present invention, the presence of a small amount of platinum in the front-stage catalyst near the catalyst system entrance prevents deterioration of methane ignition performance due to palladium oxidation, maintains low-temperature ignition performance for a long time, and reduces combustion gas Temperature 700-8
It was discovered that the combustion gas can be raised to a temperature of 750 to 1000 degrees Celsius, and the presence of platinum in the downstream catalyst near the outlet of the catalyst layer further promotes combustion. be.

その結果、触媒層全体として、メタンあるいはメタンを
主成分とする天然ガス燃料を低温で着火させ、750〜
1000℃の温度にまで燃焼ガスを上昇せしめることが
可能となり、かつ、その性能を長時間に亘り維持しつづ
けることが可能となったのである。
As a result, the catalyst layer as a whole ignites methane or natural gas fuel containing methane as a main component at a low temperature, and
It has become possible to raise the temperature of combustion gas to 1000°C, and to maintain this performance for a long time.

前段層、後段層の触媒は別個に調製し、両触媒を直結し
てまたはその間に空間を設けて設置してもよいし、ある
いは一体物の触媒において入口部分に前段層触媒を出口
部分に後段層触媒を担持して完成触媒をえてもよい。
The catalysts for the front layer and the rear layer may be prepared separately and both catalysts may be directly connected or installed with a space between them, or in the case of an integrated catalyst, the front layer catalyst may be placed at the inlet portion and the rear layer catalyst may be placed at the outlet portion. A finished catalyst may be obtained by supporting a bed catalyst.

触媒の形状は圧力損失を少くする目的から、モノリスタ
イプのものが好ましい。モノリス担体は通常当該分野で
使用されるものであればいずれも使用可能であり、とく
にコージェライト、ムライト、α−アルミナ、ジルコニ
ア、チタニア、リン酸チタン、アルミニウム、チクネー
ト、ベタライト、スボジュメン、アルミノシリケート、
ケイ酸マグネシウム、ジルコニアルスピネル、ジルコン
−ムライト、炭化ケイ素、窒化ケイ素などの耐熱性セラ
ミック質のものやカンクル、フエクラロイ等の金属製の
ものが使用される。
The shape of the catalyst is preferably a monolith type for the purpose of reducing pressure loss. Any monolith support commonly used in the field can be used, in particular cordierite, mullite, α-alumina, zirconia, titania, titanium phosphate, aluminum, tikunate, betalite, subodumene, aluminosilicate,
Heat-resistant ceramic materials such as magnesium silicate, zirconia spinel, zircon-mullite, silicon carbide, and silicon nitride, and metal materials such as Cancle and Feclaroy are used.

モノリス担体のセルサイズは、燃焼効率が低下しない限
り大きいものが好ましく、各触媒層は同一セルサイズで
もよいし、また異るセルサイズのものを組合せて用いて
もよく、通常−平方インチあたり40〜400セルのも
のが用いられる。
The cell size of the monolithic carrier is preferably large as long as the combustion efficiency is not reduced, and each catalyst layer may have the same cell size or a combination of different cell sizes. ~400 cells are used.

全触媒層長は特に使用される入口線速によつて異るが、
圧力損失を少くする必要から通常50〜500uが採用
され、前段層、後段層各層の長さも入口線速、入口温度
等の使用条件によって最適に選択されるが、通常各層共
25〜250酩が採用される。
The total catalyst bed length depends, among other things, on the inlet linear velocity used;
Generally, 50 to 500μ is adopted because of the need to reduce pressure loss, and the length of each layer of the front and rear layers is also optimally selected depending on the usage conditions such as inlet linear velocity and inlet temperature, but usually 25 to 250μ is used for each layer. Adopted.

前段層に用いられる触媒は通常上記モノリス担体に、ア
ルミナ、シリカ−アルミナ、マグネシア、チタニア、ジ
ルコニア、シリカ−マグネシアなどの活性耐火性金属酸
化物をコートして使用する。特にアルミナまだはジルコ
ニアが好ましく、更にバリウム、ストロンチウムなどの
アルカリ土類全総酸化物、ランタン、ネオジム、セリウ
ム、プラセオジムなどの希土類金回酸化物を添加し、安
定化して用いるとよシ好ましい。
The catalyst used in the first layer is usually the monolithic carrier coated with an active refractory metal oxide such as alumina, silica-alumina, magnesia, titania, zirconia, or silica-magnesia. In particular, zirconia is preferable for alumina, and it is even more preferable to add a total alkaline earth oxide such as barium or strontium, or a rare earth gold oxide such as lanthanum, neodymium, cerium, or praseodymium to stabilize the material.

そのあと、パラジウムおよび白金の活性主成分を水溶性
の塩の形で含浸せしめ触媒化する。
Thereafter, the active principal components of palladium and platinum are impregnated and catalyzed in the form of water-soluble salts.

あるいはあらかじめ活性主成分を活性、耐火性金属酸化
物に担持せしめ、そののちモノリス担体にコートするこ
とKよって触媒化することもできる。゛ パラジウムは完成触媒11あだり2〜100F、好まし
くは5〜507担持され、また、白金はパラジウムに対
し、重量比で02〜50%、Utしくけ0.5〜30%
添加して用いられる。
Alternatively, the active main component can be supported on an active, refractory metal oxide in advance and then catalyzed by coating it on a monolithic support.゛Palladium is supported at 2 to 100 F, preferably 5 to 50 F, per finished catalyst 11, and platinum is supported at a weight ratio of 02 to 50% and a Ut ratio of 0.5 to 30% relative to palladium.
It is used by adding it.

後段層に用いられる触媒も同様にして、白金を担持して
触媒化することができるが、この場合、触媒が高活性す
ぎ、触媒層で温度が]、 OO0℃以上に昇温して白金
の昇華などによる失活現象を引きおこす可能性がある。
The catalyst used in the latter layer can be catalyzed by supporting platinum in the same way, but in this case, the catalyst is too active and the temperature in the catalyst layer is raised to OO0℃ or higher to catalyze platinum. This may cause deactivation due to sublimation, etc.

これを避け、触媒層温度を1000℃以下に保つために
は、白金の担持量を減少させる方法、出来上がり触媒を
使用に先立ち1000℃をこえる高温で焼成しておく方
法、白金ブラック等の粗大化された白金粒子を用いる方
法、触媒のセルナイズと層長を最適に選択する方法等が
見出されているが、これらはその使用条件、すなわち燃
料の種類、濃度(理論断熱燃焼ガス温度)、線速等によ
って最適に選択することができる。
In order to avoid this and keep the catalyst layer temperature below 1000℃, methods include reducing the amount of platinum supported, calcining the finished catalyst at a high temperature exceeding 1000℃ before use, and coarsening platinum black etc. Methods have been discovered, such as using platinum particles that have been removed, and methods that optimally select catalyst cellization and layer length. The optimum selection can be made depending on the speed, etc.

本発明の触媒を用いた燃焼システムに用いられる燃料は
、メタンないしメタンを主成分として含有する燃料であ
る。代表的なものは、天然ガスである。天然ガスは産地
により成分比は若干異るものの、はぼ80チ以上のメタ
ンを含有している。また活性汚泥処理などからの醗酵メ
タンや石炭ガス化による低カロリーメタンガスなども本
発明で用いられる燃料である。またよシ易燃性のプロパ
ン、軽油等も当然使用することができる。
The fuel used in the combustion system using the catalyst of the present invention is methane or a fuel containing methane as a main component. A typical example is natural gas. Although the composition ratio of natural gas varies slightly depending on where it is produced, it contains more than 80 grams of methane. Further, fermented methane from activated sludge treatment and low-calorie methane gas from coal gasification are also fuels used in the present invention. Naturally, easily flammable propane, light oil, etc. can also be used.

本発明の触媒あるいは触媒を用いた燃焼システムは、前
述したように発電用ガスタービンシステムKffi適に
組み込まれるものであるが、そ =れ以外にも発電用ボ
イラ、熱回収用ボイラ、ガスエンジンからのガスの後処
理による熱回収、都市ガス暖房など熱・動力回収を効率
よく行なうために利用される。
The catalyst of the present invention or the combustion system using the catalyst can be suitably incorporated into a power generation gas turbine system Kffi as described above, but it can also be used in power generation boilers, heat recovery boilers, gas engines, etc. It is used to efficiently recover heat and power through post-processing of city gas, city gas heating, etc.

以下に本発明を実施例等によりさらに具体的に説明する
が、本発明はこれらの実施例のみに限定されるものでは
ない。
EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 200セル/平方インチの開孔部を有する直径25.4
 ml・、長さ50y+xのコージライトハニカム担体
に、5重量%の酸化ランタンを富有するアルミナ粉末の
スラリーを被覆処理し、空気中900℃にて焼成して担
体11あたり】00りを被覆担持せしめた。
Example 1 25.4 diameter with 200 cells/inch square aperture
A cordierite honeycomb carrier with a length of 50y+x was coated with a slurry of alumina powder enriched with 5% by weight of lanthanum oxide, and fired at 900°C in air to coat and support the carrier with an amount of 11%. Ta.

次いでこれを硝酸パラジウムおよび塩化白金酸を含有す
る水溶液に浸11\し、乾燥して空気中700℃で焼成
し、担体】lあたり、パラジウムとして10り、白金と
して29を担持せしめて完成触媒をえた。
Next, this was immersed in an aqueous solution containing palladium nitrate and chloroplatinic acid, dried, and calcined at 700°C in air to support 10% of palladium and 29% of platinum per liter of support to obtain the finished catalyst. I got it.

9施例2 実施例1と同様にして担体llあたり100Fの5重r
& %酸化ランタン含有アルミナ粉末を鮫漬し、乾燥し
て空気中900℃で焼成し、白金として担体11あたり
22担持せしめて完成触媒をえた。
9 Example 2 In the same manner as in Example 1, a 5-fold r of 100F per 1 carrier was applied.
Alumina powder containing &% lanthanum oxide was pickled, dried, and calcined in air at 900°C to support 22 platinum per 11 carriers to obtain a completed catalyst.

す流側3 実施例1と同様にして7重′rj!、%の酸化ネオジム
を含有するアルミナ粉末を担体11あた夛1sor被覆
担持せしめた。
Stream side 3 Same as Example 1, 7-fold 'rj! % of neodymium oxide was coated on the carrier 11 in an amount of 1 sor.

次いで実施例1と同様にして担体11あたシバラジウム
として202、白金として5tを担持せしめて完成触媒
をえた。
Next, in the same manner as in Example 1, 202 tons of shibaradium and 5 tons of platinum were supported on the carrier 11 to obtain a completed catalyst.

実施例4 7重9にチ酸化ランタン、3重量%ネオジム酸化物含有
アルミナ粉末を用い実施例1と同様にして該アルミナ粉
末を担体11あたり1202被覆担持せしめた。
Example 4 Alumina powder containing lanthanum thioxide and 3% by weight neodymium oxide was used in the 7-ply 9 layer, and the alumina powder was coated on each carrier 11 in the same manner as in Example 1.

次いでこれをジニトロ ジアミノ白金の硝酸溶液を含有
する水溶液に?!!漬、乾燥して空気中1150℃で焼
成することにより、担体11hたり白金として152を
担持せしめて完成触媒をえた。
This is then converted into an aqueous solution containing dinitrodiaminoplatinum in nitric acid. ! ! By soaking, drying, and calcining in air at 1150° C., 152 was supported as platinum on carrier 11h to obtain a completed catalyst.

実施例5 40セル/平方インチの開孔部を有する直径25.4i
it、長さ15朋のムライトハニカム担体に10重量%
酸化ランタン、20重量−酸化セリウムを含有するアル
ミナ粉末のスラリーを被覆処理し、空気中1000℃で
焼成して担体11あたり802を被覆担持せしめた。
Example 5 25.4i diameter with 40 cells/in2 aperture
it, 10% by weight on a 15 mm long mullite honeycomb carrier.
A slurry of alumina powder containing lanthanum oxide and 20% by weight of cerium oxide was coated and fired in air at 1000°C to coat and support 802 per carrier 11.

次いで実施例4と同様にして担体11あたり白金として
152を担持せしめて完成触媒をえた。
Next, in the same manner as in Example 4, platinum 152 was supported on the carrier 11 to obtain a completed catalyst.

実施例6 実施例1と同様のハニカム担体に5重t%のセリウム酸
化物を含有するアルミナ粉末のスラリーと、平均粒径5
μを有する白金粉末を充分混合して被覆処理し、乾燥9
00℃にて焼成することにより担体11あだり1009
の5重量%セリウム酸化物含有アルミナと107の白金
を担持せしめて完成触媒を得だ。
Example 6 A slurry of alumina powder containing 5% by weight of cerium oxide and an average particle size of 5 were placed in the same honeycomb carrier as in Example 1.
Platinum powder having μ is thoroughly mixed and coated, and dried 9
By firing at 00°C, carrier 11 adari 1009
A finished catalyst was obtained by supporting alumina containing 5% by weight of cerium oxide and 107 platinum.

比較例1 白金を含有しない他は実施例1と全く同様にして完成触
媒をえた。
Comparative Example 1 A finished catalyst was obtained in the same manner as in Example 1 except that platinum was not contained.

比較例2 800℃で焼成した他は実施例4と全く同様にして担体
11あたり白金として159担持せしめて完成触媒をえ
た。
Comparative Example 2 A finished catalyst was obtained in exactly the same manner as in Example 4 except that the catalyst was calcined at 800° C., and 159 platinum was supported on carrier 11.

実施例7 十分に保温された円筒型燃焼器を用い上流側に実施例1
でえられた触媒、下流側に実施例2でえられた触媒を充
填し、入口温度350℃において3容[%のメタンを含
有するメタン−空気混合気体を1時間あたり16.7 
Nm”導入して燃焼効率と触媒層出口温度を測定した。
Example 7 Example 1 was installed on the upstream side using a cylindrical combustor with sufficient heat insulation.
The downstream side of the obtained catalyst was filled with the catalyst obtained in Example 2, and a methane-air mixture gas containing 3 volumes [% of methane] was fed at an inlet temperature of 350° C. at a rate of 16.7 ml per hour.
The combustion efficiency and catalyst layer outlet temperature were measured by introducing Nm''.

この場合、触媒層入口線速は約30m/秒であった。In this case, the linear velocity at the entrance of the catalyst layer was about 30 m/sec.

その結果、燃焼効率は約67%で、触媒層出口温度は約
820℃であった。
As a result, the combustion efficiency was about 67%, and the catalyst layer outlet temperature was about 820°C.

次いで、メタン濃度を4.1容量%にすると、燃焼効率
は100%となり、未燃焼炭化水素、−酸化炭素、窒素
酸化物を実質的に含有しないクリーン燃焼ガスかえられ
た。この場合、触媒層後方100FIIIIの点の温度
は約1300℃に達していだが、触媒層出口温度は約8
30℃であった。
Next, when the methane concentration was set to 4.1% by volume, the combustion efficiency became 100%, and a clean combustion gas containing substantially no unburned hydrocarbons, carbon oxides, and nitrogen oxides was obtained. In this case, the temperature at the point 100FIII behind the catalyst layer reached about 1300°C, but the catalyst bed outlet temperature was about 8
The temperature was 30°C.

引きつづき、3容量%相当分のメタンを触媒層上流から
、残り1.1容量チ相当分のメタンを触媒層出口より3
0本後方から導入して、同様の燃焼実験を行った。
Continuously, methane equivalent to 3% by volume was injected from the upstream side of the catalyst layer, and methane equivalent to the remaining 1.1% by volume was injected from the outlet of the catalyst layer.
A similar combustion experiment was conducted by introducing the fuel from the rear.

その結果、触媒層出口温度は約820℃であり、クリー
ンな約1300℃の燃焼ガスかえられた。まだこの性能
は500時間にわたり維持継続した。
As a result, the catalyst bed outlet temperature was about 820°C, and clean combustion gas of about 1300°C was exchanged. This performance was still maintained for 500 hours.

実施例8 実施例7と同様にして表−1のとおりの触媒を用い、3
容量チ相当分のメタンを触媒層上流から、残り1.1容
@チ相当分のメタンを触媒層出口より30 K’lL後
方から導入して・燃焼実験を行った結果、表−1のとお
りであり、不発明による触媒システムを用いれば触媒層
温rttは活性低下をおこさない1ooo℃以下に維持
されているにもかかわらず約1300℃のクリーンな燃
焼ガスかえられたのに対し、上流側に比較例1の触媒を
用いた触媒システムは急速に着火不能になり、まだ下流
側に比較例2の触媒を用いた触媒システムでは、高活性
すぎ、触媒層u1度が高温になりその結果活性は急速に
低下し、1だ白金の昇華が認められた。
Example 8 In the same manner as in Example 7, using the catalyst shown in Table 1, 3
Table 1 shows the results of a combustion experiment in which methane equivalent to a capacity of 1 was introduced from upstream of the catalyst layer, and the remaining methane equivalent to 1.1 volume @ 1 was introduced from 30 K'l rearward from the outlet of the catalyst bed. Using the uninvented catalyst system, clean combustion gas of about 1300°C was exchanged even though the catalyst layer temperature rtt was maintained at 100°C or less, which did not cause a decrease in activity. The catalyst system using the catalyst of Comparative Example 1 quickly became unable to ignite, and the catalyst system using the catalyst of Comparative Example 2 on the downstream side had too high activity and the catalyst layer U1 degree became high temperature, resulting in activation. decreased rapidly, and sublimation of platinum was observed.

Claims (6)

【特許請求の範囲】[Claims] (1)燃料−空気混合気体の流れに対して、前段側にパ
ラジウムおよび白金を活性成分とする触媒層、後段側に
白金を活性成分とする触媒層を設けてなることを特徴と
する燃焼用触媒システム。
(1) For combustion, which is characterized by providing a catalyst layer containing palladium and platinum as active ingredients on the front stage side and a catalyst layer containing platinum as the active component on the rear stage side with respect to the flow of fuel-air mixed gas. Catalyst system.
(2)各活性成分がアルミナによって被覆されたモノリ
ス担体に分散担持されてなることを特徴とする特許請求
の範囲(1)記載の触媒システム。
(2) The catalyst system according to claim (1), wherein each active component is dispersed and supported on a monolithic carrier coated with alumina.
(3) アルミナ被覆層がランタン、イツトリウム、セ
リウム、サマリウム、ネオジムおよびプラセオジムより
なる群から選ばれた少なくとも1種の酸化物によって安
定化されてなるととを特徴とする特許請求の範囲(2)
記載の触媒システム。
(3) Claim (2) characterized in that the alumina coating layer is stabilized by at least one oxide selected from the group consisting of lanthanum, yttrium, cerium, samarium, neodymium, and praseodymium.
Catalyst system as described.
(4)特許請求の範囲<11、(2)または(3)記載
の触媒システムを用い、該システムにおいて燃料の一部
のみを燃続せしめて2次燃焼が誘発される温度にまで燃
焼ガスを昇温させることを特徴とする燃焼方法。
(4) Using the catalyst system according to claim <11, (2) or (3), combustion gas is heated to a temperature at which secondary combustion is induced by causing only part of the fuel to continue burning in the system. A combustion method characterized by raising the temperature.
(5)特許請求の範囲(4)の燃焼方法において、燃焼
ガス温度を前段触媒層において700℃〜800℃、後
段触媒NVCオイ−c 750℃〜1000’C1で上
昇させることを特徴とする燃焼方法。
(5) In the combustion method according to claim (4), the combustion gas temperature is increased by 700°C to 800°C in the first stage catalyst layer and 750°C to 1000°C in the second stage catalyst layer. Method.
(6)2次燃焼が誘発される温度に昇温されだガスにさ
らに2次燃料を供給して2次燃焼せしめることを特徴と
する特許請求の範囲(4)および(5)記載の方法。
(6) The method according to claims (4) and (5), characterized in that secondary combustion is caused by further supplying secondary fuel to the gas that has been heated to a temperature that induces secondary combustion.
JP59059349A 1984-03-29 1984-03-29 Combustion catalyst system and combustion therewith Granted JPS60205115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59059349A JPS60205115A (en) 1984-03-29 1984-03-29 Combustion catalyst system and combustion therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059349A JPS60205115A (en) 1984-03-29 1984-03-29 Combustion catalyst system and combustion therewith

Publications (2)

Publication Number Publication Date
JPS60205115A true JPS60205115A (en) 1985-10-16
JPH0156325B2 JPH0156325B2 (en) 1989-11-29

Family

ID=13110717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059349A Granted JPS60205115A (en) 1984-03-29 1984-03-29 Combustion catalyst system and combustion therewith

Country Status (1)

Country Link
JP (1) JPS60205115A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341720A (en) * 1986-08-07 1988-02-23 グリヴ エスアールエル Boiler with catalyst combustion section of methane hot-water boiling for domestic application
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
JP2014091119A (en) * 2012-11-07 2014-05-19 Nippon Shokubai Co Ltd Catalyst for combustion of methane and production method of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833220A (en) * 1971-09-06 1973-05-08
JPS4876792A (en) * 1972-01-18 1973-10-16
JPS5014571A (en) * 1973-06-12 1975-02-15
JPS5721716A (en) * 1980-07-11 1982-02-04 Matsushita Electric Ind Co Ltd Combustion safety device
JPS5892729A (en) * 1981-11-25 1983-06-02 Toshiba Corp Gas turbine combustor
JPS5941706A (en) * 1982-08-31 1984-03-08 Nippon Shokubai Kagaku Kogyo Co Ltd Combustion catalyst system for methane fuel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833220A (en) * 1971-09-06 1973-05-08
JPS4876792A (en) * 1972-01-18 1973-10-16
JPS5014571A (en) * 1973-06-12 1975-02-15
JPS5721716A (en) * 1980-07-11 1982-02-04 Matsushita Electric Ind Co Ltd Combustion safety device
JPS5892729A (en) * 1981-11-25 1983-06-02 Toshiba Corp Gas turbine combustor
JPS5941706A (en) * 1982-08-31 1984-03-08 Nippon Shokubai Kagaku Kogyo Co Ltd Combustion catalyst system for methane fuel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341720A (en) * 1986-08-07 1988-02-23 グリヴ エスアールエル Boiler with catalyst combustion section of methane hot-water boiling for domestic application
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
JP2014091119A (en) * 2012-11-07 2014-05-19 Nippon Shokubai Co Ltd Catalyst for combustion of methane and production method of the same

Also Published As

Publication number Publication date
JPH0156325B2 (en) 1989-11-29

Similar Documents

Publication Publication Date Title
JPH0153579B2 (en)
Arai et al. Research and development on high temperature catalytic combustion
EP0198948A2 (en) Catalytic combustor for combustion of lower hydrocarbon fuel
JPS61252408A (en) Method of igniting methane fuel
JPS6257887B2 (en)
JPS60196511A (en) Catalyst system for combustion and burning method used in said system
JPS60205115A (en) Combustion catalyst system and combustion therewith
JPH0156328B2 (en)
JPH0156326B2 (en)
JPH0663627B2 (en) Combustion method of methane fuel by catalytic combustion catalyst system
JPS60205116A (en) Combustion catalyst system and combustion therewith
JPS6380848A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPS6014938A (en) Combustion catalyst for gas turbine
JPS61252409A (en) Method of igniting methane fuel
JPS6380849A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPH0156330B2 (en)
JPH0156327B2 (en)
JPH0545293B2 (en)
JPH0156329B2 (en)
JP2001227330A (en) Engine system
JPS62216642A (en) Catalytic material for gas turbine combustor
JPS60147243A (en) Gas turbine combustor
JPH0512021B2 (en)
JPS60205129A (en) Combustor for gas-turbine
JP4226143B2 (en) Catalytic combustion apparatus and combustion control method thereof