JPS62216642A - Catalytic material for gas turbine combustor - Google Patents

Catalytic material for gas turbine combustor

Info

Publication number
JPS62216642A
JPS62216642A JP5959386A JP5959386A JPS62216642A JP S62216642 A JPS62216642 A JP S62216642A JP 5959386 A JP5959386 A JP 5959386A JP 5959386 A JP5959386 A JP 5959386A JP S62216642 A JPS62216642 A JP S62216642A
Authority
JP
Japan
Prior art keywords
rare earth
noble metal
catalyst
earth element
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5959386A
Other languages
Japanese (ja)
Inventor
Masamichi Ito
伊東 正道
Akio Ogoshi
大越 昭男
Kenjirou Shizukawa
靜川 賢次郎
Terunobu Hayata
早田 輝信
Tomiaki Furuya
富明 古屋
Chikau Yamanaka
矢 山中
Junji Hizuka
肥塚 淳次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP5959386A priority Critical patent/JPS62216642A/en
Publication of JPS62216642A publication Critical patent/JPS62216642A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled catalytic material excellent in low-temp. ignitability and high-temp. durability by depositing noble metal and rare earth element on an alumina carrier and specifying a ratio of deposited amount of noble metal and rare earth element. CONSTITUTION:A catalytic material for gas turbine combustion is obtained by depositing noble metal and rare earth element on an alumina carrier in such proportion that deposited amount of noble metal to deposited amount of rare earth element is >=1. Pd and Pt as noble metal and La as rare earth element are preferably deposited on the alumina carrier. At this time, as each amount, Pd is >=20wt% for the alumina carrier and Pt is 0.1-0.5 times weight for Pd, and La is 5-20wt% for the alumina carrier. La is firstly deposited on the alumina carrier and thereafter Pd and Pt are deposited thereon. In the catalytic material obtained in such a way, low-temp. ignitability and high-temp. durability can be more enhanced. This catalytic material is used packed in a catalyst packing region 8 of a gas turbine combustor.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は触媒燃焼方式のガスタービン燃焼器に用いる触
媒体に関し、更に詳しくは、低温着火性に優nかつ高温
耐久性も良好なガスタービン燃焼器用の触媒体に関する
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a catalyst body used in a catalytic combustion type gas turbine combustor, and more particularly, the present invention relates to a catalyst body used in a catalytic combustion type gas turbine combustor. Concerning dexterous catalyst bodies.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

現在のガスタービン燃焼器における燃焼方式は、燃料と
酸化性気体との混合物をスパークプラグ等を用いて着火
して行う方式である。ここでいう酸化性気体とは、燃料
と酸化反応をおこす酸素等の気体を示し、酸化性気体を
含む気体とは、たとえば、空気をいう。このような燃焼
器の一例を第2図に示す。第2図の燃焼器においては燃
料ノズル1から噴射された燃料が、燃焼用空気3と混合
され、この混合気体がスパークプラグ2より着火すnて
燃焼する。そして、燃焼1−だ気体には、冷却空気4及
び希釈空気5が加えられて、所定のタービン入口部it
で冷却・希釈された後、タービンノズル6からガスター
ビン内に噴射さnる。
The combustion method in current gas turbine combustors is to ignite a mixture of fuel and oxidizing gas using a spark plug or the like. The oxidizing gas here refers to a gas such as oxygen that causes an oxidation reaction with fuel, and the gas containing the oxidizing gas refers to, for example, air. An example of such a combustor is shown in FIG. In the combustor shown in FIG. 2, fuel injected from a fuel nozzle 1 is mixed with combustion air 3, and this mixed gas is ignited by a spark plug 2 and combusted. Then, cooling air 4 and dilution air 5 are added to the combustion gas 1-, and a predetermined turbine inlet portion is heated.
After being cooled and diluted, it is injected into the gas turbine from the turbine nozzle 6.

このような従来の燃焼器における重大な問題の一つは、
燃料の燃焼時に多量のNOxガスが生成して環境汚染等
を引き起こすことである。
One of the major problems with such conventional combustors is that
A large amount of NOx gas is generated during fuel combustion, causing environmental pollution.

上記したNOxが生成する理由は、燃料の燃焼時におい
て、燃焼器内に高温部が存在することにある。NOxは
、通常、燃料中に窒素成分が存在していない場合には、
燃焼用空気中の窒素と酸素が以下に示す式によシ反応し
て生成する。
The reason why the above-mentioned NOx is generated is that a high temperature section exists in the combustor during combustion of fuel. NOx is normally produced when there is no nitrogen component in the fuel.
Nitrogen and oxygen in the combustion air react with each other according to the formula shown below.

N、 + O,= 2 NO 上記反応は、高温になる程、右側に移行して一酸化窒素
(No)  の生成量が増加する。そしてこのNo の
一部は更に酸化されて二酸化窒素(NO2)を生成する
N, + O, = 2 NO The above reaction shifts to the right as the temperature increases, and the amount of nitrogen monoxide (No) produced increases. A portion of this No is further oxidized to produce nitrogen dioxide (NO2).

第3図は、第2図に例示した従来のガスタービン燃焼器
における流体の流れ方向の温度分布を示すものである。
FIG. 3 shows the temperature distribution in the fluid flow direction in the conventional gas turbine combustor illustrated in FIG. 2. FIG.

図に示した如く、燃焼器内の温度分布は極大値を持って
おり、最高温度に達した後は、冷却及び希釈空気により
所定のタービン入口温度まで冷却さnている。燃焼器内
の最高温度は、2000℃にも達する場合があるために
、この近辺においてはNOxの生成量が急激に増加する
。このように、従来のガスタービン燃焼器では、部分的
に高温部が存在するために、NOxの生成1が多いとい
う問題点がある。従って、燃焼器の下流には排煙脱硝装
置等を設けねばならず、装置が複雑にならざるを得ない
As shown in the figure, the temperature distribution within the combustor has a maximum value, and after reaching the maximum temperature, it is cooled down to a predetermined turbine inlet temperature by cooling and dilution air. Since the maximum temperature inside the combustor can reach as high as 2000° C., the amount of NOx produced rapidly increases around this temperature. As described above, the conventional gas turbine combustor has a problem in that a large amount of NOx is produced due to the presence of a partially high-temperature section. Therefore, a flue gas denitrification device or the like must be provided downstream of the combustor, which inevitably makes the device complicated.

最近、上述した燃焼方式に対して新しく触媒を用いた燃
焼方式(以下、触媒燃焼方式という)が提案されている
。この方式は、触媒を用いて混合ガスを燃焼させるもの
であり、この方式によnば比較的低温で燃焼を開始させ
ることができ、燃焼温度はゆるやかに上昇して極大値を
もたず、最高温度も低くなる。これは燃焼器自体の耐熱
性の面からみても効果的であり、特に酸化性気体を含む
気体として窒素を含む空気等を用いた場合には、NOx
の発生を極めて少なくすることが可能になる。
Recently, a combustion method using a new catalyst (hereinafter referred to as catalytic combustion method) has been proposed in contrast to the above-mentioned combustion method. This method uses a catalyst to combust a mixed gas, and with this method, combustion can be started at a relatively low temperature, and the combustion temperature rises slowly without reaching a maximum value. The maximum temperature will also be lower. This is effective from the viewpoint of heat resistance of the combustor itself, and especially when air containing nitrogen is used as the gas containing oxidizing gas, NOx
This makes it possible to extremely reduce the occurrence of

第1図は、触媒燃焼方式に用いる燃焼器の1例を示した
概念図である。図中の数字はそれぞれ第2図と同じ要素
を表わす。この燃焼器は触媒充填域8を備えることが構
造上の特徴である。触媒充填域8には、通常、ハニカム
構造の燃焼触媒が充填されていて、ここで燃料と空気の
混合気体が燃焼させられる。
FIG. 1 is a conceptual diagram showing an example of a combustor used in a catalytic combustion system. Each number in the figure represents the same element as in FIG. A structural feature of this combustor is that it is provided with a catalyst filling area 8 . The catalyst filling area 8 is normally filled with a combustion catalyst having a honeycomb structure, in which a mixture of fuel and air is combusted.

しかしながら、この燃焼方式においては、用いる触媒体
が低温着火性と高温耐久性の両特性を同時に充足するこ
とが求められる。
However, in this combustion method, the catalyst used must simultaneously satisfy both characteristics of low-temperature ignitability and high-temperature durability.

例えば、ガスタービンの定常運転時には通常、空気圧縮
機等から約350℃の燃焼用空気が供給されている。し
かし、今日の市販触媒体のなかでも高活性として知られ
ている、アルミナ担体と白金若しくはパラジウムから成
る貴金属系触媒を用いても、燃料がメタンなどの場合、
350℃の温度では燃料は着火しない。また、ガスター
ビン燃焼器に求められる1100℃以上の燃焼ガスを触
媒燃焼方式によって生成させる場合、触媒体に対する熱
的負荷は最低でも900℃程度である。しかしながらこ
のような熱的負荷に対して市販触媒の中で寿命1年程度
の高温耐久性を有するものは開発されていない。
For example, during steady operation of a gas turbine, combustion air at about 350° C. is normally supplied from an air compressor or the like. However, even when using a noble metal catalyst consisting of an alumina support and platinum or palladium, which is known to be highly active among today's commercially available catalysts, when the fuel is methane etc.
At a temperature of 350°C, the fuel will not ignite. Further, when generating combustion gas of 1100° C. or higher required for a gas turbine combustor using a catalytic combustion method, the thermal load on the catalyst body is at least about 900° C. However, among commercially available catalysts, no one has been developed that has high-temperature durability with a lifespan of about one year under such thermal loads.

ところで、前記したような貴金属系触媒体に関して、5
0〜200Xの細孔が分布するアルミナ担体に粒径20
〜50Xの白金、パラジウムのような貴金属の微粒子を
担持せしめた触媒体の開発が進められている。この触媒
体の場合、担持せしめる貴金属粒子の粒径を小さくすれ
ばするほど、その低温着火性は向上する。しかしながら
他方では、この触媒体の耐熱度は500℃以下と低く、
例えば600℃以上の温度域にあっては、アルミナ担体
に担持された貴金属粒子が凝集し始めて、混合気体と触
媒反応を生起するに必要な活性表面積が減少しその活性
能の低下を招く。しかも、この現象は貴金属粒子の粒径
が小さくなればなるほど顕著にあられれる。このように
、低温着火性と高温耐久性が両立することは困難である
By the way, regarding the noble metal catalyst mentioned above, 5
Particle size 20 on alumina support with pores distributed from 0 to 200X
The development of catalyst bodies carrying fine particles of precious metals such as platinum and palladium of ~50X is being developed. In the case of this catalyst, the smaller the particle size of the supported noble metal particles, the better the low temperature ignitability. However, on the other hand, the heat resistance of this catalyst is as low as 500°C or less;
For example, in a temperature range of 600° C. or higher, the noble metal particles supported on the alumina carrier begin to aggregate, reducing the active surface area required to cause a catalytic reaction with the mixed gas, resulting in a decrease in its activity. Moreover, this phenomenon becomes more pronounced as the particle size of the noble metal particles becomes smaller. Thus, it is difficult to achieve both low-temperature ignitability and high-temperature durability.

また、貴金属粒子に加えて希土類元素も同時に担持せし
めた触媒体が知られている(特開昭49−43586号
、同50−105536号参照)。ここで開示されてい
る触媒体は前記した貴金属粒子のみを担持する触媒体に
比べてその高温耐久性は向上する。この理由は必ずしも
明確ではないが、高温下においては同時に担持されてい
る希土類元素の作用で、担体であるアルミナのα相化が
抑制され、しかも貴金属粒子との間である徨の複酸化物
を形成して貴金属粒子の酸素活性化能を高めるためであ
ると推考される。
In addition, catalyst bodies are known in which rare earth elements are simultaneously supported in addition to noble metal particles (see JP-A-49-43586 and JP-A-50-105536). The catalyst body disclosed herein has improved high-temperature durability compared to the catalyst body that supports only noble metal particles. The reason for this is not necessarily clear, but at high temperatures, the action of the rare earth elements supported at the same time suppresses the α-phase formation of alumina, which is the support, and also prevents the formation of double oxides between the noble metal particles. It is presumed that this is to increase the oxygen activation ability of the noble metal particles.

しかしながら、この触媒体の場合でも、ガスタービン燃
焼器におけるような高温下にあっては前記した性能は両
立せず燃焼用の触媒体として使用するためには不満足で
ある。
However, even in the case of this catalyst, the above-mentioned performance cannot be achieved at high temperatures such as in a gas turbine combustor, and the catalyst is unsatisfactory for use as a combustion catalyst.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した問題点を解消し、低温着火性、高温
耐久性のいずれもが優れているガスタービン燃焼器用触
媒体の提供を目的とする。
The present invention aims to solve the above-mentioned problems and provide a catalyst body for a gas turbine combustor that is excellent in both low-temperature ignitability and high-temperature durability.

〔発明の概要〕[Summary of the invention]

本発明者らは、上記したアルミナ指体と貴金属と希土類
元素とから成る触媒体に関し、各成分相互間の存在割合
、存在形態などにつき種々の検討を加えたところ、貴金
属と希土類元素の重量比関係、これらをアルミナ担体へ
担持させる順序等はその触媒能に極めて大きな影響を与
えるとの事実を見出し、本発明の触媒体を開発するに到
った。
The present inventors conducted various studies on the proportions and forms of existence of each component with respect to the above-mentioned catalyst body consisting of the alumina fingers, precious metals, and rare earth elements, and found that the weight ratio of the precious metals and rare earth elements was The inventors discovered that the relationship, the order in which they are supported on an alumina carrier, and the like have a very large effect on the catalytic performance, leading to the development of the catalyst body of the present invention.

すなわち、本発明の触媒体は、アルミナ担体と、該アル
ミナ担体に担持された貴金属及び希土類元素とから成る
ガスタービン燃焼器用の触媒体において、該貴金属及び
該希土類元素の担持量がことを特徴とするガスタービン
燃焼器用の触媒体である。
That is, the catalyst body of the present invention is a catalyst body for a gas turbine combustor comprising an alumina carrier and a noble metal and a rare earth element supported on the alumina carrier, and is characterized in that the amount of the noble metal and the rare earth element supported is This is a catalyst body for gas turbine combustors.

本発明の触媒体において、まず用いるアルミナ担体は、
後述する貴金属粒子、希土類元素との親和性が良好であ
りまた触媒体全体の活性を向上せしめるということから
して、r−アルミナで構成されることが好ましい。
In the catalyst body of the present invention, the alumina support used first is:
It is preferable to use r-alumina because it has good affinity with noble metal particles and rare earth elements, which will be described later, and improves the activity of the entire catalyst.

貴金属としては白金、パラジウム、ロジウム、ルテニウ
ムをあげることができ、これらはそれぞれ単独で又は適
宜な量比で担持される。希土類元素としては、格別限定
されるものではないがランタンは好ましいものである〇 アルミナ担体には貴金属と希土類元素のいずれもが担持
されるが、その際の両者の担持量は、貴金属の担持量(
重量)/希土類元素の担持量(重量)が1以上であるこ
とが必要である。この重量比が1より小さい場合には、
低温着火性が低下し着火温度は高温側にシフトして触媒
能が劣化するので燃焼器における燃焼効率は低下する。
Examples of noble metals include platinum, palladium, rhodium, and ruthenium, each supported singly or in an appropriate ratio. The rare earth element is not particularly limited, but lanthanum is preferred. Both noble metals and rare earth elements are supported on the alumina support, but the amount of both supported depends on the amount of precious metal supported. (
It is necessary that the ratio (weight)/supported amount (weight) of the rare earth element is 1 or more. If this weight ratio is less than 1,
The low-temperature ignitability decreases, the ignition temperature shifts to the high temperature side, and the catalytic performance deteriorates, resulting in a decrease in combustion efficiency in the combustor.

貴金属の担持量は、それが多ければ多いほど触媒体の低
温着火性、高温耐久性は向上傾向をたどる。通常は、ア
ルミナ担体に対し50重量%以上の量であることが好ま
しい。しかし、その量が多くなると触媒体のコストも上
昇するので、貴金属の担持量は、上記特性面とコスト面
を勘案して決めることが好ましい。
As the amount of noble metal supported increases, the low-temperature ignitability and high-temperature durability of the catalyst tend to improve. Usually, the amount is preferably 50% by weight or more based on the alumina carrier. However, as the amount increases, the cost of the catalyst increases, so it is preferable to decide the amount of noble metal supported by taking into account the above-mentioned characteristics and cost.

これら貴金属と希土類元素はアルミナ担体の上に上記し
た量比関係を満足した状態で一緒に担持されていてもよ
いが、しかし、次のような態様で担持されていると、得
られた触媒体の高温耐久性が大幅に向上するので有効で
ある。
These noble metals and rare earth elements may be supported together on the alumina support in a state that satisfies the quantitative relationship described above, but if they are supported in the following manner, the resulting catalyst body This is effective because the high-temperature durability of the material is greatly improved.

すなわち、アルミナ担体の上に希土類元素を担持させ、
更にその上に貴金属を担持させるという態様である。
That is, a rare earth element is supported on an alumina carrier,
Furthermore, a noble metal is supported thereon.

このような態様の場合、前記した希土類元素の作用効果
が有効に発揮され1.アルミナ担体のα相転化、貴金属
の凝集や蒸発逸散などの現象が防止されて、得られた触
媒体の低温着火性、高温耐久性が大幅に向上する。
In such an embodiment, the effects of the rare earth elements described above are effectively exhibited.1. Phenomena such as α-phase conversion of the alumina support, agglomeration and evaporation of precious metals are prevented, and the low-temperature ignitability and high-temperature durability of the obtained catalyst body are greatly improved.

本発明の触媒体の好適例は、アルミナ担体にパラジウム
(Pd)と白金(PL)、ランタン(La)  を相持
せしめたものである。この好適な触媒体においては、P
dはアルミナ担体に対し20重量%以上、そしてptは
前記pdに対し0.1〜0.5倍の量、そしてLaはア
ルミナ担体に対し5〜20重量%であり、かつ、Laが
アルミナ担体にまず担持されその上にpd、 PLが上
記量比で担持されている。
A preferred example of the catalyst of the present invention is one in which palladium (Pd), platinum (PL), and lanthanum (La) are supported on an alumina carrier. In this preferred catalyst, P
d is 20% by weight or more based on the alumina carrier, pt is 0.1 to 0.5 times the amount of pd, and La is 5 to 20% by weight based on the alumina carrier, and La is 20% by weight or more based on the alumina carrier. First, pd and PL are supported thereon in the above-mentioned ratio.

本発明の触媒体は次のようにして復造することができる
The catalyst body of the present invention can be restored as follows.

例えば、上記した好適例の触媒体の製造においては、ま
ず、担体の原料である例えばアルミナゾルに希土類元素
の所定量を添加し、両者を充分に混合する。得られたス
ラリーを例えばコージライト製のハニカム構造体の表面
に塗布したのち乾燥し、焼成する。又はスラリーをその
まま乾燥して固形物とし、これを焼成して多孔質構造体
にしてもよい。このときの焼成温度は500−1000
℃である。得られた焼成体は、多孔質のアルミナに希土
類元素が担持されたものである。
For example, in the production of the above-described preferred catalyst, first, a predetermined amount of a rare earth element is added to, for example, alumina sol, which is a raw material for the carrier, and the two are thoroughly mixed. The obtained slurry is applied to the surface of a honeycomb structure made of cordierite, for example, and then dried and fired. Alternatively, the slurry may be dried as it is to form a solid substance, and this may be fired to form a porous structure. The firing temperature at this time is 500-1000
It is ℃. The obtained fired body has a rare earth element supported on porous alumina.

つぎに、この焼成体に貴金属元素の所定濃度溶液を含浸
せしめ、乾燥後再び400〜800℃で焼成したのち、
300〜600℃の水素雰囲気中で活性化処理を施こす
Next, this fired body is impregnated with a solution of a predetermined concentration of a noble metal element, dried, and fired again at 400 to 800°C.
Activation treatment is performed in a hydrogen atmosphere at 300 to 600°C.

この製造工程は、貴金属を含浸法で担持せしめる方法の
1例であるが、本発明の触媒体の製造においてはこの方
法に限定されることなく、例えば、各成分を混練して製
造することもできる。なお、含浸法における各成分溶液
の所定濃度は、貴金属及び希土類元素の担持量が前記し
た量比関係になるように決められる。
This manufacturing process is an example of a method in which noble metals are supported by an impregnation method, but the manufacturing of the catalyst of the present invention is not limited to this method. For example, it can also be manufactured by kneading each component. can. Note that the predetermined concentration of each component solution in the impregnation method is determined so that the supported amounts of noble metals and rare earth elements have the above-mentioned quantitative relationship.

〔発明の実施例〕[Embodiments of the invention]

実施例1 (1)触媒体の製造 固形分80チを含むアルミナゾル125fに硝flli
5ンタン252を添加したのち、ボールミルを用いて常
温で2時間混合・粉砕した。得られたスラリーヲ、コー
ジライト製ハニカム状担体(30セル/era、 m体
容−Jl 1 t )に流しかけて塗布し、約1日室温
下で乾燥したのち、全体を650℃で1時間焼成した。
Example 1 (1) Production of catalyst
After adding 252 tons of tantan, the mixture was mixed and pulverized for 2 hours at room temperature using a ball mill. The obtained slurry was applied by pouring it onto a cordierite honeycomb carrier (30 cells/era, m body volume - Jl 1 t), dried at room temperature for about a day, and then baked at 650°C for 1 hour. did.

つぎに、塩化パラジウム70りを含む水溶液0、51の
中に上記ハニカム状担体を浸漬したのち、これを取り出
し、120℃で3時間乾燥したのち500℃で3時間焼
成した。その後、400℃の水素炉で1時間活性化処理
を施こして本発明の触媒体を得た。
Next, the honeycomb-shaped carrier was immersed in an aqueous solution containing 70% of palladium chloride, taken out, dried at 120°C for 3 hours, and then fired at 500°C for 3 hours. Thereafter, activation treatment was performed for 1 hour in a hydrogen furnace at 400°C to obtain a catalyst body of the present invention.

(2)触媒体の性能 上記触媒体を触媒燃焼方式のガスタービン燃焼器の模擬
装置にセットし、ガス流速30m/see 。
(2) Performance of catalyst The above catalyst was set in a simulator of a catalytic combustion type gas turbine combustor, and the gas flow rate was 30 m/see.

混合物濃度:メタン3チ触媒体の体積量3 cc、燃焼
時間100 hrの条件で装置を作動し、そのときのメ
タンの着火温度、燃焼効率を測定した。以上の結果を第
1表に示した。
The apparatus was operated under the conditions of mixture concentration: 3 cc of volume of methane 3 titanium catalyst and 100 hr of combustion time, and the methane ignition temperature and combustion efficiency at that time were measured. The above results are shown in Table 1.

実施例2〜8 第1表のように、貴金属、希土類元素の量、担持の順序
を変えた外は、実施例1と同様の方法で各種触媒体を調
製しその性能を測定した。結果を同じく第1表に示した
Examples 2 to 8 As shown in Table 1, various catalyst bodies were prepared in the same manner as in Example 1, except that the amounts of noble metals and rare earth elements and the order of loading were changed, and their performances were measured. The results are also shown in Table 1.

第1表 簀 A:希土類元素を担持させてから貴金棺を担持B:
貴金属を担持させてから希土類元素を担持C;貴金i1
と希土類元素を一緒に旬持実施例9 固形分80チを含むアルミナゾル1252に硝酸ランタ
ン201、硝酸ネオジウム52を添加したのち、ボール
ミルを用いて常温で2時間混合・粉砕した。得られたス
ラリーを、コージライト類・・ニカム状担体(200セ
ル/i、 a偉容fit)に流しかけて塗布し、約1日
室温下で乾燥したのち、全体を700℃で3時間焼成し
た。
First table A: Carrying rare earth elements and then carrying precious gold coffin B:
Supporting precious metal and then supporting rare earth element C; Noble metal i1
and rare earth elements together Example 9 After adding 201 lanthanum nitrate and 522 neodymium nitrate to alumina sol 1252 containing 80% solid content, the mixture was mixed and pulverized using a ball mill at room temperature for 2 hours. The obtained slurry was applied by pouring it onto a cordierite nicum-like carrier (200 cells/i, aweiyo fit), dried at room temperature for about a day, and then baked at 700°C for 3 hours. .

つぎに、塩化パラジウム1801と塩化白金酸125?
を溶解せしめた水溶液200−の中に、上記ハニカム状
担体を浸漬したのちこれを取り出して乾燥し、600℃
の水素炉中で3時間活性化処理を施して触媒体を得た。
Next, palladium chloride 1801 and chloroplatinic acid 125?
The honeycomb-shaped carrier was immersed in an aqueous solution of 200° C., taken out, dried, and heated at 600°C.
A catalyst body was obtained by performing activation treatment for 3 hours in a hydrogen furnace.

この触媒体の性能を実施例1と同様にして測定しその結
果を第2表に示した。
The performance of this catalyst was measured in the same manner as in Example 1, and the results are shown in Table 2.

実施例10〜13 第2表のように、貴金属の種類と量、希土類元素の種類
と量、貴金属と希土類元素の担持の順序を変えた外は、
実施例1と同様の方法で各種触媒体を調製しその性能を
測定した。結果を同じく第2表に示した。
Examples 10 to 13 As shown in Table 2, except for changing the type and amount of noble metal, the type and amount of rare earth element, and the order of loading of noble metal and rare earth element,
Various catalyst bodies were prepared in the same manner as in Example 1, and their performances were measured. The results are also shown in Table 2.

第2表 〔発明の効果〕 以上の説明で明らかなように、本発明の触媒体は、低温
着火性の指標であるメタン着火温度が低く、また高温耐
久性の指標である高温下での燃焼効率が格段に高い。こ
のように、本発明の触媒体は低温着火性、高温耐久性が
優れているので、これを触媒燃焼方式のガスタービン燃
焼器に用いればNOxの発生を大幅に減少することがで
きて有用である。
Table 2 [Effects of the Invention] As is clear from the above explanation, the catalyst body of the present invention has a low methane ignition temperature, which is an index of low-temperature ignitability, and a low combustion temperature at high temperatures, which is an index of high-temperature durability. Extremely efficient. As described above, the catalyst body of the present invention has excellent low-temperature ignitability and high-temperature durability, so if it is used in a catalytic combustion type gas turbine combustor, it is useful because it can significantly reduce the generation of NOx. be.

なお、この触媒体を組込んだガスタービン燃焼器におい
ても、その入口及び出口の温度条件等は従来と変わシな
く今までのガスタービン燃焼器を用いたシステムをその
まま使用でき、システムを高効率で稼動させることがで
きる。
In addition, even in a gas turbine combustor incorporating this catalyst, the temperature conditions at the inlet and outlet are the same as before, and systems using conventional gas turbine combustors can be used as is, making the system highly efficient. It can be operated with.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は触媒燃焼方式のガスタービン燃焼器の模式図、
第2図は従来のガスタービン燃焼器の模式図、第3図は
第2図燃焼器におけるガスの流れ方向の温度分布の概要
を表わす図で、図中の斜線部分がNOx発生域である。 1・・・燃料ノズル、2・・・スパークプラグ、3・・
・燃焼用空気、4・・・冷却空気、5・・・希釈空気、
  6・・・タービンノズル、7・・・ノズル出口、8
・・・触媒充填域。 第1図 第2図 第3図 、九伴9筬七声旬
Figure 1 is a schematic diagram of a catalytic combustion type gas turbine combustor.
FIG. 2 is a schematic diagram of a conventional gas turbine combustor, and FIG. 3 is a diagram showing an outline of the temperature distribution in the flow direction of gas in the combustor shown in FIG. 2. The shaded area in the diagram is the NOx generation region. 1...Fuel nozzle, 2...Spark plug, 3...
・Combustion air, 4... Cooling air, 5... Dilution air,
6... Turbine nozzle, 7... Nozzle outlet, 8
...Catalyst filling area. Fig. 1 Fig. 2 Fig. 3, 9 yen, 9 yen, 7 syllables

Claims (1)

【特許請求の範囲】 1、アルミナ担体と、該アルミナ担体に担持された貴金
属及び希土類元素とから成るガスタービン燃焼器用の触
媒体において、該貴金属及び希土類元素の担持量が(貴
金属の重量)/(希土類元素の重量)≧1の関係を満足
する量であることを特徴とするガスタービン燃焼器用の
触媒体。 2、該希土類元素が、該アルミナ担体と該貴金属との間
に担持されている特許請求の範囲第1項記載の触媒体。 3、該貴金属がパラジウム及び白金であり、該希土類元
素がランタンである特許請求の範囲第1項又は第2項記
載の触媒体。 4、パラジウムの担持量が該アルミナ担体の重量に対し
20重量%以上、白金の担持量が該パラジウムの重量に
対し0.1〜0.5倍の量であり、かつ、希土類元素の
担持量が該アルミナ担体の重量に対し5〜20重量%で
ある特許請求の範囲第1〜第3項のいずれかに記載の触
媒体。
[Claims] 1. A catalyst body for a gas turbine combustor comprising an alumina carrier and a noble metal and a rare earth element supported on the alumina carrier, wherein the supported amount of the noble metal and rare earth element is (weight of noble metal)/ A catalyst body for a gas turbine combustor, characterized in that the amount satisfies the relationship (weight of rare earth element)≧1. 2. The catalyst body according to claim 1, wherein the rare earth element is supported between the alumina carrier and the noble metal. 3. The catalyst body according to claim 1 or 2, wherein the noble metal is palladium and platinum, and the rare earth element is lanthanum. 4. The amount of palladium supported is 20% by weight or more based on the weight of the alumina carrier, the amount of platinum supported is 0.1 to 0.5 times the weight of the palladium, and the amount of rare earth elements supported The catalyst body according to any one of claims 1 to 3, wherein the amount is 5 to 20% by weight based on the weight of the alumina support.
JP5959386A 1986-03-19 1986-03-19 Catalytic material for gas turbine combustor Pending JPS62216642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5959386A JPS62216642A (en) 1986-03-19 1986-03-19 Catalytic material for gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5959386A JPS62216642A (en) 1986-03-19 1986-03-19 Catalytic material for gas turbine combustor

Publications (1)

Publication Number Publication Date
JPS62216642A true JPS62216642A (en) 1987-09-24

Family

ID=13117691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5959386A Pending JPS62216642A (en) 1986-03-19 1986-03-19 Catalytic material for gas turbine combustor

Country Status (1)

Country Link
JP (1) JPS62216642A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634852A (en) * 1986-06-25 1988-01-09 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for combustion
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5378142A (en) * 1991-04-12 1995-01-03 Engelhard Corporation Combustion process using catalysts containing binary oxides
US5474441A (en) * 1989-08-22 1995-12-12 Engelhard Corporation Catalyst configuration for catalytic combustion systems

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634852A (en) * 1986-06-25 1988-01-09 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for combustion
US5474441A (en) * 1989-08-22 1995-12-12 Engelhard Corporation Catalyst configuration for catalytic combustion systems
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5405260A (en) * 1990-11-26 1995-04-11 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
US5378142A (en) * 1991-04-12 1995-01-03 Engelhard Corporation Combustion process using catalysts containing binary oxides
US5750458A (en) * 1991-04-12 1998-05-12 Kennelly; Teresa Combustion catalysts containing binary oxides and processes using the same
US5863851A (en) * 1991-04-12 1999-01-26 Engelhard Corporation Combustion catalysts containing binary oxides and processes using the same

Similar Documents

Publication Publication Date Title
EP0960649B1 (en) Exhaust gas clean-up catalyst
JP2010022918A (en) Honeycomb-structured catalyst for purifying exhaust gas discharged from automobile, method for producing the catalyst, and method for purifying exhaust gas by using the catalyst
JPS62216642A (en) Catalytic material for gas turbine combustor
JPS6014938A (en) Combustion catalyst for gas turbine
JPS60200021A (en) Combustor of gas turbine
JPS6279847A (en) Catalyst system for combustion of lower hydrocarbon fuel and combustion method using said system
JPS60202235A (en) Combustor of gas turbine
JPH1085586A (en) Functional material, oxidizing catalyst, combustion catalyst, methanol modified catalyst and electrode catalyst
JPH0512021B2 (en)
JPS60205116A (en) Combustion catalyst system and combustion therewith
JPS6380849A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPS6280420A (en) Combustion catalyst system for low class hydro-carbon fuel and combustion method of using same
JPS63104651A (en) Catalyst for purifying exhaust gas
JP2585212B2 (en) Gas turbine combustor
JP2557371B2 (en) Gas turbine combustor catalyst and method for producing the same
JPH08206500A (en) Palladium-based catalyst, combustion catalyst, and combustion device
JPS6388041A (en) Oxidizing catalyst
JPH07112542B2 (en) Method for producing oxidation catalyst
JP2585253B2 (en) Catalyst for gas turbine combustor
JP2531641B2 (en) Contact combustion catalyst
JPS62218729A (en) Gas turbine combustor
JP3827173B2 (en) Method for producing catalyst for combustion of methane fuel
JP3503905B2 (en) Catalyst for combustion of methane-based fuel
JP2023547021A (en) Three-way catalyst conversion system for engine exhaust purification treatment and its application
JPS6179916A (en) Gas turbine combustor