JPS62262747A - Composite oxide catalytic body - Google Patents

Composite oxide catalytic body

Info

Publication number
JPS62262747A
JPS62262747A JP61107082A JP10708286A JPS62262747A JP S62262747 A JPS62262747 A JP S62262747A JP 61107082 A JP61107082 A JP 61107082A JP 10708286 A JP10708286 A JP 10708286A JP S62262747 A JPS62262747 A JP S62262747A
Authority
JP
Japan
Prior art keywords
composite oxide
catalyst
ceramic honeycomb
honeycomb carrier
lanthanum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61107082A
Other languages
Japanese (ja)
Other versions
JPH0653228B2 (en
Inventor
Ikuo Matsumoto
松本 郁夫
Kenji Tabata
研二 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61107082A priority Critical patent/JPH0653228B2/en
Publication of JPS62262747A publication Critical patent/JPS62262747A/en
Publication of JPH0653228B2 publication Critical patent/JPH0653228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enhance the activity and heat resistance of the title catalytic body by depositing a perovskite composite oxide contg. a 1.01-1.06 ratio of lanthanum and cobalt on a ceramic honeycomb carrier of cordierite, etc. CONSTITUTION:The composite oxide catalytic body having an ABO3 structure (A shows lanthanum and B expresses cobalt) and contg. a 1/1.01-1/1.06 molar ratio of A and B is formed on the ceramic honeycomb carrier of cordierite, etc. More concretely, the ceramic honeycomb carrier having many pores is impregnated with an aq. soln. of cerium (III) nitrate, cerium (III) acetate, etc., and then baked. The carrier is then impregnated with a liq. mixture of nitrates capable of obtaining the composite oxide of LaCoO3 (Co is increased to 1.01-1.06) by baking, dried, and baked to form the composite oxide catalytic body.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は家庭用燃焼器、自動車あるいは工業用各種炉か
ら排出される一酸化炭素(Co)、炭化水素(CxHy
)など不完全燃焼物や未燃Jf5′t、物を炭酸ガス(
Co2)、水(H2O)などj!il; g すも(7
]C’i換する酸化触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to carbon monoxide (Co) and hydrocarbons (CxHy) discharged from household combustors, automobiles, and various industrial furnaces.
) and other incompletely combusted materials, unburned Jf5't, and materials with carbon dioxide gas (
Co2), water (H2O), etc.j! il; g sumo (7
] This relates to an oxidation catalyst for converting C'i.

従来の技術 従来この棟の用途に用いる触媒は白金(Pt)、パラジ
ウム(Pd)、ロジウム(Rh)なト貴金FE、に利用
し5たものが多い。しかし貴金属系の触・煤は高7晶で
長時間使用すると、シンクリング金起こし、1+!r 
l:I:劣化につながり、しかもコスト的にも非常に高
blli テ;h ル。マタコバルI・(Co)、ニッ
ケル(N i )、マンガン(Mn)など単独の4移金
属酸化物もある程度のt6性を有するが、高温にすると
酸化を占性度の小さな酸化物の形となったり、アルミナ
など担体成分との間でヌビネ)Vf影形成て劣化の方向
に進む。
Prior Art Conventionally, the catalysts used for this purpose are often made of precious metals such as platinum (Pt), palladium (Pd), and rhodium (Rh). However, if you use precious metals and soot for a long time with a high 7 crystal, it will cause a sink ring and 1+! r
l: I: Leads to deterioration and is also extremely costly. Single tetra-transfer metal oxides such as Matacovar I (Co), nickel (N i ), and manganese (Mn) also have some degree of t6 property, but at high temperatures, they oxidize into the form of oxides with low occupancy. Otherwise, Vf shadows (Nubine) are formed with support components such as alumina, leading to deterioration.

Laなどの希土類とN i 、Co  など遷移金属酸
化物とのベロゲスカイト複合酸化物は従来より高活性と
耐熱性を兼ねセ111えた触媒としてよく知られている
が、貴金属系の触1楳と比較するとその活性は良いとは
言えない。
Vergeskite composite oxides of rare earth elements such as La and transition metal oxides such as Ni and Co are well known as catalysts that have both high activity and heat resistance. Then, the activity cannot be said to be good.

発明が解決しようとする問題点 ペロプスカイト複合酸化物触媒のと記の欠点を解消する
ためにはベロゲスカイト複合酸化物の活性点であるコバ
ルトが効率良く触媒表面とに露出していなく−cはなら
ない。La Co 03 (La+3の一部にCe+4
あるいはSr+2 を導入した複合酸化物でも同じ挙動
であるが)系ベロゲスカイトは原料のLa とCO全当
量比に混合させて触媒粉末を作成するとマクロ的にはL
a Co 03のベロプヌカイト構凸ができるが、触媒
の極く表面(11でばCoVこ比I咬してLaの濃度が
高く、COが表面に出にくい性質がある。従って本発明
はこの点を解決しようとするものである。
Problems to be Solved by the Invention In order to solve the following drawbacks of perovskite composite oxide catalysts, it is necessary that cobalt, which is an active site of vergeskite composite oxide, is not efficiently exposed to the catalyst surface. . La Co 03 (Ce+4 in part of La+3
Alternatively, the behavior is the same with composite oxides containing Sr+2), but when the velogesite system is mixed with the raw materials La and CO in the total equivalent ratio to create a catalyst powder, macroscopically L
a Co 03 has a velopnukite structure convexity, but the very surface of the catalyst (11 has a high concentration of La compared to CoV and has a property that makes it difficult for CO to come out to the surface. Therefore, the present invention addresses this point. This is what we are trying to solve.

問題点を解決するだめの手段 上記の問題全解決するためにAサイトのLaあるいはL
a+Ce又はLa+Srの合計量に比べてBサイ1−の
Coの梠を(jくわずか増加させた触媒を作成すること
により、当量比からなる触媒に比して圧倒的に高活性の
ものが得られる。
Means to solve the problem In order to solve all the above problems, set La or L of A site.
By creating a catalyst in which the amount of Co in B size 1- is slightly increased by (j) compared to the total amount of a+Ce or La+Sr, a catalyst with overwhelmingly high activity can be obtained compared to a catalyst with an equivalent ratio. It will be done.

作   用 La Co○3系ペロブスカイト複合酸化物のBサイト
C0fIiをわずか(1,01〜1.06)増加するこ
とにより、ペロプスカイト複合酸化物表面の組成を本来
のLa CaO2の様にLa:Coの当111比が1:
1近くなり、活性が向丘する。また過剰にBサイトのC
of、加えすぎると複合酸化物[なりきれないフリーの
Co酸化物が触媒表面に存在することになり、温度をと
げると活性の、悲いCaOとなってかえって触媒の活性
を悪くする傾向になる。
Effect By slightly increasing the B site C0fIi of the LaCo○3-based perovskite composite oxide (1.01 to 1.06), the composition of the surface of the perovskite composite oxide can be changed to La:Co like the original LaCaO2. The ratio of 111 is 1:
It becomes close to 1, and the activity increases. Also, excessive C of site B
Of, if too much is added, complex oxide [free Co oxide that cannot be formed will exist on the catalyst surface, and if the temperature is raised, it becomes active CaO, which tends to worsen the activity of the catalyst. .

実施例 以下本発明による実施例を説明する。Example Examples according to the present invention will be described below.

(1)酢酸ランタンと酢酸コバルトをそれぞれの金属の
モル比が1:1.OO〜1.06になる採水溶液を調整
し、ローグリ−エバポレータで乾燥し、400′Cで仮
焼し、さらに850°C,5時間空気中で焼成し、ペロ
ブスカイト複合酸化物微粉末を作成した。作成した微粉
末の化学反応は図1に示した通りで、通常の流通反応装
雁(常圧、反応ガス組成:Co 19f= / A i
 rバランス、流量300ctd / JniA )を
用いた。触媒昂は0.18:ゾとし石英砂で希釈後、全
光合2.acfflとした。反応管は内径10mmの石
英管を用いた。生成ガスの分析ばガヌクロマi−グラフ
ィーにより行なった。なおLaの一部にCe あるいは
3rを導入したもの(La O,9Ce0.I CaO
2、La O,8Sr O,2CaO2)についても同
様の触媒粉未作成法を行なった結果も併せて第1図に示
す。第1図の結果からも分る様にへサイ1−レこ比較し
゛〔Bサイトのセル比全僅かに増加させるだけで活性を
大巾に増加させることができる。特にBサイトの量が1
.02〜1.03の特級もその効果が著しい。
(1) Lanthanum acetate and cobalt acetate in a molar ratio of each metal of 1:1. A sampled water solution with a concentration of OO~1.06 was prepared, dried in a Roguery evaporator, calcined at 400'C, and further calcined in air at 850°C for 5 hours to create perovskite composite oxide fine powder. . The chemical reaction of the prepared fine powder is as shown in Fig. 1, using a normal flow reaction system (atmospheric pressure, reaction gas composition: Co 19f = / A i
r balance, flow rate 300 ctd/JniA) was used. Catalytic concentration is 0.18: after diluting with quartz sand, total photopolymerization is 2. acffl. A quartz tube with an inner diameter of 10 mm was used as the reaction tube. Analysis of the produced gas was carried out by Ganuchromatography. In addition, those in which Ce or 3r is introduced into a part of La (La O, 9Ce0.I CaO
2, LaO, 8SrO, 2CaO2), the same method without catalyst powder was performed and the results are also shown in FIG. As can be seen from the results in FIG. 1, the activity can be greatly increased by only a slight increase in the total cell ratio of the B site. Especially the amount of B site is 1
.. The special grade of 02 to 1.03 also has a remarkable effect.

次に実用的なコーディエライトハニカム担体上に111
行させた粉末担持法(2)の例と直接担持法(3)の例
を示す。
Next, 111 on a practical cordierite honeycomb carrier
An example of the powder loading method (2) and an example of the direct loading method (3) are shown below.

(2)硝酸ランタンと硝酸コバルトをそれぞれの金属の
モル比が1:1.OO〜LO6&こなる採水溶液を調整
したものt大過剰の水酸化す) IJウム水溶液に若干
の過酸化水素水を加えたものの中に混合攪拌し、水酸物
を生成沈澱させる。この沈澱物?十分水洗し、アルカリ
分を除去し、850°C5時間空気中で焼成し、ペロプ
スカイト複合酸化物微粉末を作成する。さらに水洗いを
行ない、適iiiのコロイダルアルミナと混合させ、特
殊なミ/l/により十分混練させ、触媒微粉末スラリー
を作成する。
(2) Lanthanum nitrate and cobalt nitrate in a molar ratio of each metal of 1:1. OO to LO6 & the prepared water collection solution containing a large excess of hydroxide) is mixed and stirred into an aqueous solution of IJ and a small amount of hydrogen peroxide to form and precipitate hydroxide. This sediment? Thoroughly wash with water to remove alkaline content, and calcinate in air at 850°C for 5 hours to produce fine perovskite composite oxide powder. The mixture is further washed with water, mixed with appropriate colloidal alumina, and sufficiently kneaded using a special micro/l/ to create a catalyst fine powder slurry.

IIl!11楳徽わ)末ヌラリーを水で希釈させ、この
中にコーディエライトハニカムを含浸させる。コーディ
エライトハニカム中に存在するgIfffll孔に水が
吸収するトキコーディエライトハニカム表面上に;独1
毘微粉末が吸い寄せられ、その箇所でアルミナゾルと共
に触媒粉末が固着させられる。触媒会固盾したハニカム
を800°C,5分以と空気中で焼成することによりペ
ロブスカイト複合酸化物触媒体を作成する。第2図にこ
のl1llil媒体のプロパン(C3H8)における変
換率2示す。試験袋費は通常の流通反応装散(常圧、反
応ガス組成;C3HB1%/ A i r  バランス
、流量300ct/m1JI) ff:用いた。触媒体
は直径20 mm s厚みを10mmとした。
IIl! 11) Dilute the slurry with water and impregnate the cordierite honeycomb in it. On the surface of the cordierite honeycomb where water is absorbed into the pores present in the cordierite honeycomb; Germany 1
The fine powder is attracted, and the catalyst powder is fixed together with the alumina sol at that location. A perovskite composite oxide catalyst body is prepared by firing the honeycomb solidified with the catalyst in air at 800°C for 5 minutes or more. FIG. 2 shows the conversion rate 2 of this lllil medium in propane (C3H8). The cost of the test bag was determined by using a normal flow reaction device (normal pressure, reaction gas composition: C3HB1%/Air balance, flow rate 300ct/m1JI). The catalyst body had a diameter of 20 mm and a thickness of 10 mm.

反応管は内径は20++++++の石英管を用いた。生
成ガスの分析はガスクロマトグラフィーにより行なった
。第2図の結果からも分る様にBサイトの量が1.03
の時最もその効果が著しい。
A quartz tube with an inner diameter of 20++++ was used as the reaction tube. The produced gas was analyzed by gas chromatography. As can be seen from the results in Figure 2, the amount of B site is 1.03
The effect is most significant when

(3)その内部に多数の徽紬孔が存在するコーディエラ
イトハニカム担体を硝酸第一セリウム溶液(硝酸第一セ
リウム6水塩750 g / 1 e H2O)の中に
30分以上含浸させ、付着水乞振り落し、よく乾燥し、
400°Cで仮焼成した後、900°C1時間空気中で
焼成させる。次にこの担体を硝酸ランタンと硝酸コバル
トヲそれぞれの金属のモル比が1:1.OO〜1.06
にさせた水溶液を調整したものの中に30分以上含身さ
せ、付着水を振り落し、よく乾燥し、400°Cで仮焼
成した後、800°C12時間空気中で焼成させてベロ
プス力−(ト複合酸化物触媒体を作成する。第3図にこ
の触媒体のプロパン(C3HB)における変換率を示す
。試験装置及び試験方法は交)の場合と同じであるので
省略する。第3図の結果からも分る様にBサイトの量が
1.04の時最もその効果が著しい。
(3) A cordierite honeycomb carrier with a large number of pores inside is impregnated in a cerous nitrate solution (cerous nitrate hexahydrate 750 g / 1 e H2O) for more than 30 minutes, and then adhered. Shake off the water, dry thoroughly,
After pre-baking at 400°C, it is fired at 900°C in air for 1 hour. Next, this carrier was mixed with lanthanum nitrate and cobalt nitrate in a metal molar ratio of 1:1. OO~1.06
The aqueous solution was immersed in the prepared material for 30 minutes or more, the adhering water was shaken off, the water was thoroughly dried, and the mixture was pre-calcined at 400°C, and then fired in the air at 800°C for 12 hours to obtain a veloping force -( A composite oxide catalyst body is prepared. Figure 3 shows the conversion rate of this catalyst body in propane (C3HB). The test equipment and test method are the same as in the case of (2), and will therefore be omitted. As can be seen from the results in Figure 3, the effect is most significant when the amount of B site is 1.04.

第4図及び第5図にベロプヌ力イト粉末担持触媒体とベ
ログヌカイト直接担持触媒体のモデル図を示す。第4図
及び第5図においてコーディエライト担体1内には小さ
な細孔2が多数存在する。
FIG. 4 and FIG. 5 show model diagrams of a catalyst supported on berognite powder and a catalyst supported directly on berognukite. In FIGS. 4 and 5, a large number of small pores 2 are present in the cordierite carrier 1.

粉末41!持の場合用体表面3において触媒微粉末(ペ
ロブスカイト複合酸化物微粉末)4がアルミナゾルを焼
成した際にできる多孔質アルミナ5によって付着されて
いる。なお粉末担持の場合細孔2内には触媒a粉末4は
存在しない。
Powder 41! In this case, catalyst fine powder (perovskite composite oxide fine powder) 4 is adhered to the surface 3 of the body by porous alumina 5 formed when alumina sol is fired. In addition, in the case of powder support, the catalyst a powder 4 does not exist in the pores 2.

直接相持の場合細孔2内の壁面6も含めコーディエライ
ト材質が露出している而はCe O2あるいはZrO2
からなる保護膜7により被われている。
In the case of direct interaction, the cordierite material, including the wall surface 6 inside the pore 2, is exposed, which means CeO2 or ZrO2.
It is covered with a protective film 7 consisting of.

さらにこの保護膜7の上に触媒直接合成物8が生成され
ている。
Furthermore, a catalytic direct composition 8 is produced on this protective film 7.

以上示した各側からも、その作成方法の違いにもかかわ
らず、ペロブスカイト複合酸化物触媒のAサイト:Bサ
イトが1:1.01〜1.06の時、その効果が大きく
、中でもBサイトが1.02〜1.04の時、その効果
が著しい。
From each side shown above, despite the differences in their preparation methods, when the A site:B site ratio of the perovskite composite oxide catalyst is 1:1.01 to 1.06, the effect is large, especially the B site. When is 1.02 to 1.04, the effect is remarkable.

その原因としては第6図に示した触媒粉末の表面用の組
成〔X線光電子分光(xps)で測定〕と触媒粉末バル
クの組成〔螢光X線分析(XRFS )で測定〕の結果
を示す。AサイトのLaとBサイトのCOが当量比の場
合、バルク内のCOはほぼ計算値通りの値であるのに対
し、触媒表面相ではCo11が著しく少ない。つまりC
oは表面に出にくい性質となっている。Com’を僅か
づつ増やす 。
The reason for this is shown in Figure 6, which shows the composition of the surface of the catalyst powder [measured by X-ray photoelectron spectroscopy (XPS)] and the composition of the bulk catalyst powder [measured by X-ray fluorescence spectroscopy (XRFS)]. . When La at the A site and CO at the B site are in an equivalent ratio, the CO in the bulk is approximately the same as the calculated value, but the amount of Co11 in the catalyst surface phase is extremely low. In other words, C
o has a property that it is difficult to appear on the surface. Increase Com' little by little.

とそれに応じて表面用のCOは増加し、COO1203
近辺でほぼ理論値?とり、触媒活性は最高値をとる。さ
らにCO量が増加すると、フリーのCO酸化物が触媒表
面に存在することになり、高nu′1に加熱するとCo
oとなり触媒活性度をかえって落とすことになるものと
考える。
and the surface CO increases accordingly, COO1203
Near theoretical value? and the catalytic activity takes the highest value. Furthermore, as the amount of CO increases, free CO oxides will exist on the catalyst surface, and when heated to a high nu'1, Co
It is thought that this results in a decrease in the catalyst activity.

発明の効果 本発明による効果として以下列記する様なことが挙げら
れる。
Effects of the Invention The effects of the present invention include the following.

(1)  コバルト徂の割合をほんの僅か増加させるだ
けで、圧倒的に高い高活性を有する触媒体を得ることが
できる。
(1) By only slightly increasing the proportion of cobalt, a catalyst having overwhelmingly high activity can be obtained.

(2)触媒体作成の如何を問わず、Bサイトにコバール
トを用いたペロブスカイト複合酸化物触媒体は本方法を
利用することができ、工業的作成方法として活性用度が
大きい。
(2) Regardless of how the catalyst is prepared, the present method can be used to produce a perovskite composite oxide catalyst using cobalt at the B site, and the method is highly useful as an industrial preparation method.

(3)貴金属を使用していないので、しかも貴金属触媒
並みの高活性が期待でき、併せて耐熱性の高い触媒体が
可能となる。
(3) Since no precious metals are used, high activity comparable to that of noble metal catalysts can be expected, and a catalyst body with high heat resistance can be produced.

キ、図面のf7i’i fl’iな説明第1図はペロブ
スカイト複合酸化物触媒のC○酸化反応(250’C)
における過剰Coの効果をを表わした特性図、第2図は
ペロプスカイト粉末4114−:“1触媒体のC3H8
変換:+−を示す図、第3図はべロブスカイト直接相持
触媒体のC3HB変換率を示す図、第4図はペロブスカ
イト粉末担荷触媒モデル図、第5図はペロプスカイト直
接担持触媒モデル図、第6図はペロブスカイト複合酸化
物触媒(La Co 03 )のコバルト過剰にした場
合の触媒組成及びバルク内の組成を表した特性図である
G, f7i'i fl'i explanation of the drawings Figure 1 shows the C○ oxidation reaction (250'C) of a perovskite composite oxide catalyst.
Figure 2 is a characteristic diagram showing the effect of excess Co on perovskite powder 4114-:1 catalyst of C3H8
Conversion: A diagram showing +-, Figure 3 is a diagram showing the C3HB conversion rate of berovskite directly supported catalyst, Figure 4 is a model diagram of perovskite powder supported catalyst, Figure 5 is a diagram of perovskite directly supported catalyst model, FIG. 6 is a characteristic diagram showing the catalyst composition and bulk composition when cobalt is excessive in a perovskite composite oxide catalyst (La Co 03 ).

1・・・・・・コーディエライト担体、2・・・・・・
細孔、4・・・・・・触媒微粉末、7・・・・・・保護
膜、8・・・・・・触媒直接合成物。
1... Cordierite carrier, 2...
Pores, 4... Catalyst fine powder, 7... Protective film, 8... Catalyst direct composite.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 グロブス刀1日支合舌文イこ物触縣のCOMt友ノー(
2SO”C)  IZ Fl゛175gLテI C6u
 ;@L第2図 触謀展次/’C 第3図 第4図 tb)
Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure Globus sword 1 day support tongue pattern Ikomono touch comt friend no (
2SO”C) IZ Fl゛175gLteI C6u
;@L Figure 2 Takushi Exhibition/'C Figure 3 Figure 4 tb)

Claims (4)

【特許請求の範囲】[Claims] (1)ABO_3の構造を有するペロブスカイト複合酸
化物において、Aはランタン(La)、Bはコバルト(
Co)を用い、A:Bのモル比を1:1.01〜1.0
6にさせたものをコーディエライトなどセラミックハニ
カム担体に相持させた複合酸化物触媒体。
(1) In the perovskite composite oxide having the structure ABO_3, A is lanthanum (La) and B is cobalt (
Co), and the molar ratio of A:B is 1:1.01 to 1.0.
A composite oxide catalyst made by supporting 6 on a ceramic honeycomb carrier such as cordierite.
(2)LaCoO_3(Co増量1.01〜1.06)
の構造を有するペロブスカイト複合酸化物微粉末をアル
ミナゾルなど担持助剤と共にセラミックハニカム担体の
表面にコーティングさせた特許請求の範囲第1項記載の
複合酸化物触媒体。
(2) LaCoO_3 (Co increase 1.01-1.06)
The composite oxide catalyst body according to claim 1, wherein the perovskite composite oxide fine powder having the structure is coated on the surface of a ceramic honeycomb carrier together with a supporting agent such as alumina sol.
(3)多数の細孔を有したセラミックハニカム担体を硝
酸第1セリウム、酢酸第1セリウムなどセリウム塩水溶
液に含浸させた後、焼成させた安定化担体上に焼成する
ことによってLaCoO_3(Co増量1.01〜1.
06)の複合酸化物が得られる硝酸塩混合液中に含浸さ
せ、乾燥し、焼成して作成した特許請求の範囲第1項記
載の複合酸化物触媒体。
(3) A ceramic honeycomb carrier with a large number of pores is impregnated with an aqueous solution of cerium salt such as cerous nitrate or cerous acetate, and then fired on a fired stabilizing carrier to increase the amount of LaCoO_3 (Co .01~1.
2. The composite oxide catalyst body according to claim 1, which is prepared by impregnating the composite oxide in a nitrate mixture obtained in 06), drying, and calcining it.
(4)ABO_3のAサイトのランタン(La)の一部
にセリウム(Ce)あるいはストロンチウム(Br)を
導入させた特許請求の範囲第1項、第2項または第3項
記載の複合酸化物触媒体。
(4) The composite oxide catalyst according to claim 1, 2 or 3, in which cerium (Ce) or strontium (Br) is introduced into a part of the lanthanum (La) at the A site of ABO_3. Medium.
JP61107082A 1986-05-09 1986-05-09 Complex oxide catalyst Expired - Fee Related JPH0653228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61107082A JPH0653228B2 (en) 1986-05-09 1986-05-09 Complex oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61107082A JPH0653228B2 (en) 1986-05-09 1986-05-09 Complex oxide catalyst

Publications (2)

Publication Number Publication Date
JPS62262747A true JPS62262747A (en) 1987-11-14
JPH0653228B2 JPH0653228B2 (en) 1994-07-20

Family

ID=14450020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61107082A Expired - Fee Related JPH0653228B2 (en) 1986-05-09 1986-05-09 Complex oxide catalyst

Country Status (1)

Country Link
JP (1) JPH0653228B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304046A (en) * 1988-06-01 1989-12-07 Matsushita Electric Ind Co Ltd Catalyst for purifying exhaust gas
JPH01307447A (en) * 1988-06-06 1989-12-12 Matsushita Electric Ind Co Ltd Waste gas purification catalyst
CN111054368A (en) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 Integral non-noble metal catalyst for processing oxidation tail gas of PTA device and application
CN111054355A (en) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 Integral non-noble metal catalyst for catalytic combustion treatment of PTA tail gas
CN111054352A (en) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 Integral non-noble metal catalyst for purifying PTA oxidized tail gas and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304046A (en) * 1988-06-01 1989-12-07 Matsushita Electric Ind Co Ltd Catalyst for purifying exhaust gas
JPH01307447A (en) * 1988-06-06 1989-12-12 Matsushita Electric Ind Co Ltd Waste gas purification catalyst
CN111054368A (en) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 Integral non-noble metal catalyst for processing oxidation tail gas of PTA device and application
CN111054355A (en) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 Integral non-noble metal catalyst for catalytic combustion treatment of PTA tail gas
CN111054352A (en) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 Integral non-noble metal catalyst for purifying PTA oxidized tail gas and preparation method thereof
CN111054368B (en) * 2018-10-16 2022-07-12 中国石油化工股份有限公司 Integral non-noble metal catalyst for processing oxidation tail gas of PTA device and application
CN111054355B (en) * 2018-10-16 2022-10-11 中国石油化工股份有限公司 Integral non-noble metal catalyst for catalytic combustion treatment of PTA tail gas

Also Published As

Publication number Publication date
JPH0653228B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
JP4959129B2 (en) Exhaust gas purification catalyst
JPH01228546A (en) Catalyst and method for purifying exhaust gas of internal combustion engine
JP6567168B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification apparatus using the same
JPH03161052A (en) Exhaust gas cleaning catalyst and its preparation
JP3260148B2 (en) Exhaust gas purification catalyst
JPS61283348A (en) Oxidizing catalyst
JP2007185588A (en) Catalyst for exhaust gas purification
JPS62262747A (en) Composite oxide catalytic body
JP4835028B2 (en) Exhaust gas purification catalyst
JPH0312936B2 (en)
JP2620624B2 (en) Exhaust gas purification catalyst
JPH09248462A (en) Exhaust gas-purifying catalyst
JPH05253484A (en) Catalyst for cleaning exhaust gas and depositing method therefor
JP2005087963A (en) Exhaust gas cleaning apparatus
JPH0768175A (en) Catalyst for purification of exhaust gas
JP3222184B2 (en) Method for producing exhaust gas purifying catalyst
JP2001046870A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning system
JPH09299795A (en) Catalyst for purification of exhaust gas
JPH01304048A (en) Catalyst for purifying exhaust gas
JP3099392B2 (en) Exhaust gas purification catalyst
JP2005000884A (en) Catalyst for exhaust gas cleaning
JP2009112961A (en) Catalyst for cleaning exhaust gas and method for cleaning exhaust gas using the same
JP2007069077A (en) Catalyst for cleaning exhaust gas and diesel particulate filter with catalyst
JP2006194827A (en) Inspection analysis method of double oxide powder for catalyst
JPH01317540A (en) Oxidizing catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees