JPH04118049A - Manufacture of honeycomb catalyst - Google Patents

Manufacture of honeycomb catalyst

Info

Publication number
JPH04118049A
JPH04118049A JP2236275A JP23627590A JPH04118049A JP H04118049 A JPH04118049 A JP H04118049A JP 2236275 A JP2236275 A JP 2236275A JP 23627590 A JP23627590 A JP 23627590A JP H04118049 A JPH04118049 A JP H04118049A
Authority
JP
Japan
Prior art keywords
catalyst
component
heat resistance
honeycomb
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2236275A
Other languages
Japanese (ja)
Inventor
Masahiro Nitta
昌弘 新田
Hiroshi Akama
弘 赤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2236275A priority Critical patent/JPH04118049A/en
Publication of JPH04118049A publication Critical patent/JPH04118049A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst having high activity at the initial time and good heat resistance and durability by calcining at a high temp. after applying and supporting a support component, a heat resistance improving component, a catalyst component and an assist catalyst component uniformly mixed on a honeycomb substrate at the same time. CONSTITUTION:The support component of active alumina, silica, etc., to be heat-resistant metal oxide after calcining, the heat resistance improving component to be metal oxide of lanthanum and/or barium after calcining and the assist catalyst component of iron, cobalt, etc., forming base metal oxide after calcining, are added into a solution containing noble metal element of platinum, palladium, etc., to be the catalyst active component. Then, in this mixed liquid, the honeycomb substrate is dipped and each component is supported, and successively, the calcination is executed at high temp. By this method, the catalyst having table heat resistance at high temp. and high catalyst performance, is easily manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はハニカム触媒の製造方法に係り、さらに詳しく
は排ガス中の有害物質を無害物質に転化する際にきわめ
て優れた酸化分解性能と耐熱性を有するハニカム触媒の
製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a honeycomb catalyst, and more specifically, to a honeycomb catalyst that has extremely excellent oxidative decomposition performance and heat resistance when converting harmful substances in exhaust gas into harmless substances. The present invention relates to a method for producing a honeycomb catalyst having the following.

〔従来の技術〕[Conventional technology]

ハニカム触媒は、一体構造を有するハニカム基体上に、
アルミナ、シリカ、シリカ・アルミナ、チタニア、ジル
コニアなどの耐熱性金属酸化物からなる担体成分、白金
、パラジウム、ロジウム、ルテニウムなどの白金族金属
からなる触媒成分、および必要に応じて組み合わせて用
いられる、ニッケル、コバルト、鉄、銅等の遷移金属元
素、バリウム、カルシウム、ストロンチウム等のアルカ
リ土類元素、ランタン、セリウム等の希土類元素などの
助触媒成分および/または耐熱性向上成分を担持させた
ものである。このハニカム触媒は、自動車等の内燃機関
の排気ガス中の一酸化炭素、炭化水素、窒素酸化物など
の浄化処理用として、またオフガスの脱臭処理や熱回収
用接触燃焼用、家庭暖房器具や調理器具の脱臭処理用な
どの一般産業用として広く使用されている。
A honeycomb catalyst has a honeycomb base having an integral structure, and
A carrier component made of a heat-resistant metal oxide such as alumina, silica, silica/alumina, titania, and zirconia, a catalyst component made of a platinum group metal such as platinum, palladium, rhodium, and ruthenium, and used in combination as necessary. Supports promoter components and/or heat resistance improving components such as transition metal elements such as nickel, cobalt, iron, and copper, alkaline earth elements such as barium, calcium, and strontium, and rare earth elements such as lanthanum and cerium. be. This honeycomb catalyst is used to purify carbon monoxide, hydrocarbons, nitrogen oxides, etc. in the exhaust gas of internal combustion engines such as automobiles, as well as for deodorizing off gas, catalytic combustion for heat recovery, home heating equipment, and cooking. It is widely used for general industrial purposes such as deodorizing equipment.

一体構造を有するハニカム触媒の製造方法としては、(
1)可溶性アルミナや活性アルミナなどの耐熱性金属酸
化物のスラリをハニカム基体に被覆して焼成した後、触
媒成分および助触媒成分を含浸担持させ、さらに焼成す
る方法、(2)耐熱性金属酸化物のスラリ中に耐熱性向
上成分を混合して焼成した後、粉砕して再びスラリとし
、このスラリでハニカム基体を被覆して焼成し、触媒成
分および助触媒成分を含浸担持させ、さらに焼成する方
法などが知られている。
As a method for manufacturing a honeycomb catalyst having an integral structure, (
1) A method in which a honeycomb substrate is coated with a slurry of a heat-resistant metal oxide such as soluble alumina or activated alumina and fired, and then a catalyst component and a co-catalyst component are impregnated and supported, and further fired, (2) Heat-resistant metal oxide After mixing the heat resistance improving component into the slurry of the product and firing it, it is crushed and made into a slurry again.The honeycomb substrate is coated with this slurry and fired to impregnate and support the catalyst component and co-catalyst component, and then fired. Methods are known.

しかしながら、これらの方法では、担持処理や焼成処理
などを複数回行う必要があるため、操作が煩維であり、
製造コストが高くなる。また触媒成分を均一に分散して
担持させることができないため、触媒性能を安定させて
その性能を充分に発現することができないなどの欠点が
あった。また粉末状の耐熱性金属酸化物に可溶性の耐熱
性向上成分を含浸担持させる場合には、その後の乾燥、
焼成、粉砕などの工程で粉塵が飛散するなどの取扱い1
種々の問題が生じる。
However, these methods are cumbersome and require multiple steps such as supporting treatment and firing treatment.
Manufacturing costs increase. Furthermore, since the catalyst components cannot be uniformly dispersed and supported, there are drawbacks such as the inability to stabilize the catalyst performance and to fully exhibit its performance. In addition, when impregnating and supporting a soluble heat resistance improving component on a powdered heat resistant metal oxide, the subsequent drying,
Handling such as dust scattering during firing, crushing, etc. 1
Various problems arise.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本出願人は、先にパラジウムまたは白金を、ランタン添
加アルミナまたはバリウム添加アルミナなどの耐熱性担
体に分散担持させた高温耐久性の燃焼触媒およびその製
造方法を提案した(特願平01−184269号、特開
昭61−28453号公報)。
The applicant previously proposed a high-temperature durable combustion catalyst in which palladium or platinum is dispersed and supported on a heat-resistant carrier such as lanthanum-doped alumina or barium-doped alumina, and a method for producing the same (Japanese Patent Application No. 01-184269). , Japanese Unexamined Patent Publication No. 61-28453).

しかし、上記燃焼触媒では、貴金属成分を担持する際に
ランタン化合物またはバリウム化合物が、一部溶出した
り、担体中を移動したりするため、貴金属成分の担持分
布を最適に制御することができず、安定した触媒性能を
維持することができないということがわかった。
However, with the above combustion catalyst, when supporting the noble metal component, some of the lanthanum compound or barium compound elutes or moves through the carrier, making it impossible to optimally control the supported distribution of the noble metal component. , it was found that stable catalyst performance could not be maintained.

本発明の目的は、上記技術の問題を解決し、安定した高
温耐熱性と高触媒性能を有する触媒を、簡単な工程で製
造するができるハニカム触媒の製造方法を提供すること
にある。
An object of the present invention is to solve the above-mentioned technical problems and to provide a method for producing a honeycomb catalyst that can produce a catalyst having stable high temperature heat resistance and high catalytic performance through a simple process.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、前記課題に鑑み鋭意検討した結果、焼成
の際に耐熱性向上成分であるランタンおよび/またはバ
リウムを共存させることにより、触媒成分および助触媒
成分の高温下における熱劣化を防止できるため、均一に
混合した担体成分、耐熱性向上成分、触媒成分および助
触媒成分を同時にハニカム基体上に被覆担持させて高温
焼成することができ、かつ触媒の初期活性および耐熱耐
久性をさらに向上させることができることを見出し、本
発明に到達した。
As a result of intensive studies in view of the above-mentioned problems, the present inventors have found that by coexisting lanthanum and/or barium, which are heat resistance improving components, during calcination, thermal deterioration of the catalyst component and promoter component at high temperatures can be prevented. As a result, a uniformly mixed carrier component, heat resistance improving component, catalyst component, and promoter component can be coated and supported on a honeycomb substrate at the same time and fired at high temperatures, and the initial activity and heat resistance durability of the catalyst are further improved. We have discovered that it is possible to do this, and have arrived at the present invention.

本発明は、触媒活性成分である貴金属元素を含む溶液中
に、焼成後に耐熱性金属酸化物を形成する担体成分と、
焼成後にランタンおよび/またはバリウムの金属酸化物
を形成する耐熱性向上成分と、焼成後に卑金属酸化物を
形成する助触媒成分とを添加して混合した後、この混合
溶液中に、ハニカム基体を浸漬して各成分を担持させ、
次いで高温焼成することを特徴とするハニカム触媒の製
造方法に関する。
The present invention includes a carrier component that forms a heat-resistant metal oxide after firing in a solution containing a noble metal element that is a catalytically active component;
After adding and mixing a heat resistance improving component that forms metal oxides of lanthanum and/or barium after firing and a promoter component that forms base metal oxides after firing, the honeycomb substrate is immersed in this mixed solution. to support each component,
The present invention relates to a method for producing a honeycomb catalyst, which is characterized in that it is then fired at a high temperature.

本発明に用いられるハニカム基体としては特に制限はな
く、通常使用されているものが用いられ、コージェライ
ト、ムライト、α−アルミナ、チタン酸アルミ、ジルコ
ニア、ケイ酸アルミニウムなどの耐熱性セラミック質の
ハニカムなどの他、ステンレス、Ni合金、A1合金な
どの耐熱性金属のメタルハニカムなども使用可能である
There are no particular restrictions on the honeycomb substrate used in the present invention, and commonly used honeycomb substrates may be used, such as heat-resistant ceramic honeycombs such as cordierite, mullite, α-alumina, aluminum titanate, zirconia, and aluminum silicate. In addition to the above, metal honeycombs made of heat-resistant metals such as stainless steel, Ni alloy, and A1 alloy can also be used.

本発明に用いられる触媒活性成分としては、貴金属元素
、好ましくは白金、パラジウムおよびロジウムの少なく
とも1種が用いられる。これらの元素は、耐熱性金属酸
化物に固定され得るものであればどのような化合物の形
でも使用でき、例えば硝酸塩、塩酸塩、アンミン錯塩、
金属酸、塩化物等が挙げられる。これらのうち特に硝酸
塩、アンミン錯塩および塩化物が好ましく、水溶液また
はコロイド状として使用される。
The catalytically active component used in the present invention is a noble metal element, preferably at least one of platinum, palladium and rhodium. These elements can be used in the form of any compound that can be fixed in a heat-resistant metal oxide, such as nitrates, hydrochlorides, ammine complexes,
Examples include metal acids and chlorides. Among these, nitrates, ammine complex salts and chlorides are particularly preferred, and are used in the form of aqueous solutions or colloids.

貴金属元素を担持する担体としては、耐熱性金属酸化物
、具体的には活性アルミナ、シリカ、マグネシア、チタ
ニア、ジルコニア、シリカ・アルミナ、シリカ・チタニ
ア、シリカ・ジルコニア、シリカ・マグネシア、アルミ
ナ・マグネシアなどが用いられるが、特に活性アルミナ
が好ましい。
Examples of carriers supporting noble metal elements include heat-resistant metal oxides, specifically activated alumina, silica, magnesia, titania, zirconia, silica/alumina, silica/titania, silica/zirconia, silica/magnesia, alumina/magnesia, etc. Activated alumina is particularly preferred.

活性アルミナは、10μm以下の遷移アルミナ粉末、コ
ロイド状金属酸化物としてベーマイト状水和アルミ、ア
ルミナゾル、熱処理後にアルミナとなる硝酸アルミニウ
ムなどの形でも使用可能である。
Activated alumina can also be used in the form of transition alumina powder of 10 μm or less, boehmite-like hydrated aluminum as a colloidal metal oxide, alumina sol, aluminum nitrate which becomes alumina after heat treatment, and the like.

助触媒成分である卑金属酸化物は、上記貴金属成分の活
性と耐熱性の向上および耐熱性金属酸化物の耐熱向上の
ために用いられ、卑金属元素としては、鉄、コバルト、
ニッケル、チタン、ストロンチウムなどが挙げられ、こ
れらのうち鉄、コバルト、ニッケルおよびチタンの少な
くとも1種が好ましい。これらの元素は、担体と化合し
得るが、担体粒子や貴金属成分の粒子間に微細な酸化物
粒子として分散固定され得るものであればどのような化
合物の形でも使用できるが、特に水溶性の化合物が好ま
しい。
The base metal oxide, which is a promoter component, is used to improve the activity and heat resistance of the above-mentioned noble metal component and to improve the heat resistance of the heat-resistant metal oxide. Examples of the base metal elements include iron, cobalt,
Examples include nickel, titanium, strontium, etc. Among these, at least one of iron, cobalt, nickel, and titanium is preferred. These elements can be combined with a carrier, and can be used in the form of any compound as long as they can be dispersed and fixed as fine oxide particles between the carrier particles or the particles of the noble metal component. Compounds are preferred.

本発明においては、触媒活性成分、担体成分、耐熱性向
上成分および助触媒成分の各金属元素の混合溶液中の割
合は、上記の順にモル比で(1〜20):  (50〜
250):  (5〜25):  (5〜25)の範囲
であることが好ましい。
In the present invention, the proportions of each metal element of the catalytic active component, the carrier component, the heat resistance improving component, and the co-catalyst component in the mixed solution are in the order listed above in molar ratios (1 to 20): (50 to
250): (5-25): The range is preferably (5-25).

〔作用〕[Effect]

ハニカム触媒の活性と耐熱性を向上させるためには、担
体、触媒成分および助触媒成分等を充分に分散混合し、
これらをハニカム基体上に均一に被覆担持させて高温焼
成する方法が好ましいが、従来では、高温焼成で触媒成
分および助触媒成分の触媒活性が低下するため、高温焼
成(800°C以上)と低温焼成(500〜600°C
以下)にわけて焼成を行う必要があった。
In order to improve the activity and heat resistance of honeycomb catalysts, the carrier, catalyst components, co-catalyst components, etc. are sufficiently dispersed and mixed.
It is preferable to uniformly coat and support these on a honeycomb substrate and then fire at a high temperature.However, in the past, high-temperature firing (800°C or higher) and low-temperature firing lowered the catalytic activity of the catalyst component and co-catalyst component. Firing (500-600°C
It was necessary to perform the firing separately (see below).

しかしながら、本発明によれば、耐熱性向上成分である
ランタンおよび/またはバリウムを共存させて例えば8
00〜1200°Cで高温焼成すると、触媒成分および
助触媒成分の熱劣化が防止できるため、担体成分、耐熱
性向上成分、触媒成分および助触媒成分を同時に混合し
てこれらを均一にハニカム基体上に担持させて一回の高
温焼成でハニカム触媒を製造することができる。このよ
うに上記成分を同時に均一混合することにより、例えば
Laz 03  ’ I lAl2z 03 、La2
o3、L a A I O3などの状態で存在するラン
タン化合物と貴金属元素とを微細かつ近接してアルミナ
担体に担持させることができるため、排ガスの浄化反応
をきわめて効率よく行うことができ、かつ高い耐熱耐久
性が発現される。
However, according to the present invention, for example, 8
High-temperature firing at 00 to 1200°C can prevent thermal deterioration of the catalyst component and co-catalyst component, so the carrier component, heat resistance improving component, catalyst component and co-catalyst component are mixed at the same time and uniformly coated on the honeycomb substrate. It is possible to manufacture a honeycomb catalyst by supporting the catalyst and firing it at a high temperature once. By uniformly mixing the above components simultaneously in this way, for example, Laz 03 ' I lAl2z 03 , La2
Since the lanthanum compound existing in the state of O3, La AI O3, etc. and the precious metal element can be finely and closely supported on the alumina carrier, the exhaust gas purification reaction can be carried out extremely efficiently, and the Develops heat resistance and durability.

例えば、パラジウム、ランタン、チタンおよびアルミナ
を同時に均一にハニカム基体上に担持して得られる本発
明の触媒では、ランタンとアルミナの化合物およびラン
タンとパラジウムの化合物の生成が増加し、またパラジ
ウム粒子がきわめて微細に高分散担持されている。この
ような状態はX線回折および電子顕微鏡により確認され
た。またランタンの一部は、酸化物としてアルミナ粒子
間およびパラジウム粒子間に介在して高温下でのこれら
の粒子の粒子成長を抑制する。さらにチタンの酸化物は
、パラジウム粒子間およびランタンアルミナ粒子間に介
在して高温下でのこれらの粒子の粒子成長を抑止する。
For example, in the catalyst of the present invention obtained by simultaneously and uniformly supporting palladium, lanthanum, titanium, and alumina on a honeycomb substrate, the production of lanthanum and alumina compounds and lanthanum and palladium compounds is increased, and palladium particles are extremely It is supported in a fine and highly dispersed manner. This state was confirmed by X-ray diffraction and electron microscopy. Further, a part of lanthanum is present as an oxide between the alumina particles and between the palladium particles and suppresses the growth of these particles at high temperatures. Furthermore, the titanium oxide is interposed between the palladium particles and between the lanthanum alumina particles and inhibits the growth of these particles at high temperatures.

このようにパラジウムの結晶粒子とランタン化合物およ
び/またはチタン化合物とがきわめて微細に均一に近接
して分散担持されるでいるため、排ガスとの接触面積も
格段に増大し、活性点の数が増加し、触媒活性が大幅に
向上する。また酸化ランタンや酸化チタンの粒子がアル
ミナ粒子間およびパラジウム粒子間に介在するためパラ
ジウムの分散が向上して高温下の粒子成長を防止でき、
また酸化チタンがランタン−アルミナ担体のシンタリン
グを防止するため、高温下での耐熱耐久性が向上する。
Since the palladium crystal particles and the lanthanum compound and/or titanium compound are dispersed and supported in extremely fine and uniform proximity, the contact area with the exhaust gas is greatly increased, and the number of active sites is increased. catalytic activity is greatly improved. In addition, particles of lanthanum oxide and titanium oxide are interposed between alumina particles and palladium particles, which improves palladium dispersion and prevents particle growth at high temperatures.
Furthermore, since titanium oxide prevents sintering of the lanthanum-alumina carrier, heat resistance and durability at high temperatures are improved.

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に説明するが、本発
明はこれらの実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

実施例1 塩化ビニル製角型容器(200mmX 200mmX1
00間)に、ベーマイトスラリ(AI!、203の30
重量%懸濁液に10重量%のHNO3を添加して得られ
たゾル)、硝酸パラジウム20重量%溶液(An!20
3に対するPd量は6モル%)、硝酸ランタン(Alt
osに対するLagはLaz03として4モル%)およ
びチタニアゾルCAl2O、に対するTilはTie、
とじて4モル%)を加えてよくかき混ぜ、この混合液中
にコージェライト系ハニカム基体(300セル/インチ
2150mmX 150mmX50mm)を開孔部を上
下にして入れ、ウォッシュコートした。コーテイング量
は基体容量当たり60 g/lとした。コーティフグ後
は120°Cで3時間乾燥し、次いで900℃で3時間
焼成し、ハニカム容量光たりAf、030g/!!、、
Pd  2g/l、Lag o3 Bg/lおよびTi
O□ 2 g / 1が担持されたハニカム触媒を得た
Example 1 Polyvinyl chloride square container (200mm x 200mm x 1
00), boehmite slurry (AI!, 203 no 30)
Sol obtained by adding 10 wt % HNO3 to wt % suspension), 20 wt % palladium nitrate solution (An!20
The amount of Pd relative to 3 is 6 mol%), lanthanum nitrate (Alt
Lag for os is 4 mol% as Laz03) and Til for titania sol CA12O, Tie,
A cordierite honeycomb substrate (300 cells/inch, 2150 mm x 150 mm x 50 mm) was placed in the mixed solution with the openings facing up and down, and was wash coated. The coating amount was 60 g/l per substrate volume. After coating the puffer fish, it was dried at 120°C for 3 hours, then fired at 900°C for 3 hours, and the honeycomb capacity was 030g/! ! ,,
Pd 2g/l, Lago3 Bg/l and Ti
A honeycomb catalyst on which O□ 2 g/1 was supported was obtained.

実施例2 実施例1において、硝酸パラジウウの代わりに塩化白金
酸の溶液を等モル量使用した以外は、実施例1と同様に
して触媒を製造し、ハニカム容量光たりAlz Os 
  30 g/l、pt  2g/ILa!’s  8
g/lおよびT i Oz  2 g / 1が担持さ
れたハニカム触媒を得た。
Example 2 A catalyst was produced in the same manner as in Example 1, except that an equimolar amount of a solution of chloroplatinic acid was used instead of palladium nitrate.
30 g/l, pt 2g/ILa! 's 8
A honeycomb catalyst was obtained in which T i Oz 2 g/l and T i Oz 2 g/1 were supported.

実施例3 実施例1番こおいて、硝酸ランタンの代わりに水酸化バ
リウムの溶液(Af、01に対するBagはBaOとし
て7モル%)を使用した以外は、実施例1と同様にして
触媒を製造し、ハニカム容量光たりAf、 03  s
 o g/ i、、Pd  Ig/j!Lag()+ 
 8g/II!およびTi0z  2g/lが担持され
たハニカム触媒を得た。
Example 3 A catalyst was produced in the same manner as in Example 1, except that a barium hydroxide solution (Af, Bag for 01 was 7 mol% as BaO) was used instead of lanthanum nitrate. And honeycomb capacity light Af, 03s
o g/i,,Pd Ig/j! Lag()+
8g/II! A honeycomb catalyst on which 2 g/l of TiOz was supported was obtained.

実施例4 実施例3において、硝酸パラジウムの代わりに塩化白金
酸の溶液を等モル量使用した以外は、実施例3と同様の
方法で触媒を製造し、ハニカム容量光たりAdz O:
l   30 g/l、 P L  2 g/!、Ba
O6,8g/lおよびTi0z  2g/pが担持され
たハニカム触媒を得た。
Example 4 A catalyst was produced in the same manner as in Example 3, except that an equimolar amount of a solution of chloroplatinic acid was used in place of palladium nitrate, and honeycomb volumetric light and Adz O:
l 30 g/l, P L 2 g/! , Ba
A honeycomb catalyst was obtained in which 8 g/l of O6 and 2 g/p of TiOz were supported.

実施例5 実施例1において、ベーマイトスラリの代わりに硝酸ア
ルミニウム20重量%水溶液3000gを使用した以外
は、実施例1と同様の方法で触媒を製造し、ハニカム容
量光たりAlzos   30g/l、Pd  2g/
l、L a 2 oi   8 g/lおよびTiO2
2g/lが担持されたハニカム触媒を得た。
Example 5 A catalyst was produced in the same manner as in Example 1, except that 3000 g of a 20% by weight aqueous solution of aluminum nitrate was used instead of the boehmite slurry, and the honeycomb capacity was 30 g/l of Alzos and 2 g of Pd. /
l, L a2 oi 8 g/l and TiO2
A honeycomb catalyst loaded with 2 g/l was obtained.

実施例6 実施例5において、硝酸ランタンの代わりに水酸化バリ
ウムの溶液(Altosに対するBaiはBaOとして
7モル%)を、チタニアゾルの代わりに硝酸ニッケルの
水溶液(Al、0.に対するNilはNiOとして4モ
ル%)を使用した以外は、実施例5と同様の方法で触媒
を製造し、ハニカム容量光たりAI!、z C)+  
 10 g/f、 P d2 g/f!、、BaO6,
8g/lおよびNi01、Bg/lが担持されたハニカ
ム触媒を得た。
Example 6 In Example 5, a solution of barium hydroxide (Bai with respect to Altos is 7 mol% as BaO) was used instead of lanthanum nitrate, and an aqueous solution of nickel nitrate (Nil with respect to Al, 0. as NiO) was used instead of titania sol. A catalyst was produced in the same manner as in Example 5, except that mol %) was used, and the honeycomb capacity light and AI! ,z C)+
10 g/f, P d2 g/f! ,,BaO6,
A honeycomb catalyst was obtained in which 8 g/l, Ni01, and Bg/l were supported.

実施例7 実施例5において、チタニアゾルの代わりに硝酸第二鉄
の水溶液(AfzOxに対するFe量はFe、O,とし
て4モル%)を使用する以外は、実施例5と同様の方法
で触媒を製造し、ハニカム容量光たりAnt O+  
 20g/l、Pd  2g/I!、、LazO+  
8g/lおよびFe、0゜3.9g/lが担持されたハ
ニカム触媒を得た。
Example 7 A catalyst was produced in the same manner as in Example 5, except that an aqueous solution of ferric nitrate (the amount of Fe relative to AfzOx was 4 mol% as Fe, O,) was used instead of titania sol. Honeycomb capacitance light or Ant O+
20g/l, Pd 2g/I! ,,LazO+
A honeycomb catalyst was obtained in which 8 g/l and Fe, 0°3.9 g/l were supported.

実施例8 実施例6において、硝酸ニッケルの代わりに硝酸コバル
トの水溶液(Ajl!203に対するCo量はCooと
して4モル%)を使用する以外は、実施例6と同様の方
法で触媒を製造し、ハニカム容量光たりAlz Os 
  30 g/I!、、Pd  2g/l、BaO6,
8g/RおよびCoo  1.8g/Eが担持されたハ
ニカム触媒を得た。
Example 8 A catalyst was produced in the same manner as in Example 6, except that an aqueous solution of cobalt nitrate (Co amount relative to Ajl! 203 was 4 mol% as Coo) was used instead of nickel nitrate. Honeycomb Capacitance Hikari Alz Os
30 g/I! ,, Pd 2g/l, BaO6,
A honeycomb catalyst was obtained in which 8 g/R and Coo 1.8 g/E were supported.

比較例1 実施例1で用いた成分を用い、まずベーマイトスラリに
硝酸ランタンを加えて120°Cで乾燥後、900°C
で3時間焼成した。次にこの焼成物に純水40重足%量
加え、さらに硝酸パラジウム20重量%水溶液およびチ
タニアゾルを添加して磁製ボールミルで20時間微粉砕
し、得られたスラリをハニカム基体にウォッシュコート
し、120℃乾燥後、800°Cで2時間焼成してハニ
カム触媒を得た。
Comparative Example 1 Using the components used in Example 1, lanthanum nitrate was first added to the boehmite slurry, dried at 120°C, and then heated at 900°C.
It was baked for 3 hours. Next, 40% by weight of pure water was added to this fired product, and a 20% by weight aqueous solution of palladium nitrate and titania sol were added, and the mixture was pulverized in a porcelain ball mill for 20 hours, and the resulting slurry was wash-coated on a honeycomb substrate. After drying at 120°C, it was fired at 800°C for 2 hours to obtain a honeycomb catalyst.

比較例2 実施例1で用いた成分を用い、まずベーマイトスラリに
硝酸ランタンを加えて120℃で乾燥後、900℃で3
時間焼成した。次にこの焼成物を磁製ボールミルで20
時時間式粉砕し、これをハニカム基体にウォッシュコー
トして120°Cで乾燥後、600°Cで2時間焼成し
た。さらに得られたランタン添加アルミナ担体被覆ハニ
カムに、硝酸パラジウム水溶液とチタニアゾルの混合溶
液を含浸担持し、乾燥後800°Cで2時間焼成し、ハ
ニカム触媒を得た。
Comparative Example 2 Using the components used in Example 1, first add lanthanum nitrate to boehmite slurry, dry at 120°C, and then dry at 900°C for 30 minutes.
Baked for an hour. Next, this fired product was heated in a porcelain ball mill for 20 minutes.
This was pulverized in a timed manner, wash-coated onto a honeycomb substrate, dried at 120°C, and then fired at 600°C for 2 hours. Further, the obtained honeycomb coated with a lanthanum-added alumina carrier was impregnated with a mixed solution of palladium nitrate aqueous solution and titania sol, and after drying, the honeycomb was calcined at 800°C for 2 hours to obtain a honeycomb catalyst.

比較例3 比較例2において、硝酸ランタンの代わりに水酸化バリ
ウム水溶液を用いた以外は、比較例2と同様の方法でハ
ニカム触媒を製造した。
Comparative Example 3 A honeycomb catalyst was produced in the same manner as in Comparative Example 2, except that an aqueous barium hydroxide solution was used instead of lanthanum nitrate.

比較例4 比較例3において、チナニアゾルの代わりに硝酸ニッケ
ル水溶液を用いた以外は、比較例3と同様の方法でハニ
カム触媒を製造した。
Comparative Example 4 A honeycomb catalyst was produced in the same manner as in Comparative Example 3, except that a nickel nitrate aqueous solution was used instead of Chinania sol.

〈試験例〉 実施例1〜8および比較例1〜4で得られた各触媒の性
能を次のようにして調べた。
<Test Example> The performance of each catalyst obtained in Examples 1 to 8 and Comparative Examples 1 to 4 was investigated as follows.

上記各ハニカム触媒をカッターで20MX20aX20
mmの部分を切り出し、それらを石英製多管反応管に充
填し、触媒層入口温度900°C1空間速度30,0O
Oh−’で空気を通じて老化処理した。老化処理中、一
定時間ごとに活性試験を行い、触媒の耐熱耐久性を評価
し、その結果を第1表に示した。なお、第2表には実施
例および比較例で得られた触媒の成分およびその製造法
を節単にまとめて示した。
Cut each of the above honeycomb catalysts into 20MX20aX20 with a cutter.
Cut out a section of 2.0 mm in diameter, fill it in a quartz multi-tube reaction tube, and set the catalyst layer inlet temperature to 900°C and space velocity to 30.0O.
It was aged with Oh-' through air. During the aging treatment, an activity test was conducted at regular intervals to evaluate the heat resistance and durability of the catalyst, and the results are shown in Table 1. Table 2 briefly summarizes the components of the catalysts obtained in the Examples and Comparative Examples and their manufacturing methods.

活性試験はプロパン1300ppm、酸素17%を含む
ガスを空間速度30,00[)h−’で触媒層を通し、
プロパンの燃焼率を測定し、燃焼率90%が得られる触
媒層入口温度を調べた。
In the activity test, a gas containing 1,300 ppm of propane and 17% of oxygen was passed through the catalyst layer at a space velocity of 30,00 [)h-'.
The combustion rate of propane was measured, and the temperature at the inlet of the catalyst layer at which a combustion rate of 90% was obtained was determined.

第   1   表 * :プロパン燃焼率が90%を示す触媒層入口温度筒 表 第1表から、実施例の触媒は、比較例の触媒に比べ、燃
焼率90%が得られる触媒層入口温度が低く、触媒の活
性が優れ、かつ初期活性および耐久性に優れていること
が示された。
Table 1 *: Catalyst layer inlet temperature cylinder table showing propane combustion rate of 90% From Table 1, the catalyst of the example has a lower catalyst layer inlet temperature at which a combustion rate of 90% can be obtained than the catalyst of the comparative example. It was shown that the catalyst had excellent activity, initial activity and durability.

[発明の効果〕 本発明の製造方法によれば、各成分を同時に混合して1
回の高温焼成により触媒を得ることができるため、操作
が簡単であり、製造コストを低減することができる。ま
た各成分を充分に分散混合させてハニカム基体に均一に
被覆担持させることができるため、安定した高温耐熱性
と高触媒性能を有するハニカム触媒を得ることができる
[Effects of the Invention] According to the production method of the present invention, each component is mixed simultaneously and 1
Since the catalyst can be obtained by multiple high-temperature calcinations, the operation is simple and manufacturing costs can be reduced. Moreover, since each component can be sufficiently dispersed and mixed to be uniformly coated and supported on the honeycomb substrate, a honeycomb catalyst having stable high temperature heat resistance and high catalytic performance can be obtained.

出願人 バブコック日立株式会社 代理人 弁理士 川 北 武 長Applicant Babcock Hitachi Co., Ltd. Agent: Patent Attorney Kawakita Takecho

Claims (1)

【特許請求の範囲】[Claims] (1)触媒活性成分である貴金属元素を含む溶液中に、
焼成後に耐熱性金属酸化物を形成する担体成分と、焼成
後にランタンおよび/またはバリウムの金属酸化物を形
成する耐熱性向上成分と、焼成後に卑金属酸化物を形成
する助触媒成分とを添加して混合した後、この混合溶液
中に、ハニカム基体を浸漬して各成分を担持させ、次い
で高温焼成することを特徴とするハニカム触媒の製造方
法。
(1) In a solution containing a noble metal element which is a catalytically active component,
A carrier component that forms a heat-resistant metal oxide after calcination, a heat resistance improving component that forms a lanthanum and/or barium metal oxide after calcination, and a promoter component that forms a base metal oxide after calcination are added. After mixing, a honeycomb substrate is immersed in this mixed solution to support each component, and then fired at a high temperature.
JP2236275A 1990-09-06 1990-09-06 Manufacture of honeycomb catalyst Pending JPH04118049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2236275A JPH04118049A (en) 1990-09-06 1990-09-06 Manufacture of honeycomb catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2236275A JPH04118049A (en) 1990-09-06 1990-09-06 Manufacture of honeycomb catalyst

Publications (1)

Publication Number Publication Date
JPH04118049A true JPH04118049A (en) 1992-04-20

Family

ID=16998373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2236275A Pending JPH04118049A (en) 1990-09-06 1990-09-06 Manufacture of honeycomb catalyst

Country Status (1)

Country Link
JP (1) JPH04118049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1149623B2 (en) 2000-04-25 2010-08-18 Nissan Motor Co., Ltd. Catalyst and process for purifying exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1149623B2 (en) 2000-04-25 2010-08-18 Nissan Motor Co., Ltd. Catalyst and process for purifying exhaust gas

Similar Documents

Publication Publication Date Title
JPS63162043A (en) Catalyst for cleaning exhaust gas
US4910180A (en) Catalyst and process for its preparation
JPH09271672A (en) Exhaust gas purifying catalyst
JPH0582259B2 (en)
JPH0368451A (en) Production of catalyst for purification of exhaust gas
JPH0615042B2 (en) Heat resistant combustion catalyst and catalytic combustion method using the same
JP3757715B2 (en) Exhaust gas purification catalyst
JPH0820054B2 (en) Catalytic combustion method of combustible gas
JPS63116742A (en) Catalyst for purifying exhaust gas
JPH0352642A (en) Production of catalyst for combustion
JPH0729055B2 (en) Catalyst for oxidizing carbon-containing compound and method for producing the same
JP2758616B2 (en) Heat-resistant catalyst for catalytic combustion and its carrier
JPH0194945A (en) Catalyst of carrying superfine gold particles fixed on metal oxide and manufacture therefor
JPH04118049A (en) Manufacture of honeycomb catalyst
JPH04166228A (en) Oxidation catalyst
JPH0435219B2 (en)
JPH0427433A (en) High-temperature combustion catalyst and its production
JPH04180835A (en) Production of catalyst for purifying exhaust gas
JP3270072B2 (en) Combustion catalyst
JP5641585B2 (en) Exhaust gas purification catalyst
JPH04349935A (en) Oxidation catalyst
JPH04166227A (en) Oxidation catalyst
JPH06205973A (en) Oxidation catalyst
JPH03186347A (en) Heat-resistant catalyst and catalytic combustion method using the same
JPH06304477A (en) Oxidation catalyst