JPH0368451A - Production of catalyst for purification of exhaust gas - Google Patents

Production of catalyst for purification of exhaust gas

Info

Publication number
JPH0368451A
JPH0368451A JP1206485A JP20648589A JPH0368451A JP H0368451 A JPH0368451 A JP H0368451A JP 1206485 A JP1206485 A JP 1206485A JP 20648589 A JP20648589 A JP 20648589A JP H0368451 A JPH0368451 A JP H0368451A
Authority
JP
Japan
Prior art keywords
powder
perovskite
refractory
composite oxide
type composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1206485A
Other languages
Japanese (ja)
Other versions
JPH0817942B2 (en
Inventor
Shinichi Matsumoto
伸一 松本
Mareo Kimura
希夫 木村
Masakuni Ozawa
正邦 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP1206485A priority Critical patent/JPH0817942B2/en
Publication of JPH0368451A publication Critical patent/JPH0368451A/en
Publication of JPH0817942B2 publication Critical patent/JPH0817942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the exhaust gas purifying ability of a catalyst by coating a refractory carrier with a slurry contg. powder of a perovskite type double oxide and refractory powder supporting a noble metal and by drying and calcining the carrier to form the catalyst. CONSTITUTION:Citric acid is added to an aq. soln. contg. compds. of the constituent elements of a perovskite type double oxide to prepare a uniform aq. soln. This aq. soln. is evaporated to dryness and calcined to form powder of the perovskite type double oxide. An aq. slurry contg. the oxide powder and refractory powder (other than the oxide powder) supporting a noble metal is prepd. and a refractory carrier is coated with the slurry, dried and calcined to produce a catalyst for purification of exhaust gas. The pref. amt. (mol) of the citric acid added is about 1.0-1.2 times the amt. of the perovskite type double oxide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排気浄化用触媒の製造方法、更に詳しくはペロ
ブスカイト型複合酸化物を使用した優れた浄化性能を有
する排気浄化用触媒の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an exhaust purification catalyst, and more particularly, to a method for manufacturing an exhaust purification catalyst having excellent purification performance using a perovskite type composite oxide. It is something.

〔従来の技術〕[Conventional technology]

希土類元素、それ以外の他の遷移元素、アルカリ土類元
素などで構成されるペロブスカイト型複合酸化物は、耐
熱性が高く、安価であう、又、自動車などの排気中の有
害成分に対する触媒活性を有することから、排気浄化用
触媒としての用途が提案されている。
Perovskite-type composite oxides composed of rare earth elements, other transition elements, alkaline earth elements, etc. have high heat resistance, are inexpensive, and have catalytic activity against harmful components in automobile exhaust. Therefore, its use as an exhaust purification catalyst has been proposed.

例えば、特開昭59−87046 号公報には、一般式
La ′Sr TCol−X Me)(oS(MeはF
e。
For example, in JP-A-59-87046, the general formula La 'Sr TCol-X Me) (oS (Me is F
e.

Mn、Cr、V、Tiから選ぶ一種の元素、O<xく1
)で表わされるペロブスカイト型複合酸化物からなる排
気浄化用触媒が開示されている。
An element selected from Mn, Cr, V, Ti, O<x1
) An exhaust purification catalyst made of a perovskite-type composite oxide represented by the following is disclosed.

特開昭60−82138号公報には、一般式%式% V、Tiから選ぶ一種の元素、O<X<1 )  で表
わされるペロブスカイト型複合酸化物を触媒成分として
用いる担持型触媒にかいて、溶射による担持を行なう排
気浄化用触媒が開示されている。
JP-A No. 60-82138 describes a supported catalyst using a perovskite-type composite oxide represented by the general formula %V, an element selected from Ti, O<X<1) as a catalyst component. discloses an exhaust purification catalyst that is supported by thermal spraying.

又、排気浄化性能を更に向上させるため、ペロブスカイ
ト型複合酸化物に、パラジウム、白金、ロジウムなどの
貴金属を担持した排気浄化触媒も提案されている。
Furthermore, in order to further improve the exhaust purification performance, an exhaust purification catalyst in which a noble metal such as palladium, platinum, or rhodium is supported on a perovskite type composite oxide has also been proposed.

例えば特開昭62−282642号公報には、触媒成分
として少なくともPdを含む排気浄化用触媒に釦いて、
前記Pdがペロブスカイト型複合ば化物又は該複合酸化
物と同等物として担持されている排気浄化用触媒が開示
されている。
For example, Japanese Patent Application Laid-Open No. 62-282642 discloses that an exhaust purification catalyst containing at least Pd as a catalyst component
An exhaust purification catalyst is disclosed in which the Pd is supported as a perovskite-type composite oxide or an equivalent to the composite oxide.

特開昭63−502950号公報には、モノリス担体基
材表面に、次の一般式: %式% (式中の人は希土類金属、A′はCe 、 Pr 、 
Sm 。
JP-A No. 63-502950 discloses that the following general formula is applied to the surface of the monolith carrier base material:
Sm.

Bu 、 Sc 、 Bi 、 Pd 、 Ca 、 
Sr及びBaからなる群から選ばれた1種の金属、Bは
Fe 、 Zn 、 Sm 。
Bu, Sc, Bi, Pd, Ca,
One metal selected from the group consisting of Sr and Ba, B is Fe, Zn, Sm.

Mg、Co、Ni 、Ti 、Nb、V、Cu及びMn
  からなる群から選ばれた少なくとも1種の金属 B
/はPt 、 Rh 、 Pd 、 Ru及びIrから
なる群から選ばれた少なくとも1種の金属を示す)で表
わされるペロブスカイト型複合酸化物及び次の一般式: %式% (式中のCは希土類金属 CIばSr又はBa。
Mg, Co, Ni, Ti, Nb, V, Cu and Mn
At least one metal selected from the group consisting of B
/ indicates at least one metal selected from the group consisting of Pt, Rh, Pd, Ru, and Ir) and the following general formula: % formula % (in the formula, C is a rare earth Metal CI, Sr or Ba.

DはTi又は■を示す)で表わされるペロブスカイト型
複合酸化物からなる群よシ選ばれた少なくとも1種のベ
ロプスカイ)!複合酸化物の粉末と、活性アルミナ及び
希土類金属酸化物粉末とよシなるコート層を担持すると
共に、触媒活性成分である白金、ロジウム及びパラジウ
ムからなる少なくとも1種の金属又はその酸化物を担持
した排気浄化用触媒が開示されている。
At least one selected beloskite from the group consisting of perovskite-type complex oxides represented by (D represents Ti or ■)! Supporting a coating layer consisting of composite oxide powder, activated alumina and rare earth metal oxide powder, and supporting at least one metal consisting of platinum, rhodium and palladium or an oxide thereof, which are catalytically active components. A catalyst for exhaust purification is disclosed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記特開昭59−87046号公報、同60−8213
8号公報、同62−282642号公報及び同63−3
02950号公報に開示された排気浄化用触媒は、いず
れも800℃以下の温度で使用することを目的とするも
のである。自動車に用いる排気浄化用触媒にかいては9
00℃以上の高温域で連続使用する場合も生ずるが、上
記従来技術にかける排気浄化用触媒はこのような条件下
での耐久性に乏しく、浄化性能が低下し易い。
JP-A No. 59-87046 and JP-A No. 60-8213
Publication No. 8, Publication No. 62-282642 and Publication No. 63-3
All of the exhaust purification catalysts disclosed in JP 02950 are intended to be used at temperatures of 800° C. or lower. Regarding exhaust purification catalysts used in automobiles, 9
Although continuous use may occur in a high temperature range of 00° C. or higher, the exhaust purifying catalysts used in the prior art have poor durability under such conditions, and purification performance tends to deteriorate.

すなわち、一般にペロブスカイト型複合酸化物は900
℃以上でシンタリングを生じ、有効表面積が減少して触
媒活性が低下する。又、ペロブスカイト型複合酸化物は
アルミナ、チタニア等から女る耐火性担体に担持して用
いるかこれらの耐火性粉末と共存させると900℃以上
で上記担体又は粉末と固相反応を起し、ペロブスカイト
型構造が維持できず、触媒活性は著しく低下スル。更に
、ペロブスカイト型複合酸化物のみの触媒ではNOx浄
化性能が劣シ、三元触媒として実用に供することはでき
ない。それ故、ペロブスカイト型複合酸化物の製造方法
を工夫して上記不具合の生じ難いものを得るか、及び/
又はペロブスカイト型複合酸化物の使用態様を工夫して
三元触媒としても使用できるものとすることが望筐れて
いたが、従来技術によってはこのような排気浄化用触媒
を得ることはできなかった。
That is, in general, perovskite type composite oxides have 900
Sintering occurs at temperatures above 0.degree. C., reducing the effective surface area and reducing the catalytic activity. In addition, when perovskite-type composite oxides are supported on a refractory carrier made of alumina, titania, etc., or coexisted with these refractory powders, a solid phase reaction occurs with the carrier or powder at 900°C or higher, forming a perovskite. The mold structure could not be maintained and the catalytic activity decreased significantly. Furthermore, a catalyst made only of perovskite-type composite oxides has poor NOx purification performance and cannot be put to practical use as a three-way catalyst. Therefore, it is necessary to devise a method for producing perovskite-type composite oxides to obtain products that are less prone to the above-mentioned defects, and/or
Alternatively, it was hoped that the perovskite-type composite oxide could be used as a three-way catalyst by devising a way to use it, but it was not possible to obtain such an exhaust purification catalyst using conventional technology. .

本発明は上記従来技術にかける問題点を解決するための
ものでアシ、その目的とするところは900℃以上の高
温域にかいても十分な浄化性能を有し、耐久性に浸れた
ペロブスカイト型複合酸化物を含む排気浄化用触媒を容
易に得ることができる製造方法を提供することにある。
The present invention is intended to solve the above-mentioned problems with the prior art, and its purpose is to have a perovskite type that has sufficient purification performance even in the high temperature range of 900 degrees Celsius or higher and is steeped in durability. An object of the present invention is to provide a manufacturing method that can easily obtain an exhaust purification catalyst containing a composite oxide.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、第一の本発明は、ペロブスカイト型複合酸化
物を構成する各元素の化合物を含む水溶液にクエン酸を
添加して均一な水溶液となし、該水溶液を蒸発・乾固し
た後焼成してペロブスカイト型複合酸化物粉末を調製し
、次いで該粉末と貴金属を担持した耐火性粉末(ペロフ
スカ“イト型複合酸化物粉末を除く)とを含むスラリー
をI!ll製し、次いで該スラリーを耐火性担体上に塗
布し乾燥後焼成してなることを特徴とする排気浄化用触
媒の製造方法である。
That is, in the first aspect of the present invention, citric acid is added to an aqueous solution containing compounds of each element constituting a perovskite-type composite oxide to form a uniform aqueous solution, and the aqueous solution is evaporated to dryness and then fired to form a perovskite. A type composite oxide powder is prepared, and then a slurry containing the powder and a refractory powder supporting a noble metal (excluding the perovskite type composite oxide powder) is prepared, and then the slurry is transferred to a refractory carrier. This is a method for producing an exhaust purification catalyst, characterized in that the catalyst is coated on top, dried, and then fired.

第二の本発明は、ペロブスカイト型複合酸化物を構成す
る各元素の化合物を含む水溶液にクエン酸を添加して均
一な水溶液となし、該水溶液を蒸発・乾固した後焼成し
てペロブスカイト型複合酸化物粉末をyA製し、次いで
該粉末と耐火性粉末(ペロブスカイト型複合酸化物粉末
を除く)とを含むスラリーを調製し、次いで該スラリー
を耐火性担体上に塗布し乾燥後焼成して該耐火性担体上
に混合粉末層を形成し、次いで該混合粉末層に貴金属を
担持することを特徴とする排気浄化用触媒の製造方法で
ある。
The second invention provides a perovskite-type composite oxide by adding citric acid to an aqueous solution containing compounds of each element constituting the perovskite-type composite oxide to form a uniform aqueous solution, evaporating the aqueous solution to dryness, and then firing it. An oxide powder is produced by YA, and then a slurry containing the powder and a refractory powder (excluding the perovskite composite oxide powder) is prepared, and then the slurry is coated on a refractory carrier, dried, and then fired to form the oxide powder. This is a method for producing an exhaust gas purification catalyst, which comprises forming a mixed powder layer on a refractory carrier, and then supporting a noble metal on the mixed powder layer.

第三の本発明は、ペロブスカイト型複合酸化物を構成す
る各元素の化合物を含む水溶液にクエン酸を添加して均
一な水溶液となし該水溶液を貴金属を担持した耐火性粉
末(ペロブスカイト型複合酸化物粉末を除く)に含浸さ
せ、乾燥後焼゛成して少なくとも表面にペロブスカイト
型複合酸化物層を形成し且つ貴金属を担持した耐火性粉
末をvI4製し、次いで該耐火性粉末を含むスラリーを
調製し、次いで該スラリーを耐火性担体上に塗布し乾燥
後焼成してなることを特徴とする排気浄化用触媒の製造
方法である。
The third aspect of the present invention is to add citric acid to an aqueous solution containing compounds of each element constituting a perovskite-type composite oxide to obtain a homogeneous aqueous solution, and convert the aqueous solution into a refractory powder carrying a noble metal (perovskite-type composite oxide). (excluding powder), dried and fired to form a perovskite-type composite oxide layer on at least the surface and to prepare a refractory powder supporting a noble metal vI4, and then prepare a slurry containing the refractory powder. The method for producing an exhaust purification catalyst is characterized in that the slurry is then applied onto a refractory carrier, dried and then fired.

第四の本発明は、ペロブスカイト型複合酸化物を構成す
る各元素の化合物を含む水溶液にクエン酸を添加して均
一な水溶液となし、該水溶液を耐火性粉末(ペロブスカ
イト型複合酸化物粉末を除く)に含浸させ、乾燥後焼成
して少なくとも表面にペロブスカイト型複合酸化物層を
形成した耐火性粉末を調製し、次いで該耐火性粉末を含
むスラリーを調製し、次いで該スジ1ノーを耐火性担体
上に塗布し乾燥後焼成して該耐火性担体上に該耐火性粉
末層を形成し、次いで該耐火性粉末層に貴金属を担持す
ることを特徴とする排気浄化用触媒の製造方法である。
The fourth aspect of the present invention is to add citric acid to an aqueous solution containing compounds of each element constituting a perovskite-type composite oxide to form a uniform aqueous solution, and to transform the aqueous solution into a refractory powder (excluding the perovskite-type composite oxide powder). ), dried and fired to form a perovskite-type composite oxide layer on at least the surface, a refractory powder is prepared, a slurry containing the refractory powder is prepared, and then the streaks are impregnated with a refractory carrier. This is a method for producing a catalyst for exhaust purification, characterized in that the refractory powder layer is formed on the refractory carrier by coating, drying and firing, and then the noble metal is supported on the refractory powder layer.

本発明にかいては、ペロブスカイト型複合酸化物を+J
l製する際にクエン酸を添加することが最大の特徴であ
る。
In the present invention, the perovskite type composite oxide is +J
The biggest feature is that citric acid is added during production.

クエン酸の添加比率は得られるペロブスカイト型複合酸
化物に対してモル比で1.0〜1.2  倍が好ましい
。添加比率が上記下限値未満であると十分に均一な組成
のペロブスカイト型複合酸化物が得られない。又、添加
比率が上記上限値を越えると焼成が困難となるなどの不
具合が生ずる。
The addition ratio of citric acid is preferably 1.0 to 1.2 times in molar ratio to the obtained perovskite type composite oxide. If the addition ratio is less than the above lower limit, a perovskite-type composite oxide with a sufficiently uniform composition cannot be obtained. Furthermore, if the addition ratio exceeds the above upper limit, problems such as difficulty in firing may occur.

ペロブスカイト型複合酸化物を構成する各元素の化合物
としては、例えば硝酸塩などの水溶性塩が好ましいが、
クエン酸を添加した場合に全体が均一溶液となるもので
あれば使用することができる。
As the compound of each element constituting the perovskite type composite oxide, water-soluble salts such as nitrates are preferable, but
Any solution that becomes a homogeneous solution when citric acid is added can be used.

ペロブスカイト型複合酸化物(貴金属を含む)としては
下記一般式: Lnl−xAxBl−y Cy03 (式中、Lnは希土類元素を表わし、Aはアルカリ土類
元素を表わし、BはLn及びC以外の遷移元素の1種又
は2種以上を表わし、Cは貴金属の1種又は2種以上を
表わし、0<X<1.0〈y〈1である)で表わされる
ものが好プしい。
The perovskite-type composite oxide (including noble metals) has the following general formula: Lnl-xAxBl-y Cy03 (wherein, Ln represents a rare earth element, A represents an alkaline earth element, and B represents a transition other than Ln and C. It is preferable that C represents one or more kinds of elements, C represents one or more kinds of noble metals, and 0<X<1.0<y<1.

耐火性粉末としてはアルミナ、シリカ、一般式AB’O
,、LnAl!03又はLn、Boo、  (式中、A
はアルカリ土類元素を表わし、B′はTi、Zr又はH
fを表わし、Lnは希土類元素の1種又は2種以上を表
わす)で表わされるものが好筐しい。
Refractory powders include alumina, silica, and general formula AB'O.
,,LnAl! 03 or Ln, Boo, (wherein, A
represents an alkaline earth element, B' is Ti, Zr or H
f and Ln represents one or more rare earth elements).

貴金属としては例えばPd 、 Rh 、 Pt 、 
Rn 、 Irが挙げられ、これらのうちの1種又は2
種以上を担持するとよい。
Examples of noble metals include Pd, Rh, Pt,
Examples include Rn and Ir, and one or two of these
It is better to carry more than one seed.

ペロブスカイト型複合酸化物と耐火性粉末との混合比、
貴金属の担持量、スラリー濃度、焼成条件等の諸条件は
適宜選択する。
Mixing ratio of perovskite type composite oxide and refractory powder,
Conditions such as the amount of noble metal supported, slurry concentration, and firing conditions are selected as appropriate.

耐火性担体は例えばコージェライトなどのセラミックス
担体又はステンレススチールなどの耐熱性メタル担体で
あってよい。その大きさや形状は適宜選択する。形状と
しては例えはペレット状又はモノリス状が挙げられる。
The refractory carrier may be, for example, a ceramic carrier such as cordierite or a refractory metal carrier such as stainless steel. Its size and shape are selected appropriately. Examples of the shape include pellets and monoliths.

モノリス状の耐火性担体が実用上都合がよい。A monolithic refractory carrier is convenient in practice.

〔作 用〕[For production]

ペロブスカイト型複合酸化物を調製する際に、原料°化
合物の水溶液中にクエン酸を添加するので、水溶液が酸
性となシ、各原料化合物が安定化される。このため、例
えば空気中の二酸化炭素を吸収することによる炭酸塩の
混入などの不具合を防止することができ、均一な組成で
且つ微粒子状のペロブスカイト型複合は化物を得ること
ができる。
When preparing a perovskite-type composite oxide, citric acid is added to the aqueous solution of the raw material compounds, so the aqueous solution is not acidic and each raw material compound is stabilized. Therefore, it is possible to prevent problems such as contamination of carbonates due to the absorption of carbon dioxide in the air, and it is possible to obtain a perovskite-type composite having a uniform composition and in the form of fine particles.

〔実施例〕〔Example〕

以下の実施例及び比較例において本発明を更に詳細に説
明する。な訃、本発明は下記実施例に限定されるもので
はない。
The present invention will be explained in further detail in the following Examples and Comparative Examples. However, the present invention is not limited to the following examples.

〈基本操作1〉 ■、ペロブスカイト型複合酸化物の調製(1)各構成元
素の水溶性塩(硝酸塩など)の水溶液にクエン酸を添加
し溶解する。
<Basic operation 1> (1) Preparation of perovskite-type composite oxide (1) Add citric acid to an aqueous solution of water-soluble salts (nitrates, etc.) of each constituent element and dissolve.

(2)上記混合液をエバポレータによシ蒸発・乾固し、
次いで真空乾燥する。
(2) Evaporate and dry the above mixed liquid using an evaporator,
Then, it is vacuum dried.

(31800℃で空気中で焼成し、ペロブスカイト型複
合酸化物粉末をV@製する。
(Calcinate in air at 31,800°C to produce perovskite-type composite oxide powder.

な)、(1)の工程については、各構成元素のアルコキ
シド化合物を加水分解した溶液にクエン酸を添加し均一
に溶解してもよい。
Regarding step (1), citric acid may be added to a solution obtained by hydrolyzing the alkoxide compound of each constituent element and uniformly dissolved.

L 耐天性粉末への貴金属担持(貴金属担持は下記Iの
工程で行ってもよい) (1)アルミナ、5rZrO,等の耐火性粉末に貴金属
溶液を含浸させる。
L Supporting noble metal on weather-resistant powder (supporting noble metal may be carried out in the step I below) (1) Impregnate a refractory powder such as alumina, 5rZrO, etc. with a noble metal solution.

(2)上記粉末を乾燥し、場合によっては焼成して貴金
属を担持させる。
(2) The powder is dried and optionally fired to support the noble metal.

口、耐火性担体への塗布 (1)1及び■で調製した各粉末と水、ジルコニアゾル
等のバインダーとを混合し、粘度200〜300CpS
のスラリーをvf4E! スル。
(1) Mix each of the powders prepared in 1 and 2 with water and a binder such as zirconia sol to obtain a solution with a viscosity of 200 to 300 CpS.
slurry of vf4E! Sur.

(2)耐火性担体(例えばコージェライト質セラミック
ス又は耐熱性金属からなるハニカム担体)にスラリーを
流し込み、余部のスラリーを空気流で吹き払い、乾燥後
焼成する。
(2) The slurry is poured into a refractory carrier (for example, a honeycomb carrier made of cordierite ceramics or a heat-resistant metal), the remaining slurry is blown off with an air stream, and the slurry is dried and fired.

(31■で耐火性粉末に貴金属を担持しない場合には、
次いで耐火性担体を貴金属溶液に浸漬して、その表面の
混合粉末層に貴金属を担持させる。
(If no noble metal is supported on the refractory powder in 31■,
Next, the refractory carrier is immersed in a noble metal solution to support the noble metal on the mixed powder layer on its surface.

〈基本操作2〉 1、耐火性粉末上へのペロブスカイト型複合酸化物のv
4製 (1)耐火性粉末に、基本操作1の1−(1)の溶液を
含浸させる。
<Basic operation 2> 1. V of perovskite type composite oxide on refractory powder
4 (1) refractory powder is impregnated with the solution of 1-(1) of Basic Operation 1.

(2)基本操作1の1−(21と向じ。(2) Basic operation 1, 1-(21 and opposite).

(3)基本操作1の1−(31と同じ。(3) Basic operations 1-1 (same as 31).

L 耐火性粉末への貴金属担持(貴金属担持は下記Iの
工程で行ってもよい) (1)基本操作1のII −(11と同じ。
L Supporting noble metal on refractory powder (supporting noble metal may be carried out in the step I below) (1) Basic operation 1 II-(same as 11).

(2)基本操作1のII−(2)と同じ。(2) Same as II-(2) of Basic Operation 1.

!、耐火性担体への塗布 (1)  基本操作1の夏−(11と同じ。! , application to refractory carriers (1) Basic operations 1 summer - (same as 11).

(2)基本操作10I−(21と同じ。(2) Basic operation 10I- (same as 21).

(3)基本操作1の1−(31と同じ。(3) Basic operations 1-1 (same as 31).

実施例1 (1)  La (N03)、・6 H,0590ti
、5r(NOx)z21 g、  Fe(Nos)3”
 9H20242g、Co (N03)13H,011
a g及ヒPd(NO3)z 2.39を純水1/に溶
解する。
Example 1 (1) La (N03), 6 H, 0590ti
, 5r(NOx)z21 g, Fe(Nos)3”
9H20242g, Co (N03)13H,011
Dissolve ag and Pd(NO3)z 2.39 in pure water 1/2.

(2)  クエン酸(C6H1107・N20)504
gヲ純水1/に溶解する。
(2) Citric acid (C6H1107/N20) 504
Dissolve g in 1/2 part of pure water.

(31(1)の溶液と(2)の溶液とを混合し、スター
テで攪拌する。
(31. Mix the solution of (1) and the solution of (2) and stir with a stirrer.

(4)  エバポレータに混合溶液を入れ、60〜80
℃の水浴中で蒸発・乾固する。
(4) Pour the mixed solution into the evaporator and
Evaporate to dryness in a water bath at °C.

(5)固形物を真空乾燥器に移し、約70℃で12時間
真空乾燥する。
(5) Transfer the solid matter to a vacuum dryer and vacuum dry at about 70°C for 12 hours.

(6)  これを大気中で300℃で3時間仮焼する。(6) Calcinate this in the air at 300°C for 3 hours.

(7)仮焼物を更にらいかい機で粉砕し混合する。(7) The calcined product is further crushed and mixed using a grinder.

(8)  これを大気中でSOO℃で10時間焼成して
、平均粒径5 μmのLao、s Sro、IFeo、
g coo、39 p(’0.0103の組成比を有す
る粉末人を得た。
(8) This was calcined in the air at SOO℃ for 10 hours to obtain Lao, S Sro, IFeo, with an average particle size of 5 μm.
A powder having a composition ratio of g coo, 39 p ('0.0103) was obtained.

(9)市販の5rZrO,粉末(表面積1F3rr?/
y、平均粒径7μm)に0.5重!−%硝酸パラジウム
溶液を含浸させた。
(9) Commercially available 5rZrO, powder (surface area 1F3rr?/
y, average particle size 7 μm) and 0.5 weight! -% palladium nitrate solution.

Od  上記粉末を大気中で110℃で10時間乾燥し
、次いで600℃で3時間焼成して、Pdを115重量
多含有する5rZr03粉末を得た。
Od The above powder was dried in the air at 110°C for 10 hours, and then calcined at 600°C for 3 hours to obtain 5rZr03 powder containing 115% more Pd by weight.

0℃ 上記(8)と00で得た粉末を1対1の重量比で
混合し、らいかl/1機で混合粉砕する。
0°C The powders obtained in (8) and 00 above are mixed at a weight ratio of 1:1, and mixed and pulverized using a Lika l/1 machine.

(2)αηで得た混合粉末100重量部、固形分10重
量多のジルコニアゾル70重量部及び水100重量部を
混合してスラリーを調製する。
(2) A slurry is prepared by mixing 100 parts by weight of the mixed powder obtained in αη, 70 parts by weight of zirconia sol having a solid content of 10 parts by weight, and 100 parts by weight of water.

O3市販のコージュライト質ハニカム担体(400セル
/インチ2)に(6)のスラリーを流し込み、余分のス
ラリーを空気流で吹き払い、300℃で2時間乾燥し、
650℃で8時間焼成して実施例1の触媒1人を得た。
The slurry of (6) was poured into O3 commercially available cordierite honeycomb carrier (400 cells/inch2), the excess slurry was blown off with an air stream, and the slurry was dried at 300°C for 2 hours.
One catalyst of Example 1 was obtained by calcining at 650° C. for 8 hours.

実施例2 (1)実施例1と同様の混合溶液1−(3)をS rZ
rO3粉末に含浸させ、1−?−(57〜(8)と同様
の工程で5rZr03粉末上に実施例1と同様の組成比
を有するペロブスカイト型複合酸化物層を形成した。
Example 2 (1) Mixed solution 1-(3) similar to Example 1 was mixed with S rZ
Impregnated with rO3 powder, 1-? -(57--A perovskite-type composite oxide layer having the same composition ratio as in Example 1 was formed on the 5rZr03 powder in the same steps as in (8).

(2)  (15重量優硝酸パラジウム水溶液にアンモ
ニア水を加えてpH8〜1oKv4整する。
(2) (Add ammonia water to a 15 weight aqueous solution of palladium nitrate to adjust the pH to 8-10Kv4.

(3)  実施例1の1−(6)、(13と同様の工程
でハニカム担体上に、La(115ral Feall
 COQ!1lPd(10103層を形成した5rZr
03粉末を塗布した。
(3) La (115ral Feall
COQ! 1lPd (5rZr with 10103 layers formed)
03 powder was applied.

(4)  ハニカム担体を(2)の溶液に含浸させ、塗
布層にPdを0.5重量多担持した。
(4) A honeycomb carrier was impregnated with the solution of (2), and 0.5 weight of Pd was supported on the coating layer.

(5)  このハニカム担体を300’Cで2時間乾燥
し、650℃で8時間焼成して実施例2の触媒2人を得
た。
(5) This honeycomb carrier was dried at 300'C for 2 hours and calcined at 650°C for 8 hours to obtain two catalysts of Example 2.

実施例3 実施例1と同様の方法で以下の組成比を有するペロブス
カイト型複合酸化物粉末を調製した。
Example 3 A perovskite-type composite oxide powder having the following composition ratio was prepared in the same manner as in Example 1.

貴金属塩ばPd(NO3)2、Rh (No、)3、P
t(NH,)。
Noble metal salts Pd(NO3)2, Rh(No,)3, P
t(NH,).

(NO2)z及びRuC/、を用いた。(NO2)z and RuC/ were used.

B : Lao、1lsro、I Co0,3 F’e
0,6 pao、o8Rh0.。、 o。
B: Lao, 1lsro, I Co0,3 F'e
0,6 pao, o8Rh0. . , o.

C: La0.gsr6.I Coo、3 Fe@4P
do、osPto、ozO3D : La0.9srO
,1co、)、3 Feo、6Pdo、osRuo、o
z(JsE : Ijao、9ceO,l Co(、,
3Feo、6Pdo、i 0s又、耐火性粉末としては
4重量弔のLa2O3及び30重量優のCeO2を含む
活性アルミナ粉末を用いた。そして以下の如く貴金属を
担持した。
C: La0. gsr6. I Coo, 3 Fe@4P
do, osPto, ozO3D: La0.9srO
,1co,),3Feo,6Pdo,osRuo,o
z(JsE: Ijao,9ceO,l Co(,,
3Feo, 6Pdo, i0s Also, activated alumina powder containing 4% by weight of La2O3 and 30% by weight of CeO2 was used as the refractory powder. Then, precious metals were supported as shown below.

E’:Q、2重量%Pt C’:0.02重量優R,h p”:Q、5重量%Pd、0.2重量%RhE’:0.
2重量優Pt、α02重量%Rh上記B−Eの粉末と「
〜E′の粉末とを組合せて用い、実施例1と同様にハニ
カム担体上に塗布して実施例2の触媒1B〜1Eを得た
E': Q, 2% by weight Pt C': 0.02% by weight R, h p'': Q, 5% by weight Pd, 0.2% by weight RhE': 0.
2% by weight of Pt, α02% by weight of Rh
- E' powders were used in combination and coated on a honeycomb carrier in the same manner as in Example 1 to obtain catalysts 1B to 1E of Example 2.

実施例4 実施例2と同様の操作で、実施例3と同様のペロブスカ
イト型複合酸化物からなる層を表面に形成した実施例3
と同様のアルミナ粉末(但し、貴金属は担持せず)をハ
ニカム担体に塗布した。次いで実施例3と同様の貴金属
担持量となるように、それぞれの貴金属水溶液にハニカ
ム担体を含浸させて実施例4の触媒2B〜2Eを調製し
た。
Example 4 Example 3 in which a layer made of the same perovskite-type composite oxide as in Example 3 was formed on the surface by the same operation as in Example 2.
Alumina powder similar to that described above (however, no noble metal was supported) was applied to a honeycomb carrier. Next, catalysts 2B to 2E of Example 4 were prepared by impregnating a honeycomb carrier with each precious metal aqueous solution so that the amount of noble metal supported was the same as in Example 3.

比較例1 実施例1と同様のハニカム担体に、貴金属を含筐ないペ
ロブスカイト型複合酸化物粉末Lao、e SrO,I
 Feo、6 CoO,4Q、を塗布した触媒1a及び
、実施例1と同様のハニカム担体に実施例3のLa、O
s 、 CeO2含有アルミナを塗布し、PdをQ、5
重量多、Rhを0.02重量多担持した触媒1bを調製
した。
Comparative Example 1 Perovskite-type composite oxide powder Lao,e SrO,I containing no noble metal was added to the same honeycomb carrier as in Example 1.
Catalyst 1a coated with Feo, 6 CoO, 4Q, and La, O of Example 3 on the same honeycomb carrier as in Example 1.
s, CeO2-containing alumina was applied, Pd was applied to Q, 5
A catalyst 1b was prepared in which 0.02 weight of Rh was supported.

比較例2 実施例1−(11と同一組成の溶液11!に10重量多
のアンモニア水を加えて中和し、共沈殿物を得た後それ
を水洗し次いでr過後乾燥し、800℃で10FE8間
焼成してペロブスカイト型複合酸化物を得た。以下、実
施例1と同様にして触媒1Cを得た。
Comparative Example 2 Solution 11! having the same composition as Example 1-(11) was neutralized by adding 10 more weight of aqueous ammonia to obtain a coprecipitate, which was then washed with water, filtered with r, and dried at 800°C. A perovskite-type composite oxide was obtained by firing for 10FE8.Catalyst 1C was obtained in the same manner as in Example 1.

く性能比較試験1〉 実施例1〜4の触媒1A〜1E及び2A〜2E、並びに
比較例1〜2の触媒1a〜1Cをコンバータに装潰し、
下記組成のリッチガスとリーンガスを5分間陽で切シ換
えて、900℃で30分、750℃で30分のサイクル
を50回繰シ返して耐久した触媒を、同様のガスを用い
て2秒間隔でガスを切シ替えながら、昇温試験を行った
Performance Comparison Test 1> Catalysts 1A to 1E and 2A to 2E of Examples 1 to 4 and catalysts 1a to 1C of Comparative Examples 1 to 2 were packed in a converter,
A catalyst that has endured by switching between rich gas and lean gas of the following composition for 5 minutes and repeating the cycle of 30 minutes at 900°C and 30 minutes at 750°C 50 times is then heated at 2 second intervals using the same gas. A temperature increase test was conducted while switching the gas.

リッチガス     リーンガス Co  4.7  多     0.7  多020.
65%     4.65φ No  (112多     0.12多H,0,25
%      CL23%C,H,1116%    
  C116%Co、10  %     10 % F(,03%      3% 結果をHC,Co及びN0Xの各成分が50%の浄化率
を示す温度として下記第1表に示す。
Rich gas Lean gas Co 4.7 High 0.7 High 020.
65% 4.65φ No (112 many 0.12 many H, 0,25
% CL23%C,H,1116%
C116%Co, 10% 10% F (,03% 3%) The results are shown in Table 1 below as the temperature at which each component of HC, Co, and NOX exhibits a purification rate of 50%.

第1表 50%の浄化率を示す温度(℃)のエンジンの
排気系に取り付け、触媒人ガス温度850℃、床温度9
00℃で200時間耐久試験後、同エンジンで触媒人ガ
ス温度400℃でHClC0及びNOxの浄化率を測定
した。結果を下記第2表に示す。
Table 1 Installed in the exhaust system of an engine at a temperature (°C) that indicates a purification rate of 50%, catalyst gas temperature 850°C, bed temperature 9
After a 200-hour durability test at 00°C, the purification rate of HClC0 and NOx was measured using the same engine at a catalyst gas temperature of 400°C. The results are shown in Table 2 below.

第2表 HC,Co及びNOxの浄化率(多)〈性能比
較試験2〉 触媒2人及び1aの仕様で1.71!の容量の触媒を金
!A製容器に押入れたコンバータを、2/〈性能比較試
験3〉 実施例1と比較例2のベロプスカイ)W複合酸化物を空
気中で800℃で10時間は化処理した後、X線回折を
行い、又その表面積を測定することによシ均−性を評価
した。結果を下記第3表に示す。
Table 2 Purification rate of HC, Co and NOx (multiple) <Performance comparison test 2> 1.71 with 2 catalysts and 1a specification! gold capacity catalyst! 2/<Performance Comparison Test 3> The W composite oxides of Example 1 and Comparative Example 2 were heat-treated at 800°C for 10 hours in air, and then subjected to X-ray diffraction. The uniformity was evaluated by measuring the surface area. The results are shown in Table 3 below.

第3表 均一性の評価結果 傘数値が大きいのは微粒子状のペロブスカイト相が生成
している証拠である。
Table 3: Uniformity evaluation results A large umbrella value is evidence of the formation of a fine-grained perovskite phase.

前記第1表よう、実施例の触媒は比較例の触媒に比べて
50%の浄化率を示す温度が低いことが判る。又、前記
第2表から明らかな如く、実施例の触媒は比較例の触媒
よシもHC,CO及びNOxの浄化率が高い。 これら
の理由は第3表のように、本発明の方法ではペロブスカ
イト型複合酸化物の調製時にクエン酸を使用するため微
粒子状で且つ均一な組成のものが得られることによる。
As shown in Table 1 above, it can be seen that the catalyst of the example has a lower temperature at which a purification rate of 50% is achieved than the catalyst of the comparative example. Furthermore, as is clear from Table 2 above, the catalysts of the Examples have higher purification rates for HC, CO, and NOx than the catalysts of the Comparative Examples. The reason for these is that, as shown in Table 3, in the method of the present invention, citric acid is used during the preparation of perovskite type composite oxides, so that fine particles with a uniform composition can be obtained.

更に本発明の方法にかいては、ペロブスカイト型複合酸
化物と耐火性粉末とを組合せて使用し、これらの片方又
は両方に貴金属を担持するため、リッチ側及びリーン側
の両方の雰囲気にかいて優れた浄化性能を示す。これを
第1図によシ説明する。
Furthermore, in the method of the present invention, a perovskite-type composite oxide and a refractory powder are used in combination, and one or both of them support a precious metal, so that it can be used in both rich and lean atmospheres. Shows excellent purification performance. This will be explained with reference to FIG.

第1図は貴金属としてPdを使用した場合の各種排気浄
化用触媒の雰囲気の変化による性状変化を示す。第1図
(a)〜(C)は耐火性粉末としてアルミナを用いてア
ルミナにPd を担持した触媒の例である。新品(a)
のとき分散していたPdはリッチ側ではシンタリングを
起し、リーン側では再分散する。それ故、この触媒はリ
ーン側では活性が高いが、リッチ側では活性が低い。
FIG. 1 shows changes in properties of various exhaust purification catalysts due to changes in atmosphere when Pd is used as the noble metal. Figures 1 (a) to (C) are examples of catalysts in which alumina is used as the refractory powder and Pd is supported on the alumina. New (a)
Pd, which was dispersed at the time, causes sintering on the rich side and redistributes on the lean side. Therefore, this catalyst has high activity on the lean side, but low activity on the rich side.

第1図(d)〜(0はペロブスカイト型複合酸化物粉末
にPdを担持した触媒の例である。新品(d)のときは
Pdの一部は析出し、他はペロブスカイト型複合酸化物
粉末中に固溶している。そして、リッチ側ではペロブス
カイト型複合酸化物粉末及び析出Pdはシンタリングを
起し、これは活性低下の原因となる。しかし、固溶Pd
は析出するのでこれは活性増大の原因となる。又、リー
ン側ではペロブスカイト型複合酸化物粉末はシンタリン
グを起し、析出していた固溶Pdは再び固溶し、これは
活性低下の原因となる。しかし、シンタリングを起して
いた析出Pd は再分散するのでこれは活性増大の原因
となる。総合的にみると、ペロブスカイト型複合酸化物
粉末にPd を担持した触媒はリッチ側の方が活性が高
い傾向がある。第1図(9)〜(i)はペロブスカイト
型複合酸化物粉末とそれ以外の耐火性粉末とを組合せて
使用し、これらにPd を担持した触媒の例であう1本
発明の方法によって得られる触媒に相当する。本発明の
方法ではクエン酸を使用するので得られるペロブスカイ
ト型複合酸化物は均−且つ微粒子状である。又、適する
耐火性粉末と併用されているので、リッチ側及びリーン
側の両方でシンタリングを起さない。
Figures 1(d) to (0) are examples of catalysts in which Pd is supported on perovskite-type composite oxide powder.When new (d), part of the Pd is precipitated, and the rest is perovskite-type composite oxide powder. On the rich side, the perovskite-type composite oxide powder and precipitated Pd cause sintering, which causes a decrease in activity.However, solid solution Pd
precipitates, which causes an increase in activity. Further, on the lean side, the perovskite type composite oxide powder undergoes sintering, and the precipitated solid solution Pd becomes solid solution again, which causes a decrease in activity. However, the precipitated Pd that had been sintered is redispersed, which causes an increase in activity. Overall, a catalyst in which Pd is supported on perovskite-type composite oxide powder tends to have higher activity on the rich side. Figure 1 (9) to (i) are examples of catalysts obtained by the method of the present invention using a combination of perovskite type composite oxide powder and other refractory powders and supporting Pd on these. corresponds to Since citric acid is used in the method of the present invention, the perovskite type composite oxide obtained is uniform and in the form of fine particles. Also, since it is used in combination with a suitable refractory powder, sintering does not occur on both the rich side and the lean side.

更に、リッチ側では析出Pdが、リーン側では再分散P
dが各々活性を向上させるので、リッチ側及びリーン側
の両方で高活性なものとなる。
Furthermore, the precipitated Pd on the rich side and the redispersed Pd on the lean side
Since each of d improves the activity, it becomes highly active on both the rich side and the lean side.

[発明の効果〕 本発明の排気浄化用触媒の製造方法は上述の如き構成を
有するため、本発明の方法によって得られる触媒は以下
のような種々の効果金臭する。
[Effects of the Invention] Since the method for producing an exhaust purification catalyst of the present invention has the above-described configuration, the catalyst obtained by the method of the present invention has various effects as described below.

ペロブスカイト型複合酸化物は組成が均一で安定であう
、且つ微粒子状であって表面積が大きく、これによう触
媒の耐久性及び活性が向上する。
The perovskite type composite oxide has a uniform composition and is stable, and is in the form of fine particles and has a large surface area, thus improving the durability and activity of the catalyst.

又、貴金属含有ペロブスカイト型複合酸化物粉末は、排
気雰囲気がリッチ側の場合、分解して高分散性の貴金属
を析出させ、高活性となる。
Further, when the exhaust atmosphere is rich, the noble metal-containing perovskite composite oxide powder decomposes and precipitates highly dispersed noble metals, becoming highly active.

リーン側では貴金属がペロブスカイト型複合酸化物粉末
中に固溶する。この繰返しによりペロブスカイト型複合
酸化物粉末及びそれに含有されている貴金属の粒成長を
防止できる。更に、耐火性粉末に担持された貴金属はす
・ソチ側でシンタリングを起し、り一ン側で再分散し、
これによシリーン側での活性向上に寄与する。それ故、
本発明の方法で得られる排気浄化用触媒はリッチ側及び
リーン側の両方で高活性であり、且つ耐久性に優れてい
る。特に貴金属としてPdを使用する場合にはPd は
リーン側でPdOとなシ高分散化されるという特色を生
かすことができるので実用上の利点がある。
On the lean side, the noble metal is dissolved in the perovskite complex oxide powder. By repeating this process, grain growth of the perovskite composite oxide powder and the noble metal contained therein can be prevented. Furthermore, the precious metal supported on the refractory powder is sintered on the Sochi side, redispersed on the Riin side,
This contributes to improving the activity on the cylinder side. Therefore,
The exhaust gas purification catalyst obtained by the method of the present invention is highly active on both the rich side and the lean side, and has excellent durability. In particular, when Pd is used as the noble metal, it is possible to take advantage of the characteristic that Pd is highly dispersed compared to PdO on the lean side, which has a practical advantage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は貴金属としてPd を使用した場合の各種排気
浄化用触媒の雰囲気の変化による性状変化を示す説明図
である。
FIG. 1 is an explanatory diagram showing changes in properties of various exhaust purification catalysts due to changes in atmosphere when Pd is used as the noble metal.

Claims (4)

【特許請求の範囲】[Claims] (1)ペロブスカイト型複合酸化物を構成する各元素の
化合物を含む水溶液にクエン酸を添加して均一な水溶液
となし、該水溶液を蒸発・乾固した後焼成してペロブス
カイト型複合酸化物粉末を調製し、次いで該粉末と貴金
属を担持した耐火性粉末(ペロブスカイト型複合酸化物
粉末を除く)とを含むスラリーを調製し、次いで該スラ
リーを耐火性担体上に塗布し乾燥後焼成してなることを
特徴とする排気浄化用触媒の製造方法。
(1) Citric acid is added to an aqueous solution containing compounds of each element constituting the perovskite-type composite oxide to form a uniform aqueous solution, and the aqueous solution is evaporated to dryness and then fired to produce a perovskite-type composite oxide powder. A slurry containing the powder and a refractory powder supporting a noble metal (excluding perovskite composite oxide powder) is then prepared, and the slurry is then applied onto a refractory carrier, dried, and then fired. A method for producing an exhaust purification catalyst characterized by:
(2)ペロブスカイト型複合酸化物を構成する各元素の
化合物を含む水溶液にクエン酸を添加して均一な水溶液
となし、該水溶液を蒸発・乾固した後焼成してペロブス
カイト型複合酸化物粉末を調製し、次いで該粉末と耐火
性粉末(ペロブスカイト型複合酸化物粉末を除く)とを
含むスラリーを調製し、次いで該スラリーを耐火性担体
上に塗布し乾燥後焼成して該耐火性担体上に混合粉末層
を形成し、次いで該混合粉末層に貴金属を担持すること
を特徴とする排気浄化用触媒の製造方法。
(2) Citric acid is added to an aqueous solution containing compounds of each element constituting the perovskite-type composite oxide to form a uniform aqueous solution, and the aqueous solution is evaporated to dryness and then fired to form a perovskite-type composite oxide powder. Then, a slurry containing the powder and a refractory powder (excluding the perovskite composite oxide powder) is prepared, and the slurry is applied onto a refractory carrier, dried, and then fired to coat the refractory powder onto the refractory carrier. A method for producing an exhaust purification catalyst, comprising forming a mixed powder layer and then supporting a noble metal on the mixed powder layer.
(3)ペロブスカイト型複合酸化物を構成する各元素の
化合物を含む水溶液にクエン酸を添加して均一な水溶液
となし、該水溶液を貴金属を担持した耐火性粉末(ペロ
ブスカイト型複合酸化物粉末を除く)に含浸させ、乾燥
後焼成して少なくとも表面にペロブスカイト型複合酸化
物層を形成し且つ貴金属を担持した耐火性粉末を調製し
、次いで該耐火性粉末を含むスラリーを調製し、次いで
該スラリーを耐火性担体上に塗布し乾燥後焼成してなる
ことを特徴とする排気浄化用触媒の製造方法。
(3) Add citric acid to an aqueous solution containing compounds of each element constituting the perovskite-type composite oxide to form a uniform aqueous solution, and convert the aqueous solution into a refractory powder (excluding perovskite-type composite oxide powder) carrying a noble metal. ), dried and fired to form a perovskite-type composite oxide layer on at least the surface and to prepare a refractory powder supporting a noble metal, then prepare a slurry containing the refractory powder, and then prepare a slurry containing the refractory powder. A method for producing an exhaust purification catalyst, which comprises coating the catalyst on a refractory carrier, drying it, and then firing it.
(4)ペロブスカイト型複合酸化物を構成する各元素の
化合物を含む水溶液にクエン酸を添加して均一な水溶液
となし該水溶液を耐火性粉末(ペロブスカイト型複合酸
化物粉末を除く)に含浸させ、乾燥後焼成して少なくと
も表面にペロブスカイト型複合酸化物層を形成した耐火
性粉末を調製し、次いで該耐火性粉末を含むスラリーを
調製し、次いで該スラリーを耐火性担体上に塗布し乾燥
後焼成して該耐火性担体上に該耐火性粉末層を形成し、
次いで該耐火性粉末層に貴金属を担持することを特徴と
する排気浄化用触媒の製造方法。
(4) adding citric acid to an aqueous solution containing compounds of each element constituting the perovskite-type composite oxide to obtain a uniform aqueous solution; impregnating the aqueous solution into a refractory powder (excluding the perovskite-type composite oxide powder); A refractory powder is prepared by drying and firing to form a perovskite-type composite oxide layer on at least the surface, and then a slurry containing the refractory powder is prepared, and then the slurry is applied onto a refractory carrier and dried and then fired. to form the refractory powder layer on the refractory carrier;
A method for producing an exhaust purification catalyst, which comprises then supporting a noble metal on the refractory powder layer.
JP1206485A 1989-08-09 1989-08-09 Exhaust purification catalyst manufacturing method Expired - Lifetime JPH0817942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1206485A JPH0817942B2 (en) 1989-08-09 1989-08-09 Exhaust purification catalyst manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1206485A JPH0817942B2 (en) 1989-08-09 1989-08-09 Exhaust purification catalyst manufacturing method

Publications (2)

Publication Number Publication Date
JPH0368451A true JPH0368451A (en) 1991-03-25
JPH0817942B2 JPH0817942B2 (en) 1996-02-28

Family

ID=16524155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1206485A Expired - Lifetime JPH0817942B2 (en) 1989-08-09 1989-08-09 Exhaust purification catalyst manufacturing method

Country Status (1)

Country Link
JP (1) JPH0817942B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788384A (en) * 1993-02-08 1995-04-04 Gold Star Co Ltd Preparation of catalyst for purifying exhaust gas
JPH0788385A (en) * 1993-02-09 1995-04-04 Gold Star Co Ltd Preparation of catalyst for purifying exhaust gas
US5951956A (en) * 1992-03-23 1999-09-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gas and method for purifying exhaust gas
JP2003071298A (en) * 2001-09-05 2003-03-11 Toyota Central Res & Dev Lab Inc COMPOSITE MATERIAL, PRODUCTION METHOD THEREFOR, CATALYST, PRODUCTION METHOD THEREFOR, NOx SORPTION METHOD, AND NOx SORPTIVE REDUCTION METHOD
WO2004005194A1 (en) * 2002-07-09 2004-01-15 Daihatsu Motor Co., Ltd. Process for producing perovskite-type composite oxide
JP2004243305A (en) * 2002-10-11 2004-09-02 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
WO2005025741A1 (en) * 2003-09-12 2005-03-24 Honda Motor Co., Ltd. Catalyst for clarifying exhaust gas and method for preparation thereof, and exhaust gas clarification catalyst device for vehicle
WO2006033168A1 (en) * 2004-09-24 2006-03-30 Honda Motor Co., Ltd. Catalyst for exhaust gas purification and exhaust gas purification apparatus
JP2006297236A (en) * 2005-04-18 2006-11-02 Toyota Motor Corp Catalyst for cleaning exhaust gas and manufacturing method
US7199079B2 (en) 2004-01-21 2007-04-03 Honda Motor Co., Ltd. Purification catalyst for exhaust gas, production method therefor, and purification catalyst device for automobile exhaust gas
US7205257B2 (en) 2002-07-09 2007-04-17 Daihatsu Motor Co., Ltd. Catalyst for clarifying exhaust gas
US7259127B2 (en) 2003-08-25 2007-08-21 Honda Motor Co., Ltd. Purification catalyst for exhaust gas, production method therefor, and purification catalyst device for exhaust gas
JP2008086987A (en) * 2006-10-04 2008-04-17 Christian Koch Method and apparatus for oxidation and reduction of gas and vapor by catalyst of crystalline compound of heavy metal and rare earth element
US7585809B2 (en) 2003-08-06 2009-09-08 Honda Motor Co., Ltd. Purification catalyst for exhaust gas, production method therefor, and purification catalyst equipment for exhaust gas
JP2009262060A (en) * 2008-04-25 2009-11-12 Honda Motor Co Ltd Method of manufacturing oxidation catalyst device for purification of exhaust gas
JP2009262101A (en) * 2008-04-28 2009-11-12 Honda Motor Co Ltd Method of manufacturing oxidation catalyst device for purification of exhaust gas
JP2009291720A (en) * 2008-06-05 2009-12-17 Daihatsu Motor Co Ltd Catalyst composition and method for manufacturing of catalyst composition
JP2010089021A (en) * 2008-10-08 2010-04-22 Mitsui Mining & Smelting Co Ltd Method of producing catalyst for exhaust gas purification
DE102005063419B4 (en) * 2004-01-13 2012-05-31 Honda Motor Co., Ltd. Purification catalyst for exhaust gas and manufacturing process therefor
WO2013084307A1 (en) * 2011-12-07 2013-06-13 トヨタ自動車株式会社 Internal combustion engine exhaust purifying apparatus
JPWO2013084307A1 (en) * 2011-12-07 2015-04-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN107983338A (en) * 2016-10-27 2018-05-04 中国科学院大连化学物理研究所 A kind of method for improving Ca-Ti ore type composite metal oxide catalyst performance

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951956A (en) * 1992-03-23 1999-09-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gas and method for purifying exhaust gas
JPH0788384A (en) * 1993-02-08 1995-04-04 Gold Star Co Ltd Preparation of catalyst for purifying exhaust gas
JPH0788385A (en) * 1993-02-09 1995-04-04 Gold Star Co Ltd Preparation of catalyst for purifying exhaust gas
JP4715064B2 (en) * 2001-09-05 2011-07-06 株式会社豊田中央研究所 Catalyst, production method thereof, NOx occlusion method, and NOx occlusion reduction method
JP2003071298A (en) * 2001-09-05 2003-03-11 Toyota Central Res & Dev Lab Inc COMPOSITE MATERIAL, PRODUCTION METHOD THEREFOR, CATALYST, PRODUCTION METHOD THEREFOR, NOx SORPTION METHOD, AND NOx SORPTIVE REDUCTION METHOD
WO2004005194A1 (en) * 2002-07-09 2004-01-15 Daihatsu Motor Co., Ltd. Process for producing perovskite-type composite oxide
CN100393629C (en) * 2002-07-09 2008-06-11 大发工业株式会社 Process for producing perovskite-type composite oxide
US7622418B2 (en) 2002-07-09 2009-11-24 Daihatsu Motor Company, Ltd. Method for producing exhaust gas purifying catalyst
US7381394B2 (en) 2002-07-09 2008-06-03 Daihatsu Motor Co., Ltd. Method for producing perovskite-type composite oxide
US7205257B2 (en) 2002-07-09 2007-04-17 Daihatsu Motor Co., Ltd. Catalyst for clarifying exhaust gas
JP2004243305A (en) * 2002-10-11 2004-09-02 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
US7585809B2 (en) 2003-08-06 2009-09-08 Honda Motor Co., Ltd. Purification catalyst for exhaust gas, production method therefor, and purification catalyst equipment for exhaust gas
US7259127B2 (en) 2003-08-25 2007-08-21 Honda Motor Co., Ltd. Purification catalyst for exhaust gas, production method therefor, and purification catalyst device for exhaust gas
AU2004271828B2 (en) * 2003-09-12 2008-05-01 Honda Motor Co., Ltd. Catalyst for clarifying exhaust gas and method for preparation thereof, and exhaust gas clarification catalyst device for vehicle
WO2005025741A1 (en) * 2003-09-12 2005-03-24 Honda Motor Co., Ltd. Catalyst for clarifying exhaust gas and method for preparation thereof, and exhaust gas clarification catalyst device for vehicle
US7674746B2 (en) 2003-09-12 2010-03-09 Honda Motor Co., Ltd. Catalyst for clarifying exhaust gas and method for preparation thereof, and exhaust gas clarification catalyst device for vehicle
DE102005063419B4 (en) * 2004-01-13 2012-05-31 Honda Motor Co., Ltd. Purification catalyst for exhaust gas and manufacturing process therefor
US7199079B2 (en) 2004-01-21 2007-04-03 Honda Motor Co., Ltd. Purification catalyst for exhaust gas, production method therefor, and purification catalyst device for automobile exhaust gas
US7476640B2 (en) 2004-01-21 2009-01-13 Honda Motor Co., Ltd. Purification catalyst for exhaust gas, production method therefor, and purification catalyst device for automobile exhaust gas
US7811960B2 (en) 2004-09-24 2010-10-12 Honda Motor Co., Ltd. Catalyst for exhaust gas purification and exhaust gas purification apparatus
WO2006033168A1 (en) * 2004-09-24 2006-03-30 Honda Motor Co., Ltd. Catalyst for exhaust gas purification and exhaust gas purification apparatus
JP4687217B2 (en) * 2005-04-18 2011-05-25 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP2006297236A (en) * 2005-04-18 2006-11-02 Toyota Motor Corp Catalyst for cleaning exhaust gas and manufacturing method
JP2008086987A (en) * 2006-10-04 2008-04-17 Christian Koch Method and apparatus for oxidation and reduction of gas and vapor by catalyst of crystalline compound of heavy metal and rare earth element
JP2009262060A (en) * 2008-04-25 2009-11-12 Honda Motor Co Ltd Method of manufacturing oxidation catalyst device for purification of exhaust gas
JP2009262101A (en) * 2008-04-28 2009-11-12 Honda Motor Co Ltd Method of manufacturing oxidation catalyst device for purification of exhaust gas
JP2009291720A (en) * 2008-06-05 2009-12-17 Daihatsu Motor Co Ltd Catalyst composition and method for manufacturing of catalyst composition
JP2010089021A (en) * 2008-10-08 2010-04-22 Mitsui Mining & Smelting Co Ltd Method of producing catalyst for exhaust gas purification
WO2013084307A1 (en) * 2011-12-07 2013-06-13 トヨタ自動車株式会社 Internal combustion engine exhaust purifying apparatus
CN103987933A (en) * 2011-12-07 2014-08-13 丰田自动车株式会社 Internal combustion engine exhaust purifying apparatus
JPWO2013084307A1 (en) * 2011-12-07 2015-04-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN107983338A (en) * 2016-10-27 2018-05-04 中国科学院大连化学物理研究所 A kind of method for improving Ca-Ti ore type composite metal oxide catalyst performance
CN107983338B (en) * 2016-10-27 2021-05-07 中国科学院大连化学物理研究所 Method for improving catalytic performance of perovskite type composite metal oxide

Also Published As

Publication number Publication date
JPH0817942B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
JPH0368451A (en) Production of catalyst for purification of exhaust gas
JP3861647B2 (en) Exhaust gas purification catalyst
US20190126248A1 (en) Exhaust gas purifying catalyst
JPS63162043A (en) Catalyst for cleaning exhaust gas
JPH0531367A (en) Catalyst for exhaust gas purification
JPH08131830A (en) Catalyst for purification of exhaust gas
JP5078125B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JPH0312936B2 (en)
JPH0780310A (en) Production of perovskite or perovskite-like structure oxide carrying catalyst
JP2620624B2 (en) Exhaust gas purification catalyst
JP5071840B2 (en) Exhaust gas purification catalyst
JPH09248462A (en) Exhaust gas-purifying catalyst
JPH10277389A (en) Catalyst for cleaning exhaust gas
JPH1076159A (en) Exhaust gas purification catalyst and its production
JPH0398644A (en) Preparation of catalyst for purifying exhaust gas
JPS63116742A (en) Catalyst for purifying exhaust gas
JPH0768175A (en) Catalyst for purification of exhaust gas
JP3882422B2 (en) Method for producing exhaust gas purification catalyst
JPH01142208A (en) Filter for collecting diesel particulate
JP4697796B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JPH06106062A (en) Catalyst for purification of exhaust gas and its production
JPH04334548A (en) Exhaust gas purifying catalyst
JP3309711B2 (en) Exhaust gas purification catalyst and method for producing the same
JPS62221448A (en) Production of oxidizing catalyst
JPH04180835A (en) Production of catalyst for purifying exhaust gas

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080228

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 14