JP2620624B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst

Info

Publication number
JP2620624B2
JP2620624B2 JP62142835A JP14283587A JP2620624B2 JP 2620624 B2 JP2620624 B2 JP 2620624B2 JP 62142835 A JP62142835 A JP 62142835A JP 14283587 A JP14283587 A JP 14283587A JP 2620624 B2 JP2620624 B2 JP 2620624B2
Authority
JP
Japan
Prior art keywords
catalyst
powder
carrier
catalyst component
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62142835A
Other languages
Japanese (ja)
Other versions
JPS63305938A (en
Inventor
正邦 小澤
希夫 木村
彰男 磯谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP62142835A priority Critical patent/JP2620624B2/en
Publication of JPS63305938A publication Critical patent/JPS63305938A/en
Application granted granted Critical
Publication of JP2620624B2 publication Critical patent/JP2620624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,900℃以上で用いられる一酸化炭素(CO),
炭化水素(HC)および酸化窒素(NOX)の浄化性能に優
れた排気ガス浄化用触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to carbon monoxide (CO) used at 900 ° C. or higher,
The present invention relates to an exhaust gas purifying catalyst having excellent hydrocarbon (HC) and nitrogen oxide (NO X ) purifying performance.

〔従来技術および問題点〕[Conventional technology and problems]

希土類金属,アルカリ土類金属よび遷移金属よりなる
ペロブスカイト型構造を有する複合酸化物はCO,HCおよ
びNOXの浄化特性に優れ,該物質触媒成分として含む触
媒は貴金属を含まない安価な触媒として自動車等の排気
ガス用触媒として実用化が期待されており,特許出願
(特開昭59−87046,60−82138)もなされている。しか
し,これまでは900℃以上の排気ガスに長時間さらされ
ると触媒成分を担持する担体に問題があり,触媒のCO,H
C,NOXに対する浄化能が著しく低下する現象がみられ
た。
Complex oxide having a rare earth metal, a perovskite-type structure composed of alkaline earth metal preliminary transition metal has excellent characteristics of purification of CO, HC and NO X, the catalyst comprising a substance catalyst component automobile as an inexpensive catalyst including no noble metal It is expected that the catalyst will be put to practical use as an exhaust gas catalyst, and patent applications (JP-A-59-87046, 60-82138) have been filed. However, there has been a problem with the carrier that carries the catalyst components when exposed to exhaust gas at 900 ° C or higher for a long time.
The phenomenon that the purification ability for C and NO X was remarkably reduced was observed.

従来,触媒成分を担持する担体としては耐熱性を有す
るAl2O3,TiO2,SiO2等の酸化物が使用されてきた。しか
し,Al2O3等と触媒成分であるプロブスカイト構造を有す
る複合酸化物とが共存すると900℃以上においてお互い
に反応しあい,該触媒成分が分解を起こし,触媒活性が
低下した。また,階触媒成分は担体であるAl2O3等の表
面を移動し易くマイグレーションを起こし,互いに凝着
し,そのため触媒成分を有効表面積が減少し,触媒活性
が低下した。このようにペロブスカイト型構造を有する
複合酸化物は900℃以上の温度で長時間使用する場合に
は担体として従来用いられてきたAl2O3等の酸化物を使
用する限り触媒活性の耐久性に問題があり実用に供する
ことは不可能であった。
Conventionally, heat-resistant oxides such as Al 2 O 3 , TiO 2 , and SiO 2 have been used as supports for supporting catalyst components. However, when Al 2 O 3 and the like and the composite oxide having a proovskite structure as a catalyst component coexisted, they reacted with each other at 900 ° C. or higher, and the catalyst component was decomposed, resulting in a decrease in catalytic activity. In addition, the catalyst component easily migrated on the surface of the carrier such as Al 2 O 3 and caused migration and adhered to each other, thereby decreasing the effective surface area of the catalyst component and decreasing the catalytic activity. As described above, when the composite oxide having a perovskite structure is used for a long time at a temperature of 900 ° C. or more, the durability of the catalytic activity is as long as the oxide such as Al 2 O 3 which has been conventionally used as a carrier is used. There was a problem and it was impossible to put it to practical use.

そこで,本発明者等は触媒成分と反応しない担体につ
いて種々検討し,本発明をなしたものである。
Therefore, the present inventors have made various studies on a carrier that does not react with the catalyst component and made the present invention.

〔発明の説明〕[Description of the Invention]

本発明は触媒成分であるペロブスカイト型構造を有す
る一般式La1-XSrxMO3(0<x<0.5,M=V,Cr,Mn,Co,Fe,
Ni,Cuより選ばれた1種以上)で示される複合酸化物と
担体である次の3つの群,SiZrO3およびCaTiO3ペロ
ブスカイト型構造を有する一般式LnAlO3(但しLnは希土
類金属)で示される化合物。
The present invention relates to a catalyst component having a perovskite structure represented by a general formula La 1-X Sr x MO 3 (0 <x <0.5, M = V, Cr, Mn, Co, Fe,
A complex oxide represented by at least one selected from Ni and Cu) and the following three groups of carriers, represented by the general formula LnAlO 3 (where Ln is a rare earth metal) having a perovskite structure of SiZrO 3 and CaTiO 3 Compound.

パイロクロア型構造を有する一般式Ln2B2O7(但しLn
は希土類金属,BはTi,Zrの1種または2種以上)で示さ
れる化合物。
General formula Ln 2 B 2 O 7 having pyrochlore structure (however, Ln
Is a rare earth metal, and B is one or more of Ti and Zr).

より選ばれた1種または2種以上の化合物からなること
を特徴とする排気ガス浄化用触媒に関するものである。
The present invention relates to an exhaust gas purifying catalyst comprising one or more compounds selected from the group consisting of:

本発明の重要な点は従来広く使用されてきた担体であ
るAl2O3等に代えてSrZrO3およびCaTiO3を用いた点にあ
る。これらの担体である化合物は900℃以上の温度にお
いて熱的に安定である。
An important point of the present invention is that SrZrO 3 and CaTiO 3 are used in place of Al 2 O 3 and the like which have been widely used in the past. These carrier compounds are thermally stable at temperatures above 900 ° C.

また,Al2O3等を用いた場合と同様触媒活性の向上には
寄与しないがAl2O3等の場合と異なり,触媒成分である
ペロブスカイト型構造を有する複合酸化物と反応して触
媒活性を低下させることはない。また,本発明で用いる
触媒成分と担体とは化学的性質の類似した希土類金属も
しくはアルカリ土類金属をともに有しており,両者の接
触部でこれら金属がわずかに固溶しあい,触媒成分が担
体へ強固に密着するようになる。したがって,担体上で
の触媒成分のマイグレージョンが抑えられ,表面積減少
による触媒活性低下が効果的に防止される。この効果は
触媒成分を担体に担持させる方法によって触媒を製作す
る場合に特に著しい。また,予め製造した触媒成分粉末
と担体粉末を混合して使用する場合は,触媒成分を担体
粒子間に存在せしめることができるため,触媒成分同士
のシンタリングやマイグレーションを制御でき,その結
果表面積減少による活性低下が防止され,排ガス浄化能
が長期間維持される。また,触媒成分と担体との混合粉
末をスラリー状とし,これを基材に塗布して用いる場合
も粉末を混合して用いる場合と同様な効果が得られる。
したがって,本発明に係る触媒は900℃以上において長
時間使用されるCO,HCおよびNOX浄化用の3元触媒として
極めて有効である。
Also, it does not contribute to the improvement of the catalytic activity as in the case of using Al 2 O 3 etc., but unlike the case of Al 2 O 3 etc., it reacts with the composite oxide having a perovskite type structure as the catalyst component and reacts with the catalytic activity Is not reduced. In addition, the catalyst component and the carrier used in the present invention have both a rare earth metal or an alkaline earth metal having similar chemical properties. To adhere firmly to Therefore, migration of the catalyst component on the carrier is suppressed, and a decrease in catalyst activity due to a decrease in surface area is effectively prevented. This effect is particularly remarkable when a catalyst is produced by a method in which a catalyst component is supported on a carrier. In addition, when the pre-produced catalyst component powder and the carrier powder are mixed and used, the catalyst component can be present between the carrier particles, so that sintering and migration of the catalyst components can be controlled, resulting in a reduction in surface area. Thus, the activity of the exhaust gas is prevented from lowering, and the exhaust gas purifying ability is maintained for a long time. In addition, when the mixed powder of the catalyst component and the carrier is made into a slurry and applied to a base material, the same effect can be obtained as when the powder is mixed and used.
Therefore, the catalyst according to the present invention is extremely effective as a three-way catalyst for purifying CO, HC and NO X used for a long time at 900 ° C. or higher.

〔実施態様の説明〕(Description of Embodiment)

本発明の実施態様について詳しく説明する。 An embodiment of the present invention will be described in detail.

本発明に係る触媒に用いる触媒成分は一般式がLa1-XS
rxMO3(0<x<0.5,M=V,Cr,Mn,Co,Fe,Ni,Cuより選ば
れた1種以上)で示されるプロブスカイト型構造を有す
る複合酸化物である。xの値は0<x<0.5の範囲が望
ましく,0.5より大きいと触媒活性が低下するため好まし
くない。特に0.1〜0.3の範囲において触媒活性が高い。
該複合酸化物の形状,粒度,純度,比表面積等は触媒成
分として通常用いられる状態であればよい。
The catalyst component used in the catalyst according to the present invention has a general formula of La 1-X S
r x MO 3 is a composite oxide having a perovskite type structure represented by (0 <x <0.5, M = V, Cr, Mn, Co, Fe, Ni, 1 or more selected from Cu). The value of x is desirably in the range of 0 <x <0.5, and if it is larger than 0.5, the catalytic activity decreases, which is not preferable. Particularly, the catalytic activity is high in the range of 0.1 to 0.3.
The shape, particle size, purity, specific surface area and the like of the composite oxide may be in a state usually used as a catalyst component.

担体としては以下に説明するの各群より選ばれ
た1種または2種以上の化合物を用いる。
As the carrier, one or more compounds selected from each group described below are used.

SrZrO3およびCaTiO3ペロブスカイト型構造を有する
一般式LnAlO3(但しLnは希土類金属でLa,Ce,Pr,Nd,Pm,S
m,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Y,Scをいう)で示され
る化合物。
General formula LnAlO 3 having a perovskite structure of SrZrO 3 and CaTiO 3 (where Ln is a rare earth metal and is La, Ce, Pr, Nd, Pm, S
m, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc).

パイロクロア型構造を有する一般式Ln2B2O7(但しLn
は上記希土類金属,BはTi,Zrの1種または2種)で示さ
れる化合物。
General formula Ln 2 B 2 O 7 having pyrochlore structure (however, Ln
Is a compound represented by the above-mentioned rare earth metals, and B is one or two of Ti and Zr).

上記各群に含まれる化合物はいずれも900℃以上の温
度で長時間加熱してもそれ自体変質,分解したりせず,
また互いに反応することもなく優れた耐熱性を有する。
これらの化合物は触媒成分の担体として広く用いられて
いるAl2O3等と同様の状態(形状,粒度,純度,比表面
積等)で用いればよい。例えば比表面積は触媒成分を高
分散に保持するため,10m2/g以上が望ましい。通常市販
材料を使用すれば充分である。
The compounds contained in each of the above groups do not themselves degrade or decompose even when heated at a temperature of 900 ° C or more for a long time.
In addition, they have excellent heat resistance without reacting with each other.
These compounds may be used in the same state (shape, particle size, purity, specific surface area, etc.) as Al 2 O 3 and the like which are widely used as a carrier for the catalyst component. For example, the specific surface area is desirably 10 m 2 / g or more in order to keep the catalyst component highly dispersed. It is usually sufficient to use commercially available materials.

本発明に係る触媒は,通常,触媒を製造するために行
われている方法によって製造する。次に製造法の一つの
例を説明する。
The catalyst according to the present invention is produced by a method usually used for producing a catalyst. Next, one example of the manufacturing method will be described.

触媒成分を担体に担持して製造する方法としては市販
の担体粉末に触媒成分であるペロブスカイト型構造を有
する複合酸化物La1-XSrxMO3(M=V,Cr,Mn,Co,Fe,Ni,C
u)を構成する金属の硝酸塩を所定の化学量論比で混合
した水溶液を加え,約100℃,5〜12時間大気中で乾燥
し,その後さらに700〜800℃,5〜10時間大気中で焼成す
る。この熱処理により硝酸塩が熱分解し,担体上にペロ
ブスカイト複合酸化物が担持される。触媒成分の担持量
は1〜80重量%であり,望ましくは5〜30重量%であ
る。
As a method for producing a catalyst component supported on a carrier, a composite oxide La 1-X Sr x MO 3 having a perovskite structure as a catalyst component (M = V, Cr, Mn, Co, Fe , Ni, C
Add an aqueous solution in which the metal nitrate constituting u) is mixed at a predetermined stoichiometric ratio, dry in air at about 100 ° C for 5 to 12 hours, and then in air at 700 to 800 ° C for 5 to 10 hours. Bake. By this heat treatment, the nitrate is thermally decomposed, and the perovskite composite oxide is supported on the carrier. The supported amount of the catalyst component is 1 to 80% by weight, preferably 5 to 30% by weight.

また,触媒成分粉末と担体粉末とを混合する場合は,
まず,触媒成分粉末を製作する。ペロブスカイト型構造
を有する複合酸化物La1-XSrxMO3(M=V,Cr,Mn,Co,Fe,N
i,Cu)を構成する各金属の硝酸塩を所定の化学量論比に
混合した水溶液中に所定量の炭酸ナトリウム等のアルカ
リ塩を添加して共沈物を得る。次に該沈澱物を乾燥させ
た後,500〜600℃で大気中焼成後,700〜800℃においてさ
らに3〜5時間大気中で焼成し,触媒成分であるペロブ
スカイト型構造を有する複合酸化物粉末を得る。その
後,該触媒成分粉末に所定量の市販の担体粉末を混合
し,混合粉末として使用したり,該混合粉末を所定の形
状に成形して用いたり,あるいは該混合粉末に水を加え
てスラリー状とし基材に塗布して使用する。触媒成分粉
末の添加量は10〜80%が望ましい。
When mixing the catalyst component powder and the carrier powder,
First, a catalyst component powder is manufactured. Complex oxide La 1-X Sr x MO 3 having a perovskite structure (M = V, Cr, Mn, Co, Fe, N
A predetermined amount of an alkali salt such as sodium carbonate is added to an aqueous solution in which nitrates of the respective metals constituting i, Cu) are mixed in a predetermined stoichiometric ratio to obtain a coprecipitate. Next, the precipitate is dried, calcined in air at 500 to 600 ° C., and further calcined in air at 700 to 800 ° C. for 3 to 5 hours to obtain a composite oxide powder having a perovskite structure as a catalyst component. Get. Thereafter, a predetermined amount of a commercially available carrier powder is mixed with the catalyst component powder and used as a mixed powder, or the mixed powder is formed into a predetermined shape and used, or water is added to the mixed powder to form a slurry. It is used after being applied to a substrate. The addition amount of the catalyst component powder is desirably 10 to 80%.

次に本発明を実施例によって説明するが,本発明はこ
れに限定されるものではない。
Next, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

実施例1 担体として市販の比表面積18m2/g,純度99%以上のSrZ
rO3粉末90gを用意し,これに硝酸ランタン(La(NO3
・6H2O)14.69g,硝酸ストロンチウム(Sr(NO3
1.79gおよび硝酸コバルト(Co(NO3・6H2O)12.35g
を溶解した水溶液40mlを加え混合後,110℃,10時間大気
中で乾燥した。その後大気中で800℃,3時間焼成を行
い,上記硝酸塩を熱分解し,SrZrO3上にCoを含有するペ
ロブスカイト型構造を有する複合酸化物(La0.8Sr0.2Co
O3)を担持した触媒(試料No.1)を得た。
Example 1 Commercially available SrZ having a specific surface area of 18 m 2 / g and a purity of 99% or more as a carrier
Prepare 90g of rO 3 powder and add lanthanum nitrate (La (NO 3 )
3 · 6H 2 O) 14.69g, strontium nitrate (Sr (NO 3) 2)
1.79g and cobalt nitrate (Co (NO 3) 2 · 6H 2 O) 12.35g
40 ml of an aqueous solution in which was dissolved was added and mixed, and then dried at 110 ° C. in the atmosphere for 10 hours. Thereafter, the mixture is calcined in the air at 800 ° C for 3 hours to thermally decompose the nitrate and form a composite oxide having a perovskite structure containing Co on SrZrO 3 (La 0.8 Sr 0.2 Co
O 3 ) -supported catalyst (sample No. 1) was obtained.

実施例2 硝酸ランタン(La(NO3・6H2O)69.28gと硝酸コ
バルト(Co(NO3・6H2O)58.2gと硝酸ストロンチウ
ム(Sr(NO))8.48gを溶解した水溶液2を作
製した。次に,炭酸ナトリウム(Na2CO3)70gを700mlの
蒸留水に溶解し共沈中和剤を用意した。上記水溶液に該
共沈中和剤を滴下し共沈物を得た。ろ過および十分な水
洗を行った後,真空乾燥を行った。次に600℃大気中で
焼成し,粉砕後,さらに大気中で800℃,3時間の焼成を
行い,ペロブスカイト型構造を有する複合酸化物La0.8S
r0.2CoO3)を合成した。
Example 2 69.28 g of lanthanum nitrate (La (NO 3 ) 3 .6H 2 O), 58.2 g of cobalt nitrate (Co (NO 3 ) 2 .6H 2 O) and 8.48 g of strontium nitrate (Sr (NO) 3 ) 2 Was dissolved to prepare an aqueous solution 2. Next, 70 g of sodium carbonate (Na 2 CO 3 ) was dissolved in 700 ml of distilled water to prepare a coprecipitation neutralizer. The coprecipitating neutralizing agent was added dropwise to the aqueous solution to obtain a coprecipitate. After filtration and sufficient water washing, vacuum drying was performed. Next, it is fired in the air at 600 ° C, crushed, and then fired in the air at 800 ° C for 3 hours to obtain a composite oxide La 0.8 S having a perovskite structure.
r 0.2 CoO 3 ) was synthesized.

この粉末の比表面積は8.5m2/gであった。The specific surface area of this powder was 8.5 m 2 / g.

この粉末を,SrZrO3と重量比で1:1に混合し,水を加え
スラリー状とした。これらを乾燥し,成形体とした触媒
La0.8Sr0.2CoO3/SrZrO3(試料No.2)を得た。
This powder was mixed with SrZrO 3 at a weight ratio of 1: 1 and water was added to form a slurry. These are dried to form a catalyst
La 0.8 Sr 0.2 CoO 3 / SrZrO 3 (sample No. 2) was obtained.

実施例3 担体である市販の純度99%のCaTiO3粉末90gに硝酸ラ
ンタン(La(NO3・6H2O)11.74g,硝酸ストロンチウ
ム(Sr(NO3)3.83gと硝酸マンガン(Mn(NO3
・6H2O)12.97gを溶解した水溶液40mlを加え,混合後,1
10℃,10時間大気中で乾燥した。その後,さらに大気中
で800℃,3時間の焼成を行い,CaTiO3上にMnを含有するペ
ロブスカイト型構造を有する複合酸化物La0.6Sr0.4MnO3
を担持した触媒(試料No.3)を調整した。
Example 3 11.74 g of lanthanum nitrate (La (NO 3 ) 3 .6H 2 O), 3.83 g of strontium nitrate (Sr (NO 3 ) 2 ) and manganese nitrate (90 g of commercially available 99% pure CaTiO 3 powder as a carrier) Mn (NO 3 ) 2
・ 6H 2 O) 40 ml of an aqueous solution in which 12.97 g is dissolved is added and mixed.
It was dried in air at 10 ℃ for 10 hours. Thereafter, further 800 ° C. in air and fired for 3 hours, the composite oxide La 0.6 Sr 0.4 MnO 3 having a perovskite structure containing Mn on the CaTiO 3
Was prepared (sample No. 3).

実施例4 CaTiO3粉末90gに加える水溶液を,硝酸ランタン(La
(NO3・6H2O)13.31g,硝酸ストロンチウム(Sr(NO
3)2.79g,硝酸コバルト(Co(NO2・6H2O)2.56
g,硝酸鉄(Fe(NO3・9H2O)14.19gを溶解した水溶
液40mlとする以外は実施例3と同様の操作によってCaTi
O3粉末上にCoとFeを含有するペロブスカイト型構造を有
する複合酸化物La0.7Sr0.3Co0.2Fe0.8O3を担持した触媒
(試料No.4)を調整した。
Example 4 An aqueous solution added to 90 g of CaTiO 3 powder was treated with lanthanum nitrate (La
(NO 3) 3 · 6H 2 O) 13.31g, strontium nitrate (Sr (NO
3) 2) 2.79g, cobalt nitrate (Co (NO 2) 3 · 6H 2 O) 2.56
g and iron nitrate (Fe (NO 3 ) 3 .9H 2 O).
O 3 onto the powder was adjusted catalyst carrying composite oxide La 0.7 Sr 0.3 Co 0.2 Fe 0.8 O 3 having a perovskite structure containing Co and Fe (Sample No.4).

実施例5 硝酸ランタン(La(NO3・6H2O)77.9g,硝酸スト
ロンチウム(Sr(NO3)4.23g,硝酸鉄(Fe(NO3
・9H2O)80.8gを溶解した水溶液2を作製し,これに1
0%のアンモニア水600mlを滴下し,共沈物を得た。水洗
およびろ過の後,110℃で15時間大気中で乾燥を行った。
次に大気中で600℃の焼成を行い,粉砕後さらに800℃で
5時間大気中で焼成し,ペロブスカイト型構造を有する
複合酸化物La0.9Sr0.1FeO3を合成した。
Example 5 lanthanum nitrate (La (NO 3) 3 · 6H 2 O) 77.9g, strontium nitrate (Sr (NO 3) 2) 4.23g, iron nitrate (Fe (NO 3) 3
・ 9H 2 O) An aqueous solution 2 in which 80.8 g was dissolved was prepared.
600 ml of 0% ammonia water was added dropwise to obtain a coprecipitate. After washing and filtration, drying was performed in air at 110 ° C for 15 hours.
Next, calcination was performed in air at 600 ° C, and after pulverization, the mixture was further baked in air at 800 ° C for 5 hours to synthesize a composite oxide La 0.9 Sr 0.1 FeO 3 having a perovskite structure.

次に担体であるAlを含有するペロブスカイト型構造を
有する複合酸化物を以下に説明する方法により合成し
た。
Next, a composite oxide having a perovskite structure containing Al as a carrier was synthesized by the method described below.

市販のγ−Al2O3(純度99%)100gを硝酸ランタン(L
a(NO3・6H2O)425gを溶解した水溶液400mlに加
え,混合液,蒸発乾固した。その後大気中で600℃,3時
間の加熱を行い,硝酸ランタンを熱分解後,大気中で90
0℃,8時間焼成し,LaAlO3を合成した。
100 g of commercially available γ-Al 2 O 3 (purity 99%) is lanthanum nitrate (L
a (NO 3) 3 · 6H 2 O) 425g was added to an aqueous solution 400ml prepared by dissolving the mixture was evaporated to dryness. After that, it is heated at 600 ° C for 3 hours in the air to thermally decompose lanthanum nitrate.
After baking at 0 ℃ for 8 hours, LaAlO 3 was synthesized.

上記La0.9Sr0.1FeO3粉末ととLaAlO3粉末を重量比で2:
1となるように混合し,水を加え,スラリー化し,乾燥
し成形体とした触媒(試料No.5)を調整した。
The above La 0.9 Sr 0.1 FeO 3 powder and LaAlO 3 powder in a weight ratio of 2:
The resulting mixture was mixed to obtain water, water was added thereto, and the mixture was slurried and dried to prepare a catalyst (sample No. 5).

実施例6 担体としてパイロクロア型構造を有する複合酸化物を
用いた触媒の例を説明する。硝酸ランタン(La(NO3
・6H2O)86.6gと硝酸ジルコニル(ZrO(NO3・2H2
O)53.45gを溶解した水溶液2に10%のアンモニア水7
00mlを滴下し,共沈物をえた。水洗およびろ過の後,真
空乾燥を行った。次に900℃,5時間大気中にて焼成し,
パイロクロア型化合物であるLa2Zr2O7を合成した。該La
2Zr2O7を実施例3で調整した触媒(La0.6Sr0.4MnO3/CaT
iO3)の担体であるCaTiO3に代えて用いる以外は実施例
3と同様の操作によって触媒(試料No.6)を調整した。
Example 6 An example of a catalyst using a composite oxide having a pyrochlore structure as a carrier will be described. Lanthanum nitrate (La (NO 3 )
3 · 6H 2 O) 86.6g and zirconyl nitrate (ZrO (NO 3) 2 · 2H 2
O) 10% ammonia water 7 in aqueous solution 2 in which 53.45 g was dissolved
00 ml was added dropwise to obtain a coprecipitate. After washing with water and filtration, vacuum drying was performed. Next, bake in air at 900 ° C for 5 hours.
La 2 Zr 2 O 7 which was a pyrochlore type compound was synthesized. Said La
2 Zr 2 O 7 Catalyst prepared in Example 3 (La 0.6 Sr 0.4 MnO 3 / CaT
A catalyst (Sample No. 6) was prepared in the same manner as in Example 3 except that CaTiO 3 as a carrier of iO 3 ) was used.

実施例7 さらに担体としてパイクロア型構造を有する複合酸化
物を用いた触媒の例を説明する。
Example 7 An example of a catalyst using a composite oxide having a pyrochlore structure as a carrier will be described.

硝酸クロム(Cr(NO3・9H2O)80gと,硝酸ランタ
ン(La(NO3・6H2O)65gと硝酸ストロンチウム(Sr
(NO3210.6gを溶解した水溶液2に炭酸ナトリウム
(Na2CO3)70gを溶解した水溶液700mlを滴下し,共沈物
を得た。水洗,ろ過後,真空乾燥し,さらに800℃,5時
間大気中にて焼成して,触媒成分であるペロブスカイト
型構造を有する化合物La0.75Sr0.25CrO3を合成した。
Chromium nitrate (Cr (NO 3) 3 · 9H 2 O) 80g and lanthanum nitrate (La (NO 3) 3 · 6H 2 O) 65g and strontium nitrate (Sr
700 ml of an aqueous solution in which 70 g of sodium carbonate (Na 2 CO 3 ) was added dropwise to an aqueous solution 2 in which 10.6 g of (NO 3 ) 2 was dissolved, to obtain a coprecipitate. After washing with water, filtration, vacuum drying, and calcination in air at 800 ° C. for 5 hours, a compound La 0.75 Sr 0.25 CrO 3 having a perovskite structure as a catalyst component was synthesized.

次に市販チタニア(TiO2)粉末95.9gを用意した。次
に硝酸イットリウムを600℃に1時間大気中で加熱し,
熱分解して得られたイットリア112.9gを上記チタン粉末
に加え,十分混合し,大気中で5時間焼成した。粉砕
後,さらに900℃で10時間大気中で焼成し,担体である
パイロクロア構造を有する複合酸化物Y2Ti2O7を合成し
た。
Next, 95.9 g of commercially available titania (TiO 2 ) powder was prepared. Next, yttrium nitrate is heated to 600 ° C. for one hour in the atmosphere,
112.9 g of yttria obtained by pyrolysis was added to the titanium powder, mixed well, and calcined in the air for 5 hours. After pulverization, the mixture was calcined at 900 ° C for 10 hours in the air to synthesize a composite oxide Y 2 Ti 2 O 7 having a pyrochlore structure.

上記La0.75Sr0.25CrO3粉末とY2Ti2O7粉末を重量比で
3:2で混合し触媒(試料No.7)を得た。
The above La 0.75 Sr 0.25 CrO 3 powder and Y 2 Ti 2 O 7 powder in a weight ratio
The mixture was mixed at 3: 2 to obtain a catalyst (sample No. 7).

〔比較例1〕 実施例2で合成したLa0.8Sr0.2CrO3粉末を比較用の触
媒(試料No.8)とした。
Comparative Example 1 The La 0.8 Sr 0.2 CrO 3 powder synthesized in Example 2 was used as a comparative catalyst (sample No. 8).

〔比較例2〕 実施例1の触媒(試料No.1)における担体であるSrZr
O3の代わりに,市販の99.5%のα−Al2O3とする以外
は,実施例1と同様の操作によって比較用の触媒(試料
No.9)を調整した。
[Comparative Example 2] SrZr as a carrier in the catalyst of Example 1 (sample No. 1)
Instead of O 3, except that a commercially available 99.5% alpha-Al 2 O 3, the catalyst for comparison by the same operation as in Example 1 (Sample
No. 9) was adjusted.

〔比較例3〕 担体であるSrZrO3粉末の代わりに市販の純度99.7%の
SrTiO3粉末を用いた以外は実施例1と同様にしてSrZrO3
上にCoを含有するペロブスカイト型構造の複合酸化物
(La0.8Sr0.2CrO3)を担持した触媒(試料No.10)を調
整した。
[Comparative Example 3] Instead of SrZrO 3 powder as a carrier, commercially available 99.7% pure
SrZrO 3 was prepared in the same manner as in Example 1 except that SrTiO 3 powder was used.
A catalyst (Sample No. 10) supporting a composite oxide having a perovskite structure containing Co (La 0.8 Sr 0.2 CrO 3 ) containing Co thereon was prepared.

〔比較例4〕 実施例2で合成したペロブスカイト型構造の複合酸化
物(La0.8Sr0.2CrO3)をSrTiO3と重量比で1:1に混合
し、水を加えてスラリー状にした。これらを乾燥し成形
体とした触媒La0.8Sr0.2CrO3)/SrTiO3(試料No.11)を
得た。
Comparative Example 4 A composite oxide (La 0.8 Sr 0.2 CrO 3 ) having a perovskite structure synthesized in Example 2 was mixed with SrTiO 3 at a weight ratio of 1: 1 and water was added to form a slurry. These were dried to obtain a catalyst La 0.8 Sr 0.2 CrO 3 ) / SrTiO 3 (sample No. 11).

〔比較例5〕 実施例2の触媒(試料No.2)における担体であるSrZr
O3の代わりに,市販の99.5%のα−Al2O3とする以外
は,実施例1と同様の操作によって比較用の触媒(試料
No.12)を調整した。
[Comparative Example 5] SrZr as a carrier in the catalyst of Example 2 (sample No. 2)
Instead of O 3, except that a commercially available 99.5% alpha-Al 2 O 3, the catalyst for comparison by the same operation as in Example 1 (Sample
No. 12) was adjusted.

〔比較例6〕 実施例3の触媒(試料No.3)における担体であるCaTi
O3粉末を市販のSiO2粉末に代える以外は,実施例3と同
様の操作によって比較用の触媒(試料No.13)を調整し
た。
[Comparative Example 6] CaTi as a support in the catalyst of Example 3 (sample No. 3)
A comparative catalyst (Sample No. 13) was prepared in the same manner as in Example 3, except that the commercially available SiO 2 powder was used instead of the O 3 powder.

〔比較例7〕 実施例7の触媒(試料No.7)における担体であるY2Ti
2O7をTiO2に代える以外は実施例7と同様の操作によっ
て比較用の触媒(試料No.14)を調整した。
[Comparative Example 7] Y 2 Ti as a carrier in the catalyst of Example 7 (sample No. 7)
A comparative catalyst (sample No. 14) was prepared in the same manner as in Example 7, except that 2 O 7 was replaced with TiO 2 .

〔試験例1〕 実施例,比較例で調整した各触媒について耐熱性試験
として,1000℃,5時間,大気中で加熱した。
[Test Example 1] Each of the catalysts prepared in Examples and Comparative Examples was heated in the air at 1000 ° C for 5 hours as a heat resistance test.

〔試験例2〕 実施例,比較例で調整した各触媒について,入口ガス
温度750℃の排気ガス中で250時間の浄化活性の耐久試験
を行った。ガス組成は,CO1.0%,C3H60.1%,CO210%,H2O
1%,O2を変動条件として,残部N2である。
[Test Example 2] With respect to each of the catalysts prepared in Examples and Comparative Examples, a durability test of purification activity was performed in exhaust gas at an inlet gas temperature of 750 ° C for 250 hours. The gas composition is CO 1.0%, C 3 H 6 0.1%, CO 2 10%, H 2 O
1% and O 2 are the fluctuation conditions, and the balance is N 2 .

〔評 価〕[Evaluation]

上記の耐熱・耐久試験を行った触媒について500℃に
おける一酸化炭素(CO)とプロピレン(C3H6)の浄化率
を測定した。ガス組成は,試験例2と同様である。
The purification rates of carbon monoxide (CO) and propylene (C 3 H 6 ) at 500 ° C. were measured for the catalysts subjected to the heat and durability tests described above. The gas composition was the same as in Test Example 2.

第1表,第2表に示すように本発明の触媒は比較例に
比し,耐熱・耐久試験後の浄化率が高く保持されてい
る。
As shown in Tables 1 and 2, the catalyst of the present invention has a higher purification rate after the heat and durability test than the comparative example.

〔試験例3〕 NO浄化率を評価するためにLa0.8Sr0.2CoO3とSrZrO3
重量比で1:1に混合した触媒(試料No.2)および比較用
の触媒としてLa0.8Sr0.2CoO3(試料No.8)を準備した。
両触媒を1000℃,3時間,大気中で加熱後,試験例2で用
いた排気ガスにNOを50ppm添加したガスを用いて,ガス
濃度700℃でNOに対する浄化特性を調べた。
The La 0.8 Sr 0.2 CoO 3 and SrZrO 3 to evaluate the [Test Example 3] NO purification rate in a weight ratio of 1: La 0.8 Sr 0.2 CoO as mixed catalysts 1 catalyst for (sample No.2) and comparative 3 (Sample No. 8) was prepared.
After heating both catalysts at 1000 ° C. for 3 hours in the air, the purification characteristics of NO at a gas concentration of 700 ° C. were examined using a gas obtained by adding 50 ppm of NO to the exhaust gas used in Test Example 2.

その結果,NO浄化率が比較用の触媒では50%であった
が,本発明に係る触媒は72%と優れていた。
As a result, the NO purification rate was 50% for the comparative catalyst, but 72% for the catalyst according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/10 B01J 32/00 32/00 B01D 53/36 104Z (56)参考文献 特開 昭61−18434(JP,A) 特開 昭61−274748(JP,A) 特開 昭48−55892(JP,A) 特開 昭48−55190(JP,A) 特開 昭61−97032(JP,A) 特開 昭63−4851(JP,A) 特開 昭63−302950(JP,A)──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location B01J 23/10 B01J 32/00 32/00 B01D 53/36 104Z (56) References JP-A-61 JP-18434 (JP, A) JP-A-61-274748 (JP, A) JP-A-48-55892 (JP, A) JP-A-48-55190 (JP, A) JP-A-61-97032 (JP, A) JP-A-63-4851 (JP, A) JP-A-63-302950 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】触媒成分であるペロブスカイト型構造を有
する一般式La1-XSrxMO3(0<x<0.5,M=V,Cr,Mn,Co,F
e,Ni,Cuより選ばれた1種以上)で示される複合酸化物
と担体である次の〜群より選ばれた1種または2種
以上の化合物からなることを特徴とする排気ガス浄化用
触媒。 SiZrO3およびCaTiO3 ペロブスカイト型構造を有する一般式LnAlO3(但しLn
は希土類金属)で示される化合物。 パイロクロア型構造を有する一般式Ln2B2O7(但しLn
は希土類金属,BはTi,Zrの1種または2種以上)で示さ
れる化合物。
1. A catalyst of the general formula La 1-X Sr x MO 3 having a perovskite structure (0 <x <0.5, M = V, Cr, Mn, Co, F
e, Ni and Cu) for exhaust gas purification, characterized by comprising a composite oxide represented by the formula (1) and a support and one or more compounds selected from the following groups: catalyst. General formula LnAlO 3 having SiZrO 3 and CaTiO 3 perovskite structure (where Ln
Is a rare earth metal). General formula Ln 2 B 2 O 7 having pyrochlore structure (however, Ln
Is a rare earth metal, and B is one or more of Ti and Zr).
JP62142835A 1987-06-08 1987-06-08 Exhaust gas purification catalyst Expired - Fee Related JP2620624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62142835A JP2620624B2 (en) 1987-06-08 1987-06-08 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62142835A JP2620624B2 (en) 1987-06-08 1987-06-08 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPS63305938A JPS63305938A (en) 1988-12-13
JP2620624B2 true JP2620624B2 (en) 1997-06-18

Family

ID=15324719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62142835A Expired - Fee Related JP2620624B2 (en) 1987-06-08 1987-06-08 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP2620624B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036558A (en) * 2004-07-23 2006-02-09 Dowa Mining Co Ltd Perovskite complex oxide and catalyst
CN104822630A (en) * 2012-12-07 2015-08-05 丰田自动车株式会社 Composite oxide material and exhaust gas purification catalyst using same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP607198A0 (en) * 1998-09-21 1998-10-15 University Of Queensland, The Process and catalysts for the methanation of oxides of carbon
EP0994083B1 (en) * 1998-10-07 2003-07-23 Haldor Topsoe A/S Ceramic laminate material
US20090324468A1 (en) * 2008-06-27 2009-12-31 Golden Stephen J Zero platinum group metal catalysts
JP5533783B2 (en) * 2011-05-19 2014-06-25 トヨタ自動車株式会社 Catalyst for exhaust gas purification of internal combustion engine
JP6855326B2 (en) * 2017-05-26 2021-04-07 株式会社豊田中央研究所 Manufacturing method of oxygen storage material
CN113578303A (en) * 2021-08-03 2021-11-02 安徽元琛环保科技股份有限公司 Preparation method of SCR denitration catalyst with ultralow vanadium load by taking perovskite type composite oxide as carrier and prepared catalyst
CN113713821A (en) * 2021-08-30 2021-11-30 地达康生态科技(深圳)有限公司 Perovskite composite material and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118434A (en) * 1984-07-06 1986-01-27 Doudensei Muki Kagoubutsu Gijutsu Kenkyu Kumiai Catalytic body for purifying exhaust gas
JPH0611400B2 (en) * 1985-05-29 1994-02-16 導電性無機化合物技術研究組合 Combustion catalyst with deterioration detection function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036558A (en) * 2004-07-23 2006-02-09 Dowa Mining Co Ltd Perovskite complex oxide and catalyst
CN104822630A (en) * 2012-12-07 2015-08-05 丰田自动车株式会社 Composite oxide material and exhaust gas purification catalyst using same
CN104822630B (en) * 2012-12-07 2017-03-29 丰田自动车株式会社 Composite oxide material and the exhaust gas purifying catalyst using the material

Also Published As

Publication number Publication date
JPS63305938A (en) 1988-12-13

Similar Documents

Publication Publication Date Title
US4921829A (en) Catalyst for purifing exhaust gases
US7622418B2 (en) Method for producing exhaust gas purifying catalyst
EP1533274B1 (en) Process for producing perovskite-type composite oxide
EP0272136B1 (en) Catalyst for purifying exhaust gas and method for its production
JP3377676B2 (en) Exhaust gas purification catalyst
KR100460249B1 (en) A Process for the Oxidation of Ammonia
JP3260148B2 (en) Exhaust gas purification catalyst
JP2004041868A (en) Exhaust gas purifying catalyst
EP0525677A1 (en) Exhaust gas purifying catalyst and method of preparing the same
JP3532282B2 (en) Method for producing perovskite-type composite oxide
JPS63162043A (en) Catalyst for cleaning exhaust gas
US20050233897A1 (en) Catalyst for exhaust gas purification
US20070292329A1 (en) Method for Producing Noble Metal-Containing Heat-Resistant Oxide
WO2005058490A9 (en) Catalyst composition
JPH0368451A (en) Production of catalyst for purification of exhaust gas
JP2620624B2 (en) Exhaust gas purification catalyst
JP3483190B2 (en) Nitrogen oxide removal catalyst and method for producing the same
EP2493594B1 (en) Oxygen adsorbent based on lanthanoide oxysulfate, method for producing it, and exhaust gas purifying catalyst containing it
JPH0780311A (en) Catalyst for purification of exhaust gas
JP3406001B2 (en) Exhaust gas purification catalyst
JPH0312936B2 (en)
JP2000262898A (en) Catalyst for purifying exhaust gas
JPH0768175A (en) Catalyst for purification of exhaust gas
JP3222184B2 (en) Method for producing exhaust gas purifying catalyst
JP2001232199A (en) Exhaust gas cleaning catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees