JPS63305938A - Catalyst for purifying exhaust gas - Google Patents
Catalyst for purifying exhaust gasInfo
- Publication number
- JPS63305938A JPS63305938A JP62142835A JP14283587A JPS63305938A JP S63305938 A JPS63305938 A JP S63305938A JP 62142835 A JP62142835 A JP 62142835A JP 14283587 A JP14283587 A JP 14283587A JP S63305938 A JPS63305938 A JP S63305938A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- carrier
- powder
- composite oxide
- nitrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 77
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- 150000001875 compounds Chemical class 0.000 claims description 16
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 8
- 150000002910 rare earth metals Chemical class 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 6
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 6
- 239000000843 powder Substances 0.000 abstract description 24
- 239000002131 composite material Substances 0.000 abstract description 21
- 229910002651 NO3 Inorganic materials 0.000 abstract description 15
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 abstract description 15
- 239000000203 mixture Substances 0.000 abstract description 9
- 238000000746 purification Methods 0.000 abstract description 9
- 230000003197 catalytic effect Effects 0.000 abstract description 6
- 229930195733 hydrocarbon Natural products 0.000 abstract description 5
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 5
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 239000004215 Carbon black (E152) Substances 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 13
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 9
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 7
- 239000000969 carrier Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- 239000011812 mixed powder Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910002971 CaTiO3 Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 3
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 2
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910016874 Fe(NO3) Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910017414 LaAl Inorganic materials 0.000 description 1
- 229910002244 LaAlO3 Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- -1 Pm Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 150000002739 metals Chemical group 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、900°C以上で用いられる一酸化炭素(C
O) 、炭化水素(HC)および酸化窒素(NOX)の
浄化性能に優れた排気ガス浄化用触媒に関するものであ
る。Detailed Description of the Invention [Industrial Application Field] The present invention is directed to carbon monoxide (C
O) This invention relates to an exhaust gas purifying catalyst that has excellent performance in purifying hydrocarbons (HC) and nitrogen oxides (NOX).
希土類金属、アルカリ土類金属および遷移金属よりなる
ペロブスカイト型構造を有する複合酸化物はCo、 H
CおよびNoXの浄化特性に優れ、該物質を触媒成分と
して含む触媒は貴金属を含まない安価な触媒として自動
車等の排気ガス用触媒として実用化が期待されており、
特許出願(特開昭59−87046.6O−82138
)もなされている。しかし、これまでは900°C以上
の排気ガスに長時間さらされると触媒成分を担持する担
体に問題があり、触媒のCo、 HCおよびNO,に対
する浄化能が著しく低下する現象がみられた。A complex oxide with a perovskite structure consisting of rare earth metals, alkaline earth metals, and transition metals is Co, H
Catalysts that have excellent C and NoX purification properties and contain these substances as catalyst components are expected to be put into practical use as exhaust gas catalysts for automobiles, etc. as inexpensive catalysts that do not contain precious metals.
Patent application (JP-A-59-87046.6O-82138
) has also been done. However, until now, when exposed to exhaust gas at temperatures of 900°C or higher for a long period of time, there have been problems with the carrier that supports the catalyst components, resulting in a phenomenon in which the catalyst's ability to purify Co, HC, and NO is significantly reduced.
従来、触媒成分を担持する担体としては耐熱性を有する
717203 、Tio、 l5IO□等の酸化物が使
用されてきた。しかし、 /Vz03等と触媒成分であ
るペロブスカイト構造を有する複合酸化物とが共存する
と900°C以上においてお互いに反応しあい。Conventionally, heat-resistant oxides such as 717203, Tio, and 15IO□ have been used as carriers for supporting catalyst components. However, when /Vz03 and the like coexist with a composite oxide having a perovskite structure as a catalyst component, they react with each other at temperatures above 900°C.
該触媒成分が分解を起こし、触媒活性が低下した。The catalyst components were decomposed and the catalyst activity decreased.
また、該触媒成分は担体であるN 20’s等の表面を
移動し易くマイグレーションを起こし、互いに凝着し、
そのため触媒成分の有効表面積が減少し。In addition, the catalyst components easily move on the surface of the carrier N20's, etc., causing migration and adhering to each other.
As a result, the effective surface area of the catalyst components decreases.
触媒活性が低下した。このようにペロブスカイト型構造
を有する複合酸化物は900°C以上の温度で長時間使
用する場合には担体として従来用いられてきたAIz0
3等の酸化物を使用する限り触媒活性の耐久性に問題が
あり実用に供することは不可能であった。Catalytic activity decreased. In this way, composite oxides having a perovskite structure can be used as carriers for long periods of time at temperatures of 900°C or higher.
As long as oxides such as No. 3 were used, there was a problem with the durability of the catalyst activity, and it was impossible to put it to practical use.
そこで1本発明者等は触媒成分と反応しない担体につい
て種々検討し1本発明をなしたものである。Therefore, the inventors of the present invention conducted various studies on carriers that do not react with catalyst components, and have completed the present invention.
本発明は触媒成分であるペロブスカイト型構造を有する
一般式Lad−xSrXMo3(0< x < 0.5
、 M=V、 Cr、 Mn、 Co、 Fe、 N
i、Cuより選ばれた1種以上)で示される複合酸化物
と担体である次の3つの群、■ペロブスカイト型構造を
有する一般式ABO3+ (但しAはアルカリ土類金属
、BはTi、 Zrの1種または2種以上)で示される
化合物。The present invention uses the general formula Lad-xSrXMo3 (0< x < 0.5
, M=V, Cr, Mn, Co, Fe, N
i, one or more selected from Cu) and the following three groups which are carriers, ■ General formula ABO3+ having a perovskite structure (where A is an alkaline earth metal, B is Ti, Zr A compound represented by one or more of the following.
■ペロブスカイト型構造を有する一般式LnAZO3(
但しLnは希土類金属)で示される化合物。■General formula LnAZO3 (with perovskite structure)
However, Ln is a compound represented by a rare earth metal.
■ パイロクロア型構造を有する一般式しn2B2cJ
)(但しLnは希土類金属、BはTi、 Zrの1種ま
たは2種以上)で示される化合物。■ General formula n2B2cJ with pyrochlore type structure
) (where Ln is a rare earth metal and B is one or more of Ti and Zr).
より選ばれた1種または2種以上の化合物からなること
を特徴とする排気ガス浄化用触媒に関するものである。The present invention relates to an exhaust gas purifying catalyst characterized by being composed of one or more selected compounds.
本発明の重要な点は従来広く使用されてきた担体である
M2O3等に代えてペロブスカイト型構造を有する一般
式ABO3(但しAはアルカリ土類金属。The important point of the present invention is that the general formula ABO3 (where A is an alkaline earth metal) has a perovskite structure instead of the conventionally widely used carrier such as M2O3.
BはTi、 Zrの1種または2種)で示される化合物
等を用いた点にある。これらの担体である化合物は90
0°C以上の温度において熱的に安定である。B is that a compound represented by one or both of Ti and Zr is used. These carrier compounds are 90
It is thermally stable at temperatures above 0°C.
また、 Alt03等を用いた場合と同様触媒活性の向
上には寄与しないがA!、03等の場合と異なり。Also, as with the case of using Alt03 etc., it does not contribute to improving the catalytic activity, but A! , 03, etc.
触媒成分であるペロブスカイト型構造を有する複合酸化
物と反応して触媒活性を低下させることはない。また1
本発明で用いる触媒成分と担体とは化学的性質の類似し
た希土類金属もしくはアルカリ土類金属をともに有して
おり1両者の接触部でこれら金属がわずかに固溶しあい
、触媒成分が担体へ強固に密着するようになる。したが
って、担体上での触媒成分のマイグレーションが抑えら
れ。It does not react with the catalyst component, a composite oxide having a perovskite structure, and will not reduce the catalyst activity. Also 1
The catalyst component and the support used in the present invention both have rare earth metals or alkaline earth metals with similar chemical properties.1 These metals form a slight solid solution in the contact area between the two, and the catalyst component firmly adheres to the support. It comes to be in close contact with. Therefore, migration of catalyst components on the carrier is suppressed.
表面積減少による触媒活性低下が効果的に防止される。Decrease in catalyst activity due to decrease in surface area is effectively prevented.
この効果は触媒成分を担体に担持させる方法によって触
媒を製作する場合に特に著しい。また、予め製造した触
媒成分粉末と担体粉末を混合して使用する場合は5触媒
酸分を担体粒子間に存在せしめることができるため、触
媒成分同士のシンタリングやマイグレーションを抑制で
き、その結果表面積減少による活性低下が防止され、排
ガス浄化能が長期間維持される。また、触媒成分と担体
との混合粉末をスラリー状とし、これを基材に塗布して
用いる場合も粉末を混合して用いる場合と同様な効果が
得られる。したがって2本発明に係る触媒は900”C
以上において長時間使用されるCO,HCおよびNOX
浄化用の3元触媒として究めて有効である。This effect is particularly remarkable when the catalyst is manufactured by a method in which catalyst components are supported on a carrier. In addition, when using a mixture of pre-produced catalyst component powder and carrier powder, the catalytic acid component can be present between the carrier particles, so sintering and migration between the catalyst components can be suppressed, and as a result, the surface area A decrease in activity due to reduction is prevented, and exhaust gas purification ability is maintained for a long period of time. Further, when a mixed powder of the catalyst component and the carrier is made into a slurry and used by coating it on a base material, the same effect as when using the mixed powder can be obtained. Therefore, the catalyst according to the present invention has a temperature of 900"C
CO, HC and NOX used for a long time in the above
It is extremely effective as a three-way catalyst for purification.
本発明の実施態様について詳しく説明する。 Embodiments of the present invention will be described in detail.
本発明に係る触媒に用いる触媒成分は一般式がLa+−
xSrxMo3(0< x < 0.5. M=V、
Cr、 Mn。The catalyst component used in the catalyst according to the present invention has a general formula of La+-
xSrxMo3(0<x<0.5.M=V,
Cr, Mn.
Co、 Fe、 Ni、 Cuより選ばれた1種以上)
で示されるペロブスカイト型構造を有する複合酸化物で
ある。Xの値はQ < x < 0.5の範囲が望まし
り、0゜5より大きいと触媒活性が低下するため好まし
くない。特に0.1〜0.3の範囲において触媒活性が
高い。該複合酸化物の形状1粒度、純度、比表面積等は
触媒成分として通常用いられる状態であればよい。one or more selected from Co, Fe, Ni, Cu)
It is a composite oxide with a perovskite structure shown in It is desirable that the value of In particular, the catalytic activity is high in the range of 0.1 to 0.3. The shape, particle size, purity, specific surface area, etc. of the composite oxide may be in a state normally used as a catalyst component.
担体としては以下に説明する■■■の各群より選ばれた
1種または2種以上の化合物を用いる。As the carrier, one or more compounds selected from the following groups are used.
■ペロブスカイト型構造を有する一般式ABO3(但し
Aはアルカリ土類金属でSrやCa等の金属をいう。■ General formula ABO3 having a perovskite structure (where A is an alkaline earth metal, such as Sr or Ca).
BはTi、 Zrの1種または2種以上)で示される化
合物。B is a compound represented by one or more of Ti and Zr.
■ペロブスカイト型構造を有する一般式LnAZO3(
但しLnは希土類金属でLa、Ce、Pr、Nd、Pm
、Sm、 Eu。■General formula LnAZO3 (with perovskite structure)
However, Ln is a rare earth metal such as La, Ce, Pr, Nd, Pm
, Sm, Eu.
Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Y
b、 Lu、 Y、 Scをいう)で示される化合物。Gd, Tb, Dy, Ho, Er, Tm, Y
b, Lu, Y, Sc).
■パイロクロア型構造を有する一般式LnJz07(但
しLnは上記希土類金属、BはTi、 Zrの1種また
は2種)で示される化合物。(2) A compound having a pyrochlore type structure and represented by the general formula LnJz07 (wherein Ln is the above-mentioned rare earth metal, and B is one or both of Ti and Zr).
上記各群に含まれる化合物はいずれも900°C以上の
温度で長時間加熱してもそれ自体変質1分解したりせず
、また互いに反応することもなく優れた耐熱性を有する
。これらの化合物は触媒成分の担体として広く用いられ
ているAl 203等と同様の状態(形状2粒度、純度
、比表面積等)で用いればよい。例えば比表面積は触媒
成分を高分散に保持するため、10m/g以上が望まし
い。通常市販材を使用すれば充分である。All of the compounds included in the above groups do not deteriorate or decompose themselves even when heated at temperatures of 900° C. or higher for a long period of time, nor do they react with each other and have excellent heat resistance. These compounds may be used in the same state (shape, particle size, purity, specific surface area, etc.) as Al 203, etc., which are widely used as carriers for catalyst components. For example, the specific surface area is desirably 10 m/g or more in order to maintain highly dispersed catalyst components. It is usually sufficient to use commercially available materials.
本発明に係る触媒は1通常、触媒を製造するために行わ
れている方法によって製造する。次に製造法の一つの例
を説明する。The catalyst according to the present invention is manufactured by a method normally used for manufacturing catalysts. Next, one example of the manufacturing method will be explained.
触媒成分を担体に担持して製造する方法としては市販の
担体粉末に触媒成分であるペロブスカイト型構造を有す
る複合酸化物Lad−xSrxMo3(M =V、 C
r、 Mn、 Co、 Fe、 Ni、 Cu)を構成
する金属の硝酸塩を所定の化学量論比で混合した水溶液
を加え、約100°C,5〜12時間大気中で乾燥し。As a method for producing a catalyst component by supporting it on a carrier, a composite oxide Lad-xSrxMo3 (M = V, C
An aqueous solution of metal nitrates constituting Mn, Co, Fe, Ni, and Cu) mixed in a predetermined stoichiometric ratio was added and dried in the air at about 100°C for 5 to 12 hours.
その後さらに700〜800°C,5〜10時間大気中
で焼成する。この熱処理により硝酸塩が熱分解し、担体
上にペロブスカイト複合酸化物が担持される。触媒成分
の担持量は1〜80重量%であり、望ましくは5〜30
重量%である。Thereafter, it is further fired in the air at 700-800°C for 5-10 hours. Through this heat treatment, the nitrate is thermally decomposed, and the perovskite composite oxide is supported on the carrier. The supported amount of the catalyst component is 1 to 80% by weight, preferably 5 to 30% by weight.
Weight%.
また、触媒成分粉末と担体粉末とを混合する場合は、ま
ず、触媒成分粉末を製作する。ペロブスカイト型構造を
有する複合酸化物Lal−)(SrxMo3(M=V、
Cr、 Mn、 Co、 Fe、 Ni、 Cu)を
構成する各金属の硝酸塩を所定の化学量論比に混合した
水溶液中に所定量の炭酸ナトリウム等のアルカリ塩を添
加して共沈物を得る。次に該沈澱物を乾燥させた後、5
00〜600°Cで大気中焼成後、7〇0〜800 ’
Cにおいてさらに3〜5時間大気中で焼成し、触媒成分
であるペロブスカイト型構造を有する複合酸化物粉末を
得る。その後、該触媒成分粉末に所定量の市販の担体粉
末を混合し、混合粉末として使用したり、該混合粉末を
所定の形状に成形して用いたり、あるいは該混合粉末に
水を加えてスラリー状とし基材に塗布して使用する。Further, when mixing catalyst component powder and carrier powder, first, the catalyst component powder is manufactured. Composite oxide Lal-) (SrxMo3 (M=V,
A predetermined amount of an alkali salt such as sodium carbonate is added to an aqueous solution in which nitrates of each metal (Cr, Mn, Co, Fe, Ni, Cu) are mixed at a predetermined stoichiometric ratio to obtain a coprecipitate. . Next, after drying the precipitate, 5
After firing in air at 00~600°C, 700~800'
The mixture is further calcined in the air for 3 to 5 hours at C to obtain a composite oxide powder having a perovskite structure, which is a catalyst component. Thereafter, a predetermined amount of commercially available carrier powder is mixed with the catalyst component powder and used as a mixed powder, the mixed powder is molded into a predetermined shape and used, or water is added to the mixed powder to form a slurry. Use by applying it to a base material.
触媒成分粉末の添加量は10〜80%が望ましい。The amount of catalyst component powder added is preferably 10 to 80%.
次に本発明を実施例によって説明するが2本発明はこれ
に限定されるものではない。Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto.
実施例1
担体として市販の比表面積18rd/g、純度99%以
上の5rZrO:+粉末90gを用意し、これに硝酸ラ
ンタン(La(NO3)3JH20) 14.69 g
、硝酸ストロンチウム(sr(No3)z) 1.
79 gおよび硝酸コバルト(Co(NO3)2・6H
20) 12.35 gを溶解した水溶液40m1を加
え混合後、110°c、10時間大気中で乾燥した。そ
の後大気中で800°C93時間焼成を行い、上記硝酸
塩を熱分解し、 5rZr03上にCoを含有するペロ
ブスカイト型構造を有する複合酸化物(Lao、aSr
o、zCOO3)を担持した触媒(試料No、 1 )
を得た。Example 1 90 g of commercially available 5rZrO:+ powder with a specific surface area of 18rd/g and a purity of 99% or higher was prepared as a carrier, and 14.69 g of lanthanum nitrate (La(NO3)3JH20) was added to this.
, strontium nitrate (sr(No3)z) 1.
79 g and cobalt nitrate (Co(NO3)2.6H
20) 40 ml of an aqueous solution containing 12.35 g was added and mixed, followed by drying in the air at 110°C for 10 hours. After that, it was fired in the atmosphere at 800°C for 93 hours to thermally decompose the nitrates and form a composite oxide (Lao, aSr) having a perovskite structure containing Co on 5rZr03.
o, zCOO3) supported catalyst (sample No. 1)
I got it.
実施例2
担体である5rZr03粉末の代わりに市販の純度99
.7%のSrTiO3粉末を用いた以外は実施例1と同
様にして5rZr03上にCoを含有するペロブスカイ
ト型構造の複合酸化物(Lao、5Sro、zCoO:
+ )を担持した触媒(試料No、 2 )を調整した
。Example 2 Commercially available purity 99 was used instead of 5rZr03 powder as a carrier.
.. A composite oxide with a perovskite structure containing Co on 5rZr03 (Lao, 5Sro, zCoO:
+ ) supported catalyst (sample No. 2) was prepared.
実施例3
硝酸ランタン(La(NO3)3・6H20) 69.
28 gと硝酸コバルト(Co(NO3)2−6H20
) 58.2 gと硝酸ストロンチウム(Sr(NO3
)z) 8.48 gを溶解した水溶液2Nを作製した
。次に、炭酸ナトリウム(NazCO3) 70 gを
700 mlの蒸留水に溶解し共沈中和剤を用意した。Example 3 Lanthanum nitrate (La(NO3)3.6H20) 69.
28 g and cobalt nitrate (Co(NO3)2-6H20
) 58.2 g and strontium nitrate (Sr(NO3
)z) A 2N aqueous solution was prepared by dissolving 8.48 g. Next, a coprecipitation neutralizer was prepared by dissolving 70 g of sodium carbonate (NazCO3) in 700 ml of distilled water.
上記水溶液に該共沈中和剤を滴下し共沈物を得た。ろ過
および十分な水洗を行った後、真空乾燥を行った。次に
600°C大気中で焼成し、粉砕後、さらに大気中で8
00°C23時間の焼成を行い、ペロブスカイト型構造
を有する複合酸化物Lao、 5sro、 2COO3
を合成した。The coprecipitation neutralizing agent was added dropwise to the above aqueous solution to obtain a coprecipitate. After filtration and thorough washing with water, vacuum drying was performed. Next, it was fired at 600°C in the atmosphere, and after being crushed, it was further
After baking at 00°C for 23 hours, composite oxides Lao, 5sro, 2COO3 with perovskite structure were prepared.
was synthesized.
−10= この粉末の比表面積は8.5n(/gであった。−10= The specific surface area of this powder was 8.5 n(/g).
この粉末を、 5rZr(hまたは5rTiOiと重量
比で1:1に混合し、水を加えスラリー状とした。これ
らを乾燥し、成形体とした触媒Lao、 5sro、
2COO3/5rZrO1(試料No、 3 )ならび
にLao、 asro、 2COO3/ 5rTi(h
(試料No、 4 )を得た。This powder was mixed with 5rZr(h) or 5rTiOi in a weight ratio of 1:1, and water was added to form a slurry. These were dried and formed into catalysts Lao, 5sro,
2COO3/5rZrO1 (sample No. 3) and Lao, asro, 2COO3/5rTi (h
(Sample No. 4) was obtained.
実施例4
担体である市販の純度99%のCaTiO3粉末90g
に硝酸ランタン(La(NO3):+・6H20)
11.74 g+硝酸ストロンチウム(Sr(N03)
z) 3.83 gと硝酸マンガン(Mn(NO3)2
・6H20) 12.97 gを溶解した水溶液40m
1を加え、混合後、110°C110時間大気中で乾燥
した。その後、さらに大気中で800°C,3時間の焼
成を行い、 CaTiOs上にMnを含有するペロブス
カイト型構造を有する複合酸化物La(1,6Sro、
4Mn03を担持した触媒(試料No、 5 )を3
周整した。Example 4 90 g of commercially available 99% pure CaTiO3 powder as carrier
Lanthanum nitrate (La(NO3):+・6H20)
11.74 g + strontium nitrate (Sr(N03)
z) 3.83 g and manganese nitrate (Mn(NO3)2
・6H20) 40ml of an aqueous solution containing 12.97g
After mixing, the mixture was dried in the air at 110° C. for 110 hours. Thereafter, the compound oxide La (1,6Sro,
The catalyst supporting 4Mn03 (sample No. 5) was
I made arrangements.
実施例5
CaTi03粉末90gに加える水溶液を、硝酸ランタ
ン(La(NO3)3−6820 ) 13.31 g
、硝酸ストロンチウム(sr(No3L) 2.79
g 、硝酸コバルト(Co(NO3)z・6)1zO
) 2.56 g 、硝酸鉄(Fe (NO3)s・9
)1zo) 14.19 gを溶解した水溶液40m
とする以外は実施例4と同様の操作によってCaTiO
3粉末上にCoとFeを含有するペロブスカイト型構造
を有する複合酸化物Lao、 Jro、 3COO,z
Fe(1,803を担持した触媒(試料No、 6 )
を調整した。Example 5 An aqueous solution added to 90 g of CaTi03 powder was 13.31 g of lanthanum nitrate (La(NO3)3-6820).
, Strontium nitrate (sr (No3L) 2.79
g, cobalt nitrate (Co(NO3)z・6)1zO
) 2.56 g, iron nitrate (Fe (NO3)s・9
)1zo) 40ml of an aqueous solution containing 14.19 g
CaTiO was prepared in the same manner as in Example 4 except that
Composite oxide with perovskite structure containing Co and Fe on 3 powder Lao, Jro, 3COO,z
Catalyst supporting Fe (1,803) (sample No. 6)
adjusted.
実施例6
硝酸ランタン(La(NO:+)3・6Hzo) 77
.9 g 、硝酸ストロンチウム(Sr(NCh)z)
4.23 g 、硝酸鉄(Fe(NO3)3・98z
o) 80.8 gを溶解した水溶液2!を作製し、こ
れに10%のアンモニア水600dを滴下し、共沈物を
得た。水洗およびろ過の後。Example 6 Lanthanum nitrate (La(NO:+)3.6Hzo) 77
.. 9 g, strontium nitrate (Sr(NCh)z)
4.23 g, iron nitrate (Fe(NO3)3.98z
o) Aqueous solution in which 80.8 g of 2! was prepared, and 600 d of 10% ammonia water was dropped thereto to obtain a coprecipitate. After washing and filtering.
110°Cで15時間大気中で乾燥を行った。次に大気
中で600°Cの焼成を行い、粉砕後さらに800゛C
で5時間大気中で焼成し、ペロブスカイト型構造を有す
る複合酸化物り、ao、 qSro、 1FeO3を合
成した。Drying was carried out in air at 110°C for 15 hours. Next, it is fired at 600°C in the air, and then further heated to 800°C after pulverization.
The composite oxides having a perovskite structure, ao, qSro, and 1FeO3, were synthesized by firing in the air for 5 hours.
次に担体であるMを含有するペロブスカイト型構造を有
する複合酸化物を以下に説明する方法により合成した。Next, a composite oxide having a perovskite structure containing M as a carrier was synthesized by the method described below.
市販のT −Nz(h (純度99%)100gを硝
酸ランタン(La(No:+)3・68zO) 425
gを溶解した水溶液400成に加え、混合後、蒸発乾
固した。100g of commercially available T-Nz(h (99% purity) was added to lanthanum nitrate (La(No:+)3.68zO) 425
The mixture was added to 400 g of an aqueous solution containing 400 g of the solution, mixed, and then evaporated to dryness.
その後大気中で600°C,3時間の加熱を行い。After that, it was heated in the air at 600°C for 3 hours.
硝酸ランタンを熱分解後、大気中で900°C,8時間
焼成し、 LaAlO3を合成した。After thermally decomposing lanthanum nitrate, it was calcined in the air at 900°C for 8 hours to synthesize LaAlO3.
上記Lao、 qSro、 +FeO3粉末とLaAl
O3粉末を重量比で2:1となるように混合し、水を加
え、スラリー化し、乾燥し成形体とした触媒(試料No
、7)を調整した。The above Lao, qSro, +FeO3 powder and LaAl
A catalyst (sample No.
, 7) were adjusted.
実施例7
担体としてパイロクロア型構造を有する複合酸化物を用
いた触媒の例を説明する。硝酸ランタン(La(NO3
)3・6tlzO) 86.6 gと硝酸ジルコニル(
ZrO(NO3)2・2H20) 53.45 gを溶
解した水溶液2!に10%のアンモニア水700dを滴
下し、共沈物をえた。水洗およびろ過の後、真空乾燥を
行った。次に900°C,5時間大気中にて焼成し、パ
イロクロア型化合物であるLazZrzO7を合成した
。Example 7 An example of a catalyst using a composite oxide having a pyrochlore structure as a carrier will be described. Lanthanum nitrate (La(NO3)
)3.6tlzO) 86.6 g and zirconyl nitrate (
Aqueous solution 2 in which 53.45 g of ZrO(NO3)2.2H20) was dissolved! 700 d of 10% ammonia water was added dropwise to obtain a coprecipitate. After washing with water and filtering, vacuum drying was performed. Next, it was calcined at 900°C for 5 hours in the air to synthesize LazZrzO7, which is a pyrochlore type compound.
該LaJr20tを実施例4で調整した触媒(Lao、
bsro、 4Mno:+ / CaTi03)の担
体であるCaTiO3に代えて用いる以外は実施例4と
同様の操作によって触媒(試料No、 8 )を調整し
た。The LaJr20t was used as the catalyst prepared in Example 4 (Lao,
A catalyst (Sample No. 8) was prepared in the same manner as in Example 4, except that CaTiO3 was used instead of CaTiO3, which is the carrier of bsro, 4Mno:+/CaTi03).
実施例8
さらに担体としてパイクロア型構造を有する複合酸化物
を用いた触媒の例を説明する。Example 8 Further, an example of a catalyst using a composite oxide having a pyrochlore structure as a carrier will be described.
硝酸クロム(Cr(No:+) 3・911zo) 8
0 gと、硝酸ランタン(La(NO3)3・6H20
) 65 gと硝酸ストロンチウム(Sr(N031z
) 10.6 gを溶解した水溶液21に炭酸ナトリ
ウム(NazCO+) 70 gを溶解した水溶液70
0 mlを滴下し、共沈物を得た。水洗、ろ過後、真空
乾燥し、さらに800°C,5時間大気中にて焼成して
、触媒成分であるペロブスカイト型構造を有する化合物
Lao、 7ssro、 25Cro3を合成した。Chromium nitrate (Cr(No:+) 3.911zo) 8
0 g and lanthanum nitrate (La(NO3)3.6H20
) 65 g and strontium nitrate (Sr(N031z
) Aqueous solution 70 in which 70 g of sodium carbonate (NazCO+) was dissolved in aqueous solution 21 in which 10.6 g of sodium carbonate (NazCO+) was dissolved.
0 ml was added dropwise to obtain a coprecipitate. After washing with water and filtration, it was vacuum dried and further calcined in the air at 800°C for 5 hours to synthesize compounds having a perovskite structure, Lao, 7ssro, and 25Cro3, which were catalyst components.
次に市販チタニア(T+Oz )粉末95.9 gを用
意した。次に硝酸イツトリウムを600°Cに1時間大
気中で加熱し、熱分解して得られたイツトリア112.
9gを上記チタン粉末に加え、十分混合し。Next, 95.9 g of commercially available titania (T+Oz) powder was prepared. Next, yttrium nitrate was heated to 600°C for 1 hour in the air and pyrolyzed to obtain yttrium 112.
Add 9g to the above titanium powder and mix thoroughly.
大気中で5時間焼成した。粉砕後、さらに900°Cで
10時間大気中で焼成し、担体であるパイロクロア構造
を有する複合酸化物YzTizOiを合成した。It was baked in the air for 5 hours. After pulverization, it was further calcined in the air at 900°C for 10 hours to synthesize a composite oxide YzTizOi having a pyrochlore structure as a carrier.
上記Lao、 7SsrO,z5cr03粉末とYzT
izO7粉末を重量比で3:2で混合し触媒(試料No
、 9 )を得た。The above Lao, 7SsrO, z5cr03 powder and YzT
Mix izO7 powder at a weight ratio of 3:2 to prepare a catalyst (sample No.
, 9) was obtained.
〔比較例1〕
実施例3で合成したLao、 BSro、 zcoOJ
l末を比較用の触媒(試料No、 10 )とした。[Comparative Example 1] Lao, BSro, zcoOJ synthesized in Example 3
The l powder was used as a comparative catalyst (sample No. 10).
〔比較例2〕
実施例1の触媒(試料No、 1 )における担体であ
る5rZr03の代わりに、市販の99.5%のα−A
!203とする以外は、実施例1と同様の操作によって
比較用の触媒(試料No、 11 )を調整した。[Comparative Example 2] Commercially available 99.5% α-A was used instead of 5rZr03, which is the carrier in the catalyst of Example 1 (sample No. 1).
! A comparative catalyst (sample No. 11) was prepared in the same manner as in Example 1, except that the sample No. 203 was used.
〔比較例3〕
実施例3の触媒(試料No、 3ならびにNo、 4
)における担体である5rZrOsならびに5rTi0
3の代わりに市販の99.5%のα−A!z(hとする
以外は実施例′3と同様の操作によって比較用の触媒(
試料Nα12)を言周整した。[Comparative Example 3] Catalyst of Example 3 (Sample No. 3 and No. 4
) as carriers in 5rZrOs and 5rTi0
Commercially available 99.5% α-A instead of 3! A comparative catalyst (
Sample Nα12) was adjusted.
〔比較例4〕
実施例4の触媒(試料No、 5 )における担体であ
るCaTiO3粉末を市販のSiO□粉末に代える以外
は。[Comparative Example 4] The catalyst of Example 4 (Sample No. 5) except that CaTiO3 powder as a carrier was replaced with commercially available SiO□ powder.
実施例4と同様の操作によって比較用の触媒(試料Nα
13)を調整した。A comparative catalyst (sample Nα
13) was adjusted.
〔比較例5〕
実施例8の触媒(試料No、 9 )における担体であ
るYzTizQtをTiO□に代える以外は実施例8と
同様の操作によって比較用の触媒(試料No、 14
)を調整した。[Comparative Example 5] A comparative catalyst (sample No. 14) was prepared in the same manner as in Example 8 except that YzTizQt, the carrier in the catalyst of Example 8 (sample No. 9), was replaced with TiO□.
) was adjusted.
〔試験例1〕
実施例、比較例で調整した各触媒について耐熱性試験と
して、1000°C,5時間、大気中で加熱した。[Test Example 1] As a heat resistance test, each of the catalysts prepared in Examples and Comparative Examples was heated in the air at 1000°C for 5 hours.
〔試験例2]
実施例、比較例で調整した各触媒について、入口ガス温
度750°Cの排気ガス中で250時間の浄化活性の耐
久試験を行った。ガス組成は、COl。[Test Example 2] For each of the catalysts prepared in Examples and Comparative Examples, a purification activity durability test was conducted for 250 hours in exhaust gas at an inlet gas temperature of 750°C. The gas composition is COI.
0%、CJaO,1%、 CO□ 10%、 820
1%、0□を変動条件として、残部N2である。0%, CJaO, 1%, CO□ 10%, 820
With the fluctuation conditions of 1% and 0□, the remainder is N2.
上記の耐熱・耐久試験を行った触媒について5oo’c
における一酸化炭素(CO)とプロピレン(C3)Is
)の浄化率を測定した。ガス組成は、試験例2と同様で
ある。5oo'c for the catalysts subjected to the above heat resistance and durability tests.
Carbon monoxide (CO) and propylene (C3) in
) was measured. The gas composition is the same as in Test Example 2.
第1表、第2表に示すように本発明の触媒は比較例に比
し、耐熱・耐久試験後の浄化率が高く保持されている。As shown in Tables 1 and 2, the catalyst of the present invention maintains a higher purification rate after the heat resistance and durability tests than the comparative example.
〔試験例3〕
No浄化率を評価するためにLao、 esro、 z
cooaと5rZrO,を重量比で1:1に混合した触
媒(試料N。[Test Example 3] Lao, esro, z to evaluate the No purification rate
A catalyst prepared by mixing cooa and 5rZrO in a weight ratio of 1:1 (sample N).
3)および比較用の触媒としてLao、 eSro、
2COO:1(試料No、 10 )を準備した。両触
媒を1000’C。3) and as comparative catalysts Lao, eSro,
2COO:1 (sample No. 10) was prepared. Both catalysts were heated to 1000'C.
3時間、大気中で加熱後、試験例2で用いた排気ガスに
NOを50ppm添加したガスを用いて、ガス濃度70
0°CでNOに対する浄化特性を調べた。After heating in the atmosphere for 3 hours, using the exhaust gas used in Test Example 2 with 50 ppm NO added, the gas concentration was 70.
The purification properties for NO were investigated at 0°C.
その結果、 No浄化率が比較用の触媒では50%であ
ったが9本発明に係る触媒は72%と優れていた。As a result, the No purification rate was 50% for the comparison catalyst, but was excellent at 72% for the catalyst according to the present invention.
Claims (1)
a_1_−_xSr_xMo_3(0<x<0.5、M
=V、Cr、Mn、Co、Fe、Ni、Cuより選ばれ
た1種以上)で示される複合酸化物と担体である次の(
1)〜(3)群より選ばれた1種または2種以上の化合
物からなることを特徴とする排気ガス浄化用触媒。 (1)ペロブスカイト型構造を有する一般式ABO_3
(但しAはアルカリ土類金属、BはTi、Zrの1種ま
たは2種以上)で示される化合物。 (2)ペロブスカイト型構造を有する一般式LnAlO
_3(但しLnは希土類金属)で示される化合物。 (3)パイロクロア型構造を有する一般式Ln_2B_
2O_7(但しLnは希土類金属、BはTi、Zrの1
種または2種以上)で示される化合物。[Claims] General formula L having a perovskite structure as a catalyst component
a_1_−_xSr_xMo_3(0<x<0.5, M
= one or more selected from V, Cr, Mn, Co, Fe, Ni, Cu) and the following (
An exhaust gas purifying catalyst comprising one or more compounds selected from groups 1) to (3). (1) General formula ABO_3 with perovskite structure
(However, A is an alkaline earth metal, and B is one or more of Ti and Zr). (2) General formula LnAlO with perovskite structure
A compound represented by _3 (Ln is a rare earth metal). (3) General formula Ln_2B_ having a pyrochlore type structure
2O_7 (Ln is a rare earth metal, B is Ti, Zr 1
A compound represented by a species or two or more species.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62142835A JP2620624B2 (en) | 1987-06-08 | 1987-06-08 | Exhaust gas purification catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62142835A JP2620624B2 (en) | 1987-06-08 | 1987-06-08 | Exhaust gas purification catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63305938A true JPS63305938A (en) | 1988-12-13 |
JP2620624B2 JP2620624B2 (en) | 1997-06-18 |
Family
ID=15324719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62142835A Expired - Fee Related JP2620624B2 (en) | 1987-06-08 | 1987-06-08 | Exhaust gas purification catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2620624B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000016901A1 (en) * | 1998-09-21 | 2000-03-30 | The University Of Queensland | Process and catalysts for the methanation of oxides of carbon |
EP0994083A3 (en) * | 1998-10-07 | 2000-09-06 | Haldor Topsoe A/S | Ceramic laminate material |
JP2011525856A (en) * | 2008-06-27 | 2011-09-29 | 田中貴金属工業株式会社 | Catalysts that do not contain platinum group metals |
JP2012239982A (en) * | 2011-05-19 | 2012-12-10 | Toyota Motor Corp | Exhaust gas cleaning catalyst for internal combustion engine |
WO2014087822A1 (en) * | 2012-12-07 | 2014-06-12 | トヨタ自動車株式会社 | Composite oxide material and exhaust gas purification catalyst using same |
JP2018199594A (en) * | 2017-05-26 | 2018-12-20 | 株式会社豊田中央研究所 | Oxygen storage material and production method thereof |
CN113578303A (en) * | 2021-08-03 | 2021-11-02 | 安徽元琛环保科技股份有限公司 | Preparation method of SCR denitration catalyst with ultralow vanadium load by taking perovskite type composite oxide as carrier and prepared catalyst |
CN113713821A (en) * | 2021-08-30 | 2021-11-30 | 地达康生态科技(深圳)有限公司 | Perovskite composite material and preparation method and application thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006036558A (en) * | 2004-07-23 | 2006-02-09 | Dowa Mining Co Ltd | Perovskite complex oxide and catalyst |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6118434A (en) * | 1984-07-06 | 1986-01-27 | Doudensei Muki Kagoubutsu Gijutsu Kenkyu Kumiai | Catalytic body for purifying exhaust gas |
JPS61274748A (en) * | 1985-05-29 | 1986-12-04 | Tech Res Assoc Conduct Inorg Compo | Combustion catalyst body with deterioration detecting function |
-
1987
- 1987-06-08 JP JP62142835A patent/JP2620624B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6118434A (en) * | 1984-07-06 | 1986-01-27 | Doudensei Muki Kagoubutsu Gijutsu Kenkyu Kumiai | Catalytic body for purifying exhaust gas |
JPS61274748A (en) * | 1985-05-29 | 1986-12-04 | Tech Res Assoc Conduct Inorg Compo | Combustion catalyst body with deterioration detecting function |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000016901A1 (en) * | 1998-09-21 | 2000-03-30 | The University Of Queensland | Process and catalysts for the methanation of oxides of carbon |
EP0994083A3 (en) * | 1998-10-07 | 2000-09-06 | Haldor Topsoe A/S | Ceramic laminate material |
JP2011525856A (en) * | 2008-06-27 | 2011-09-29 | 田中貴金属工業株式会社 | Catalysts that do not contain platinum group metals |
JP2012239982A (en) * | 2011-05-19 | 2012-12-10 | Toyota Motor Corp | Exhaust gas cleaning catalyst for internal combustion engine |
WO2014087822A1 (en) * | 2012-12-07 | 2014-06-12 | トヨタ自動車株式会社 | Composite oxide material and exhaust gas purification catalyst using same |
JP2018199594A (en) * | 2017-05-26 | 2018-12-20 | 株式会社豊田中央研究所 | Oxygen storage material and production method thereof |
CN113578303A (en) * | 2021-08-03 | 2021-11-02 | 安徽元琛环保科技股份有限公司 | Preparation method of SCR denitration catalyst with ultralow vanadium load by taking perovskite type composite oxide as carrier and prepared catalyst |
CN113713821A (en) * | 2021-08-30 | 2021-11-30 | 地达康生态科技(深圳)有限公司 | Perovskite composite material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2620624B2 (en) | 1997-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0272136B1 (en) | Catalyst for purifying exhaust gas and method for its production | |
EP1533274B1 (en) | Process for producing perovskite-type composite oxide | |
RU2185322C2 (en) | Ammonia oxidation process | |
JPH01168343A (en) | Exhaust gas purifying catalyst | |
WO2005090238A1 (en) | Perovskite-type composite oxide, catalyst composition and method for producing perovskite-type composite oxide | |
US20050245391A1 (en) | Catalyst for exhaust gas purification | |
EP1535663A1 (en) | Method for producing catalyst for clarifying exhaust gas | |
JPS63162043A (en) | Catalyst for cleaning exhaust gas | |
US20050233897A1 (en) | Catalyst for exhaust gas purification | |
CN101410180B (en) | Catalyst composition | |
JP3260148B2 (en) | Exhaust gas purification catalyst | |
JP2004041866A (en) | Exhaust gas purifying catalyst | |
JPH0368451A (en) | Production of catalyst for purification of exhaust gas | |
EP2127745B1 (en) | Catalyst composition | |
JP3483190B2 (en) | Nitrogen oxide removal catalyst and method for producing the same | |
CN109689205B (en) | Use of vanadates as oxidation catalysts | |
JPH03186346A (en) | Catalyst for purifying exhaust gas and catalyst structure | |
JPS63305938A (en) | Catalyst for purifying exhaust gas | |
EP2493594B1 (en) | Oxygen adsorbent based on lanthanoide oxysulfate, method for producing it, and exhaust gas purifying catalyst containing it | |
JPH0312936B2 (en) | ||
JPH0780310A (en) | Production of perovskite or perovskite-like structure oxide carrying catalyst | |
JP2002543964A (en) | Compounds which can be used as NOx traps, combining two compositions based on manganese and another element selected from alkali, alkaline earth and rare earth, and their use in the treatment of exhaust gases | |
JP3296141B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JPS6253737A (en) | Catalyst for purifying exhaust gas and preparation thereof | |
JP2000256017A (en) | Laminar perovskite compound, catalyst material for purification of nitrogen oxide and catalyst for purification of exhaust gas using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |