JPH03186346A - Catalyst for purifying exhaust gas and catalyst structure - Google Patents

Catalyst for purifying exhaust gas and catalyst structure

Info

Publication number
JPH03186346A
JPH03186346A JP1326435A JP32643589A JPH03186346A JP H03186346 A JPH03186346 A JP H03186346A JP 1326435 A JP1326435 A JP 1326435A JP 32643589 A JP32643589 A JP 32643589A JP H03186346 A JPH03186346 A JP H03186346A
Authority
JP
Japan
Prior art keywords
catalyst
perovskite
oxide
group
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1326435A
Other languages
Japanese (ja)
Inventor
Tadayoshi Nakamura
忠義 中村
Hirohisa Tanaka
裕久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP1326435A priority Critical patent/JPH03186346A/en
Publication of JPH03186346A publication Critical patent/JPH03186346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst enhanced in both of the oxidizing capacity of HC and CO and the reducing capacity of NOx and not lowered in its activity over a long time even at high temp. by using composite oxide having a perovskite crystal structure having a specific composition. CONSTITUTION:A catalyst for purifying exhaust gas is obtained using composite oxide having a perovskite crystal structure and represented by general formula A1-xA'xB1-yB'yO3 wherein 0<=x<=0.6, 0<=y<1, A is a rare earth element other than Ce, A' is Mg or Ca, B is Cr or Cu and B' is Mn or Fe). The catalyst thus obtained is stable in both of a high temp. reductive atmosphere and a high temp. oxidative atmosphere and enhanced in both of the oxidizing capacity of HC and CO and the reducing capacity of NOx and not lowered in its activity even when held at high temp. for a long time.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は自動車エンジンをはじめとする内燃機関、燃焼
機器などから排出されるガス中の炭化水素(He)およ
び−酸化炭素(Co)を酸化し、かつチッ素酸化物(N
o)を還元することにょって、かかるガスを効率よく浄
化する触媒および触媒構造体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention oxidizes hydrocarbons (He) and -carbon oxides (Co) in gases discharged from internal combustion engines such as automobile engines, combustion equipment, etc. and nitrogen oxide (N
The present invention relates to a catalyst and a catalyst structure that efficiently purify such gas by reducing o).

[従来の技術] 自動車エンジンなどの内燃機関から排出されるガス中に
はHC,Co5No  が含まれ、これを同時に浄化す
る三元触媒として白金(Pt)、パラジウム(Pd)、
ロジウム(Rh)などを組合せたものが使用されている
[Prior Art] Gas discharged from internal combustion engines such as automobile engines contains HC and Co5No, and platinum (Pt), palladium (Pd),
A combination of rhodium (Rh) and the like is used.

一般にこれら貴金属触媒はコージェライトなどのセラミ
ックスモノリスなどの担体の上に、酸化アルミニウム(
/V 203)のウォッシュコートを付着させた上に担
持して用いられている。
Generally, these precious metal catalysts are prepared by using aluminum oxide (
/V 203) is applied and supported on it.

しかしながら、かかる貴金属触媒はコスト面においても
また省資源的観点からも問題があるほか、900℃以上
の高温で長時間使用されると貴金属がシンタリングを起
こしたり、ウォッシュコートである酸化アルミニウムの
比表面積が低下し、触媒活性が劣化するという問題もあ
る。
However, such precious metal catalysts have problems in terms of cost and resource conservation, and when used at high temperatures of 900°C or higher for long periods of time, the precious metals may sinter, and compared to aluminum oxide, which is a wash coat. There is also the problem that the surface area decreases and the catalyst activity deteriorates.

一方、ペロブスカイト構造を有する複合酸化物はガス浄
化用触媒として有望視され、とくにLa、8Sr。4 
COO3の組成を有するものはICとCOの酸化におい
て貴金属触媒と同等の活性をもつものかえられるように
なったが、これらIC%COなとの還元性ガスの濃度が
高い雰囲気下での安定性が低く、しかもNOの還元浄化
能力はぼとんどみられないといった欠点がある。
On the other hand, composite oxides having a perovskite structure are seen as promising as catalysts for gas purification, especially for La and 8Sr. 4
Catalysts with a composition of COO3 have been replaced with catalysts that have the same activity as noble metal catalysts in the oxidation of IC and CO, but their stability in an atmosphere with a high concentration of reducing gases such as IC%CO is poor. It has the disadvantage that the NO reduction and purification ability is low, and the reduction and purification ability of NO is hardly seen.

【発明が解決しようとする課題] 本発明は前記の点に鑑みて、高温の還元性雰囲気および
高温の酸化性雰囲気のいずれにおいても安定で、しかも
IC,Goの酸化能力とともにNo  の還元能力も高
く、長時間高温に保持されでも活性が低下しないガス浄
化用触媒を提供することを目的とする。
[Problems to be Solved by the Invention] In view of the above points, the present invention is stable in both high-temperature reducing atmospheres and high-temperature oxidizing atmospheres, and also has the oxidizing ability of IC and Go as well as the reducing ability of No. It is an object of the present invention to provide a gas purifying catalyst whose activity does not decrease even if it is kept at high temperature for a long time.

[課題を解決するための手段] 本発明は、 (1)ペロブスカイト型結晶構造を有する複合酸化物で
あって、一般式(I): C式中、Xおよびyはそれぞれ 0<x≦ 0.6 0≦y<1 を満足し、Aは希土類元素のうちの少なくとも1種の元
素(ただしCeを除<)、A’はMg5CaxS「、B
aおよびCeよりなる群から選ばれた少なくともisの
元素、B41Cr、Cus Nbs Has Tcs 
Ru。
[Means for Solving the Problems] The present invention provides (1) a complex oxide having a perovskite crystal structure, which has the general formula (I): C, where X and y each satisfy 0<x≦0. 6 satisfies 0≦y<1, A is at least one element among rare earth elements (excluding Ce), A' is Mg5CaxS'', B
At least is element selected from the group consisting of a and Ce, B41Cr, Cus Nbs Has Tcs
Ru.

Rh、 Ag、 Ptおよび^Uよりなる群から選ばれ
た少なくとも1種の元素、BoはHn%Fes C05
NlおよびNよりなる群から選ばれた少なくとも1種の
元素を表わす)で示される複合酸化物からなることを特
徴とするガス浄化用触媒、および(2]セラミックス担
体または耐熱性金属担体上に、塩基性金属酸化物および
ペロブスカイト型複合酸化物より選ばれた少なくとも1
種の酸化物を20容量%以上含むウォッシュコートが付
着され、そのうえに前記(1)項記載のガス浄化用触媒
が担持されてなることを特徴とするガス浄化用触媒構造
体 を提供する。
At least one element selected from the group consisting of Rh, Ag, Pt and ^U, Bo is Hn%Fes C05
(2) on a ceramic carrier or a heat-resistant metal carrier; At least one selected from basic metal oxides and perovskite type composite oxides
A gas purification catalyst structure is provided, characterized in that a wash coat containing 20% by volume or more of a species oxide is attached, and the gas purification catalyst described in item (1) above is supported thereon.

[作用および実施例] 前記一般式(1)で示されるペロブスカイト型複合酸化
物触媒は、高温の還元性雰囲気および高温の酸化性雰囲
気のいずれにおいても安定で、He%COの酸化能力と
ともにNOの還元能力も高く、しかも長時間高温に保持
されても触媒活性が低下しないという特徴を有する。
[Operations and Examples] The perovskite-type composite oxide catalyst represented by the general formula (1) is stable in both high-temperature reducing atmospheres and high-temperature oxidizing atmospheres, and has excellent oxidation ability of He%CO and NO. It has a high reducing ability and is characterized by its catalytic activity not decreasing even if it is kept at high temperature for a long time.

前記ペロブスカイト型複合酸化物において、ペロブスカ
イト型結晶構造を実現させるために、Aサイトには、S
c、 Yおよびランタノイド元素(ただしCeを除く)
よりなる希土類元素から選ばれた少なくとも1種、好ま
しくはY 、 La%P「、Nd%Ss%Gd%Dyお
よびErよりなる群から選ばれた少なくとも1種の元素
が用いられる。
In the perovskite-type composite oxide, in order to realize a perovskite-type crystal structure, S is added to the A site.
c, Y and lanthanide elements (excluding Ce)
At least one element selected from the group consisting of rare earth elements, preferably at least one element selected from the group consisting of Y, La%P, Nd%Ss%Gd%Dy, and Er is used.

前記ペロブスカイト型複合酸化物が良好な三元触媒(H
CSCOの酸化、NOの還元)として働くために、Bサ
イトには、原子の基底状態において最外殻にS電子を1
個有する元素(ただし、周期律1^属の元素は除<)、
すなわちCrs Cu5Nb%No%Tc、 Ru%I
?h%Ag、 PtおよびAuよりなる群から選ばれた
少なくとも1種の元素、好ましくはC「、Cu、 Nb
、 NoおよおよびErよりなる群から選ばれた少なく
とも1種の元素が用いられる。
The perovskite type composite oxide is a good three-way catalyst (H
oxidation of CSCO, reduction of NO), the B site has one S electron in the outermost shell in the ground state of the atom.
Individual elements (excluding elements in group 1 of the periodic law),
That is, Crs Cu5Nb%No%Tc, Ru%I
? h% At least one element selected from the group consisting of Ag, Pt and Au, preferably C, Cu, Nb
, No, and at least one element selected from the group consisting of Er.

また前記ペロブスカイト型複合酸化物の触媒活性を原子
価制御により向上させるために、A゛サイトは、14g
5 Cas Sr、BaおよびCeよりなる群から選ば
れた少なくともINの元素が用いられる。
In addition, in order to improve the catalytic activity of the perovskite-type composite oxide by controlling the valence, the A' site is
At least IN elements selected from the group consisting of 5 Cas Sr, Ba and Ce are used.

さらに、前記ペロブスカイト型複合酸化物のB°サイト
に、Mn、 Fe、、Go、 NiおよびNよりなる群
から選ばれた少なくとも1種の元素を用いることにより
、還元性雰囲気および(または)高温に長時間保持され
た際にもペロブスカイト構造を維持し、触媒活性の劣化
を抑制するというすぐれた効果が奏される。
Furthermore, by using at least one element selected from the group consisting of Mn, Fe, Go, Ni, and N at the B° site of the perovskite-type composite oxide, it can be used in a reducing atmosphere and/or at high temperatures. It has the excellent effect of maintaining the perovskite structure even when held for a long time and suppressing deterioration of catalyst activity.

A%A°、B 、 B’サイトの元素の前記効果を奏す
るためには、Xおよびyがそれぞれ 0<x≦ 0.8 0≦y<1 より好ましくは 0.055 x≦0.4 05y≦0.5 を満足する必要がある。
A% In order to achieve the above effects of the elements at the A°, B, and B' sites, X and y should each be 0<x≦0.8 0≦y<1, more preferably 0.055 x≦0.4 05y It is necessary to satisfy ≦0.5.

本発明において触媒活性、高温耐久性などの観点からと
くに好ましい複合酸化物としては、LB   Ce  
Crys、La1−xCaxCrys、−x  x Nd   Sr  CrO3、Dy l−x MgxC
r03−−x  x Nd、xSrxCrl−、Coy03sLad−、Ce
xCrl−、Ni、 03、’ r 14M g x 
C’ l□Fey Os s N d i −x S 
r x Cu 03、Lad−xCexCul−、Mn
y o3、Y     BaCu     M   0
3 、5s1−x Bax NbO5,1−x  x 
 l−y  y ”1−x MgxNbt−、Nl、 Oi 1Lal−
xSrxMol−y Mn、 03%GdGd1−8B
ax、−、Fe、 Os、Hr、−xBaxRul−、
Fe、 Os、S II □Ce x  Ru 1−y
  N 1 y  Osなどがあげられる。前記におい
てXおよびyはそれぞれ 0.05≦X≦ 0,4 0≦y≦ 0.5 を満足するものである。
In the present invention, a particularly preferable composite oxide from the viewpoint of catalytic activity, high-temperature durability, etc. is LB Ce.
Crys, La1-xCaxCrys, -x x Nd Sr CrO3, Dy l-x MgxC
r03--x x Nd, xSrxCrl-, Coy03sLad-, Ce
xCrl-, Ni, 03,' r 14M g x
C' l□Fey Os s N d i -x S
r x Cu 03, Lad-xCexCul-, Mn
yo3, Y BaCu M 0
3,5s1-x Bax NbO5,1-x x
l-y y "1-x MgxNbt-, Nl, Oi 1Lal-
xSrxMol-y Mn, 03%GdGd1-8B
ax, −, Fe, Os, Hr, −xBaxRul−,
Fe, Os, S II □Ce x Ru 1-y
Examples include N 1 y Os. In the above, X and y satisfy 0.05≦X≦0,4 and 0≦y≦0.5, respectively.

前記ペロブスカイト型複合酸化物は粉末混合法、共沈法
などの常法によって調製できる。たとえば、粉末混合法
によるときは、ペロブスカイト型複合酸化物の各成分の
酸化物粉末を所定の化学量論比で配合し、ボールミルや
アトリッションミルなどを用い、アルコール中にて湿式
粉砕混合し、乾燥後800−1000”Cで焼成を行な
う。X線回折試験にてペロブスカイト単一相と確認され
るまで、湿式粉砕、焼成をくりかえし、さらに粉砕を行
ない高比表面積のペロブスカイト型複合酸化物の粉末を
うる。
The perovskite type composite oxide can be prepared by a conventional method such as a powder mixing method or a coprecipitation method. For example, when using the powder mixing method, oxide powders of each component of the perovskite complex oxide are blended in a predetermined stoichiometric ratio, and then wet-pulverized and mixed in alcohol using a ball mill, attrition mill, etc. After drying, calcination is performed at 800-1000"C. Wet pulverization and calcination are repeated until the perovskite single phase is confirmed by X-ray diffraction test, and further pulverization is performed to form a perovskite-type composite oxide with a high specific surface area. Take the powder.

共沈法によるときは、ペロブスカイト型複合酸化物の各
成分の硝酸塩を所定の化学量論比で混合し、純水にて溶
解する。pH調整液として炭酸アンモニウムとアンモニ
ア水の混合水溶液を用い、これを前記硝酸塩水溶液に滴
下攪拌する。
When using the coprecipitation method, nitrates of each component of the perovskite complex oxide are mixed in a predetermined stoichiometric ratio and dissolved in pure water. A mixed aqueous solution of ammonium carbonate and aqueous ammonia is used as the pH adjustment liquid, and this is added dropwise to the nitrate aqueous solution and stirred.

pHを中性もしくは塩基性に調整し、生成した共沈物を
乾燥後600〜800℃で焼成し、単一相のペロブスカ
イト型複合酸化物をうる。
The pH is adjusted to neutral or basic, and the resulting coprecipitate is dried and then calcined at 600 to 800°C to obtain a single-phase perovskite-type composite oxide.

前記ペロブスカイト型複合酸化物の調製時に、粉体の形
態での比表面積を5 、0d 7g以上にすることによ
り、触媒活性がより向上される。
When preparing the perovskite-type composite oxide, the catalytic activity is further improved by setting the specific surface area in powder form to 5.0d7g or more.

前記のごとく調製されるペロブスカイト型複合酸化物触
媒は通常担体に担持させて使用する。
The perovskite-type composite oxide catalyst prepared as described above is usually used by being supported on a carrier.

自動車排ガス浄化などの用途のばあいは、−般にハニカ
ム状断面を有するセラミックス担体や耐熱金属担体に酸
化アルミニウムのウォッシュコートを付着させ、そのう
えに触媒を担持させることにより、その触媒活性が向上
することが知られている。
For applications such as automobile exhaust gas purification, the catalytic activity can be improved by attaching an aluminum oxide washcoat to a ceramic carrier or heat-resistant metal carrier, which generally has a honeycomb-shaped cross section, and supporting the catalyst thereon. It has been known.

しかし、本発明のペロブスカイト型複合酸化物触媒は高
温においてウォッシュコートの酸化アルミニウムと反応
を起こして二次生成物を形成し、触媒活性が低下するば
あいがあることが見出され、この知見に基づいてさらに
研究を重ねた結果、ウォッシュコートに酸化ランタン(
La203)、酸化マグネシウム(Mg0)、酸化イツ
トリウム(Y2O2)などの塩基性酸化物、あるいはL
a#03.5rCe03などのペロブスカイト型複合酸
化物を用いると、前記ペロブスカイト型複合酸化物触媒
の活性を低下させず、むしろ触媒活性がより助長される
ことが見出された。
However, it has been discovered that the perovskite-type composite oxide catalyst of the present invention may react with the aluminum oxide of the washcoat at high temperatures to form secondary products, resulting in a decrease in catalytic activity. As a result of further research based on this, we found that lanthanum oxide (
Basic oxides such as La203), magnesium oxide (Mg0), yttrium oxide (Y2O2), or L
It has been found that when a perovskite type composite oxide such as a#03.5rCe03 is used, the activity of the perovskite type composite oxide catalyst is not reduced, but rather the catalytic activity is further promoted.

前記塩基性酸化物およびペロブスカイト型複合酸化物は
単独で用いてもよく、あるいは2Fli以上を混合して
用いてもよい。前記特定の酸化物は他の耐火性材料、た
とえばAJ20s 、Cr2O5、COO2%ゼオライ
トなどの酸化物、あるいはSICなどの炭化物などと併
用してもよいが、前記特定の酸化物の合計量をウォッシ
ュコート中で20容量%以上とするのが好ましい。
The basic oxide and perovskite type composite oxide may be used alone or in combination of 2Fli or more. The specific oxide may be used in combination with other refractory materials, such as oxides such as AJ20s, Cr2O5, COO2% zeolite, or carbides such as SIC, but the total amount of the specific oxide may be washed coated. Among them, it is preferably 20% by volume or more.

前記担体はとくに制限されないが、セラミックス担体と
してはたとえばコージェライト(2MgO・2 Al2
Os ・58102)、ムライト(3AJ203  ・
2S102)などが使用され、耐熱金属担体としてはス
テンレススチイールなどが使用される。担体の形状は自
動車排ガス浄化用においてはハニカムなどのモノリス型
が好ましいが、その他メツシュ(網)、多孔体、ペレッ
ト状などであってもよい。
Although the carrier is not particularly limited, examples of the ceramic carrier include cordierite (2MgO.2Al2
Os・58102), Mullite (3AJ203・
2S102) or the like, and stainless steel or the like is used as the heat-resistant metal carrier. The shape of the carrier is preferably a monolith type such as a honeycomb for purifying automobile exhaust gas, but it may also be in the form of a mesh, a porous body, a pellet, or the like.

前記担体上へのウォッシュコートの付着方法、前記ウォ
ッシュコート上へのペロブスカイト型複合酸化物触媒の
担持方法などはとくに制限されず、常法により行なえば
よい。
The method of attaching the wash coat onto the carrier, the method of supporting the perovskite complex oxide catalyst onto the wash coat, etc. are not particularly limited, and any conventional method may be used.

本発明のガス浄化用触媒は、三元触媒として自動車排ガ
ス浄化用触媒としてとくに有利に使用されるが、その他
の内燃機関、火力発電、石油ストーブなどの各種燃焼機
器の排ガス浄化用にも使用される。
The gas purification catalyst of the present invention is particularly advantageously used as a three-way catalyst for purifying automobile exhaust gas, but it can also be used for purifying exhaust gas from various combustion devices such as other internal combustion engines, thermal power generators, and kerosene stoves. Ru.

つぎに実施例および比較例を上げて本発明を説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.

実施例1 [Lao 、 s Ceo 、 2 Cruxの調製]
La203130.3g (0,4モル) 、Ce02
B4.4g (0,2モル)およびCr20376.0
g (0,5モル)を各々秤量し、酸化アルミニウム製
ボールとボットからなるボットミルを用い、アルコール
中にて72時時間式粉砕混合を行なった。えられた泥漿
(スラリー)を乾燥し、アルコールを飛散せしめ、乳鉢
でほぐしたのち電気炉にて850℃で5時間保持して焼
成した。えられた粉末について前記湿式粉砕、乾燥、8
50℃での焼成をくりかえし、X線回折分析にて単一相
のペロブスカイト型複合酸化物が生成したことを確認し
た。
Example 1 [Preparation of Lao, sCeo, 2 Crux]
La203130.3g (0.4 mol), Ce02
B4.4g (0.2 mol) and Cr20376.0
g (0.5 mol) were weighed out, and pulverized and mixed for 72 hours in alcohol using a bot mill consisting of aluminum oxide balls and a bot. The obtained slurry was dried, the alcohol was splashed off, it was loosened in a mortar, and then fired in an electric furnace at 850° C. for 5 hours. The obtained powder is subjected to the wet grinding and drying, 8
After repeated firing at 50°C, it was confirmed by X-ray diffraction analysis that a single-phase perovskite-type composite oxide had been produced.

このようにしてえられたペロプスカイト型複合酸化物粉
末をボットミル中で湿式粉砕して高比表面積を有する粉
末状触媒をえた。
The thus obtained perovskite type composite oxide powder was wet-milled in a bot mill to obtain a powdered catalyst having a high specific surface area.

さらに前記粉末状触媒を、コージエライトノ1ニカムに
付着させた第1表に示すウォッシュコート上に担持させ
て触媒構造体をえた。
Further, the powdered catalyst was supported on a wash coat shown in Table 1 which was adhered to cordierite no.1 nicum to obtain a catalyst structure.

実施例2〜7および比較例A−C 第1表に示す組成の複合酸化物触媒を実施例1と同様な
方法で調製し、さらに実施例1と同様にして触媒構造体
をえた。
Examples 2 to 7 and Comparative Examples A to C Composite oxide catalysts having the compositions shown in Table 1 were prepared in the same manner as in Example 1, and catalyst structures were obtained in the same manner as in Example 1.

前記でえられた触媒について比表面積を測定した。比表
面積の測定はチッ素を吸着ガスとして用いる1点BET
法によって行なった。結果を第1表に示す。
The specific surface area of the catalyst obtained above was measured. Measurement of specific surface area is a one-point bet using nitrogen as an adsorption gas.
It was done by law. The results are shown in Table 1.

【以下余白] 第 1 表 また前記でえられた触媒についてっぎの試験を行った。[Left below] No. 1 table Further, specific tests were conducted on the catalyst obtained above.

(1)触媒活性測定 触媒活性の測定は前記触媒構造体について行なった。第
2表に示す組成の自動車排気モデルガスを空間速度(S
V)35.000hr’ テ触媒を充填した反応管に導
入して、各温度でのガス浄化率を測定した。
(1) Catalytic Activity Measurement Catalytic activity was measured for the catalyst structure. The automobile exhaust model gas with the composition shown in Table 2 was
V) 35,000 hr' was introduced into a reaction tube filled with a catalyst, and the gas purification rate at each temperature was measured.

第  2  表 HC濃度は水素炎イオン分析計(FID) 、CO濃度
は非分散赤外線吸収式分析計(NDIR)、NOx濃度
は化学発光分析計(CLD) 、02濃度は磁気圧力式
分析計によって測定し、各温度での浄化率を求めた。
Table 2 HC concentration was measured using a flame ion analyzer (FID), CO concentration was measured using a non-dispersive infrared absorption analyzer (NDIR), NOx concentration was measured using a chemiluminescence analyzer (CLD), and 02 concentration was measured using a magnetic pressure analyzer. Then, the purification rate at each temperature was determined.

(′2J  高温耐久試験 前記触媒を前記自動車排気モデルガス雰囲気中において
900℃で5時間保持したのち、再び活性測定を行ない
、高温耐久性を評価した。
('2J High-temperature durability test) After the catalyst was held at 900° C. for 5 hours in the automobile exhaust model gas atmosphere, activity was measured again to evaluate high-temperature durability.

前記試験(1)の結果を第1〜6図に、前記試験(2)
の結果を第7図に示す。第7図において、「耐久後」と
あるのは高温耐久試験後の浄化率を表わす。
The results of the test (1) are shown in Figures 1 to 6, and the results of the test (2) are shown in Figures 1 to 6.
The results are shown in Figure 7. In FIG. 7, "after durability" represents the purification rate after the high temperature durability test.

[発明の効果] 本発明のペロブスカイト型複合酸化物触媒は11c、 
Coの酸化能力およびNo  の還元能力がともに高く
、かつ長時間高温に保持されても活性が低下しないとい
う特徴を有し、自動車排ガス浄化用触媒などとして有用
である。
[Effect of the invention] The perovskite type composite oxide catalyst of the present invention has 11c,
It has high Co oxidizing ability and No 2 reducing ability, and its activity does not decrease even if it is kept at high temperature for a long time, making it useful as a catalyst for purifying automobile exhaust gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜6図は本発明の排ガス浄化用触媒および従来品で
の浄化率を示すグラフであり(第1〜2図はIIC浄化
率、第3〜4図はCo浄化率および第5〜6図はNO浄
化率を示す)、第7図は高温耐久試験前後におけるNO
浄化率を示すグラフである。 牙 1 図 温 度 (℃) 第2図 00 200 300 400 500 温  度(℃) 00 00 第3図 00 aη 温 スカ 00500 度(C) 00 00 第4図 こ・日 (1)立 度 (℃) 第5図 温 度 (℃) 第6図 実施例4 温 度 (℃)
Figures 1 to 6 are graphs showing purification rates of the exhaust gas purification catalyst of the present invention and conventional products (Figures 1 to 2 are IIC purification rates, Figures 3 to 4 are Co purification rates, and graphs 5 to 6 The figure shows the NO purification rate), and Figure 7 shows the NO purification rate before and after the high temperature durability test.
It is a graph showing a purification rate. Fang 1 Figure temperature (℃) Figure 2 00 200 300 400 500 Temperature (℃) 00 00 Figure 3 00 aη Temperature scale 00500 degrees (C) 00 00 Figure 4 Day (1) Elevation (℃) Figure 5 Temperature (℃) Figure 6 Example 4 Temperature (℃)

Claims (1)

【特許請求の範囲】 1 ペロブスカイト型結晶構造を有する複合酸化物であ
って、一般式( I ): A_1_−_xA′_xB_1_−_yB′_yO_(
I )(式中、xおよびyはそれぞれ 0<x≦0.6 0≦y<1 を満足し、Aは希土類元素のうちの少なくとも1種の元
素(ただしCeを除く)、A′はMg、Ca、Sr、B
aおよびCeよりなる群から選ばれた少なくとも1種の
元素、BはCr、Cu、Nb、Mo、Tc、Ru、Rh
、Ag、PtおよびAuよりなる群から選ばれた少なく
とも1種の元素、B′はMn、Fe、Co、Niおよび
Mよりなる群から選ばれた少なくとも1種の元素を表わ
す)で示される複合酸化物からなることを特徴とするガ
ス浄化用触媒。 2 一般式( I )において、xおよびyがそれぞれ0
.05≦x≦0.4 0≦y≦0.5 を満足し、AがY、La、Pr、Nd、Sm、Gd、D
yおよびErよりなる群から選ばれた少なくとも1種の
元素であり、BがCr、Cu、Hb、MoおよびRuよ
りなる群から選ばれた少なくとも1種の元素である請求
項1記載のガス浄化用触媒。 3 セラミックス担体または耐熱性金属担体上に、塩基
性金属酸化物およびペロブスカイト型複合酸化物より選
ばれた少なくとも1種の酸化物を20容量%以上含むウ
ォッシュコートが付着され、そのうえに請求項1記載の
ガス浄化用触媒が担持されてなることを特徴とするガス
浄化用触媒構造体。
[Claims] 1 A composite oxide having a perovskite crystal structure, which has the general formula (I): A_1_-_xA'_xB_1_-_yB'_yO_(
I) (where x and y each satisfy 0<x≦0.6 0≦y<1, A is at least one element among rare earth elements (excluding Ce), A' is Mg , Ca, Sr, B
At least one element selected from the group consisting of a and Ce, B is Cr, Cu, Nb, Mo, Tc, Ru, Rh
, at least one element selected from the group consisting of Ag, Pt and Au; B' represents at least one element selected from the group consisting of Mn, Fe, Co, Ni and M); A gas purification catalyst characterized by being made of an oxide. 2 In general formula (I), x and y are each 0
.. 05≦x≦0.4 0≦y≦0.5, A is Y, La, Pr, Nd, Sm, Gd, D
The gas purification according to claim 1, wherein B is at least one element selected from the group consisting of y and Er, and B is at least one element selected from the group consisting of Cr, Cu, Hb, Mo, and Ru. Catalyst for use. 3. A wash coat containing at least 20% by volume of at least one oxide selected from basic metal oxides and perovskite-type composite oxides is adhered to a ceramic carrier or a heat-resistant metal carrier, and the wash coat according to claim 1 is further applied to the ceramic carrier or the heat-resistant metal carrier. A gas purification catalyst structure characterized by supporting a gas purification catalyst.
JP1326435A 1989-12-15 1989-12-15 Catalyst for purifying exhaust gas and catalyst structure Pending JPH03186346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1326435A JPH03186346A (en) 1989-12-15 1989-12-15 Catalyst for purifying exhaust gas and catalyst structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1326435A JPH03186346A (en) 1989-12-15 1989-12-15 Catalyst for purifying exhaust gas and catalyst structure

Publications (1)

Publication Number Publication Date
JPH03186346A true JPH03186346A (en) 1991-08-14

Family

ID=18187775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1326435A Pending JPH03186346A (en) 1989-12-15 1989-12-15 Catalyst for purifying exhaust gas and catalyst structure

Country Status (1)

Country Link
JP (1) JPH03186346A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380692A (en) * 1991-09-12 1995-01-10 Sakai Chemical Industry Co., Ltd. Catalyst for catalytic reduction of nitrogen oxide
JPH07308578A (en) * 1994-05-20 1995-11-28 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
US5565181A (en) * 1993-02-19 1996-10-15 Chevron U.S.A. Inc. FCC NOx reduction using a perovskit-type additive
WO2004004897A1 (en) * 2002-07-09 2004-01-15 Daihatsu Motor Co., Ltd. Catalyst for exhaust gas purification
WO2004004896A1 (en) * 2002-07-09 2004-01-15 Daihatsu Motor Co., Ltd. Catalyst for exhaust gas purification
JP2005306618A (en) * 2004-04-16 2005-11-04 Dowa Mining Co Ltd Perovskite multiple oxide, method of manufacturing the same, and catalyst using the same
JP2006062942A (en) * 2004-07-30 2006-03-09 Dowa Mining Co Ltd Perovskite-type composite oxide having pore distribution with high catalytic activity and catalyst
JP2007051036A (en) * 2005-08-18 2007-03-01 Noritake Co Ltd Oxygen ion conductor and oxygen separating film
US7205257B2 (en) 2002-07-09 2007-04-17 Daihatsu Motor Co., Ltd. Catalyst for clarifying exhaust gas
WO2007066444A1 (en) 2005-12-09 2007-06-14 Nippon Steel Materials Co., Ltd. Catalyst for exhaust gas purification and exhaust gas purification catalyst member
JP2007144412A (en) * 2005-10-26 2007-06-14 Mitsui Mining & Smelting Co Ltd Catalyst for cleaning exhaust gas
US7381394B2 (en) 2002-07-09 2008-06-03 Daihatsu Motor Co., Ltd. Method for producing perovskite-type composite oxide
JP2009125736A (en) * 2007-11-28 2009-06-11 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst and exhaust gas cleaner
CN101983766A (en) * 2010-11-29 2011-03-09 华东理工大学 Integral catalyst for NOx selective catalytic reduction and preparation method thereof
US8668890B2 (en) 2012-04-26 2014-03-11 Basf Corporation Base metal catalyst composition and methods of treating exhaust from a motorcycle
US8765085B2 (en) 2012-04-26 2014-07-01 Basf Corporation Base metal catalyst and method of using same
CN114210338A (en) * 2021-12-20 2022-03-22 河北科技大学 Perovskite-like catalyst for catalyzing ozone oxidation and preparation method and application thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380692A (en) * 1991-09-12 1995-01-10 Sakai Chemical Industry Co., Ltd. Catalyst for catalytic reduction of nitrogen oxide
US5565181A (en) * 1993-02-19 1996-10-15 Chevron U.S.A. Inc. FCC NOx reduction using a perovskit-type additive
JPH07308578A (en) * 1994-05-20 1995-11-28 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
US7622418B2 (en) 2002-07-09 2009-11-24 Daihatsu Motor Company, Ltd. Method for producing exhaust gas purifying catalyst
WO2004004897A1 (en) * 2002-07-09 2004-01-15 Daihatsu Motor Co., Ltd. Catalyst for exhaust gas purification
WO2004004896A1 (en) * 2002-07-09 2004-01-15 Daihatsu Motor Co., Ltd. Catalyst for exhaust gas purification
US7205257B2 (en) 2002-07-09 2007-04-17 Daihatsu Motor Co., Ltd. Catalyst for clarifying exhaust gas
US7381394B2 (en) 2002-07-09 2008-06-03 Daihatsu Motor Co., Ltd. Method for producing perovskite-type composite oxide
JP2005306618A (en) * 2004-04-16 2005-11-04 Dowa Mining Co Ltd Perovskite multiple oxide, method of manufacturing the same, and catalyst using the same
JP4604211B2 (en) * 2004-04-16 2011-01-05 Dowaエレクトロニクス株式会社 Perovskite complex oxide, method for producing the same, and catalyst using the same
JP2006062942A (en) * 2004-07-30 2006-03-09 Dowa Mining Co Ltd Perovskite-type composite oxide having pore distribution with high catalytic activity and catalyst
JP2007051036A (en) * 2005-08-18 2007-03-01 Noritake Co Ltd Oxygen ion conductor and oxygen separating film
JP2007144412A (en) * 2005-10-26 2007-06-14 Mitsui Mining & Smelting Co Ltd Catalyst for cleaning exhaust gas
WO2007066444A1 (en) 2005-12-09 2007-06-14 Nippon Steel Materials Co., Ltd. Catalyst for exhaust gas purification and exhaust gas purification catalyst member
JP2009125736A (en) * 2007-11-28 2009-06-11 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst and exhaust gas cleaner
CN101983766A (en) * 2010-11-29 2011-03-09 华东理工大学 Integral catalyst for NOx selective catalytic reduction and preparation method thereof
US8668890B2 (en) 2012-04-26 2014-03-11 Basf Corporation Base metal catalyst composition and methods of treating exhaust from a motorcycle
US8765085B2 (en) 2012-04-26 2014-07-01 Basf Corporation Base metal catalyst and method of using same
CN114210338A (en) * 2021-12-20 2022-03-22 河北科技大学 Perovskite-like catalyst for catalyzing ozone oxidation and preparation method and application thereof
CN114210338B (en) * 2021-12-20 2023-11-10 河北科技大学 Perovskite-like catalyst for catalyzing ozone oxidation and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US5182249A (en) Non-precious metal three way catalyst
JPH03186346A (en) Catalyst for purifying exhaust gas and catalyst structure
JPH08281107A (en) Catalyst for purifying exhaust gas
JPH0368451A (en) Production of catalyst for purification of exhaust gas
JPH0531367A (en) Catalyst for exhaust gas purification
JP3406001B2 (en) Exhaust gas purification catalyst
JPH09248462A (en) Exhaust gas-purifying catalyst
JPH02265648A (en) Exhaust gas purification catalyst
JPS63305938A (en) Catalyst for purifying exhaust gas
JP3222184B2 (en) Method for producing exhaust gas purifying catalyst
JPH07308578A (en) Exhaust gas purifying catalyst
JP2000256017A (en) Laminar perovskite compound, catalyst material for purification of nitrogen oxide and catalyst for purification of exhaust gas using the same
JPH0538443A (en) Catalyst composition
JPH07194973A (en) Exhaust gas purifying catalyst
JPH06210174A (en) Catalyst for purification of exhaust gas and its production
JPS63287555A (en) Catalyst for exhaust gas purification
JPH0538435A (en) Catalyst composition
JP3477974B2 (en) Exhaust gas purification catalyst
JPH0538442A (en) Catalyst composition
JPH04371229A (en) Catalyst composition
JPH04367728A (en) Catalyst composition
JPH04367731A (en) Catalyst composition
JPS60206448A (en) Catalyst carrier for purifying exhaust gas
JPH04367733A (en) Catalyst composition
JPH04367727A (en) Catalyst composition