JPH0531367A - Catalyst for exhaust gas purification - Google Patents

Catalyst for exhaust gas purification

Info

Publication number
JPH0531367A
JPH0531367A JP3212943A JP21294391A JPH0531367A JP H0531367 A JPH0531367 A JP H0531367A JP 3212943 A JP3212943 A JP 3212943A JP 21294391 A JP21294391 A JP 21294391A JP H0531367 A JPH0531367 A JP H0531367A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
heat
powder
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3212943A
Other languages
Japanese (ja)
Other versions
JP3260148B2 (en
Inventor
Hirohisa Tanaka
裕久 田中
Hidefumi Tsuboi
英文 坪井
Shinichi Matsumoto
伸一 松本
Mareo Kimura
希夫 木村
Hideo Sofugawa
英夫 曽布川
Masakuni Ozawa
正邦 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Daihatsu Motor Co Ltd
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Daihatsu Motor Co Ltd
Priority to JP21294391A priority Critical patent/JP3260148B2/en
Priority to DE69206707T priority patent/DE69206707T2/en
Priority to EP92112717A priority patent/EP0525677B1/en
Publication of JPH0531367A publication Critical patent/JPH0531367A/en
Application granted granted Critical
Publication of JP3260148B2 publication Critical patent/JP3260148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To obtain a ternary catalyst having a catalytic activity even at 900 deg.C or higher and high purifying function against NOx. CONSTITUTION:A composite oxide with a perovskite-type structure having a general formula Ln1-xAxMO3 (Ln denotes rare earth metals except for Ce, A denotes Ce or alkaline earth metals, M a transition metal, either one denotes one or two kinds of them, respectively, 0<x<1), a heat-resistant oxide which contains Ce and Zr and/or rare earth metals except for Ce and at least a part of which becomes a composite oxide or a solid solution, and a noble metal are made to coexist. Due to the coexistence of the heat-resistant oxide, the heat-resistance is heightened and due to the coexistence of the noble metal, purifying function against NOx is heightened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は900℃以上でも用いら
れる一酸化炭素(CO)、炭化水素(HC)及び酸化窒
素(NOx)の浄化能力に優れた排気ガス浄化用三元触
媒に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying three-way catalyst excellent in purifying carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOx) that are used even at 900 ° C. or higher. is there.

【0002】[0002]

【従来の技術】希土類金属、アルカリ土類金属及び遷移
金属から構成されるペロブスカイト型構造を有する複合
酸化物は、CO、HC及びNOxを浄化する安価な排気
ガス浄化用三元触媒として実用化が期待されている(特
開昭59−87046号公報、特開昭60−82138
号公報参照)。しかし、これらの触媒はいずれも800
℃以下で使用するのを目的としており、自動車排ガス用
触媒のように900℃以上の高温域において高い触媒活
性を必要とし、かつ高温での耐久性も満足する必要があ
る場合には、十分な触媒とはいえない。すなわち、ペロ
ブスカイト型構造を有する複合酸化物は、900℃以上
の高温で使用すると焼結して有効表面積が減少し、触媒
活性が著しく低下する。また、このペロブスカイト型複
合酸化物はCO、HCの浄化能力は優れているが、NO
xの浄化能力がやや劣っており、自動車排ガス用の三元
触媒として実用に供するには十分でない。
2. Description of the Related Art Complex oxides having a perovskite structure composed of rare earth metals, alkaline earth metals and transition metals are practically used as inexpensive three-way catalysts for purifying CO, HC and NOx. Expected (JP-A-59-87046 and JP-A-60-82138)
(See the official gazette). However, each of these catalysts is 800
It is intended to be used below ℃, and when it is necessary to have high catalytic activity in a high temperature range of 900 ℃ or higher, such as a catalyst for automobile exhaust gas, and it is also necessary to satisfy the durability at high temperatures, it is sufficient. Not a catalyst. That is, the composite oxide having the perovskite structure is sintered at a high temperature of 900 ° C. or higher to reduce the effective surface area, and the catalytic activity is significantly lowered. Further, although this perovskite type composite oxide has an excellent purification ability for CO and HC, NO
The purification capacity of x is slightly inferior and is not sufficient for practical use as a three-way catalyst for automobile exhaust gas.

【0003】そこで、ペロブスカイト型構造を有する複
合酸化物を触媒成分として900℃以上の高温度で長時
間用いた場合の問題点である焼結による活性低下を防
ぎ、触媒成分のNOx浄化能力の改善を図るために、ペ
ロブスカイト型構造の複合酸化物と、耐熱性を有する複
合酸化物と、貴金属とを共存させた排気ガス浄化用触媒
が提案されている(特開平1−168343号公報参
照)。そこで使用されている耐熱性複合酸化物は、触媒
成分のペロブスカイト型複合酸化物と化学的性質の類似
した構造を有し、希土類金属とアルカリ土類金属を有し
ている。
Therefore, activity deterioration due to sintering, which is a problem when a complex oxide having a perovskite structure is used as a catalyst component at a high temperature of 900 ° C. or higher for a long time, is improved, and the NOx purification ability of the catalyst component is improved. In order to achieve this, an exhaust gas purifying catalyst has been proposed in which a complex oxide having a perovskite structure, a complex oxide having heat resistance, and a noble metal coexist (see Japanese Patent Laid-Open No. 1-168343). The heat-resistant composite oxide used therein has a structure similar in chemical property to the perovskite-type composite oxide of the catalyst component, and contains a rare earth metal and an alkaline earth metal.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記引用の特
開平1−168343号公報の発明と同様に、ペロブス
カイト型構造の複合酸化物触媒の900℃以上での触媒
活性の低下を防ぐとともに、NOx浄化能力を改善する
ことにあり、その引用発明とは耐熱性酸化物の構造の異
なるものを提供することを目的とするものである。
The present invention, like the invention of the above-cited Japanese Patent Application Laid-Open No. 1-168343, prevents a decrease in the catalytic activity of the complex oxide catalyst having a perovskite structure at 900 ° C. or higher, and It is intended to improve the NOx purification capacity, and an object thereof is to provide a refractory oxide having a structure different from that of the cited invention.

【0005】[0005]

【課題を解決するための手段】本発明は、一般式Ln1-
xAxMO3(LnはCeを除く希土類金属、AはCe
又はアルカリ土類金属、Mは遷移金属、0<x<1)で
示されるペロブスカイト型構造の複合酸化物と、Ce及
びZr、又はさらにCe以外の希土類金属を含む、少な
くとも一部が複合酸化物又は固溶体となっている耐熱性
酸化物と、貴金属とを共存させた排気ガス浄化用触媒で
ある。ここで、Ln、A及びMは1種ずつの場合に限ら
ず、2種以上を含んでいる場合も含む。
The present invention is based on the general formula Ln 1-
xAxMO 3 (Ln is a rare earth metal except Ce, A is Ce
Or an alkaline earth metal, M is a transition metal, a composite oxide having a perovskite structure represented by 0 <x <1), and Ce and Zr, or a rare earth metal other than Ce, at least part of which is a composite oxide Alternatively, it is an exhaust gas purification catalyst in which a heat-resistant oxide that is a solid solution and a noble metal coexist. Here, Ln, A, and M are not limited to one type each, and include two or more types.

【0006】本発明の第1の特徴は、ペロブスカイト型
構造の複合酸化物からなる触媒成分に耐熱性酸化物を共
存させた点にある。耐熱性酸化物はセリウム酸化物とジ
ルコニウム酸化物、又はさらにセリウム以外の希土類金
属の酸化物を含み、それらの酸化物の少なくとも一部は
複合酸化物又は固溶体として存在し、900℃以上の高
温においても焼結を抑制することができる。この耐熱性
酸化物による効果は、触媒成分を耐熱性酸化物上に担持
して用いる場合、及び触媒成分粉末と耐熱性酸化物粉末
とを混合して使用する場合のいずれの場合にも有効に発
揮され、900℃以上の高温で長時間使用した後でも触
媒成分は担体上に高分散状態に維持されているか、又は
耐熱性酸化物粉末間に高分散の状態で存在している。こ
の耐熱性酸化物が900℃以上の高温においても熱的に
安定で、触媒成分と反応しにくいので、触媒成分のペロ
ブスカイト構造の破壊による触媒活性の低下が防がれ
る。
The first feature of the present invention is that a heat-resistant oxide is allowed to coexist with a catalyst component composed of a complex oxide having a perovskite structure. The heat-resistant oxide includes cerium oxide and zirconium oxide, or an oxide of a rare earth metal other than cerium, and at least a part of these oxides exists as a complex oxide or a solid solution, and at a high temperature of 900 ° C. or higher. Can also suppress sintering. The effect of this heat-resistant oxide is effective both in the case of using the catalyst component supported on the heat-resistant oxide and in the case of using the catalyst component powder and the heat-resistant oxide powder as a mixture. The catalyst component is exhibited in a highly dispersed state on the carrier even after being used for a long time at a high temperature of 900 ° C. or higher, or is present in a highly dispersed state between the heat resistant oxide powders. Since this heat-resistant oxide is thermally stable even at a high temperature of 900 ° C. or higher and does not easily react with the catalyst component, it is possible to prevent deterioration of the catalyst activity due to destruction of the perovskite structure of the catalyst component.

【0007】本発明の第2の特徴は、触媒成分としての
ペロブスカイト型複合酸化物以外にパラジウムなどの貴
金属を添加した点にある。ペロブスカイト型構造の複合
酸化物それ自体は三元触媒として使用できるが、NOx
に対する浄化能力がHC、COに比べてやや劣ってい
る。そこで、NOxに対する活性を高めるために少量の
貴金属を添加した。貴金属はプロブスカイト型構造の複
合酸化物及び耐熱性酸化物上に担持されている。担持さ
れた貴金属は反応するペロブスカイト型複合酸化物上で
は固溶及び析出現象が起こり、一方、反応しない高比表
面積の耐熱性酸化物上では析出状態で高分散に担持され
ることにより、排気ガス変動雰囲気下における900℃
以上の高温でも貴金属の焼結が起きにくく、浄化活性が
高度に維持される。このように、本発明にかかる触媒
は、900℃以上の高温でも耐久性のある安価な排気ガ
ス浄化用三元触媒である。
The second feature of the present invention is that a noble metal such as palladium is added in addition to the perovskite type complex oxide as a catalyst component. The complex oxide of perovskite type structure itself can be used as a three-way catalyst, but NOx
The purifying ability against is slightly inferior to HC and CO. Therefore, a small amount of noble metal was added to increase the activity against NOx. The noble metal is supported on the complex oxide having a perovskite structure and the heat-resistant oxide. The supported noble metal undergoes solid solution and precipitation on the reactive perovskite type complex oxide, while on the other hand, it is supported in a highly dispersed state on the heat-resistant oxide having a high specific surface area that does not react, so that the exhaust gas is exhausted. 900 ° C under fluctuating atmosphere
Sintering of noble metals does not easily occur even at the above high temperatures, and purification activity is highly maintained. Thus, the catalyst according to the present invention is an inexpensive exhaust gas purification three-way catalyst that is durable even at high temperatures of 900 ° C. or higher.

【0008】本発明のかかる触媒に用いる触媒成分の1
つであるペロブスカイト型構造の複合酸化物は、一般式
Ln1-xAxMO3である。この複合酸化物の量は触媒
全量の1〜80重量%が望ましい。1重量%より少ない
場合は触媒活性が低く、逆に80重量%より多くなると
耐熱性酸化物の効果が現われにくくなり好ましくない。
この触媒成分の複合酸化物の形状、粒度、純度、比表面
積などは触媒成分として通常用いられる状態であればよ
い。
One of the catalyst components used in the catalyst of the present invention
A complex oxide having a perovskite structure is a general formula Ln 1 -xAxMO 3 . The amount of this composite oxide is preferably 1 to 80% by weight of the total amount of the catalyst. If it is less than 1% by weight, the catalytic activity is low, and conversely if it is more than 80% by weight, the effect of the heat-resistant oxide is difficult to appear, which is not preferable.
The shape, particle size, purity, specific surface area, etc. of the composite oxide of the catalyst component may be in a state usually used as the catalyst component.

【0009】耐熱性酸化物は触媒成分の担体として広く
用いられているAl23などと同様の状態(形状、粒
度、純度、比表面積)で用いればよい。例えば、比表面
積は触媒成分を高分散状態に保持するため、20m2
g以上が望ましい。耐熱性酸化物中のCe、Zr、希土
類金属の比率は特に制限されないが、Ceの100原子
に対してZrは5〜100原子、好ましくは5〜50原
子、Ce以外の希土類金属は0〜100原子、好ましく
は5〜30原子の原子比となるように構成する。
The heat-resistant oxide may be used in the same state (shape, particle size, purity, specific surface area) as Al 2 O 3 which is widely used as a catalyst component carrier. For example, the specific surface area of the catalyst component is 20 m 2 /
g or more is desirable. The ratio of Ce, Zr, and rare earth metal in the heat-resistant oxide is not particularly limited, but Zr is 5 to 100 atoms, preferably 5 to 50 atoms, and rare earth metal other than Ce is 0 to 100 with respect to 100 atoms of Ce. The atomic ratio is preferably 5 to 30 atoms.

【0010】他の触媒成分である貴金属は白金族のR
u、Rh、Pd、Os、Ir及びPtのうちから選ばれ
た1種又は2種以上を用いる。これらの貴金属のうちP
dを用いた場合にNOx浄化特性が最も向上する。貴金
属の量は触媒全量に対し0.01〜5重量%、望ましく
は0.1〜2重量%がよい。貴金属が0.01重量%よ
り少ない場合はNOx浄化能力の向上が不十分であり、
逆に5重量%を越えてもNOx浄化能力が飽和する。こ
れら貴金属は従来の三元触媒において通常用いられてい
る状態(形状、粒度、純度、比表面積)で用いる。
The precious metal which is another catalyst component is R of the platinum group.
One or more selected from u, Rh, Pd, Os, Ir and Pt are used. P out of these precious metals
The NOx purification characteristics are most improved when d is used. The amount of the noble metal is 0.01 to 5% by weight, preferably 0.1 to 2% by weight, based on the total amount of the catalyst. If the amount of precious metal is less than 0.01% by weight, the NOx purification capacity is insufficiently improved,
Conversely, the NOx purification capacity is saturated even if it exceeds 5% by weight. These noble metals are used in the state (shape, particle size, purity, specific surface area) usually used in conventional three-way catalysts.

【0011】本発明にかかる触媒は通常、触媒を製造す
るために行なわれている方法によって製造することがで
きる。次に、製造方法の一例を示す。触媒成分を担体に
担持した状態に製造する場合には、まず担体となる耐熱
性酸化物の複合酸化物又は固溶体を、セリウム塩とジル
コニウム塩又はさらに希土類金属塩を含む水溶液を60
0℃以上の温度で熱分解し、焼成することによって得る
か、又は市販のセリア粉末(100m2/g以上)にジ
ルコニウム塩又はさらに希土類金属塩を所定の化学量論
比で混合した水溶液を加え、約100℃で5〜12時間
大気中で乾燥し、その後600℃で3時間大気中で焼成
して得る。その耐熱性酸化物からなる担体粉末に、触媒
成分であるペロブスカイト型構造を有する複合酸化物を
構成する金属の硝酸塩を所定の化学量論比で混合した水
溶液を加え、約100℃で5〜12時間大気中で乾燥
し、その後さらに700〜800℃で3〜10時間大気
中で焼成する。この熱処理により硝酸塩が熱分解し、担
体粉末上にペロブスカイト型構造の複合酸化物が担持さ
れる。
The catalyst according to the present invention can be produced by a method generally used for producing a catalyst. Next, an example of the manufacturing method will be described. When the catalyst component is produced in a state of being supported on a carrier, first, a composite oxide of a heat-resistant oxide or a solid solution serving as a carrier is mixed with an aqueous solution containing a cerium salt and a zirconium salt or a rare earth metal salt.
It is obtained by pyrolyzing at a temperature of 0 ° C. or higher and firing, or by adding an aqueous solution obtained by mixing a commercially available ceria powder (100 m 2 / g or more) with a zirconium salt or a rare earth metal salt at a predetermined stoichiometric ratio. It is obtained by drying in air at about 100 ° C. for 5 to 12 hours, and then calcining in air at 600 ° C. for 3 hours. An aqueous solution prepared by mixing a nitrate of a metal constituting a complex oxide having a perovskite structure, which is a catalyst component, in a predetermined stoichiometric ratio was added to a carrier powder made of the heat-resistant oxide, and the mixture was heated at about 100 ° C. for 5 to 12 After being dried in the air for 3 hours, it is further baked in the air at 700 to 800 ° C. for 3 to 10 hours. By this heat treatment, the nitrate is thermally decomposed, and the complex oxide having the perovskite structure is supported on the carrier powder.

【0012】次に、上記の如く耐熱性複合酸化物担体に
担持したペロブスカイト型構造の複合酸化物上に、P
t、Pd、Rhなどの貴金属を担持する。例えば硝酸パ
ラジウムの水溶液を上記粉末に含浸させ、約100℃で
5〜12時間大気中で乾燥し、その後600℃で3時間
大気中で焼成し、Pdを担持する。また、ペロブスカイ
ト型構造を有する複合酸化物の微粉末と耐熱性複合酸化
物の微粉末を混合した後、貴金属を担持してもよい。ペ
ロブスカイト型構造の複合酸化物の微粉末の製造は、ま
ずそれを構成する各金属の硝酸塩、シュウ酸塩などを混
合した水溶液に、所定量の炭酸ナトリウム、炭酸アンモ
ニウムなどの中和剤を加えて共沈させる。次にこの混合
物を水洗し、濾過し、乾燥し、500〜600℃で3〜
5時間大気中で焼成した後、粉砕し、さらに700〜8
00℃で3〜5時間大気中で焼成し、微粉末とする。こ
の粉末の比表面積は少なくとも数m2/g以上であるこ
とが望ましい。このように製造したペロブスカイト型構
造の複合酸化物微粉末に耐熱性酸化物粉末を混合し、さ
らにこの混合粉末に貴金属を上述したと同様の方法で担
持し、目的とする触媒とする。
Next, P is added onto the complex oxide having the perovskite structure supported on the heat-resistant complex oxide carrier as described above.
It carries a noble metal such as t, Pd, or Rh. For example, the above powder is impregnated with an aqueous solution of palladium nitrate, dried in the atmosphere at about 100 ° C. for 5 to 12 hours, and then baked at 600 ° C. for 3 hours in the atmosphere to support Pd. Alternatively, the noble metal may be supported after the fine powder of the complex oxide having the perovskite structure and the fine powder of the heat-resistant complex oxide are mixed. The fine powder of perovskite type complex oxide is manufactured by first adding a predetermined amount of a neutralizing agent such as sodium carbonate or ammonium carbonate to an aqueous solution in which nitrates of respective metals constituting the perovskite structure, oxalate and the like are mixed. Coprecipitate. The mixture is then washed with water, filtered, dried and dried at 500-600 ° C for 3-
After firing in the air for 5 hours, crush and further 700-8
Bake in the atmosphere at 00 ° C for 3 to 5 hours to obtain fine powder. The specific surface area of this powder is preferably at least a few m 2 / g or more. A heat-resistant oxide powder is mixed with the composite oxide fine powder having a perovskite structure produced as described above, and a noble metal is supported on the mixed powder by the same method as described above to obtain a target catalyst.

【0013】この触媒はこれにバインダーを添加し、所
定の形状に成形して用いたり、又は水を加えスラリ状と
して基材に塗布して用いることもできる。また、基材に
耐熱性酸化物を被覆した後、触媒成分であるペロブスカ
イト型構造の複合酸化物及び貴金属を担持して用いるこ
ともできる。
The catalyst may be used by adding a binder to the catalyst and molding it into a predetermined shape, or by adding water to the base material in the form of a slurry to apply the slurry. It is also possible to coat the base material with a heat-resistant oxide, and then support the complex component oxide having a perovskite structure and a noble metal which are catalyst components.

【0014】[0014]

【実施例】【Example】

(実施例1)担体として用いる耐熱性複合酸化物は市販
の高比表面積の酸化セリウム粉末(CeO2比表面積1
30m2/g、純度99.9%/TREO(全希土類酸
化物))111.9gを用意し、これにオキシ硝酸ジル
コニウム(ZrO(NO3)2)水溶液(液比重1.51、液
中にZrO2換算で25.0重量%含まれる)147.
9g、及び硝酸イットリウム(Y(NO3)3)水溶液(液比
重1.62、液中にY23換算で21.7重量%含まれ
る)26.0gを加え、よく撹拌して混合しながら11
0℃で10時間大気中で乾燥した。その後、大気中で6
00℃で3時間焼成を行ない、(Ce0.65Zr0.300.
05)O2複合酸化物を約150g得た。
(Example 1) A heat-resistant complex oxide used as a carrier was a commercially available cerium oxide powder having a high specific surface area (CeO 2 specific surface area 1).
30 m 2 / g, purity 99.9% / TREO (all rare earth oxides) 111.9 g were prepared, and zirconium oxynitrate (ZrO (NO 3 ) 2 ) aqueous solution (liquid specific gravity 1.51, 25.0% by weight in terms of ZrO 2 is contained) 147.
9 g, and 26.0 g of an yttrium nitrate (Y (NO 3 ) 3 ) aqueous solution (liquid specific gravity: 1.62, containing 21.7% by weight in terms of Y 2 O 3 in the liquid) were added, and mixed well by mixing. While 11
It was dried in the air at 0 ° C. for 10 hours. Then 6 in the atmosphere
00 ° C. conducted for 3 hours at, (Ce 0. 65 Zr 0 . 30 Y 0.
05 ) About 150 g of O 2 composite oxide was obtained.

【0015】次に、この粉末を50g用意し、これに硝
酸ランタン(La(NO3)3・6H2O)70.4g、硝酸
セリウム(Ce(NO3)3・6H2O)17.7g及び硝酸
コバルト(Co(NO3)2・6H2O)59.2gを溶解し
た水溶液100mlを加えた後、110℃で10時間大
気中で乾燥した。その後、大気中で800℃、3時間焼
成を行ない、上記硝酸塩を熱分解し、(Ce0.65Zr0.
300.05)O2上にCoを含有するペロブスカイト型構造
を有する複合酸化物(La0.8Ce0.2)CoO3を担持し
た粉末を得た。
Next, 50 g of this powder was prepared, and 70.4 g of lanthanum nitrate (La (NO 3 ) 3 .6H 2 O) and 17.7 g of cerium nitrate (Ce (NO 3 ) 3 .6H 2 O) were prepared. Then, 100 ml of an aqueous solution in which 59.2 g of cobalt nitrate (Co (NO 3 ) 2 .6H 2 O) was dissolved was added, followed by drying at 110 ° C. for 10 hours in the atmosphere. Thereafter, 800 ° C. in air, subjected to 3 hours baking, the nitrate is thermally decomposed, (Ce 0. 65 Zr 0 .
30 Y 0. 05) a composite oxide having a perovskite structure containing Co on O 2 (La 0. 8 Ce 0. 2) to obtain a powder carrying the CoO 3.

【0016】その後、この粉末に硝酸パラジウム水溶液
を含浸させ、110℃で10時間大気中で乾燥し、さら
に大気中で600℃で3時間の焼成を行なって、Pdを
0.5g担持した触媒を(試料No.1)を調製した。
この触媒の成分は重量比で(La0.8Ce0.2)CoO3
(Ce0.65Zr0.300.05)O2:Pd=50:50:
0.5であった。
Thereafter, this powder was impregnated with an aqueous palladium nitrate solution, dried at 110 ° C. for 10 hours in the air, and further calcined at 600 ° C. for 3 hours in the air to obtain a catalyst carrying 0.5 g of Pd. (Sample No. 1) was prepared.
This component of the catalyst in a weight ratio (.. La 0 8 Ce 0 2) CoO 3:
(.. Ce 0 65 Zr 0 30 Y 0 05.) O 2: Pd = 50: 50:
It was 0.5.

【0017】(実施例2)実施例1で調製した(Ce0.
65Zr0.300.05)O2粉末50gを用意し、これに担持
されるペロブスカイト型構造の複合酸化物を得るための
金属塩の添加量を、硝酸ランタン70.4g、硝酸セリ
ウム17.7g、硝酸コバルト23.7g及び硝酸鉄
(Fe(NO3)3・9H2O)49.6gとする他は、実施
例1と同様の操作により、この実施例2にかかる触媒
(試料No.2)を調製した。この触媒の成分は重量比
で(La0.8Ce0.2)(Co0.4Fe0.6)O3:(Ce0.65
0.300.05)O2:Pd=50:50:0.5であっ
た。
Example 2 Prepared in Example 1 (Ce 0 ..
65 Zr 0. 30 Y 0 .05 ) O 2 powder (50 g) was prepared, and the addition amount of the metal salt for obtaining the complex oxide having a perovskite structure supported on the powder was 70.4 g of lanthanum nitrate and 17% of cerium nitrate. 0.7 g, cobalt nitrate 23.7 g and iron nitrate
(Fe (NO 3) 3 · 9H 2 O) in addition to the 49.6g is the same manner as in Example 1 to prepare a catalyst (sample No.2) according to the second embodiment. This component of the catalyst in a weight ratio (La 0 8 Ce 0 2. .) (Co 0 4 Fe 0 6..) O 3:. (Ce 0 65 Z
r 0 .30 Y 0 .05 ) O 2 : Pd = 50: 50: 0.5.

【0018】(実施例3)実施例1で用いた酸化セリウ
ム粉末132.6gにオキシ硝酸ジルコニウム水溶液9
8.6g及び硝酸イットリウム水溶液15.7gを加
え、実施例1と同様の操作により(Ce0.77Zr0.
200.03)O2耐熱性複合酸化物を得た。次に、この粉末
を50g用意し、これに実施例2と同様の配合比と操作
により、この実施例3にかかる触媒(試料No.3)を
調製した。この触媒の成分は重量比で(La0.8Ce0.2)
(Co0.4Fe0.6)O3:(Ce0.77Zr0.200.03)O2
Pd=50:50:0.5であった。
(Example 3) 132.6 g of the cerium oxide powder used in Example 1 was mixed with 9 parts of an aqueous solution of zirconium oxynitrate.
Added 8.6g and yttrium nitrate solution 15.7 g, in the same manner as in Example 1 (Ce 0. 77 Zr 0 .
20 Y 0. 03) was obtained O 2 refractory composite oxide. Next, 50 g of this powder was prepared, and the catalyst (Sample No. 3) according to this Example 3 was prepared with the same mixing ratio and operation as in Example 2. Component of the catalyst in a weight ratio (La 0. 8 Ce 0. 2)
(. Co 0 4 Fe 0 6 .) O 3: (... Ce 0 77 Zr 0 20 Y 0 03) O 2:
It was Pd = 50: 50: 0.5.

【0019】(実施例4)実施例3で調製した(Ce0.
77Zr0.200.03)O2耐熱性複合酸化物粉末50gを
用意し、これに硝酸ランタン79.2g、硝酸セリウム
8.9g、硝酸コバルト23.7g、硝酸鉄49.6g
を溶解した水溶液を加え、実施例1と同様の乾燥と焼成
を行ない、(CeZrY)O2上に(La0.9Ce0.1)(C
0.4Fe0.6)O3を担持した粉体を得た。その後、その
粉末にジニトロジアミン白金((NH3)2(NO2)2Pt)
硝酸水溶液を含浸させ、実施例1と同様の操作により、
この実施例4にかかる触媒(試料No.4)を調製し
た。この触媒の成分は重量比で(La0.9Ce0.1)(C
0.4Fe0.6)O3:(Ce0.77Zr0.200.03)O2:P
t=50:50:0.5であった。
Example 4 Prepared in Example 3 (Ce 0 ..
77 Zr 0. 20 Y 0. 03) O 2 refractory composite oxide powder 50g was prepared, to which lanthanum nitrate 79.2 g, cerium nitrate 8.9 g, cobalt nitrate 23.7 g, iron nitrate 49.6g
The aqueous solution of was added and subjected to baking and similar drying as in Example 1, on (CeZrY) O 2 (La 0 . 9 Ce 0. 1) (C
o 0. 4 Fe 0. 6 ) to give the O 3 carrying the powder. Then, dinitrodiamine platinum ((NH 3 ) 2 (NO 2 ) 2 Pt) was added to the powder.
By impregnating with a nitric acid aqueous solution and by the same operation as in Example 1,
A catalyst (Sample No. 4) according to this Example 4 was prepared. This component of the catalyst in a weight ratio (La 0. 9 Ce 0. 1) (C
. o 0 4 Fe 0 6) O 3:... (Ce 0 77 Zr 0 20 Y 0 03) O 2:. P
It was t = 50: 50: 0.5.

【0020】(実施例5)実施例1で用いた硝酸セリウ
ム粉末111.9gにオキシ硝酸ジルコニウム水溶液1
47.9g及び硝酸ランタン(La(NO3)3・6H2O)
22.1gを溶解した水溶液50mlを加え、実施例1
と同様の操作にて(Ce0.65Zr0.30La0.05)O2耐熱
性複合酸化物を得た。次に、この粉末を50g用意し、
これに担持されるペロブスカイト型構造の複合酸化物を
得るための金属塩の添加量を、硝酸ランタン74.1
g、硝酸ストロンチウム(Sr(NO3)2)9.1g、硝酸
コバルト31.1g、硝酸鉄43.2gとする他は実施
例1と同様の操作により、この実施例5にかかる触媒
(試料No.5)を調製した。この触媒の成分は重量比
で(La0.8Sr0.2)(Co0.5Fe0.5)O3:(Ce0.65
0.30La0.05)O2:Pd=50:50:0.5であっ
た。
(Embodiment 5) 111.9 g of the cerium nitrate powder used in Embodiment 1 was added to an aqueous solution of zirconium oxynitrate 1
47.9g and lanthanum nitrate (La (NO 3) 3 · 6H 2 O)
50 ml of an aqueous solution in which 22.1 g was dissolved was added, and
In the same operation as (Ce 0. 65 Zr 0. 30 La 0. 05) was obtained O 2 refractory composite oxide. Next, prepare 50 g of this powder,
The addition amount of the metal salt for obtaining the complex oxide having a perovskite structure supported on the lanthanum nitrate 74.1
g, strontium nitrate (Sr (NO 3 ) 2 ) 9.1 g, cobalt nitrate 31.1 g, and iron nitrate 43.2 g by the same operation as in Example 1 (catalyst No. 5). .5) was prepared. This component of the catalyst in a weight ratio (La 0 8 Sr 0 2. .) (Co 0 5 Fe 0 5..) O 3:. (Ce 0 65 Z
r 0 .30 La 0 .05 ) O 2 : Pd = 50: 50: 0.5.

【0021】(実施例6)ペロブスカイト型構造の複合
酸化物(La0.8Ce0.2)(Co0.4Fe0.6)O3粉末の調
製法を説明する。硝酸ランタン103.9g、硝酸セリ
ウム26.1g、硝酸コバルト34.9g、硝酸鉄7
2.7gを純水に溶解した水溶液0.3リットルを用意
した。次に、中和共沈剤として炭酸ナトリウム50gを
溶解した水溶液0.5リットルを用意した。中和共沈剤
を先の水溶液に滴下し、共沈物を得た。その共沈物を十
分水洗し、濾過した後、真空乾燥した。これを600℃
で3時間大気中で焼成後、粉砕し、その後、800℃で
3時間大気中で焼成を行ない、さらに粉砕し、(La0.8
Ce0.2)(Co0.4Fe0.6)O3の粉末を作成した。実施
例1で調製した(Ce0.65Zr0.300.05)O2粉末80
gと上記により作成した(La0.8Ce0.2)(Co0.4Fe
0.6)O3粉末20gを十分混合した。次に、この混合粉
末に硝酸パラジウム水溶液を用いてパラジウムを含浸し
た後、110℃で10時間乾燥し、次いで600℃で3
時間大気中で焼成してPdを0.5g担持した触媒(試
料No.6)を調製した。
[0021] (Example 6) composite oxide having a perovskite structure (La 0. 8 Ce 0. 2) (Co 0. 4 Fe 0. 6) O 3 powder preparation will be described. Lanthanum nitrate 103.9 g, cerium nitrate 26.1 g, cobalt nitrate 34.9 g, iron nitrate 7
0.3 liter of an aqueous solution prepared by dissolving 2.7 g in pure water was prepared. Next, 0.5 liter of an aqueous solution in which 50 g of sodium carbonate was dissolved was prepared as a neutralizing coprecipitant. The neutralizing coprecipitant was added dropwise to the above aqueous solution to obtain a coprecipitate. The coprecipitate was thoroughly washed with water, filtered, and dried under vacuum. 600 ° C
In after calcination for 3 hours in the air, ground and then subjected to calcination for 3 hours in air at 800 ° C., further ground, (La 0. 8
Ce 0. 2) (Co 0 . 4 Fe 0. 6) to create a powder of O 3. Prepared in Example 1 (Ce 0. 65 Zr 0 . 30 Y 0. 05) O 2 powder 80
created by g and the (La 0. 8 Ce 0. 2) (Co 0. 4 Fe
0.6) was O 3 powder 20g were mixed well. Next, this mixed powder was impregnated with palladium using an aqueous solution of palladium nitrate, dried at 110 ° C. for 10 hours, and then at 600 ° C. for 3 hours.
A catalyst (Sample No. 6) carrying 0.5 g of Pd was prepared by firing in air for a period of time.

【0022】(実施例7)実施例6のペロブスカイト型
複合酸化物の調製法に代えて、硝酸ランタン76.7
g、硝酸ネオジウム(Nd(NO3)3・6H2O)38.2
g、硝酸コバルト43.7g、硝酸鉄60.6gを用い
て同様の操作にて(La0.59Nd0.29Ce0.12)(Co0.5
Fe0.5)O3の粉末を作成した。この粉末80gと実施
例1で調製した(Ce0.65Zr0.300.05)O2粉末20
gを十分混合した後、実施例6と同様にしてPdを0.
5g担持した触媒(試料No.7)を調製した。
Example 7 Instead of the method of preparing the perovskite type complex oxide of Example 6, lanthanum nitrate 76.7 was used.
g, neodymium nitrate (Nd (NO 3) 3 · 6H 2 O) 38.2
g, cobalt nitrate 43.7 g, in the same operation using the iron nitrate 60.6g (La 0. 59 Nd 0 . 29 Ce 0. 12) (Co 0. 5
Fe 0. 5) to create a powder of O 3. The powder 80g and prepared in Example 1 (Ce 0. 65 Zr 0 . 30 Y 0. 05) O 2 powder 20
After mixing well, Pd was adjusted to 0.
A catalyst supporting 5 g (Sample No. 7) was prepared.

【0023】(実施例8)実施例1で用いた酸化セリウ
ム粉末137.70gにオキシ硝酸ジルコニウム98.
6gを加え、実施例1と同様の操作により(Ce0.8Zr
0.2)O2耐熱複合酸化物粉末を得た。この耐熱複合酸化
物粉末50gを実施例6による(La0.8Ce0.2)(C
0.4Fe0.6)O3ペロブスカイト型粉末50gを十分混
合した後、Pdを0.5g担持して触媒(試料No.
8)を調製した。
(Example 8) 137.70 g of the cerium oxide powder used in Example 1 was mixed with 98.
6g was added, in the same manner as in Example 1 (Ce 0. 8 Zr
0.2) to give the O 2 refractory composite oxide powder. According to this heat composite oxide powder 50g to Example 6 (La 0. 8 Ce 0 . 2) (C
o 0. 4 Fe 0. 6 ) O 3 after a perovskite powder 50g were mixed well, the Pd and 0.5g supported catalyst (Sample No.
8) was prepared.

【0024】(実施例9)実施例6による(La0.8Ce
0.2)(Co0.4Fe0.6)O3粉末80gと実施例8による
(Ce0.8Zr0.2)O2耐熱複合酸化物粉末20gを十分
混合した後、Pdを0.5g担持して触媒(試料No.
9)を調製した。
[0024] (Example 9) according to Example 6 (La 0. 8 Ce
0.2) (by Co 0. 4 Fe 0. 6 ) O 3 powder 80g Example 8
(Ce 0. 8 Zr 0. 2) O 2 after heat composite oxide powder 20g were mixed well, the Pd and 0.5g supported catalyst (Sample No.
9) was prepared.

【0025】(実施例10)実施例6の硝酸セリウムに
代えて硝酸ストロンチウム12.7gを用いて同様の操
作により(La0.8Sr0.2)(Co0.4Fe0.6)O3ペロブ
スカイト型粉末を作成した。この粉末80gと実施例8
による(Ce0.8Zr0.2)O2耐熱複合酸化物粉末20g
を十分混合した後、Pdを0.5g担持して触媒(試料
No.10)を調製した。
[0025] (Example 10) in place of cerium nitrate in Example 6 in the same manner by using strontium nitrate 12.7g (La 0. 8 Sr 0 . 2) (Co 0. 4 Fe 0. 6) O Three perovskite type powders were prepared. 80 g of this powder and Example 8
In accordance (Ce 0. 8 Zr 0. 2) O 2 refractory composite oxide powder 20g
Was thoroughly mixed, and then 0.5 g of Pd was carried to prepare a catalyst (Sample No. 10).

【0027】(比較例1)実施例6で作成したペロブス
カイト型構造の複合酸化物(La0.8Ce0.2)(Co0.4
0.6)O3粉末100gを用い、これに硝酸パラジウム
水溶液を用いて実施例1と同様の方法でPdを0.5g
担持して比較用の触媒(試料No.C1)を調製した。
[0027] (Comparative Example 1) composite oxide having a perovskite structure produced in Example 6 (La 0. 8 Ce 0 . 2) (Co 0. 4 F
e 0. 6) using O 3 powder 100 g, which in the Pd in the same manner as in Example 1 using the aqueous palladium nitrate solution 0.5g
A supported catalyst (Sample No. C1) was prepared.

【0028】(比較例2)実施例1で調製した耐熱性複
合酸化物に代えて、市販の高比表面積の酸化セリウム粉
末を50g用意し、これに実施例1と同様の操作でCe
2上に(La0.8Ce0.2)CoO3を担持し、さらにPd
を0.5g担持して比較用の触媒(試料No.C2)を
調製した。この触媒の成分は重量比で(La0.8Ce0.2)
CoO3:CeO2:Pd=50:50:0.5であっ
た。
Comparative Example 2 In place of the heat-resistant composite oxide prepared in Example 1, 50 g of commercially available cerium oxide powder having a high specific surface area was prepared, and the same procedure as in Example 1 was performed on the Ce.
O 2 on a (La 0. 8 Ce 0. 2) carrying the CoO 3, further Pd
Was carried by 0.5 g to prepare a comparative catalyst (Sample No. C2). Component of the catalyst in a weight ratio (La 0. 8 Ce 0. 2)
CoO 3 : CeO 2 : Pd = 50: 50: 0.5.

【0029】(比較例3)実施例1の(Ce0.65Zr0.
300.05)O2を市販のγ−Al23(比表面積110m
2/g)に代える他、同様の操作によりこの比較例3に
よる触媒(試料No.C3)を調製した。
Comparative Example 3 (Ce 0 .65 Zr 0 ..
30 Y 0. 05) O 2 commercially available γ-Al 2 O 3 (specific surface area 110m
2 / g) and a catalyst (Sample No. C3) according to Comparative Example 3 was prepared by the same operation.

【0030】(比較例4)実施例6で作成したペロブス
カイト型構造の複合酸化物(La0.8Ce0.2)(Co0.
4Fe0.6)O3粉末50gと市販のSrZrO3粉末50
gとを十分に混合した後、Pdを0.5g担持した触媒
(試料No.C4)を調製した。
[0030] (Comparative Example 4) composite oxide having a perovskite structure produced in Example 6 (La 0. 8 Ce 0 . 2) (Co 0.
4 Fe 0. 6) O 3 powder 50g and commercial SrZrO 3 powder 50
After thoroughly mixing with g, a catalyst (Sample No. C4) carrying 0.5 g of Pd was prepared.

【0031】(試験例)実施例、比較例で調製した触媒
について、入口ガス温度930℃の排気ガス中で5時間
の浄化活性の耐久試験を行なった。ガス組成は一酸化炭
素(CO)1.0%、プロピレン(C36)0.1%、
二酸化炭素(CO2)10%、水(H2O)4%で、酸素
(O2)を変動条件とし、残部が窒素(N2)である。
(Test Example) The catalysts prepared in Examples and Comparative Examples were subjected to a durability test of purification activity for 5 hours in exhaust gas at an inlet gas temperature of 930 ° C. The gas composition is carbon monoxide (CO) 1.0%, propylene (C 3 H 6 ) 0.1%,
Carbon dioxide (CO 2 ) 10%, water (H 2 O) 4%, oxygen (O 2 ) was used as a variable condition, and the balance was nitrogen (N 2 ).

【0032】(評価)上記の耐熱・耐久試験を行なった
触媒について、450℃における一酸化炭素、プロピレ
ン及び酸化窒素の浄化率を測定した。測定に際し粉末状
触媒を加圧成形し、直径が約2mmのペレット状とし、
反応管に充填した。測定時の空間速度は30000/時
間であり、ガス組成はCOが0.7%、C36が0.1
5%、CO2が10%、H2Oが10%、H2が0.23
%、NOが0.15%、O2を変動条件とし、残部がN2
である。第1表に結果を触媒の成分とともに記載した。
本実施例の触媒は比較例の触媒に比べ耐久性に優れてい
る。
(Evaluation) The purification rates of carbon monoxide, propylene and nitric oxide at 450 ° C. were measured for the catalysts subjected to the above heat resistance / durability test. At the time of measurement, the powdery catalyst is pressure-molded into pellets having a diameter of about 2 mm,
The reaction tube was filled. The space velocity at the time of measurement was 30,000 / hour, and the gas composition was 0.7% CO and 0.1 C 3 H 6.
5%, CO 2 10%, H 2 O 10%, H 2 0.23
%, NO is 0.15%, O 2 is a variable condition, and the balance is N 2
Is. The results are shown in Table 1 together with the components of the catalyst.
The catalyst of this example is superior in durability to the catalyst of the comparative example.

【0033】[0033]

【表1】 [Table 1]

フロントページの続き (72)発明者 田中 裕久 滋賀県蒲生郡竜王町大字山之上3000番地 ダイハツ工業株式会社滋賀テクニカルセン ター内 (72)発明者 坪井 英文 滋賀県蒲生郡竜王町大字山之上3000番地 ダイハツ工業株式会社滋賀テクニカルセン ター内 (72)発明者 松本 伸一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 木村 希夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 曽布川 英夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 小澤 正邦 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内Continued front page    (72) Inventor Hirohisa Tanaka             3000 Yamanoue, Ryuo Town, Gamo-gun, Shiga Prefecture             Daihatsu Industry Co., Ltd. Shiga Technical Sen             Inside (72) Inventor Tsuboi, English             3000 Yamanoue, Ryuo Town, Gamo-gun, Shiga Prefecture             Daihatsu Industry Co., Ltd. Shiga Technical Sen             Inside (72) Inventor Shinichi Matsumoto             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. (72) Inventor Norio Kimura             Aichi Prefecture Nagachite Town Aichi District             Ground 1 Toyota Central Research Institute Co., Ltd. (72) Inventor Hideo Sofukawa             Aichi Prefecture Nagachite Town Aichi District             Ground 1 Toyota Central Research Institute Co., Ltd. (72) Inventor Masakuni Ozawa             Aichi Prefecture Nagachite Town Aichi District             Ground 1 Toyota Central Research Institute Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式Ln1-xAxMO3(LnはCe
を除く希土類金属、AはCe又はアルカリ土類金属、M
は遷移金属で、いずれも1種又は2種以上、0<x<
1)で示されるペロブスカイト型構造の複合酸化物と、
Ce及びZr、又はさらにCe以外の希土類金属を含
む、少なくとも一部が複合酸化物又は固溶体となってい
る耐熱性酸化物と、貴金属とを共存させた排気ガス浄化
用触媒。
1. The general formula Ln 1 -xAxMO 3 (Ln is Ce
Rare earth metals other than, A is Ce or alkaline earth metal, M
Is a transition metal, and each is one or more, and 0 <x <
1) a complex oxide having a perovskite structure,
An exhaust gas purifying catalyst in which a noble metal coexists with a heat-resistant oxide containing Ce and Zr or a rare earth metal other than Ce, at least a part of which is a complex oxide or a solid solution.
【請求項2】 前記耐熱性酸化物はCeの100原子に
対してZrが5〜100原子、Ce以外の希土類金属が
0〜100原子の原子比となるように構成されている請
求項1に記載の排気ガス浄化用触媒。
2. The heat-resistant oxide is configured such that Zr has an atomic ratio of 5 to 100 atoms with respect to 100 atoms of Ce, and a rare earth metal other than Ce has an atomic ratio of 0 to 100 atoms. Exhaust gas purification catalyst described.
【請求項3】 貴金属は白金族である請求項1に記載の
排気ガス浄化用触媒。
3. The exhaust gas purifying catalyst according to claim 1, wherein the noble metal is a platinum group.
JP21294391A 1991-07-29 1991-07-29 Exhaust gas purification catalyst Expired - Fee Related JP3260148B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21294391A JP3260148B2 (en) 1991-07-29 1991-07-29 Exhaust gas purification catalyst
DE69206707T DE69206707T2 (en) 1991-07-29 1992-07-24 Exhaust gas purification catalyst and process for its manufacture
EP92112717A EP0525677B1 (en) 1991-07-29 1992-07-24 Exhaust gas purifying catalyst and method of preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21294391A JP3260148B2 (en) 1991-07-29 1991-07-29 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH0531367A true JPH0531367A (en) 1993-02-09
JP3260148B2 JP3260148B2 (en) 2002-02-25

Family

ID=16630868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21294391A Expired - Fee Related JP3260148B2 (en) 1991-07-29 1991-07-29 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3260148B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06154606A (en) * 1992-11-24 1994-06-03 Nippon Shokubai Co Ltd Catalyst for purification of exhaust gas
JPH09175823A (en) * 1995-12-26 1997-07-08 Daihatsu Motor Co Ltd Heat-resistant oxide
EP1027926A1 (en) * 1997-08-04 2000-08-16 Teijin Limited Catalyst and process for the preparation of aromatic carbonates
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6670296B2 (en) 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
JP2004243305A (en) * 2002-10-11 2004-09-02 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
US6864213B2 (en) 2001-03-13 2005-03-08 Delphi Technologies, Inc. Alkaline earth / rare earth lean NOx catalyst
JP2006075748A (en) * 2004-09-10 2006-03-23 Toyota Motor Corp Catalyst for purification of exhaust gas
US7205257B2 (en) 2002-07-09 2007-04-17 Daihatsu Motor Co., Ltd. Catalyst for clarifying exhaust gas
JP2007289921A (en) * 2006-03-28 2007-11-08 Toyota Central Res & Dev Lab Inc Exhaust-gas cleaning catalyst and its regeneration method
JP2008086987A (en) * 2006-10-04 2008-04-17 Christian Koch Method and apparatus for oxidation and reduction of gas and vapor by catalyst of crystalline compound of heavy metal and rare earth element
US7381394B2 (en) 2002-07-09 2008-06-03 Daihatsu Motor Co., Ltd. Method for producing perovskite-type composite oxide
DE112009000384T5 (en) 2008-02-21 2011-01-27 Kabushiki Kaisha F.C.C. Katalyssatorträger and process for its preparation
WO2012133526A1 (en) * 2011-03-31 2012-10-04 日産自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and process for producing exhaust gas purification catalyst
WO2014038294A1 (en) * 2012-09-10 2014-03-13 日産自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method for producing exhaust gas purification catalyst
JP2014069150A (en) * 2012-09-28 2014-04-21 Daihatsu Motor Co Ltd Oxygen storage release material
JP2014240037A (en) * 2013-06-11 2014-12-25 ダイハツ工業株式会社 Exhaust gas purification catalyst
WO2015125206A1 (en) * 2014-02-18 2015-08-27 日産自動車株式会社 Exhaust gas purification catalyst and production method thereof
JP2019103967A (en) * 2017-12-11 2019-06-27 エヌ・イーケムキャット株式会社 Catalyst for exhaust purification, and method for producing the same, and integrated-structure-type catalyst for exhaust purification

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06154606A (en) * 1992-11-24 1994-06-03 Nippon Shokubai Co Ltd Catalyst for purification of exhaust gas
JPH09175823A (en) * 1995-12-26 1997-07-08 Daihatsu Motor Co Ltd Heat-resistant oxide
JP2840054B2 (en) * 1995-12-26 1998-12-24 ダイハツ工業株式会社 Heat-resistant oxide
EP1027926A1 (en) * 1997-08-04 2000-08-16 Teijin Limited Catalyst and process for the preparation of aromatic carbonates
EP1027926A4 (en) * 1997-08-04 2002-06-12 Teijin Ltd Catalyst and process for the preparation of aromatic carbonates
US6670296B2 (en) 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6864213B2 (en) 2001-03-13 2005-03-08 Delphi Technologies, Inc. Alkaline earth / rare earth lean NOx catalyst
US7381394B2 (en) 2002-07-09 2008-06-03 Daihatsu Motor Co., Ltd. Method for producing perovskite-type composite oxide
US7622418B2 (en) 2002-07-09 2009-11-24 Daihatsu Motor Company, Ltd. Method for producing exhaust gas purifying catalyst
US7205257B2 (en) 2002-07-09 2007-04-17 Daihatsu Motor Co., Ltd. Catalyst for clarifying exhaust gas
JP2004243305A (en) * 2002-10-11 2004-09-02 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
JP2006075748A (en) * 2004-09-10 2006-03-23 Toyota Motor Corp Catalyst for purification of exhaust gas
JP4538726B2 (en) * 2004-09-10 2010-09-08 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP2007289921A (en) * 2006-03-28 2007-11-08 Toyota Central Res & Dev Lab Inc Exhaust-gas cleaning catalyst and its regeneration method
JP2008086987A (en) * 2006-10-04 2008-04-17 Christian Koch Method and apparatus for oxidation and reduction of gas and vapor by catalyst of crystalline compound of heavy metal and rare earth element
US8461073B2 (en) 2008-02-21 2013-06-11 Kabushiki Kaisha F.C.C. Catalyst support and method of producing same
DE112009000384T5 (en) 2008-02-21 2011-01-27 Kabushiki Kaisha F.C.C. Katalyssatorträger and process for its preparation
US9101914B2 (en) 2011-03-31 2015-08-11 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst, exhaust gas purifying monolith catalyst, and method for manufacturing exhaust gas purifying catalyst
JPWO2012133526A1 (en) * 2011-03-31 2014-07-28 日産自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst
JP5720772B2 (en) * 2011-03-31 2015-05-20 日産自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst
WO2012133526A1 (en) * 2011-03-31 2012-10-04 日産自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and process for producing exhaust gas purification catalyst
WO2014038294A1 (en) * 2012-09-10 2014-03-13 日産自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method for producing exhaust gas purification catalyst
JP5885004B2 (en) * 2012-09-10 2016-03-15 日産自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst
US9352301B2 (en) 2012-09-10 2016-05-31 Nissan Motor Co., Ltd. Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method for producing exhaust gas purification catalyst
JPWO2014038294A1 (en) * 2012-09-10 2016-08-08 日産自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst
JP2014069150A (en) * 2012-09-28 2014-04-21 Daihatsu Motor Co Ltd Oxygen storage release material
JP2014240037A (en) * 2013-06-11 2014-12-25 ダイハツ工業株式会社 Exhaust gas purification catalyst
WO2015125206A1 (en) * 2014-02-18 2015-08-27 日産自動車株式会社 Exhaust gas purification catalyst and production method thereof
JPWO2015125206A1 (en) * 2014-02-18 2017-03-30 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP2019103967A (en) * 2017-12-11 2019-06-27 エヌ・イーケムキャット株式会社 Catalyst for exhaust purification, and method for producing the same, and integrated-structure-type catalyst for exhaust purification

Also Published As

Publication number Publication date
JP3260148B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
JP3260148B2 (en) Exhaust gas purification catalyst
JP4950365B2 (en) Mixed phase ceramic oxide ternary alloy catalyst formulation and method for producing the catalyst
JPS6377543A (en) Catalyst for purifying exhaust gas
EP0525677A1 (en) Exhaust gas purifying catalyst and method of preparing the same
JPH01168343A (en) Exhaust gas purifying catalyst
US6025297A (en) Catalyst for purifying exhaust gas and process for producing the same
JPH0817942B2 (en) Exhaust purification catalyst manufacturing method
JP4831753B2 (en) Exhaust gas purification catalyst
JP3483190B2 (en) Nitrogen oxide removal catalyst and method for producing the same
JP3144880B2 (en) Method for producing three-way catalyst with excellent low-temperature activity
JP2007098200A (en) Exhaust gas purification catalyst and manufacturing method of the same
JP3275356B2 (en) Method for producing exhaust gas purifying catalyst
JP6339013B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and exhaust gas purification catalyst structure
JPH0780311A (en) Catalyst for purification of exhaust gas
JP2620624B2 (en) Exhaust gas purification catalyst
JP2000262898A (en) Catalyst for purifying exhaust gas
JP4655436B2 (en) Method for treating exhaust gas purification catalyst
JP5120360B2 (en) Oxygen storage / release material and exhaust gas purifying catalyst provided with the same
JPH09248462A (en) Exhaust gas-purifying catalyst
JPH0768175A (en) Catalyst for purification of exhaust gas
JPH0582258B2 (en)
JP3222184B2 (en) Method for producing exhaust gas purifying catalyst
JP2001232199A (en) Exhaust gas cleaning catalyst
JPH08323205A (en) Exhaust gas purifying catalyst and its production
JP3246295B2 (en) Exhaust gas purification catalyst and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees