US20090324468A1 - Zero platinum group metal catalysts - Google Patents

Zero platinum group metal catalysts Download PDF

Info

Publication number
US20090324468A1
US20090324468A1 US12/215,694 US21569408A US2009324468A1 US 20090324468 A1 US20090324468 A1 US 20090324468A1 US 21569408 A US21569408 A US 21569408A US 2009324468 A1 US2009324468 A1 US 2009324468A1
Authority
US
United States
Prior art keywords
catalyst system
catalyst
oxide
group
mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/215,694
Inventor
Stephen J. Golden
Randal Hatfield
Jason Pless
Johnny Ngo
Mann Sakbodin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Catalytic Solutions Inc
Original Assignee
Catalytic Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalytic Solutions Inc filed Critical Catalytic Solutions Inc
Priority to US12/215,694 priority Critical patent/US20090324468A1/en
Priority to US12/229,729 priority patent/US8496896B2/en
Assigned to CATALYTIC SOLUTIONS, INC. reassignment CATALYTIC SOLUTIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOLDEN, STEPHEN J., HATFIELD, RANDAL, NGO, JOHNNY, PLESS, JASON, SAKBODIN, MANN
Priority to AU2009263035A priority patent/AU2009263035A1/en
Priority to EP09770547A priority patent/EP2303454A4/en
Priority to JP2011516309A priority patent/JP4950359B2/en
Priority to MX2011000020A priority patent/MX335990B/en
Priority to PCT/US2009/003799 priority patent/WO2009158008A1/en
Priority to KR1020107010982A priority patent/KR101508799B1/en
Priority to CA2729232A priority patent/CA2729232A1/en
Priority to CN2009801051101A priority patent/CN101939084A/en
Priority to KR1020107010963A priority patent/KR101569946B1/en
Priority to MX2011000105A priority patent/MX2011000105A/en
Priority to PCT/US2009/003800 priority patent/WO2009158009A1/en
Priority to CN200980105008.1A priority patent/CN101939097B/en
Priority to JP2011516310A priority patent/JP5010049B2/en
Priority to CA2729235A priority patent/CA2729235A1/en
Priority to AU2009263034A priority patent/AU2009263034A1/en
Priority to EP09770546A priority patent/EP2303433A4/en
Publication of US20090324468A1 publication Critical patent/US20090324468A1/en
Priority to US12/791,699 priority patent/US8685352B2/en
Assigned to ENERTECH CAPITAL PARTNERS II L.P. (AS COLLATERAL AGENT) reassignment ENERTECH CAPITAL PARTNERS II L.P. (AS COLLATERAL AGENT) SECURITY AGREEMENT Assignors: CATALYTIC SOLUTIONS, INC.
Assigned to CATALYTIC SOLUTIONS, INC., ECS HOLDINGS, INC. reassignment CATALYTIC SOLUTIONS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: ENERTECH CAPITAL PARTNERS II L.P. (AS COLLATERAL AGENT)
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • B01J35/19
    • B01J35/30
    • B01J35/56
    • B01J35/613
    • B01J35/633
    • B01J35/635
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/405Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to catalysts which are free of any platinum group metals for reducing emissions of nitrous oxide, carbon monoxide, hydrocarbons, and sulfur in exhaust streams.
  • Catalysts in catalytic converters have been used to decrease the pollution caused by exhaust from various sources, such as automobiles, utility plants, processing and manufacturing plants, airplanes, trains, all terrain vehicles, boats, mining equipment, and other engine-equipped machines.
  • a common catalyst used in this way is the three-way catalyst (“TWC”).
  • the TWC works by converting carbon monoxide, hydrocarbons, and nitrogen oxides into less harmful compounds or pollutants.
  • a TWC works by simultaneously reducing the nitrogen oxides to nitrogen and oxygen, oxidizing carbon monoxide to less harmful carbon dioxide, and oxidizing unburnt hydrocarbons to carbon dioxide and water.
  • the prior art TWC is made using at least some platinum group metals. Platinum group metals are defined in this specification to mean platinum, palladium, ruthenium, iridium, osmium, and rhodium in this application unless otherwise stated.
  • the present invention pertains to a catalyst system comprising a substrate and a washcoat, wherein the catalyst system is substantially free of platinum group metals.
  • the washcoat comprises at least one oxide solid, wherein the oxide solid is selected from the group consisting of a carrier material oxide, a catalyst, and a mixture thereof.
  • the carrier material oxide comprises one or more selected from the group consisting of an oxygen storage material, aluminum oxide, doped aluminum oxide, spinel, delafossite, lyonsite, garnet, perovskite, pyrochlore, doped ceria, fluorite, zirconium oxide, doped zirconia, titanium, tin oxide, silicon dioxide, and mixtures thereof.
  • the catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalyst, and mixtures thereof.
  • the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, yttirum, lanthanides, actinides, and mixtures thereof.
  • the catalyst system may optionally comprise an overcoat comprising at least one oxide solid, wherein the overcoat oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof.
  • the present invention also pertains to a catalyst system comprising a substrate, a washcoat, and an overcoat, wherein the catalyst system is substantially free of platinum group metals.
  • the washcoat comprises one or more selected from the group consisting of a carrier material oxide, ceramic, and mixtures thereof.
  • the overcoat comprises a catalyst.
  • the catalyst of the overcoat comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalyst, and mixtures thereof.
  • the catalyst system may further comprise one or more selected from the group consisting of a perovskite, a spinel, a lyonsite, an oxygen storage material, alumina, and mixtures thereof.
  • a ZPGM transition metal catalyst comprises one or more transition metals.
  • a mixed metal oxide catalyst comprises a mixed metal oxide and at least one transition metal, wherein the mixed metal oxide comprises one or more selected from the group consisting of alkali metals, alkaline earth metals, lanthanides, actinides, and mixtures thereof.
  • a zeolite catalyst comprises at least one zeolite and at least one transition metal. The zeolite comprises one or more selected from the group consisting of ZSM5, heulandite, chabazite, and mixtures thereof.
  • the transition metal comprises one or more selected from the group consisting of chromium, gallium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, tungsten, silver, and mixtures thereof
  • the present invention also pertains to a method of making a catalyst system by impregnation, comprising depositing a washcoat on a substrate and treating the washcoat and the substrate to convert metal salts into metal oxides, wherein the catalyst system is substantially free of platinum group metals.
  • the washcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof.
  • the method may further comprise after treating, depositing an overcoat on the washcoat and treating the overcoat and washcoat.
  • the overcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof.
  • the present invention also pertains to a method of making a catalyst system by precipitation, comprising precipitating a transition metal salt on a washcoat, treating the precipitated transition metal salt and the washcoat, depositing the precipitated transition metal salt and the washcoat on a substrate, and treating the precipitated transition metal salt and the washcoat on the substrate, wherein the catalyst system is substantially free of platinum group metals.
  • the transition metal salt comprises at least one transition metal and at least one carrier material oxide.
  • the method may further comprise after treating the precipitated transition metal salt and the washcoat on the substrate, depositing an overcoat on the treated precipitated transition metal salt and the washcoat, and treating the overcoat, the treated precipitated transition metal salt and the washcoat.
  • the present invention also pertains to a method of making a catalyst system by co-milling, comprising milling together a catalyst and at least one carrier material oxide, depositing the milled catalyst in the form of a washcoat on to a substrate; and treating the substrate and the washcoat, wherein the catalyst system is substantially free of platinum group metals.
  • the method may further comprise depositing an overcoat on the washcoat and treating the overcoat and the washcoat.
  • the overcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof.
  • the present invention also pertains to a method of reducing pollutants including, but not limited to nitrogen oxide, carbon monoxide, hydrocarbons, and sulfur emitted in exhaust comprising flowing exhaust substantially through a catalyst system as described herein and reducing the pollutants in the exhaust.
  • the present invention also pertains to a catalyst system comprising a first catalyst system and a second catalyst system.
  • the first catalyst system comprises a substrate and a washcoat, wherein the washcoat comprises at least one oxide solid and wherein the first catalyst system is substantially free of platinum group metals.
  • the second catalyst system comprises at least one platinum group metal.
  • the first and second catalyst systems are in series in any order, wherein at least a substantial portion of a gas stream passes through the first catalyst and the second catalyst sequentially. More than a first and second catalyst system may be used in a catalyst system, e.g. a third catalyst system or more.
  • FIG. 1 shows a schematic of Architecture 1 for the catalyst systems of the present invention
  • FIG. 2 shows a schematic of Architecture 2 for the catalyst systems of the present invention
  • FIG. 3 shows a schematic of Architecture 3 for the catalyst systems of the present invention
  • FIG. 4 shows the pore volume results for fresh catalyst systems ZPGM-1 through ZPGM-5;
  • FIG. 5 shows the pore volume results for aged catalyst systems ZPGM-1 through ZPGM-5;
  • FIG. 6 shows the surface area summary for fresh and aged catalyst systems ZPGM-1 through ZPGM-5;
  • FIG. 7 shows the x-ray diffraction analysis of a ZPGM-1 catalyst system (fresh and aged Ce 0.6 La 0.4 Mn 0.6 Cu 0.4 O x powders);
  • FIG. 8 shows the x-ray diffraction analysis of a ZPGM-2 catalyst system (fresh and aged);
  • FIG. 9 shows the x-ray diffraction analysis of a ZPGM-3 catalyst system (fresh and aged).
  • FIG. 10 shows the x-ray diffraction analysis of a ZPGM-4 catalyst system (fresh and aged);
  • FIG. 11 shows the x-ray diffraction analysis of a ZPGM-5 catalyst system (fresh and aged);
  • FIG. 12 shows the x-ray diffraction analysis of a ZPGM-6 catalyst system (fresh and aged);
  • FIG. 13 shows the sweep test results for a ZPGM-1 catalyst system (fresh and aged).
  • FIG. 14 shows the sweep test results for a ZPGM-2 catalyst system (fresh and aged).
  • FIG. 15 shows the sweep test results for a ZPGM-3 catalyst system (fresh and aged).
  • FIG. 16 shows the sweep test results for a ZPGM-4 catalyst system (fresh and aged).
  • FIG. 17 shows the sweep test results for a ZPGM-5 catalyst system (fresh and aged).
  • FIG. 18 shows the sweep test results for a ZPGM-6 catalyst system (fresh and aged).
  • FIG. 19 shows the results of light off tests for an example of a Type D ZPGM transition metal catalyst
  • FIG. 20 shows the results of light off tests for an example of a Type D/Type H ZPGM transition metal catalyst
  • FIG. 21 shows the results of light off tests for an example of a Type D/Type H ZPGM transition metal catalyst
  • FIG. 22 shows the results of light off tests for an example of a Type F mixed metal oxide catalyst
  • FIG. 23 shows the results of light off tests for an example of a Type F mixed metal oxide catalyst
  • FIG. 24 shows the results of light off tests for an example of a Type F mixed metal oxide catalyst
  • FIG. 25 shows the results of light off tests for an example of a Type G ZPGM transition metal catalyst
  • FIG. 26 shows the results of light off tests for an example of a Type G ZPGM transition metal catalyst
  • FIG. 27 shows the results of light off tests for an example of a Type G/Type D ZPGM transition metal catalyst
  • FIG. 28 shows the results of light off tests for an example of a Type G/Type D ZPGM transition metal catalyst
  • FIG. 29 shows the results of ramp light off tests for an example of a Type D ZPGM transition metal catalyst
  • FIG. 30 shows the results of ramp light off tests for an example of a Type I
  • FIG. 31 shows light off test results for architecture 3.
  • FIG. 32 shows the results of a light-off test for a ZPGM-1 catalyst system (fresh and aged);
  • FIG. 33 shows the results of a light-off test for a ZPGM-2 catalyst system (fresh and aged);
  • FIG. 34 shows the results of a light-off test for a ZPGM-3 catalyst system (fresh and aged);
  • FIG. 35 shows the results of a light-off test for a ZPGM-4 catalyst system (fresh and aged);
  • FIG. 36 shows the results of a light-off test for a ZPGM-5 catalyst system (fresh and aged).
  • FIG. 37 shows the results of a light-off test for a ZPGM-6 catalyst system (fresh and aged).
  • catalyst system is defined in this specification to mean a substrate, a washcoat, and optionally an overcoat as illustrated by Architecture 1, Architecture 2, or Architecture 3 as set forth in FIG. 1 , 2 , and 3 , respectively.
  • substrate is defined in this specification to mean any material known in the art for supporting a catalyst and can be of any shape or configuration that yields a sufficient surface area for the deposit of the washcoat and/or overcoat, including, but not limited to a honeycomb, pellets, or beads.
  • washcoat is defined in this specification to mean a coating comprising one or more oxide solids that is coupled with a substrate.
  • overcoat is defined in this specification to mean a coating comprising one or more oxide solids that is coupled with a substrate and a washcoat.
  • oxide solid is defined in this specification to mean one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof.
  • carrier material oxide is defined in this specification to mean materials used for providing a surface for at least one catalyst and comprises one or more selected from the group consisting of oxygen storage material, aluminum oxide, doped aluminum oxide, spinel, delafossite, lyonsite, garnet, perovksite, pyrochlore, doped ceria, fluorite, zirconium oxide, doped zirconia, titanium oxide, tin oxide, silicon dioxide, zeolite, and mixtures thereof.
  • oxygen storage material is defined in this specification to mean materials that can take up oxygen from oxygen-rich feed streams and release oxygen to oxygen-deficient feed streams.
  • the oxygen storage material comprises one or more oxides selected from the group consisting of cerium, zirconium, lanthanum, yttrium, lanthanides, actinides, and mixtures thereof.
  • catalyst is defined in this specification to mean a catalyst for decreasing the amount of nitrogen oxide, hydrocarbon, carbon monoxide, and/or sulfur that is free of platinum group metals, preferably completely free of platinum group metals.
  • ZPGM Transition Metal Catalyst is defined in this specification to mean a catalyst comprising one or more transition metals.
  • Mated Metal Oxide Catalyst is defined in this specification to mean a catalyst comprising at least one transition metal and at least one other metal.
  • Zerolite Catalyst is defined in this specification to mean a catalyst comprising at least one zeolite and at least one transition metal.
  • transition metal is defined in this specification to mean the transition metals of the periodic table excluding the platinum group metals, which are scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, silver, cadmium, hafnium, tantalum, tungsten, rhenium, gold, mercury, rutherfordium, dubnium, seaborgium, bohrium, hassium, meitnerium, ununnilium, unununium, ununbium, and gallium.
  • platinum group metals which are scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, silver, cadmium, hafnium, tantalum, tungs
  • copper is defined in this specification to mean copper, copper complexes, copper atoms, or any other copper compounds known in the art.
  • impregnation component is defined in this specification to mean one or more components added to a washcoat and/or overcoat to yield a washcoat and/or overcoat comprising a catalyst.
  • the impregnation component comprises one or more selected from the group consisting of a transition metal, alkali and alkaline earth metal, cerium, lanthanum, yttrium, lanthanides, actinides, and mixtures thereof.
  • deposit is defined in this specification to include, without limitation, placing, adhering, curing, coating (such as vacuum coating), spraying, dipping, painting and any known process for coating a film on a substrate.
  • treating is defined in this specification to include, without limitation, precipitation, drying, firing, heating, evaporating, calcining, or mixtures thereof.
  • platinum group metals is defined in this specification to mean platinum, palladium, ruthenium, iridium, osmium, and rhodium.
  • Coupled with is defined in this specification to mean the washcoat and/or overcoat is in a relationship with the substrate or each other, such that they may be directly in contact with each other; or they may be associated with each other, but there may be something in between each of them, e.g. the overcoat may be coupled with a substrate, but a washcoat may be in between the substrate and the overcoat.
  • ZPGM Zero-proliferative gamma-proliferative gamma-proliferative gamma-proliferative gamma-proliferative gamma-proliferative gamma-proliferative gamma-proliferative gamma-proliferative gamma-proliferative gamma-proliferative gamma-proliferative gamma, a number, e.g. “ZPGM-1”.
  • Type a letter, e.g. “Type A”.
  • the catalyst system of the present invention is free of platinum group metals; decreases the amount of at least one of carbon monoxide, nitrogen oxides, hydrocarbon, and sulfur emissions; and comprises one or more catalysts.
  • the substrate of the present invention may be, without limitation, a refractive material, a ceramic substrate, a honeycomb structure, a metallic substrate, a ceramic foam, a metallic foam, a reticulated foam, or suitable combinations, where the substrate has a plurality of channels and at least the required porosity. Porosity is substrate dependent as is known in the art. Additionally, the number of channels may vary depending upon the substrate used as is known in the art. The channels found in a monolith substrate are described in more detail below. The type and shape of a suitable substrate would be apparent to one of ordinary skill in the art. Preferably, all of the substrates, either metallic or ceramic, offer a three-dimensional support structure.
  • the substrate may be in the form of beads or pellets.
  • the beads or pellets may be formed from, without limitation, alumina, silica alumina, silica, titania, mixtures thereof, or any suitable material.
  • the substrate may be, without limitation, a honeycomb substrate.
  • the honeycomb substrate may be a ceramic honeycomb substrate or a metal honeycomb substrate.
  • the ceramic honeycomb substrate may be formed from, for example without limitation, sillimanite, zirconia, petalite, spodumene (lithium aluminum silicate), magnesium silicates, mullite, alumina, cordierite (e.g. Mg 2 A 14 Si 5 O 18 ), other alumino-silicate materials, silicon carbide, aluminum nitride, or combinations thereof.
  • Other ceramic substrates would be apparent to one of ordinary skill in the art.
  • the metal may be, without limitation, a heat-resistant base metal alloy, particularly an alloy in which iron is a substantial or major component.
  • the surface of the metal substrate may be oxidized at elevated temperatures above about 1000° C. to improve the corrosion resistance of the alloy by forming an oxide layer on the surface of the alloy. This oxide layer on the surface of the alloy may also enhance the adherence of a washcoat to the surface of the monolith substrate.
  • the substrate may be a monolithic carrier having a plurality of fine, parallel flow passages extending through the monolith.
  • the passages can be of any suitable cross-sectional shape and/or size.
  • the passages may be, for example without limitation, trapezoidal, rectangular, square, sinusoidal, hexagonal, oval, or circular, although other shapes are also suitable.
  • the monolith may contain from about 9 to about 1200 or more gas inlet openings or passages per square inch of cross section, although fewer passages may be used.
  • the substrate can also be any suitable filter for particulates.
  • suitable forms of substrates may include, without limitation, woven filters, particularly woven ceramic fiber filters, wire meshes, disk filters, ceramic honeycomb monoliths, ceramic or metallic foams, wall flow filters, and other suitable filters.
  • Wall flow filters are similar to honeycomb substrates for automobile exhaust gas catalysts. They may differ from the honeycomb substrate that may be used to form normal automobile exhaust gas catalysts in that the channels of the wall flow filter may be alternately plugged at an inlet and an outlet so that the exhaust gas is forced to flow through the porous walls of the wall flow filter while traveling from the inlet to the outlet of the wall flow filter.
  • the catalyst of the present invention may be placed on the substrate in the form of a washcoat.
  • the oxide solids in the washcoat may be one or more carrier material oxide, one or more catalyst, or a mixture of carrier material oxide(s) and catalyst(s).
  • Carrier material oxides are normally stable at high temperatures (>1000° C.) and under a range of reducing and oxidizing conditions.
  • a preferable oxygen storage material is a mixture of ceria and zirconia; more preferably a mixture of (1) ceria, zirconia, and lanthanum or (2) ceria, zirconia, neodymium, and praseodymium.
  • a catalyst of the present invention comprises at least one oxygen storage material
  • the catalyst may comprise about 10 to about 90 weight percent oxygen storage material, preferably about 20 to about 80 weight percent, more preferably about 40 to about 75 weight percent.
  • the weight percent of the oxygen storage material is on the basis of the oxides.
  • washcoats of the present invention may be coupled with a substrate, preferably an amount that covers most of, or all of, the surface area of a substrate. In an embodiment, about 80 g/L to about 250 g/L of a washcoat may be coupled with a substrate.
  • a washcoat may be formed on the substrate by suspending the oxide solids in water to form an aqueous slurry and depositing the aqueous slurry on the substrate as a washcoat.
  • ком ⁇ онент may optionally be added to the aqueous slurry.
  • Other components such as acid or base solutions or various salts or organic compounds may be added to the aqueous slurry to adjust the rheology of the slurry and/or enhance binding of the washcoat to the substrate.
  • Some examples of compounds that can be used to adjust the rheology include, but are not limited to, ammonium hydroxide, aluminum hydroxide, acetic acid, citric acid, tetraethylammonium hydroxide, other tetralkylammonium salts, ammonium acetate, ammonium citrate, glycerol, commercial polymers such as polyethylene glycol, polyvinyl alcohol and other suitable polymers.
  • the slurry may be placed on the substrate in any suitable manner.
  • the substrate may be dipped into the slurry, or the slurry may be sprayed on the substrate.
  • Other methods of depositing the slurry onto the substrate known to those skilled in the art may be used in alternative embodiments.
  • the washcoat may be formed on the walls of the passages. Gas flowing through the flow passages can contact the washcoat on the walls of the passages as well as materials that are supported on the washcoat.
  • the oxygen storage material may improve the rheology of the washcoat slurry. Such an improvement may be seen in process control and/or manufacture of the catalyst system.
  • the enhanced rheology of the washcoat slurry that may be due to the presence of the oxygen storage material may enhance the adhesion of the washcoat slurry to the substrate.
  • a catalyst system may have one of the following three architectures.
  • a catalyst system may comprise a substrate ( 1 ) and a washcoat ( 2 ), wherein the washcoat comprises at least one catalyst. See FIG. 1 (Architecture 1).
  • a catalyst system may comprise a substrate ( 1 ), a washcoat ( 2 ), and an overcoat ( 3 ), wherein the washcoat ( 2 ) and overcoat ( 3 ) each comprise at least one catalyst. See FIG. 2 (Architecture 2).
  • a catalyst system may comprise a substrate ( 1 ), a washcoat ( 2 ), and an overcoat ( 3 ), wherein the overcoat ( 3 ) comprises at least one catalyst, but the washcoat ( 2 ) is free of catalyst, preferably completely free. See FIG. 3 (Architecture 3).
  • the washcoat ( 2 ) of the third catalyst system architecture comprises a carrier material oxide or mixtures thereof. Other components known to one of ordinary skill in the art may be included.
  • FIGS. 1-3 show how the layers are applied in order, but the end product may not have the layers as depicted due to, without limitation, the reactions that may occur between the layers.
  • the washcoat ( 2 ) may be deposited in three different ways. First, depositing all desired components in one step. Or second, depositing components without a catalyst, then separately depositing at least one impregnation component and heating (this separate deposit is also referred to as an impregnation step).
  • the impregnation component comprises, without limitation, transition metals, alkali and alkaline earth metals, cerium, lanthanum, yttrium, lanthanides, actinides, or mixtures thereof.
  • the impregnation step converts metal salts into metal oxides creating a washcoat ( 2 ) comprising a catalyst.
  • the overcoat ( 3 ) is typically applied after treating the washcoat ( 2 ), but treating is not required prior to application of the overcoat ( 3 ) in every embodiment.
  • the overcoat ( 3 ) is applied after the washcoat ( 2 ).
  • a catalyst system comprises a substrate ( 1 ) and one or more catalyst selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, and a zeolite catalyst.
  • a catalyst system of the present invention comprises a ZPGM transition metal catalyst.
  • a ZPGM transition metal catalyst comprises one or more transition metals.
  • the transition metal is copper, nickel, iron, manganese, silver, cobalt, tungsten, niobium, molybdenum, or chromium; more preferably copper, nickel, iron, or manganese; most preferably copper, nickel, or cobalt.
  • the ZPGM transition metal catalyst optionally comprises one or more of a carrier material oxide.
  • the catalyst comprises a perovskite, a spinel, a lyonsite, an oxygen storage material, alumina, or mixtures thereof; more preferably a spinel, an oxygen storage material, alumina, or mixtures thereof; most preferably at least one spinel and at least one oxygen storage material, or alumina and at least one oxygen storage material.
  • a catalyst of the present invention comprises at least one oxygen storage material
  • the catalyst may comprise about 10 to about 90 weight percent oxygen storage material, preferably about 20 to about 80 weight percent, more preferably about 40 to about 75 weight percent.
  • the weight percent of the oxygen storage material is on the basis of the oxides.
  • the catalysts may optionally further comprise one or more of a transition metal, alkaline earth metal, ceria, and mixtures thereof.
  • the transition metal is iron, manganese, or mixtures thereof.
  • the alkaline earth metal is magnesium, barium, or mixtures thereof.
  • the catalyst comprises at least one transition metal and at least one carrier material oxide.
  • the transition metals may be a single transition metal, or a mixture of transition metals which includes, but is not limited to, chromium, manganese, iron, cobalt, nickel, copper, silver, niobium, molybdenum, and tungsten.
  • the preferred transition metals are copper, nickel and cobalt.
  • the total amount of the transition metal(s) are present in about 5% to about 50% by weight of the total catalyst weight and may be present in any ratio of transitional metals.
  • the catalyst referred to as “Type D”, comprises copper and one or more carrier material oxides.
  • additional transition metals may be included.
  • the copper may be applied through impregnation as discussed herein.
  • the copper in the catalyst may be present in about 5% to about 50% by weight, preferably about 5% to about 30%, more preferably about 15% by weight.
  • a catalyst system referred to as “ZPGM-6”, comprises a substrate, a washcoat, and an overcoat.
  • the substrate comprises cordierite.
  • the washcoat comprises a spinel and at least one oxygen storage material, preferably the oxygen storage material is a mixture of cerium, zirconium, and lanthanum.
  • the spinel in this embodiment comprises magnesium aluminum oxides. Additionally, the oxygen storage material and the spinel may be present in the washcoat in a ratio of 40 to about 60 by weight. If an impregnation step is required, copper, cerium, zirconium, and lanthanum may be added and heated to convert metal salts into metal oxides that create a washcoat comprising the catalyst.
  • the overcoat comprises copper oxide, a spinel, and at least one oxygen storage material, preferably the oxygen storage material comprises a mixture of cerium, zirconium, neodymium, and praseodymium.
  • the spinel in this embodiment comprises magnesium aluminum oxides.
  • the spinel and oxygen storage material of the overcoat may be present in the overcoat in a ratio of about 60 to about 40.
  • the copper in the overcoat is present in about 5% to about 50%, preferably about 10% to about 16% by weight.
  • a catalyst system referred to as “ZPGM-5”, comprises a substrate, a washcoat, and an overcoat.
  • the substrate comprises cordierite.
  • the washcoat comprises lanthanum-doped aluminum oxide and at least one oxygen storage material, preferably the oxygen storage material comprises a mixture of cerium, zirconium, neodymium, and praseodymium. Additionally, the oxygen storage material and the lanthanum-doped aluminum oxide may be present in the washcoat in a ratio of about 40 to about 60.
  • the optional impregnation components comprise copper, cerium, zirconium, and lanthanum.
  • the overcoat comprises copper oxide, lanthanum-stabilized aluminum oxide, and at least one oxygen storage material, preferably the oxygen storage material comprises a mixture of cerium, zirconium, neodymium, and praseodymium.
  • the aluminum oxide and oxygen storage material of the overcoat may be present in the overcoat in a ratio of about 75 to about 25.
  • the copper in the overcoat is present in about 5% to about 50%, preferably about 15% by weight.
  • a catalyst system referred to as “ZPGM-4”, comprises a substrate, a washcoat, and an overcoat.
  • the washcoat comprises tin aluminum oxide and at least one oxygen storage material, preferably the oxygen storage material comprises a mixture of cerium, zirconium, neodymium, and praseodymium.
  • the tin aluminum oxide and the oxygen storage material may be present in the washcoat in a ratio of from about 25:75 to about 75:25, preferably in a ratio of about 60 to about 40.
  • the optional impregnation components comprise copper, cerium, zirconium, and lanthanum.
  • the overcoat comprises aluminum, copper, and at least one oxygen storage material, preferably the oxygen storage material comprises a mixture of cerium, zirconium, and lanthanum.
  • the aluminum oxide and oxygen storage material may be present in the overcoat in a ratio of about 60 to about 40. According to an embodiment, there is about 5% to about 30% copper by weight in the overcoat, preferably about 10% to about 20%, more preferably about 12%.
  • a catalyst system referred to as “ZPGM-3”, comprises a substrate and a washcoat.
  • the washcoat comprises copper, tin aluminum oxide, and at least one oxygen storage material, preferably the oxygen storage material comprises a mixture of cerium, zirconium, neodymium, and praseodymium.
  • the tin aluminum oxide and the oxygen storage material may be present in the washcoat in a ratio of about 60 to about 40.
  • the impregnation components comprise copper, cerium, zirconium, and lanthanum.
  • the cerium, zirconium, and lanthanum may be present in the washcoat in a ratio of about 60 to about 30 to about 10.
  • the washcoat may comprise additional transition metals. According to an embodiment, there is about 5% to about 30% copper by weight in the washcoat, preferably about 10% to about 20%, more preferably about 12%.
  • a catalyst system referred to as “ZPGM-2”, comprises a substrate and a washcoat.
  • the washcoat may comprise, without limitation, copper, aluminum oxide, and at least one oxygen storage material, preferably the oxygen storage material is a mixture of cerium, zirconium, and lanthanum.
  • the aluminum oxide and the oxygen storage material may be present in the washcoat in a ratio of about 60 to about 40.
  • the copper in the washcoat may be about 5% to about 20% copper by weight, preferably about 8%.
  • the washcoat coat may optionally comprise additional transitional metals and/or ceria.
  • a catalyst system referred to as “ZPGM-1”, comprises a substrate and a washcoat.
  • the washcoat comprises at least one carrier material oxide and a perovskite; preferably the carrier material oxide comprises an oxygen storage material, more preferably comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, neodymium, praseodymium, and mixtures thereof, and the perovskite preferably is a mixture of cerium, lanthanum, manganese and copper, having the specific formula Ce 0.6 La 0.4 Mn 0.6 Cu 0.4 O 3 .
  • the catalyst comprises at least one transition metal, at least one alkaline earth metal, cerium, and at least one carrier material oxide.
  • the transition metal, alkaline earth metal and cerium are present in about 5% to about 50% by weight in any ratio of the three components.
  • the alkaline earth metals comprise one or more selected from the group consisting of magnesium, calcium, barium, and strontium.
  • the transition metals may be a single transition metal, or a mixture of transition metals which include, but is not limited to, chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, and tungsten.
  • the catalyst comprises at least one transition metal, at least one alkaline earth metal, and at least one carrier material oxide.
  • the transition metal may be a single transition metal, or a mixture of transition metals which include, but is not limited to, chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, tungsten, and silver.
  • the alkaline earth metal may be, but is not limited to, magnesium, calcium, barium or strontium.
  • the preferred transition metals are copper, nickel, and cobalt, while the preferred alkaline earth metals are barium and strontium.
  • the alkaline earth metal and the transition metal may be present in a molar ratio of about 1:10 to 1:1 and at about 2% to about 50% weight of the catalyst.
  • the catalyst comprises at least one transition metal and a perovskite having the formula ABO 3 .
  • the transition metal may be, but is not limited to, copper, nickel, cobalt, manganese, iron, chromium, niobium, molybdenum, tungsten, and silver.
  • the transition metals are copper, nickel, and/or cobalt.
  • “A” comprises lanthanum, cerium, magnesium, calcium, barium, strontium, lanthanides, actinides, or a mixture thereof.
  • “B” comprises iron, manganese, copper, nickel, cobalt, cerium, or mixtures thereof.
  • the transition metal(s) is present in about 2% to about 30% by weight.
  • the Type E catalyst comprises a perovskite (ABO 3 ), at least one transition metal, and at least one a carrier material oxide.
  • the transition metal may be a single transition metal, or a mixture of transition metals which includes, but is not limited to, chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, tungsten, silver, or mixtures thereof.
  • the perovskite and transition metal are present in about 5% to about 50% by weight.
  • the catalyst comprises at least one transition metal and a spinel having the formula AB 2 O 4 .
  • the transition metal may be, but is not limited to, copper, nickel, cobalt, manganese, iron, chromium, niobium, molybdenum, tungsten, and silver.
  • the preferred transition metals include, copper, nickel, and cobalt; more preferably copper.
  • “A” and “B” each comprise aluminum, magnesium, manganese, gallium, nickel, copper, cobalt, iron, chromium, niobium, titanium, tin, or mixtures thereof.
  • a preferred spinel is MgAl 2 O 4 .
  • the transition metal(s) are present in about 2% to about 30% by weight.
  • the Type G catalyst comprises a spinel (AB 2 O 4 ), a transition metal, and a carrier material oxide.
  • the transition metal may be a single transition metal, or a mixture of transition metals which includes, but is not limited to, chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, tungsten, and/or silver.
  • a preferred spinel is MgAl 2 O 4 .
  • the spinel and transition metal(s) are present in about 5% to about 50% by weight.
  • a catalyst may be a mixed metal oxide catalyst, which comprises at least one transition metal and at least one other metal.
  • the other metals of the mixed metal oxide may include, but are not limited to alkali and alkaline earth metal, lanthanides, or actinides.
  • the mixed metal oxide may be a spinel, a perovskite, a delafossite, a lyonsite, a garnet, or a pyrochlore.
  • the catalyst referred to as “Type B”
  • Type B comprises a perovskite having the formula ABO 3 or a related structure with the general formula A a-x B x MO b , wherein “a” is 1 or 2, “b” is 3 when “a” is 1 or “b” is 4 when “a” is 2, and “z” is a number defined by 0.1 ⁇ x ⁇ 0.7.
  • A comprises lanthanum, lanthanides, actinides, cerium, magnesium, calcium, barium, strontium, or mixtures thereof.
  • B comprises a single transition metal, or a mixture of transition metals including but not limited to iron, manganese, copper, nickel, cobalt, and cerium, or mixture thereof.
  • the catalyst may have the formula AMn 1-x Cu x O 3 , wherein “A” is lanthanum, cerium, barium, strontium, a lanthanide, or an actinide and “x” is 0 to 1.
  • the Type B catalyst may have the formula ACe 1-x Cu x O 3 , wherein “A” is barium, strontium, or calcium, and “x” is 0 to 1. According to an embodiment, about 10 g/L to about 180 g/L of the formula ABO 3 may be coupled with the substrate.
  • the Type B catalyst comprises a perovskite (ABO 3 ) or related structure (with general formula A a-x B x MO b ) and one or more of a carrier material oxide.
  • the perovskite or related structure is present in about 5% to about 50% by weight.
  • the catalyst referred to as “Type F”, comprises a spinel having the formula AB 2 O 4 .
  • “A” and “B” of the formula is aluminum, magnesium, manganese, gallium, nickel, copper, cobalt, iron, chromium, titanium, tin, or mixtures thereof.
  • the Type F catalyst comprises a spinel and a carrier material oxide.
  • the spinel is present in about 5% to about 50% by weight.
  • a catalyst may be a zeolite catalyst comprising a zeolite or mixture of zeolites and at least one transition metal.
  • a zeolite is mixed aluminosillicates with regular interconnected pores.
  • the zeolite includes, but is not limited to ZSM5, heulandite, chabazite, or mixtures thereof, preferably ZSM5.
  • the catalyst referred to as “Type I” comprises at least one transition metal impregnated into a zeolite or mixtures of zeolite.
  • the transition metal(s) may be a single transition metal or a mixture of transition metal which includes, but is not limited to, chromium, gallium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, tungsten, and silver.
  • the transition metals are selected from the group consisting of copper, nickel, gallium, cobalt, and mixtures thereof.
  • the transition metals may be present in about 3% to about 25% by weight in any ratio of transition metals.
  • the catalysts of the present invention may reduce pollutants emitted from exhaust. This is done by passing exhaust substantially through a catalyst system, such that the flowing exhaust reduces the pollutants.
  • the exhaust includes, but is not limited to exhaust from an automobile, vehicle, factory, train, airplane, building, and laboratory.
  • Pollutants are any compounds, substances, gases, or waste that causes damage to water, air, land, and any other part of the environment, including carbon monoxide, hydrocarbons, nitrogen oxides, and sulfur.
  • the catalysts of the present invention to decrease the amount of nitrogen oxide emissions. For example: NO+1/2O 2 ⁇ NO 2 and 6NO 2 +8NH 3 ⁇ 7N 2 +12H 2 O.
  • the catalyst also decreases the amount of the unburned hydrocarbons and carbon monoxide by oxidizing them. For example: 2C x H y +(2x+y/2)O 2 ⁇ 2xCO 2 +yH 2 O or 2CO+O 2 ⁇ 2CO 2 .
  • the catalysts may also decrease the amount of sulfur emissions.
  • a catalyst system comprises a first catalyst system and a second catalyst system.
  • the first catalyst system may be any catalyst described herein.
  • the second catalyst system comprises a catalyst comprising at least one platinum group metal, wherein the catalyst may comprise any platinum group metal known in the art, including, but not limited to mixtures of platinum group metals and carrier material oxides.
  • the first catalyst system and the second catalyst system may be in an orientation such that a gas stream is capable of passing through the first catalyst system followed by the second catalyst system in series or vice versa.
  • a catalyst system may comprise more than a first and a second catalyst system, e.g. a third catalyst system.
  • a washcoat having the properties discussed herein may be prepared by methods well known in the art.
  • the washcoat may comprise any of the catalysts and/or additional components described herein.
  • the washcoat is deposited on a substrate and is treated.
  • the treating is done at a temperature between 300° C. and 700° C., preferably about 550° C.
  • the treating may last from about 2 to about 6 hours, preferably about 4 hours.
  • the washcoat is impregnated with at least one impregnation component.
  • the impregnation component includes, without limitation, a transition-metal salt or salts being dissolved in water and impregnated on the washcoat.
  • the washcoat with the impregnation components are treated.
  • the treating may be performed at about 300° C. to about 700° C., preferably about 550° C.
  • the treating may last from about 2 to about 6 hours, preferably about 4 hours.
  • the substrate, the washcoat, and the impregnation components may be treated to form the catalyst composition before or after the washcoat and/or the impregnation components are added to the substrate.
  • the washcoat and the impregnation component may be treated before coating.
  • the impregnation method may be performed on an overcoat. After depositing the overcoat, the overcoat is impregnated with at least one impregnation component.
  • the impregnation component includes, without limitation, a transition-metal salt or salts being dissolved in water and impregnated on the overcoat.
  • the overcoat with the impregnation components are treated.
  • the treating may be performed at about 300° C. to about 700° C., preferably about 550° C.
  • the treating may last from about 2 hours to about 6 hours, preferably about 4 hours.
  • the method of precipitation includes precipitating a transition metal salt or salts on a washcoat.
  • the transition metal salt or salts may be precipitated with, but is not limited to NH 4 OH, (NH 4 ) 2 CO 3 , tetraethylammonium hydroxide, other tetralkylammonium salts, ammonium acetate, or ammonium citrate.
  • the washcoat may be any washcoat described herein.
  • the precipitated transition metal salt or salts and washcoat are treated. The treating may be from about 2 hours to about 24 hours.
  • the precipitated transition metal salt or salts and the washcoat are deposited on a substrate followed by treating for about 2 hours to about 6 hours, preferably about 4 hours at a temperature of about 300° C.
  • an overcoat may be deposited on the treated precipitated transition metal salt or salts and washcoat and treated again.
  • the overcoat may be treated for about 2 hours to about 6 hours, preferably about 4 hours and at a temperature of about 300° C. to about 700° C., preferably about 550° C.
  • a catalyst and a carrier material oxide are milled together.
  • the catalyst can be synthesized by any chemical technique such as, but not limited to solid-state synthesis, precipitation, or any other technique known in the art.
  • the milled catalyst and carrier material oxide are deposited on a substrate in the form of a washcoat and then treated.
  • the treatment may be from about 2 hours to about 6 hours, preferably about 4 hours and at a temperature of about 300° C. to about 700° C., preferably about 550° C.
  • an overcoat may be deposited on the treated catalyst after cooling to about room temperature.
  • the overcoat, washcoat and substrate are treated for about 2 hours to about 6 hours, preferably about 4 hours and at a temperature of 300° C. to about 700° C., preferably about 550° C.
  • FIG. 4 shows the measured pore volume for the fresh catalyst systems ZPGM-1 through ZPGM-5 and FIG. 5 shows the measured pore volume for the aged catalyst systems ZPGM-1 through ZPGM-5.
  • the aged catalyst systems were aged at 950° C. for 16 hours with 10% H 2 O and air.
  • the y-axis on the right side of FIG. 4 is for the pore volume (cm 3 /g) of ZPGM-1 only.
  • the pore volumes were measured using a Micromeritics® (Norcross, Ga.) TriStar 3000 gas adsorption analyzer at 77K.
  • the pore volumes were obtained from the nitrogen adsorption isotherms using the Barrett-Joiner-Halenda (BJH) method (E. P. Barrett, L. G. Joyner, P. P. Halenda, “The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms,” J. Am. Chem. Soc. (1951), 73, 373-380).
  • BJH Barrett-Joiner-Halenda
  • the results in FIGS. 4 and 5 show that the pore volume decreases for all the catalyst systems (ZPGM-1 through ZPGM-5) upon aging.
  • the average pore volume for the fresh ZPGM-1 decreases from 0.106 cm 3 /g to 0.017 cm 3 /g for the aged catalyst.
  • the average pore volume for the fresh ZPGM-2 decreases from 0.173 cm 3 /g to 0.116 cm 3 /g for the aged catalyst.
  • the average pore volume for the fresh ZPGM-3 decreases from 0.107 cm 3 /g to 0.010 cm 3 /g for the aged catalyst.
  • the average pore volume for the fresh ZPGM-4 decreases from 0.190 cm 3 /g to 0.142 cm 3 /g for the aged catalyst.
  • the average pore volume for the fresh ZPGM-5 decreases from 0.213 cm 3 /g to 0.122 cm 3 /g for the aged catalyst.
  • the surface areas for the fresh and aged ZPGM catalyst systems are presented in FIG. 6 .
  • the aged catalyst systems were aged at 950° C. for 16 hours with 10% H 2 O and air.
  • the surface areas were measured using a Micromeritics® (Norcross, Ga.) TriStar 3000 gas adsorption analyzer at 77K.
  • the surface areas were calculated using the BET (Brunauer, Emmitt and Teller) method (S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 1938, 60, 309).
  • the results in FIG. 6 show that the surface area decreases for all catalyst systems (ZPGM-1 through ZPGM-5) upon aging.
  • the surface area decreases from 18.72 m 2 /g for the fresh ZPGM-1 to 2.76 m 2 /g for the aged catalyst.
  • the surface area decreases from 38.60 m 2 /g for the fresh ZPGM-2 to 15.48 m 2 /g for the aged catalyst.
  • the surface area decreases from 30.78 m 2 /g for the fresh ZPGM-3 to 16.71 m 2 /g for the aged catalyst.
  • the surface area decreases from 46.95 m 2 /g for the fresh ZPGM-4 to 22.06 m 2 /g for the aged catalyst.
  • the surface area decreases from 53.45 m 2 /g for the fresh ZPGM-5 to 24.02 m 2 /g for the aged catalyst.
  • FIGS. 7-12 show the X-ray diffraction (XRD) patterns of fresh and aged catalyst systems ZPGM-1 through ZPGM-6; the aged catalyst systems were aged at 950° C. for 16 hrs with 10% H 2 O and air.
  • XRD X-ray diffraction
  • the XRD analysis was conducted to determine the crystalline phases present for each catalyst system.
  • the XRD patterns were measured on a Rigaku® powder diffractometer (MiniFlexTM) using Cu Ka radiation in the 2-theta range of 20-70° with a step size of 0.05° and a dwell time of 2 s.
  • the tube voltage and current were set at 40 kV and 30 mA, respectively.
  • the resulting diffraction patterns were analyzed using the International Centre for Diffraction Data (ICDD) database.
  • ICDD International Centre for Diffraction Data
  • FIG. 7 shows the XRD spectra of the fresh and aged ZPGM-1 catalyst system, Ce 0.6 La 0.4 Mn 0.6 Cu 0.4 O 3 , shows the presence of the perovskite (open circles) and fluorite (filled squares) structures. The fluorite and the perovskite structures are larger in the aged sample as evidenced by the sharper peaks.
  • FIG. 8 shows the XRD patterns of fresh and aged ZPGM-2 catalyst system, 8% Cu impregnated on Al 2 O 3 +Ce 0.64 Zr 0.21 La 0.15 O 2 (60:40 weight ratio of Al 2 O 3 to Ce 0.64 Zr 0.21 La 0.15 O 2 ) (160 g/ml).
  • the XRD spectrum of the fresh ZPGM-2 catalyst system shows the presence of the fluorite structure (open squares), alumina (A) and CuO (filled circles).
  • the aged ZPGM-2 catalyst system shows fluorite (open squares), CuAl 2 O 4 (filled diamonds) and alumina (A). The fluorite structure is larger in the aged sample as evidenced by the sharper peaks.
  • FIG. 9 shows the XRD patterns of fresh and aged ZPGM-3 catalyst system, 8% Cu+6.1% Ce+2.4% Zr+1.5% La impregnated on 15% Sn—Al 2 O 3 +Ce 0.6 Zr 0.3 Nd 0.05 Pr 0.05 O 2 (60:40 weight ratio of Sn—Al 2 O 3 to Ce 0.6 Zr 0.3 Nd 0.05 Pr 0.05 O 2 ) (200 g/L).
  • the XRD of the fresh ZPGM-3 catalyst system shows the presence of the fluorite structure (open circles), ZrO 2 (open squares), alumina (A) and CuO (filled circles).
  • the aged ZPGM-3 catalyst system shows fluorite (open circles), ZrO 2 (open squares), SnO 2 (filled circles), CuAl 2 O 4 (filled diamonds) and alumina (A).
  • the cordierite peak in the aged sample is from the substrate.
  • the tin oxide dissociates from the alumina, the Cu reacts with the Al 2 O 3 to form CuAl 2 O 4 .
  • FIG. 10 shows the XRD patterns of fresh and aged ZPGM-4 catalyst system, which is composed of an overcoat containing 12% Cu impregnated on Ce 0.6 Zr 0.21 La 0.15 O 2 +Al 2 O 3 (60:40 weight ratio of Ce 0.6 Zr 0.21 La 0.15 O 2 to Al 2 O 3 ) and a washcoat containing 8% Cu+6.1% Ce+2.4% Zr+1.5% La impregnated impregnated on 15% Sn—Al 2 O 3 +Ce 0.6 Zr 0.3 Nd 0.05 Pr 0.05 O 2 (60:40 weight ratio of Sn—Al 2 O 3 to Ce 0.6 Zr 0.3 Nd 0.05 O 2 ).
  • the XRD spectrum of the fresh ZPGM-4 catalyst system shows the presence of the fluorite structure (filled circles), CeO 2 (open squares), alumina (A) and CuO (filled squares).
  • the aged ZPGM-4 catalyst system shows fluorite (filled circles), CeO 2 (open squares), SnO 2 (open circles), CuAl 2 O 4 (filled diamonds) and alumina (A).
  • the tin oxide dissociates from the alumina, the Cu reacts with the Al 2 O 3 to form CuAl 2 O 4 .
  • FIG. 11 shows the XRD patterns of fresh and aged ZPGM-5 catalyst system, which is composed of an overcoat containing 12.4% CuO impregnated on La—Al 2 O 3 +Ce 0.6 Zr 0.3 Nd 0.05 Pr 0.05 O 2 (25:75 weight ratio of La—Al 2 O 3 to Ce 0.6 Zr 0.3 Nd 0.05 Pr 0.05 O 2 ) (65 g/L) and a washcoat containing 8% Cu+6.1% Ce+2.4% Zr+1.5% La impregnated on La—Al 2 O 3 +Ce 0.6 Zr 0.3 Nd 0.05 Pr 0.05 O 2 (60:40 weight ratio of La—Al 2 O 3 to Ce 0.6 Zr 0.3 Nd 0.05 Pr 0.05 O 2 ) (180 g/L).
  • the XRD spectrum of the fresh ZPGM-5 catalyst system shows the presence of the fluorite structure (filled circles) and alumina (A).
  • the aged ZPGM-5 catalyst system shows fluorite (filled circles), CuAl 2 O 4 (filled diamonds) and alumina (A). During the aging the Cu reacts with the Al 2 O 3 to form CuAl 2 O 4 .
  • FIG. 12 shows the XRD patterns of fresh and aged ZPGM-6 catalyst system, which is composed of an overcoat containing 10% Cu+12% Ce impregnated on MgAl 2 O 4 +16% Cu impregnated on Ce 0.6 Zr 0.3 Nd 0.05 Pr 0.05 O 2 (60:40 weight ratio of Ce impregnated on MgAl 2 O 4 to 16% Cu impregnated on Ce 0.6 Zr 0.3 Nd 0.05 Pr 0.05 O 2 ) (65 g/L) and a washcoat containing 4% Cu+6.1% Ce+2.4% Zr+1.5% La impregnated on MgAl 2 O 4 +Ce 0.64 Zr 0.21 La 0.15 O 2 (60:40 weight ratio of MgAl 2 O 4 to Ce 0.64 Zr 0.21 La 0.15 O 2 ) (180 g/L).
  • the XRD spectrum of the fresh ZPGM-6 catalyst system shows the presence of two fluorite structures (filled and open circles), and MgAl 2 O 4 (open diamonds).
  • the aged ZPGM-6 catalyst system shows two fluorite structures (filled and open circles), MgAl 2 O 4 (open diamonds), CuAl 2 O 4 (filled diamonds), and CuO (filled squares).
  • CZL and CuO became more crystalline, and some CuAl 2 O 4 formed.
  • FIGS. 13-18 show the sweep test results for catalyst systems ZPGM-1 through ZPGM-6 (as described above in Examples 3-8), respectively.
  • the sweep test was performed with an inlet temperature of 600° C., an air/fuel span of ⁇ 0.2 and a cycle frequency of 1 Hz.
  • a sweep test indicates the catalyst performance at various R-values (moles of reductant divided by moles of oxidant). High conversions over a large range of R-values indicate a promising catalyst because it can perform well under rich (R-values>1) and lean (R-values ⁇ 1) engine conditions.
  • the aged catalyst systems were aged at 1050° C. for 10 hrs cycling between a 56 second rich segment and a 4 second lean segment.
  • FIG. 13 shows the sweep test results for the fresh and aged ZPGM-1 catalyst system.
  • the sweep results for the fresh catalyst show that the CO conversion decreases with R-values>1.05, while the hydrocarbon (HC) conversion decreases with increasing R-values.
  • the NO conversion increases with R-value>0.85.
  • the CO conversion of the aged ZPGM-1 decreases with increasing R-value.
  • the HC conversion for the aged ZPGM-1 is best for R-values between 0.95 and 1.05.
  • FIG. 14 shows the sweep test results for the fresh and aged ZPGM-2 catalyst system.
  • the sweep results for the fresh catalyst show that the CO conversion decreases with R-values>1.05, while the hydrocarbon (HC) conversion decreases with increasing R-values.
  • the NO conversion increases with R-value>0.85.
  • the catalytic properties for CO, hydrocarbons and NO decrease after aging.
  • the CO and HC conversions of the aged ZPGM-2 decrease with increasing R-value.
  • FIG. 15 shows the sweep test results for the fresh and aged ZPGM-3 catalyst system.
  • the sweep results for the fresh catalyst show that the CO conversion decreases with R-values>1.05, while the hydrocarbon (HC) conversion decreases with increasing R-values.
  • the NO conversion increases with increasing R-values.
  • the catalytic properties for CO, hydrocarbons and NO decrease after aging.
  • the CO and HC conversions of the aged ZPGM-3 decrease with increasing R-value.
  • the NO conversion for the aged ZPGM-3 increases with R-values>0.95.
  • FIG. 16 shows the sweep test results for the fresh and aged ZPGM-4 catalyst system.
  • the sweep results for the fresh catalyst show that the CO conversion decreases with R-values>0.975, while the hydrocarbon (HC) conversion decreases with increasing R-values.
  • the NO conversion increases with increasing R-values.
  • the catalytic properties for CO, hydrocarbons and NO decrease after aging.
  • the CO and HC conversions of the aged ZPGM-4 decrease with increasing R-value.
  • the NO conversion for the aged ZPGM-4 increases with R-values>0.95.
  • FIG. 17 shows the sweep test results for the fresh and aged ZPGM-5 catalyst system.
  • the sweep results for the fresh catalyst show that the CO conversion decreases with R-values>0.975, while the hydrocarbon (HC) conversion decreases with increasing R-values.
  • the NO conversion increases with increasing R-values.
  • the catalytic properties for CO, hydrocarbons and NO decrease after aging.
  • the CO and HC conversions of the aged ZPGM-5 decrease with increasing R-value.
  • the NO conversion for the aged ZPGM-5 increases with R-values>1.05.
  • FIG. 18 shows the sweep test results for the fresh and aged ZPGM-6 catalyst system.
  • the sweep results for the fresh catalyst show that the CO conversion decreases with R-values>0.975, while the hydrocarbon (HC) conversion decreases with increasing R-values.
  • the NO conversion increases with increasing R-values.
  • the catalytic properties for CO, hydrocarbons and NO decrease after aging.
  • the CO and HC conversions of the aged ZPGM-6 decrease with increasing R-value.
  • the NO conversion for the aged ZPGM-6 increases with R-values>0.975.
  • FIGS. 19-21 show the light-off test results for examples of Type D or Type H ZPGM Transition Metal Catalysts. It should be noted that a catalyst may fall into one or more types, such as here, where the catalyst is both Type D and Type H.
  • the light-off test measures the conversions of nitrogen oxide, carbon monoxide, and hydrocarbons as a function of the catalyst system temperature. For a specific temperature, a higher conversion signifies a more efficient catalyst. Conversely, for a specific conversion, a lower temperature signifies a more efficient catalyst.
  • FIG. 19 shows the results for Type D/H catalyst with a composition of 16% Cu/Ce 0.3 Zr 0.6 Nd 0.05 Pr 0.05 O 2 .
  • a catalyst may fall into one or more types, such as here, where the catalyst is both Type D and Type H.
  • the maximum conversion for NO is about 2% at 640° C.
  • Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates.
  • FIG. 20 shows the results for Type D/H catalyst with a composition of 12% Cu/Ce 0.6 Zr 0.3 La 0.1 O 2 .
  • a catalyst may fall into one or more types, such as here, where the catalyst is both Type D and Type H.
  • the maximum conversion for NO is about 4% at 640° C.
  • Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates.
  • FIG. 21 shows the results for Type D/H catalyst with a composition of 10% Cu+12% Ce/La—Al 2 O 3 .
  • a catalyst may fall into one or more types, such as here, where the catalyst is both Type D and Type H.
  • the maximum conversion for NO is about 3% at 640° C.
  • Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates.
  • FIGS. 22-24 show the light-off test results for examples of Type F catalyst.
  • the light-off test measures the conversions of nitrogen oxide, carbon monoxide, and hydrocarbons as a function of the catalyst system temperature. For a specific temperature, a higher conversion signifies a more efficient catalyst. Conversely, for a specific conversion, a lower temperature signifies a more efficient catalyst.
  • FIG. 22 shows the results for Type F catalyst with a composition of CuLa 0.04 Al 1.96 O 4 .
  • the maximum conversions for NO and HC at 640° C. are about 6% and 38%, respectively.
  • Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates.
  • FIG. 23 shows the results for Type F catalyst with a composition of Cu 0.5 Fe 0.5 La 0.04 Al 1.96 O 4 .
  • the maximum NO conversion is about 1% at 640° C.
  • Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates.
  • FIG. 24 shows the results for Type F catalyst with a composition of CuLa 0.04 Al 1.47 Mn 0.49 O 4 .
  • the maximum conversions for NO and HC at 640° C. are about 2% and 27%, respectively. Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates.
  • FIGS. 25 -28 show the light-off test results for examples of Type G/Type D catalyst. It should be noted that a catalyst may fall into one or more types, such as here, where the catalyst is both Type G and Type D.
  • the light-off test measures the conversions of nitrogen oxide, carbon monoxide, and hydrocarbons as a function of the catalyst system temperature. For a specific temperature, a higher conversion signifies a more efficient catalyst. Conversely, for a specific conversion, a lower temperature signifies a more efficient catalyst.
  • FIG. 25 shows the results for Type G/Type D catalyst with a composition of 10% Ag/Cu 0.5 Fe 0.5 La 0.04 Al 1.96 O 4 .
  • a catalyst may fall into one or more types, such as here, where the catalyst is both Type G and Type D.
  • the maximum conversions for NO and HC at 640° C. are about 1% and 33%, respectively. Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates.
  • FIG. 26 shows the results for Type G/Type D catalyst with a composition of 10% Cu/CuLa 0.04 Al 1.96 O 4 .
  • a catalyst may fall into one or more types, such as here, where the catalyst is both Type G and Type D.
  • FIG. 27 shows the results for Type G/Type D catalyst with a composition of 20% CuO/MgLa 0.04 Al 1.96 O 4 .
  • a catalyst may fall into one or more types, such as here, where the catalyst is both Type G and Type D.
  • FIG. 28 shows the results for Type G/Type D catalyst with a composition of 10% Cu+12% Ce/MgLa 0.04 Al 1.96 O 4 .
  • a catalyst may fall into one or more types, such as here, where the catalyst is both Type G and Type D.
  • the maximum NO conversion is about 2% at 640° C.
  • Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates.
  • FIG. 29 shows the light-off test results for an example of Type D catalyst.
  • the light-off test measures the conversions of nitrogen oxide, carbon monoxide, and hydrocarbons as a function of the catalyst system temperature. For a specific temperature, a higher conversion signifies a more efficient catalyst. Conversely, for a specific conversion, a lower temperature signifies a more efficient catalyst.
  • FIG. 29 shows the results for Type D catalyst with a composition of 12% CuO/(Ce 0.6 Zr 0.3 La 0.1 O 2 +MgLa 0.04 Al 1.96 O 4 (40:60)).
  • FIG. 30 shows the light-off test results for an example of Type I Zeolite catalyst.
  • the light-off test measures the conversions of nitrogen oxide, carbon monoxide, and hydrocarbons as a function of the catalyst system temperature. For a specific temperature, a higher conversion signifies a more efficient catalyst. Conversely, for a specific conversion, a lower temperature signifies a more efficient catalyst.
  • FIG. 30 shows the results for Type I catalyst with a composition of 5% Ga+8% Cu/(ZSM-5).
  • FIG. 31 shows the light-off test results for an example of Architecture Type 3 Catalyst, which comprises a substrate, a washcoat, and an overcoat, wherein the overcoat comprises at least one catalyst, but the washcoat does not (washcoat comprises La—Al 2 O 3 +Ce 0.6 Zr 0.3 Nd 0.05 Pr 0.05 O 2 ; 60:40; 100 g/L and overcoat comprises 12% Cu on Ce 0.6 Zr 0.3 Nd 0.05 Pr 0.05 O 2 ; 150 g/L).
  • a light-off test was performed on aged (800° C. for 16 hours, composed of a 56 second rich segment and a 4 second lean segment) catalysts of the present invention. The test was performed by increasing the temperature from about 100° C. to 640° C.
  • the light-off test measures the conversions of nitrogen oxide, carbon monoxide, and hydrocarbons as a function of the catalyst system temperature. For a specific temperature, a higher conversion signifies a more efficient catalyst. Conversely, for a specific conversion, a lower temperature signifies a more efficient catalyst.
  • the maximum NO conversion is about 6% at 640° C.
  • Increasing the R-value to 1.5 improves the NO conversion, but the HC performance deteriorates.
  • FIGS. 32-37 show the light-off test results for ZPGM-1 through ZPGM-6.
  • the light-off test measures the conversions of nitrogen oxide, carbon monoxide, and hydrocarbons as a function of the catalyst system temperature. For a specific temperature, a higher conversion signifies a more efficient catalyst. Conversely, for a specific conversion, a lower temperature signifies a more efficient catalyst.
  • the light-off test for the fresh catalyst system shows that the CO and HC exhibit T 50 s at 288° C. and at 503° C., respectively.
  • the maximum NO conversion is about 19% at 600° C.
  • the aged catalyst shows a T 50 for CO at about 600° C.
  • the maximum conversions for HC and NO are 19% and 2%, respectively, at 600° C.
  • the light-off test for the fresh catalyst system shows that the CO and HC exhibit T 50 s at 205° C. and at 389° C., respectively.
  • the maximum NO conversion is about 22% at 600° C.
  • the catalyst performance decreases for CO, HC and NO.
  • the maximum conversions for CO, HC and NO are 27%, 24% and 3%, respectively, at 600° C.
  • the light-off test for the fresh catalyst system shows that the CO, HC and NO exhibit T 50 s at 205° C., at 389° C., and 651° C., respectively.
  • the catalyst performance decreases for CO, HC and NO.
  • the aged catalyst shows a T 50 for CO and HC at about 599° C. and 651° C., respectively.
  • the maximum conversion for NO is 5% at 700° C.
  • the light-off test for the fresh catalyst system shows that the CO, HC and NO exhibit T 50 s at 254° C., at 442° C., and 636° C., respectively.
  • the catalyst performance decreases for CO, HC and NO.
  • the aged catalyst shows a T 50 for CO and HC at about 462° C. and 604° C., respectively.
  • the maximum conversion for NO is about 30% at 770° C.
  • the light-off test for the fresh catalyst system shows that the CO, HC and NO exhibit T 50 s at 262° C., at 449° C., and 608° C., respectively.
  • the catalyst performance decreases for CO, HC and NO.
  • the aged catalyst shows a T 50 for CO and HC at about 571° C. and 654° C., respectively.
  • the maximum conversion for NO is about 1% at 700° C.
  • the light-off test for the fresh catalyst system shows that the CO, HC and NO exhibit T 50 s at 262° C., at 463° C., and 622° C., respectively.
  • the catalyst performance decreases for CO, HC and NO.
  • the aged catalyst shows a T 50 for CO and HC at about 425° C. and 613° C., respectively.
  • the maximum conversion for NO is about 23% at 730° C.

Abstract

The present invention pertains to catalyst systems for nitrogen oxide, carbon monoxide, hydrocarbon, and sulfur reactions that are free or substantially free of platinum group metals. The catalyst system of the present invention comprise a substrate and a washcoat, wherein the washcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst system may optionally have an overcoat, wherein the overcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalysts, or mixtures thereof.

Description

    TECHNICAL FIELD OF THE INVENTION
  • The present invention relates to catalysts which are free of any platinum group metals for reducing emissions of nitrous oxide, carbon monoxide, hydrocarbons, and sulfur in exhaust streams.
  • BACKGROUND OF THE INVENTION
  • Catalysts in catalytic converters have been used to decrease the pollution caused by exhaust from various sources, such as automobiles, utility plants, processing and manufacturing plants, airplanes, trains, all terrain vehicles, boats, mining equipment, and other engine-equipped machines. A common catalyst used in this way is the three-way catalyst (“TWC”). The TWC works by converting carbon monoxide, hydrocarbons, and nitrogen oxides into less harmful compounds or pollutants. Specifically, a TWC works by simultaneously reducing the nitrogen oxides to nitrogen and oxygen, oxidizing carbon monoxide to less harmful carbon dioxide, and oxidizing unburnt hydrocarbons to carbon dioxide and water. The prior art TWC is made using at least some platinum group metals. Platinum group metals are defined in this specification to mean platinum, palladium, ruthenium, iridium, osmium, and rhodium in this application unless otherwise stated.
  • With the ever stricter standards for acceptable emissions, the demand on platinum group metals continues to increase due to their efficiency in removing pollutants from exhaust. However, this demand along with other demands for platinum group metals places a strain on the supply of platinum group metals, which in turn drives up the cost of platinum group metals and therefore catalysts and catalytic converters. Therefore, there is a need for a catalyst that does not require platinum group metals, and has a similar or better efficiency as the prior art catalysts.
  • SUMMARY OF THE INVENTION
  • The present invention pertains to a catalyst system comprising a substrate and a washcoat, wherein the catalyst system is substantially free of platinum group metals. The washcoat comprises at least one oxide solid, wherein the oxide solid is selected from the group consisting of a carrier material oxide, a catalyst, and a mixture thereof. The carrier material oxide comprises one or more selected from the group consisting of an oxygen storage material, aluminum oxide, doped aluminum oxide, spinel, delafossite, lyonsite, garnet, perovskite, pyrochlore, doped ceria, fluorite, zirconium oxide, doped zirconia, titanium, tin oxide, silicon dioxide, and mixtures thereof. The catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalyst, and mixtures thereof. The oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, yttirum, lanthanides, actinides, and mixtures thereof. The catalyst system may optionally comprise an overcoat comprising at least one oxide solid, wherein the overcoat oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof.
  • The present invention also pertains to a catalyst system comprising a substrate, a washcoat, and an overcoat, wherein the catalyst system is substantially free of platinum group metals. The washcoat comprises one or more selected from the group consisting of a carrier material oxide, ceramic, and mixtures thereof. The overcoat comprises a catalyst. The catalyst of the overcoat comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalyst, and mixtures thereof. The catalyst system may further comprise one or more selected from the group consisting of a perovskite, a spinel, a lyonsite, an oxygen storage material, alumina, and mixtures thereof.
  • A ZPGM transition metal catalyst comprises one or more transition metals. A mixed metal oxide catalyst comprises a mixed metal oxide and at least one transition metal, wherein the mixed metal oxide comprises one or more selected from the group consisting of alkali metals, alkaline earth metals, lanthanides, actinides, and mixtures thereof. A zeolite catalyst comprises at least one zeolite and at least one transition metal. The zeolite comprises one or more selected from the group consisting of ZSM5, heulandite, chabazite, and mixtures thereof. The transition metal comprises one or more selected from the group consisting of chromium, gallium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, tungsten, silver, and mixtures thereof
  • The present invention also pertains to a method of making a catalyst system by impregnation, comprising depositing a washcoat on a substrate and treating the washcoat and the substrate to convert metal salts into metal oxides, wherein the catalyst system is substantially free of platinum group metals. The washcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The method may further comprise after treating, depositing an overcoat on the washcoat and treating the overcoat and washcoat. The overcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof.
  • The present invention also pertains to a method of making a catalyst system by precipitation, comprising precipitating a transition metal salt on a washcoat, treating the precipitated transition metal salt and the washcoat, depositing the precipitated transition metal salt and the washcoat on a substrate, and treating the precipitated transition metal salt and the washcoat on the substrate, wherein the catalyst system is substantially free of platinum group metals. The transition metal salt comprises at least one transition metal and at least one carrier material oxide. The method may further comprise after treating the precipitated transition metal salt and the washcoat on the substrate, depositing an overcoat on the treated precipitated transition metal salt and the washcoat, and treating the overcoat, the treated precipitated transition metal salt and the washcoat.
  • The present invention also pertains to a method of making a catalyst system by co-milling, comprising milling together a catalyst and at least one carrier material oxide, depositing the milled catalyst in the form of a washcoat on to a substrate; and treating the substrate and the washcoat, wherein the catalyst system is substantially free of platinum group metals. The method may further comprise depositing an overcoat on the washcoat and treating the overcoat and the washcoat. The overcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof.
  • The present invention also pertains to a method of reducing pollutants including, but not limited to nitrogen oxide, carbon monoxide, hydrocarbons, and sulfur emitted in exhaust comprising flowing exhaust substantially through a catalyst system as described herein and reducing the pollutants in the exhaust.
  • The present invention also pertains to a catalyst system comprising a first catalyst system and a second catalyst system. The first catalyst system comprises a substrate and a washcoat, wherein the washcoat comprises at least one oxide solid and wherein the first catalyst system is substantially free of platinum group metals. The second catalyst system comprises at least one platinum group metal. The first and second catalyst systems are in series in any order, wherein at least a substantial portion of a gas stream passes through the first catalyst and the second catalyst sequentially. More than a first and second catalyst system may be used in a catalyst system, e.g. a third catalyst system or more.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows a schematic of Architecture 1 for the catalyst systems of the present invention;
  • FIG. 2 shows a schematic of Architecture 2 for the catalyst systems of the present invention;
  • FIG. 3 shows a schematic of Architecture 3 for the catalyst systems of the present invention;
  • FIG. 4 shows the pore volume results for fresh catalyst systems ZPGM-1 through ZPGM-5;
  • FIG. 5 shows the pore volume results for aged catalyst systems ZPGM-1 through ZPGM-5;
  • FIG. 6 shows the surface area summary for fresh and aged catalyst systems ZPGM-1 through ZPGM-5;
  • FIG. 7 shows the x-ray diffraction analysis of a ZPGM-1 catalyst system (fresh and aged Ce0.6La0.4Mn0.6Cu0.4Ox powders);
  • FIG. 8 shows the x-ray diffraction analysis of a ZPGM-2 catalyst system (fresh and aged);
  • FIG. 9 shows the x-ray diffraction analysis of a ZPGM-3 catalyst system (fresh and aged);
  • FIG. 10 shows the x-ray diffraction analysis of a ZPGM-4 catalyst system (fresh and aged);
  • FIG. 11 shows the x-ray diffraction analysis of a ZPGM-5 catalyst system (fresh and aged);
  • FIG. 12 shows the x-ray diffraction analysis of a ZPGM-6 catalyst system (fresh and aged);
  • FIG. 13 shows the sweep test results for a ZPGM-1 catalyst system (fresh and aged);
  • FIG. 14 shows the sweep test results for a ZPGM-2 catalyst system (fresh and aged);
  • FIG. 15 shows the sweep test results for a ZPGM-3 catalyst system (fresh and aged);
  • FIG. 16 shows the sweep test results for a ZPGM-4 catalyst system (fresh and aged);
  • FIG. 17 shows the sweep test results for a ZPGM-5 catalyst system (fresh and aged);
  • FIG. 18 shows the sweep test results for a ZPGM-6 catalyst system (fresh and aged);
  • FIG. 19 shows the results of light off tests for an example of a Type D ZPGM transition metal catalyst;
  • FIG. 20 shows the results of light off tests for an example of a Type D/Type H ZPGM transition metal catalyst;
  • FIG. 21 shows the results of light off tests for an example of a Type D/Type H ZPGM transition metal catalyst;
  • FIG. 22 shows the results of light off tests for an example of a Type F mixed metal oxide catalyst;
  • FIG. 23 shows the results of light off tests for an example of a Type F mixed metal oxide catalyst;
  • FIG. 24 shows the results of light off tests for an example of a Type F mixed metal oxide catalyst;
  • FIG. 25 shows the results of light off tests for an example of a Type G ZPGM transition metal catalyst;
  • FIG. 26 shows the results of light off tests for an example of a Type G ZPGM transition metal catalyst;
  • FIG. 27 shows the results of light off tests for an example of a Type G/Type D ZPGM transition metal catalyst;
  • FIG. 28 shows the results of light off tests for an example of a Type G/Type D ZPGM transition metal catalyst;
  • FIG. 29 shows the results of ramp light off tests for an example of a Type D ZPGM transition metal catalyst;
  • FIG. 30 shows the results of ramp light off tests for an example of a Type I;
  • FIG. 31 shows light off test results for architecture 3;
  • FIG. 32 shows the results of a light-off test for a ZPGM-1 catalyst system (fresh and aged);
  • FIG. 33 shows the results of a light-off test for a ZPGM-2 catalyst system (fresh and aged);
  • FIG. 34 shows the results of a light-off test for a ZPGM-3 catalyst system (fresh and aged);
  • FIG. 35 shows the results of a light-off test for a ZPGM-4 catalyst system (fresh and aged);
  • FIG. 36 shows the results of a light-off test for a ZPGM-5 catalyst system (fresh and aged); and
  • FIG. 37 shows the results of a light-off test for a ZPGM-6 catalyst system (fresh and aged).
  • DEFINITIONS
  • The following definitions are provided to clarify the invention.
  • The term “catalyst system” is defined in this specification to mean a substrate, a washcoat, and optionally an overcoat as illustrated by Architecture 1, Architecture 2, or Architecture 3 as set forth in FIG. 1, 2, and 3, respectively.
  • The term “substrate” is defined in this specification to mean any material known in the art for supporting a catalyst and can be of any shape or configuration that yields a sufficient surface area for the deposit of the washcoat and/or overcoat, including, but not limited to a honeycomb, pellets, or beads.
  • The term “washcoat” is defined in this specification to mean a coating comprising one or more oxide solids that is coupled with a substrate.
  • The term “overcoat” is defined in this specification to mean a coating comprising one or more oxide solids that is coupled with a substrate and a washcoat.
  • The term “oxide solid” is defined in this specification to mean one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof.
  • The term “carrier material oxide” is defined in this specification to mean materials used for providing a surface for at least one catalyst and comprises one or more selected from the group consisting of oxygen storage material, aluminum oxide, doped aluminum oxide, spinel, delafossite, lyonsite, garnet, perovksite, pyrochlore, doped ceria, fluorite, zirconium oxide, doped zirconia, titanium oxide, tin oxide, silicon dioxide, zeolite, and mixtures thereof.
  • The term “oxygen storage material” is defined in this specification to mean materials that can take up oxygen from oxygen-rich feed streams and release oxygen to oxygen-deficient feed streams. The oxygen storage material comprises one or more oxides selected from the group consisting of cerium, zirconium, lanthanum, yttrium, lanthanides, actinides, and mixtures thereof.
  • The term “catalyst” is defined in this specification to mean a catalyst for decreasing the amount of nitrogen oxide, hydrocarbon, carbon monoxide, and/or sulfur that is free of platinum group metals, preferably completely free of platinum group metals.
  • The term “ZPGM Transition Metal Catalyst” is defined in this specification to mean a catalyst comprising one or more transition metals.
  • The term “Mixed Metal Oxide Catalyst” is defined in this specification to mean a catalyst comprising at least one transition metal and at least one other metal.
  • The term “Zeolite Catalyst” is defined in this specification to mean a catalyst comprising at least one zeolite and at least one transition metal.
  • The term “transition metal” is defined in this specification to mean the transition metals of the periodic table excluding the platinum group metals, which are scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, silver, cadmium, hafnium, tantalum, tungsten, rhenium, gold, mercury, rutherfordium, dubnium, seaborgium, bohrium, hassium, meitnerium, ununnilium, unununium, ununbium, and gallium.
  • The term “copper” is defined in this specification to mean copper, copper complexes, copper atoms, or any other copper compounds known in the art.
  • The term “free” is defined in this specification to mean substantially free or completely free.
  • The term “impregnation component” is defined in this specification to mean one or more components added to a washcoat and/or overcoat to yield a washcoat and/or overcoat comprising a catalyst. The impregnation component comprises one or more selected from the group consisting of a transition metal, alkali and alkaline earth metal, cerium, lanthanum, yttrium, lanthanides, actinides, and mixtures thereof.
  • The term “depositing,” “deposited,” or “deposit(s)” is defined in this specification to include, without limitation, placing, adhering, curing, coating (such as vacuum coating), spraying, dipping, painting and any known process for coating a film on a substrate.
  • The term “treating,” “treated,” or “treatment” is defined in this specification to include, without limitation, precipitation, drying, firing, heating, evaporating, calcining, or mixtures thereof.
  • The term “platinum group metals” is defined in this specification to mean platinum, palladium, ruthenium, iridium, osmium, and rhodium.
  • The term “coupled with” is defined in this specification to mean the washcoat and/or overcoat is in a relationship with the substrate or each other, such that they may be directly in contact with each other; or they may be associated with each other, but there may be something in between each of them, e.g. the overcoat may be coupled with a substrate, but a washcoat may be in between the substrate and the overcoat.
  • Examples of catalyst systems are denoted by “ZPGM” and a number, e.g. “ZPGM-1”. Examples of catalysts are denoted by “Type” and a letter, e.g. “Type A”.
  • All percentages discussed herein are weight percent unless otherwise indicated. All ratios discussed herein are weight ratios unless otherwise indicated.
  • DETAILED DESCRIPTION
  • The catalyst system of the present invention is free of platinum group metals; decreases the amount of at least one of carbon monoxide, nitrogen oxides, hydrocarbon, and sulfur emissions; and comprises one or more catalysts.
  • Substrates
  • The substrate of the present invention may be, without limitation, a refractive material, a ceramic substrate, a honeycomb structure, a metallic substrate, a ceramic foam, a metallic foam, a reticulated foam, or suitable combinations, where the substrate has a plurality of channels and at least the required porosity. Porosity is substrate dependent as is known in the art. Additionally, the number of channels may vary depending upon the substrate used as is known in the art. The channels found in a monolith substrate are described in more detail below. The type and shape of a suitable substrate would be apparent to one of ordinary skill in the art. Preferably, all of the substrates, either metallic or ceramic, offer a three-dimensional support structure.
  • In one embodiment, the substrate may be in the form of beads or pellets. The beads or pellets may be formed from, without limitation, alumina, silica alumina, silica, titania, mixtures thereof, or any suitable material. In another embodiment, the substrate may be, without limitation, a honeycomb substrate. The honeycomb substrate may be a ceramic honeycomb substrate or a metal honeycomb substrate. The ceramic honeycomb substrate may be formed from, for example without limitation, sillimanite, zirconia, petalite, spodumene (lithium aluminum silicate), magnesium silicates, mullite, alumina, cordierite (e.g. Mg2A14Si5O18), other alumino-silicate materials, silicon carbide, aluminum nitride, or combinations thereof. Other ceramic substrates would be apparent to one of ordinary skill in the art.
  • If the substrate is a metal honeycomb substrate, the metal may be, without limitation, a heat-resistant base metal alloy, particularly an alloy in which iron is a substantial or major component. The surface of the metal substrate may be oxidized at elevated temperatures above about 1000° C. to improve the corrosion resistance of the alloy by forming an oxide layer on the surface of the alloy. This oxide layer on the surface of the alloy may also enhance the adherence of a washcoat to the surface of the monolith substrate.
  • In one embodiment, the substrate may be a monolithic carrier having a plurality of fine, parallel flow passages extending through the monolith. The passages can be of any suitable cross-sectional shape and/or size. The passages may be, for example without limitation, trapezoidal, rectangular, square, sinusoidal, hexagonal, oval, or circular, although other shapes are also suitable. The monolith may contain from about 9 to about 1200 or more gas inlet openings or passages per square inch of cross section, although fewer passages may be used.
  • The substrate can also be any suitable filter for particulates. Some suitable forms of substrates may include, without limitation, woven filters, particularly woven ceramic fiber filters, wire meshes, disk filters, ceramic honeycomb monoliths, ceramic or metallic foams, wall flow filters, and other suitable filters. Wall flow filters are similar to honeycomb substrates for automobile exhaust gas catalysts. They may differ from the honeycomb substrate that may be used to form normal automobile exhaust gas catalysts in that the channels of the wall flow filter may be alternately plugged at an inlet and an outlet so that the exhaust gas is forced to flow through the porous walls of the wall flow filter while traveling from the inlet to the outlet of the wall flow filter.
  • Washcoats
  • According to an embodiment, at least a portion of the catalyst of the present invention may be placed on the substrate in the form of a washcoat. The oxide solids in the washcoat may be one or more carrier material oxide, one or more catalyst, or a mixture of carrier material oxide(s) and catalyst(s). Carrier material oxides are normally stable at high temperatures (>1000° C.) and under a range of reducing and oxidizing conditions. A preferable oxygen storage material is a mixture of ceria and zirconia; more preferably a mixture of (1) ceria, zirconia, and lanthanum or (2) ceria, zirconia, neodymium, and praseodymium.
  • According to an embodiment, if a catalyst of the present invention comprises at least one oxygen storage material, the catalyst may comprise about 10 to about 90 weight percent oxygen storage material, preferably about 20 to about 80 weight percent, more preferably about 40 to about 75 weight percent. The weight percent of the oxygen storage material is on the basis of the oxides.
  • Various amounts of any of the washcoats of the present invention may be coupled with a substrate, preferably an amount that covers most of, or all of, the surface area of a substrate. In an embodiment, about 80 g/L to about 250 g/L of a washcoat may be coupled with a substrate.
  • In an embodiment, a washcoat may be formed on the substrate by suspending the oxide solids in water to form an aqueous slurry and depositing the aqueous slurry on the substrate as a washcoat.
  • Other components may optionally be added to the aqueous slurry. Other components such as acid or base solutions or various salts or organic compounds may be added to the aqueous slurry to adjust the rheology of the slurry and/or enhance binding of the washcoat to the substrate. Some examples of compounds that can be used to adjust the rheology include, but are not limited to, ammonium hydroxide, aluminum hydroxide, acetic acid, citric acid, tetraethylammonium hydroxide, other tetralkylammonium salts, ammonium acetate, ammonium citrate, glycerol, commercial polymers such as polyethylene glycol, polyvinyl alcohol and other suitable polymers.
  • The slurry may be placed on the substrate in any suitable manner. For example, without limitation, the substrate may be dipped into the slurry, or the slurry may be sprayed on the substrate. Other methods of depositing the slurry onto the substrate known to those skilled in the art may be used in alternative embodiments. If the substrate is a monolithic carrier with parallel flow passages, the washcoat may be formed on the walls of the passages. Gas flowing through the flow passages can contact the washcoat on the walls of the passages as well as materials that are supported on the washcoat.
  • It is believed that the oxygen storage material may improve the rheology of the washcoat slurry. Such an improvement may be seen in process control and/or manufacture of the catalyst system. The enhanced rheology of the washcoat slurry that may be due to the presence of the oxygen storage material may enhance the adhesion of the washcoat slurry to the substrate.
  • Catalyst System Architecture
  • The catalyst system of the present invention may have one of the following three architectures. In one embodiment, a catalyst system may comprise a substrate (1) and a washcoat (2), wherein the washcoat comprises at least one catalyst. See FIG. 1 (Architecture 1). In another embodiment, a catalyst system may comprise a substrate (1), a washcoat (2), and an overcoat (3), wherein the washcoat (2) and overcoat (3) each comprise at least one catalyst. See FIG. 2 (Architecture 2). In another embodiment, a catalyst system may comprise a substrate (1), a washcoat (2), and an overcoat (3), wherein the overcoat (3) comprises at least one catalyst, but the washcoat (2) is free of catalyst, preferably completely free. See FIG. 3 (Architecture 3). The washcoat (2) of the third catalyst system architecture comprises a carrier material oxide or mixtures thereof. Other components known to one of ordinary skill in the art may be included.
  • The Architectures depicted in FIGS. 1-3 show how the layers are applied in order, but the end product may not have the layers as depicted due to, without limitation, the reactions that may occur between the layers.
  • In the event that a washcoat (2) or an overcoat (3) with a catalyst is required, the washcoat (2) may be deposited in three different ways. First, depositing all desired components in one step. Or second, depositing components without a catalyst, then separately depositing at least one impregnation component and heating (this separate deposit is also referred to as an impregnation step). The impregnation component comprises, without limitation, transition metals, alkali and alkaline earth metals, cerium, lanthanum, yttrium, lanthanides, actinides, or mixtures thereof. The impregnation step converts metal salts into metal oxides creating a washcoat (2) comprising a catalyst. Third, depositing all desired components at once, including metal salts and then heating to convert the metals salts to metal oxides.
  • The overcoat (3) is typically applied after treating the washcoat (2), but treating is not required prior to application of the overcoat (3) in every embodiment. Preferably, the overcoat (3) is applied after the washcoat (2).
  • According to an embodiment, a catalyst system comprises a substrate (1) and one or more catalyst selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, and a zeolite catalyst.
  • ZPGM Transition Metal Catalyst
  • According to an embodiment, a catalyst system of the present invention comprises a ZPGM transition metal catalyst. A ZPGM transition metal catalyst comprises one or more transition metals. Preferably the transition metal is copper, nickel, iron, manganese, silver, cobalt, tungsten, niobium, molybdenum, or chromium; more preferably copper, nickel, iron, or manganese; most preferably copper, nickel, or cobalt.
  • According to an embodiment, the ZPGM transition metal catalyst optionally comprises one or more of a carrier material oxide. Preferably the catalyst comprises a perovskite, a spinel, a lyonsite, an oxygen storage material, alumina, or mixtures thereof; more preferably a spinel, an oxygen storage material, alumina, or mixtures thereof; most preferably at least one spinel and at least one oxygen storage material, or alumina and at least one oxygen storage material.
  • If a catalyst of the present invention comprises at least one oxygen storage material, the catalyst may comprise about 10 to about 90 weight percent oxygen storage material, preferably about 20 to about 80 weight percent, more preferably about 40 to about 75 weight percent. The weight percent of the oxygen storage material is on the basis of the oxides.
  • With any of the catalyst systems described herein, the catalysts may optionally further comprise one or more of a transition metal, alkaline earth metal, ceria, and mixtures thereof. Preferably, the transition metal is iron, manganese, or mixtures thereof. Preferably, the alkaline earth metal is magnesium, barium, or mixtures thereof.
  • According to an embodiment, the catalyst, referred to as “Type H”, comprises at least one transition metal and at least one carrier material oxide. The transition metals may be a single transition metal, or a mixture of transition metals which includes, but is not limited to, chromium, manganese, iron, cobalt, nickel, copper, silver, niobium, molybdenum, and tungsten. The preferred transition metals are copper, nickel and cobalt. The total amount of the transition metal(s) are present in about 5% to about 50% by weight of the total catalyst weight and may be present in any ratio of transitional metals.
  • According to an embodiment, the catalyst, referred to as “Type D”, comprises copper and one or more carrier material oxides. Optionally, additional transition metals may be included. The copper may be applied through impregnation as discussed herein. The copper in the catalyst may be present in about 5% to about 50% by weight, preferably about 5% to about 30%, more preferably about 15% by weight.
  • According to an embodiment, a catalyst system, referred to as “ZPGM-6”, comprises a substrate, a washcoat, and an overcoat. The substrate comprises cordierite. The washcoat comprises a spinel and at least one oxygen storage material, preferably the oxygen storage material is a mixture of cerium, zirconium, and lanthanum. The spinel in this embodiment comprises magnesium aluminum oxides. Additionally, the oxygen storage material and the spinel may be present in the washcoat in a ratio of 40 to about 60 by weight. If an impregnation step is required, copper, cerium, zirconium, and lanthanum may be added and heated to convert metal salts into metal oxides that create a washcoat comprising the catalyst. The overcoat comprises copper oxide, a spinel, and at least one oxygen storage material, preferably the oxygen storage material comprises a mixture of cerium, zirconium, neodymium, and praseodymium. The spinel in this embodiment comprises magnesium aluminum oxides. The spinel and oxygen storage material of the overcoat may be present in the overcoat in a ratio of about 60 to about 40. The copper in the overcoat is present in about 5% to about 50%, preferably about 10% to about 16% by weight.
  • According to an embodiment, a catalyst system, referred to as “ZPGM-5”, comprises a substrate, a washcoat, and an overcoat. The substrate comprises cordierite. The washcoat comprises lanthanum-doped aluminum oxide and at least one oxygen storage material, preferably the oxygen storage material comprises a mixture of cerium, zirconium, neodymium, and praseodymium. Additionally, the oxygen storage material and the lanthanum-doped aluminum oxide may be present in the washcoat in a ratio of about 40 to about 60. The optional impregnation components comprise copper, cerium, zirconium, and lanthanum. The overcoat comprises copper oxide, lanthanum-stabilized aluminum oxide, and at least one oxygen storage material, preferably the oxygen storage material comprises a mixture of cerium, zirconium, neodymium, and praseodymium. The aluminum oxide and oxygen storage material of the overcoat may be present in the overcoat in a ratio of about 75 to about 25. The copper in the overcoat is present in about 5% to about 50%, preferably about 15% by weight.
  • According to an embodiment, a catalyst system, referred to as “ZPGM-4”, comprises a substrate, a washcoat, and an overcoat. The washcoat comprises tin aluminum oxide and at least one oxygen storage material, preferably the oxygen storage material comprises a mixture of cerium, zirconium, neodymium, and praseodymium. The tin aluminum oxide and the oxygen storage material may be present in the washcoat in a ratio of from about 25:75 to about 75:25, preferably in a ratio of about 60 to about 40. The optional impregnation components comprise copper, cerium, zirconium, and lanthanum. The overcoat comprises aluminum, copper, and at least one oxygen storage material, preferably the oxygen storage material comprises a mixture of cerium, zirconium, and lanthanum. The aluminum oxide and oxygen storage material may be present in the overcoat in a ratio of about 60 to about 40. According to an embodiment, there is about 5% to about 30% copper by weight in the overcoat, preferably about 10% to about 20%, more preferably about 12%.
  • According to an embodiment, a catalyst system, referred to as “ZPGM-3”, comprises a substrate and a washcoat. The washcoat comprises copper, tin aluminum oxide, and at least one oxygen storage material, preferably the oxygen storage material comprises a mixture of cerium, zirconium, neodymium, and praseodymium. The tin aluminum oxide and the oxygen storage material may be present in the washcoat in a ratio of about 60 to about 40. If an impregnation step is used, the impregnation components comprise copper, cerium, zirconium, and lanthanum. The cerium, zirconium, and lanthanum may be present in the washcoat in a ratio of about 60 to about 30 to about 10. The washcoat may comprise additional transition metals. According to an embodiment, there is about 5% to about 30% copper by weight in the washcoat, preferably about 10% to about 20%, more preferably about 12%.
  • According to an embodiment, a catalyst system, referred to as “ZPGM-2”, comprises a substrate and a washcoat. The washcoat may comprise, without limitation, copper, aluminum oxide, and at least one oxygen storage material, preferably the oxygen storage material is a mixture of cerium, zirconium, and lanthanum. The aluminum oxide and the oxygen storage material may be present in the washcoat in a ratio of about 60 to about 40. The copper in the washcoat may be about 5% to about 20% copper by weight, preferably about 8%. The washcoat coat may optionally comprise additional transitional metals and/or ceria.
  • According to an embodiment, a catalyst system, referred to as “ZPGM-1”, comprises a substrate and a washcoat. The washcoat comprises at least one carrier material oxide and a perovskite; preferably the carrier material oxide comprises an oxygen storage material, more preferably comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, neodymium, praseodymium, and mixtures thereof, and the perovskite preferably is a mixture of cerium, lanthanum, manganese and copper, having the specific formula Ce0.6La0.4Mn0.6Cu0.4O3.
  • According to an embodiment, the catalyst, referred to as “Type A”, comprises at least one transition metal, at least one alkaline earth metal, cerium, and at least one carrier material oxide. The transition metal, alkaline earth metal and cerium are present in about 5% to about 50% by weight in any ratio of the three components. Preferably, the alkaline earth metals comprise one or more selected from the group consisting of magnesium, calcium, barium, and strontium. The transition metals may be a single transition metal, or a mixture of transition metals which include, but is not limited to, chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, and tungsten.
  • According to an embodiment, the catalyst, referred to as “Type C”, comprises at least one transition metal, at least one alkaline earth metal, and at least one carrier material oxide. The transition metal may be a single transition metal, or a mixture of transition metals which include, but is not limited to, chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, tungsten, and silver. The alkaline earth metal may be, but is not limited to, magnesium, calcium, barium or strontium. The preferred transition metals are copper, nickel, and cobalt, while the preferred alkaline earth metals are barium and strontium. The alkaline earth metal and the transition metal may be present in a molar ratio of about 1:10 to 1:1 and at about 2% to about 50% weight of the catalyst.
  • According to an embodiment, the catalyst, referred to as “Type E”, comprises at least one transition metal and a perovskite having the formula ABO3. The transition metal may be, but is not limited to, copper, nickel, cobalt, manganese, iron, chromium, niobium, molybdenum, tungsten, and silver. Preferably, the transition metals are copper, nickel, and/or cobalt. “A” comprises lanthanum, cerium, magnesium, calcium, barium, strontium, lanthanides, actinides, or a mixture thereof. “B” comprises iron, manganese, copper, nickel, cobalt, cerium, or mixtures thereof. The transition metal(s) is present in about 2% to about 30% by weight.
  • According to one embodiment, the Type E catalyst comprises a perovskite (ABO3), at least one transition metal, and at least one a carrier material oxide. The transition metal may be a single transition metal, or a mixture of transition metals which includes, but is not limited to, chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, tungsten, silver, or mixtures thereof. The perovskite and transition metal are present in about 5% to about 50% by weight.
  • According to an embodiment, the catalyst, referred to as “Type G”, comprises at least one transition metal and a spinel having the formula AB2O4. The transition metal may be, but is not limited to, copper, nickel, cobalt, manganese, iron, chromium, niobium, molybdenum, tungsten, and silver. The preferred transition metals include, copper, nickel, and cobalt; more preferably copper. “A” and “B” each comprise aluminum, magnesium, manganese, gallium, nickel, copper, cobalt, iron, chromium, niobium, titanium, tin, or mixtures thereof. A preferred spinel is MgAl2O4. The transition metal(s) are present in about 2% to about 30% by weight.
  • According to one embodiment, the Type G catalyst comprises a spinel (AB2O4), a transition metal, and a carrier material oxide. The transition metal may be a single transition metal, or a mixture of transition metals which includes, but is not limited to, chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, tungsten, and/or silver. A preferred spinel is MgAl2O4. The spinel and transition metal(s) are present in about 5% to about 50% by weight.
  • Mixed Metal Oxide Catalyst
  • According to an embodiment, a catalyst may be a mixed metal oxide catalyst, which comprises at least one transition metal and at least one other metal. The other metals of the mixed metal oxide may include, but are not limited to alkali and alkaline earth metal, lanthanides, or actinides. For example, the mixed metal oxide may be a spinel, a perovskite, a delafossite, a lyonsite, a garnet, or a pyrochlore.
  • According to an embodiment, the catalyst, referred to as “Type B”, comprises a perovskite having the formula ABO3 or a related structure with the general formula Aa-xBxMOb, wherein “a” is 1 or 2, “b” is 3 when “a” is 1 or “b” is 4 when “a” is 2, and “z” is a number defined by 0.1≦x<0.7. “A” comprises lanthanum, lanthanides, actinides, cerium, magnesium, calcium, barium, strontium, or mixtures thereof. “B” comprises a single transition metal, or a mixture of transition metals including but not limited to iron, manganese, copper, nickel, cobalt, and cerium, or mixture thereof. According to an embodiment, the catalyst may have the formula AMn1-xCuxO3, wherein “A” is lanthanum, cerium, barium, strontium, a lanthanide, or an actinide and “x” is 0 to 1.
  • According to another embodiment, the Type B catalyst may have the formula ACe1-xCuxO3, wherein “A” is barium, strontium, or calcium, and “x” is 0 to 1. According to an embodiment, about 10 g/L to about 180 g/L of the formula ABO3 may be coupled with the substrate.
  • According to one embodiment, the Type B catalyst comprises a perovskite (ABO3) or related structure (with general formula Aa-xBxMOb) and one or more of a carrier material oxide. The perovskite or related structure is present in about 5% to about 50% by weight.
  • According to an embodiment, the catalyst, referred to as “Type F”, comprises a spinel having the formula AB2O4. “A” and “B” of the formula is aluminum, magnesium, manganese, gallium, nickel, copper, cobalt, iron, chromium, titanium, tin, or mixtures thereof.
  • According to an embodiment, the Type F catalyst comprises a spinel and a carrier material oxide. The spinel is present in about 5% to about 50% by weight.
  • Zeolite Catalyst
  • According to an embodiment, a catalyst may be a zeolite catalyst comprising a zeolite or mixture of zeolites and at least one transition metal. A zeolite is mixed aluminosillicates with regular interconnected pores. The zeolite includes, but is not limited to ZSM5, heulandite, chabazite, or mixtures thereof, preferably ZSM5. According to an embodiment, the catalyst, referred to as “Type I” comprises at least one transition metal impregnated into a zeolite or mixtures of zeolite. The transition metal(s) may be a single transition metal or a mixture of transition metal which includes, but is not limited to, chromium, gallium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, tungsten, and silver. Preferably, the transition metals are selected from the group consisting of copper, nickel, gallium, cobalt, and mixtures thereof. The transition metals may be present in about 3% to about 25% by weight in any ratio of transition metals.
  • According to an embodiment, the catalysts of the present invention may reduce pollutants emitted from exhaust. This is done by passing exhaust substantially through a catalyst system, such that the flowing exhaust reduces the pollutants. The exhaust includes, but is not limited to exhaust from an automobile, vehicle, factory, train, airplane, building, and laboratory. Pollutants are any compounds, substances, gases, or waste that causes damage to water, air, land, and any other part of the environment, including carbon monoxide, hydrocarbons, nitrogen oxides, and sulfur.
  • The catalysts of the present invention to decrease the amount of nitrogen oxide emissions. For example: NO+1/2O2→NO2 and 6NO2+8NH3→7N2+12H2O. The catalyst also decreases the amount of the unburned hydrocarbons and carbon monoxide by oxidizing them. For example: 2CxHy+(2x+y/2)O2→2xCO2+yH2O or 2CO+O2→2CO2. The catalysts may also decrease the amount of sulfur emissions.
  • According to an embodiment, a catalyst system comprises a first catalyst system and a second catalyst system. The first catalyst system may be any catalyst described herein. The second catalyst system comprises a catalyst comprising at least one platinum group metal, wherein the catalyst may comprise any platinum group metal known in the art, including, but not limited to mixtures of platinum group metals and carrier material oxides. The first catalyst system and the second catalyst system may be in an orientation such that a gas stream is capable of passing through the first catalyst system followed by the second catalyst system in series or vice versa. Further, a catalyst system may comprise more than a first and a second catalyst system, e.g. a third catalyst system.
  • Preparation of a Zero Platinum Group Metal Catalyst by Impregnation
  • A washcoat having the properties discussed herein may be prepared by methods well known in the art. The washcoat may comprise any of the catalysts and/or additional components described herein. The washcoat is deposited on a substrate and is treated. The treating is done at a temperature between 300° C. and 700° C., preferably about 550° C. The treating may last from about 2 to about 6 hours, preferably about 4 hours. After the washcoat and the substrate are treated, they are cooled to about room temperature. After the washcoat and the substrate are cooled, the washcoat is impregnated with at least one impregnation component. The impregnation component includes, without limitation, a transition-metal salt or salts being dissolved in water and impregnated on the washcoat. Following the impregnation step, the washcoat with the impregnation components are treated. The treating may be performed at about 300° C. to about 700° C., preferably about 550° C. The treating may last from about 2 to about 6 hours, preferably about 4 hours.
  • According to an embodiment, the substrate, the washcoat, and the impregnation components may be treated to form the catalyst composition before or after the washcoat and/or the impregnation components are added to the substrate. In an embodiment, the washcoat and the impregnation component may be treated before coating.
  • The impregnation method may be performed on an overcoat. After depositing the overcoat, the overcoat is impregnated with at least one impregnation component. The impregnation component includes, without limitation, a transition-metal salt or salts being dissolved in water and impregnated on the overcoat. Following the impregnation step, the overcoat with the impregnation components are treated. The treating may be performed at about 300° C. to about 700° C., preferably about 550° C. The treating may last from about 2 hours to about 6 hours, preferably about 4 hours.
  • Preparation of a Zero Platinum Group Metal Catalyst by Precipitation
  • The method of precipitation includes precipitating a transition metal salt or salts on a washcoat. The transition metal salt or salts may be precipitated with, but is not limited to NH4OH, (NH4)2CO3, tetraethylammonium hydroxide, other tetralkylammonium salts, ammonium acetate, or ammonium citrate. The washcoat may be any washcoat described herein. Next, the precipitated transition metal salt or salts and washcoat are treated. The treating may be from about 2 hours to about 24 hours. Next, the precipitated transition metal salt or salts and the washcoat are deposited on a substrate followed by treating for about 2 hours to about 6 hours, preferably about 4 hours at a temperature of about 300° C. to about 700° C., preferably about 550° C. Optionally, after treating, an overcoat may be deposited on the treated precipitated transition metal salt or salts and washcoat and treated again. The overcoat may be treated for about 2 hours to about 6 hours, preferably about 4 hours and at a temperature of about 300° C. to about 700° C., preferably about 550° C.
  • Preparation of a Zero Platinum Group Metal Catalyst by Co-Milling
  • A catalyst and a carrier material oxide are milled together. The catalyst can be synthesized by any chemical technique such as, but not limited to solid-state synthesis, precipitation, or any other technique known in the art. The milled catalyst and carrier material oxide are deposited on a substrate in the form of a washcoat and then treated. The treatment may be from about 2 hours to about 6 hours, preferably about 4 hours and at a temperature of about 300° C. to about 700° C., preferably about 550° C. Optionally, an overcoat may be deposited on the treated catalyst after cooling to about room temperature. The overcoat, washcoat and substrate are treated for about 2 hours to about 6 hours, preferably about 4 hours and at a temperature of 300° C. to about 700° C., preferably about 550° C.
  • The following examples are intended to illustrate, but not to limit, the scope of the invention. It is to be understood that other procedures known to those skilled in the art may alternatively be used.
  • EXAMPLE 1 Pore Volume and Surface Area Measurements for Zero Platinum Group Metal Catalysts
  • FIG. 4 shows the measured pore volume for the fresh catalyst systems ZPGM-1 through ZPGM-5 and FIG. 5 shows the measured pore volume for the aged catalyst systems ZPGM-1 through ZPGM-5. The aged catalyst systems were aged at 950° C. for 16 hours with 10% H2O and air. The y-axis on the right side of FIG. 4 is for the pore volume (cm3/g) of ZPGM-1 only.
  • The pore volumes were measured using a Micromeritics® (Norcross, Ga.) TriStar 3000 gas adsorption analyzer at 77K. The pore volumes were obtained from the nitrogen adsorption isotherms using the Barrett-Joiner-Halenda (BJH) method (E. P. Barrett, L. G. Joyner, P. P. Halenda, “The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms,” J. Am. Chem. Soc. (1951), 73, 373-380).
  • The results in FIGS. 4 and 5 show that the pore volume decreases for all the catalyst systems (ZPGM-1 through ZPGM-5) upon aging. The average pore volume for the fresh ZPGM-1 decreases from 0.106 cm3/g to 0.017 cm3/g for the aged catalyst. Similarly, the average pore volume for the fresh ZPGM-2 decreases from 0.173 cm3/g to 0.116 cm3/g for the aged catalyst. Again, the average pore volume for the fresh ZPGM-3 decreases from 0.107 cm3/g to 0.010 cm3/g for the aged catalyst. The average pore volume for the fresh ZPGM-4 decreases from 0.190 cm3/g to 0.142 cm3/g for the aged catalyst. The average pore volume for the fresh ZPGM-5 decreases from 0.213 cm3/g to 0.122 cm3/g for the aged catalyst.
  • EXAMPLE 2 Surface Area Analysis for Fresh and Aged Catalyst Systems ZPGM-1 through ZPGM-5
  • The surface areas for the fresh and aged ZPGM catalyst systems are presented in FIG. 6. The aged catalyst systems were aged at 950° C. for 16 hours with 10% H2O and air.
  • The surface areas were measured using a Micromeritics® (Norcross, Ga.) TriStar 3000 gas adsorption analyzer at 77K. The surface areas were calculated using the BET (Brunauer, Emmitt and Teller) method (S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 1938, 60, 309).
  • The results in FIG. 6 show that the surface area decreases for all catalyst systems (ZPGM-1 through ZPGM-5) upon aging. The surface area decreases from 18.72 m2/g for the fresh ZPGM-1 to 2.76 m2/g for the aged catalyst. Similarly, the surface area decreases from 38.60 m2/g for the fresh ZPGM-2 to 15.48 m2/g for the aged catalyst. The surface area decreases from 30.78 m2/g for the fresh ZPGM-3 to 16.71 m2/g for the aged catalyst. The surface area decreases from 46.95 m2/g for the fresh ZPGM-4 to 22.06 m2/g for the aged catalyst. The surface area decreases from 53.45 m2/g for the fresh ZPGM-5 to 24.02 m2/g for the aged catalyst.
  • EXAMPLE 3 X-Ray Diffraction Analysis for ZPGM Transition Metal Catalysts
  • FIGS. 7-12 show the X-ray diffraction (XRD) patterns of fresh and aged catalyst systems ZPGM-1 through ZPGM-6; the aged catalyst systems were aged at 950° C. for 16 hrs with 10% H2O and air.
  • The XRD analysis was conducted to determine the crystalline phases present for each catalyst system. The XRD patterns were measured on a Rigaku® powder diffractometer (MiniFlex™) using Cu Ka radiation in the 2-theta range of 20-70° with a step size of 0.05° and a dwell time of 2 s. The tube voltage and current were set at 40 kV and 30 mA, respectively. The resulting diffraction patterns were analyzed using the International Centre for Diffraction Data (ICDD) database.
  • FIG. 7 shows the XRD spectra of the fresh and aged ZPGM-1 catalyst system, Ce0.6La0.4Mn0.6Cu0.4O3, shows the presence of the perovskite (open circles) and fluorite (filled squares) structures. The fluorite and the perovskite structures are larger in the aged sample as evidenced by the sharper peaks.
  • FIG. 8 shows the XRD patterns of fresh and aged ZPGM-2 catalyst system, 8% Cu impregnated on Al2O3+Ce0.64Zr0.21La0.15O2 (60:40 weight ratio of Al2O3 to Ce0.64Zr0.21La0.15O2) (160 g/ml). The XRD spectrum of the fresh ZPGM-2 catalyst system shows the presence of the fluorite structure (open squares), alumina (A) and CuO (filled circles). The aged ZPGM-2 catalyst system shows fluorite (open squares), CuAl2O4 (filled diamonds) and alumina (A). The fluorite structure is larger in the aged sample as evidenced by the sharper peaks.
  • FIG. 9 shows the XRD patterns of fresh and aged ZPGM-3 catalyst system, 8% Cu+6.1% Ce+2.4% Zr+1.5% La impregnated on 15% Sn—Al2O3+Ce0.6Zr0.3Nd0.05Pr0.05O2 (60:40 weight ratio of Sn—Al2O3 to Ce0.6Zr0.3Nd0.05Pr0.05O2) (200 g/L). The XRD of the fresh ZPGM-3 catalyst system shows the presence of the fluorite structure (open circles), ZrO2 (open squares), alumina (A) and CuO (filled circles). The aged ZPGM-3 catalyst system shows fluorite (open circles), ZrO2 (open squares), SnO2 (filled circles), CuAl2O4 (filled diamonds) and alumina (A). The cordierite peak in the aged sample is from the substrate. During the aging the tin oxide dissociates from the alumina, the Cu reacts with the Al2O3 to form CuAl2O4.
  • FIG. 10 shows the XRD patterns of fresh and aged ZPGM-4 catalyst system, which is composed of an overcoat containing 12% Cu impregnated on Ce0.6Zr0.21La0.15O2+Al2O3 (60:40 weight ratio of Ce0.6Zr0.21La0.15O2 to Al2O3) and a washcoat containing 8% Cu+6.1% Ce+2.4% Zr+1.5% La impregnated impregnated on 15% Sn—Al2O3+Ce0.6Zr0.3Nd0.05Pr0.05O2 (60:40 weight ratio of Sn—Al2O3 to Ce0.6Zr0.3Nd0.05O2). The XRD spectrum of the fresh ZPGM-4 catalyst system shows the presence of the fluorite structure (filled circles), CeO2 (open squares), alumina (A) and CuO (filled squares). The aged ZPGM-4 catalyst system shows fluorite (filled circles), CeO2 (open squares), SnO2 (open circles), CuAl2O4 (filled diamonds) and alumina (A). During the aging the tin oxide dissociates from the alumina, the Cu reacts with the Al2O3 to form CuAl2O4.
  • FIG. 11 shows the XRD patterns of fresh and aged ZPGM-5 catalyst system, which is composed of an overcoat containing 12.4% CuO impregnated on La—Al2O3+Ce0.6Zr0.3Nd0.05Pr0.05O2 (25:75 weight ratio of La—Al2O3 to Ce0.6Zr0.3Nd0.05Pr0.05O2) (65 g/L) and a washcoat containing 8% Cu+6.1% Ce+2.4% Zr+1.5% La impregnated on La—Al2O3+Ce0.6Zr0.3Nd0.05Pr0.05O2 (60:40 weight ratio of La—Al2O3 to Ce0.6Zr0.3Nd0.05Pr0.05O2) (180 g/L). The XRD spectrum of the fresh ZPGM-5 catalyst system shows the presence of the fluorite structure (filled circles) and alumina (A). The aged ZPGM-5 catalyst system shows fluorite (filled circles), CuAl2O4 (filled diamonds) and alumina (A). During the aging the Cu reacts with the Al2O3 to form CuAl2O4.
  • FIG. 12 shows the XRD patterns of fresh and aged ZPGM-6 catalyst system, which is composed of an overcoat containing 10% Cu+12% Ce impregnated on MgAl2O4+16% Cu impregnated on Ce0.6Zr0.3Nd0.05Pr0.05O2 (60:40 weight ratio of Ce impregnated on MgAl2O4 to 16% Cu impregnated on Ce0.6Zr0.3Nd0.05Pr0.05O2) (65 g/L) and a washcoat containing 4% Cu+6.1% Ce+2.4% Zr+1.5% La impregnated on MgAl2O4+Ce0.64Zr0.21La0.15O2 (60:40 weight ratio of MgAl2O4 to Ce0.64Zr0.21La0.15O2) (180 g/L). The XRD spectrum of the fresh ZPGM-6 catalyst system shows the presence of two fluorite structures (filled and open circles), and MgAl2O4 (open diamonds). The aged ZPGM-6 catalyst system shows two fluorite structures (filled and open circles), MgAl2O4 (open diamonds), CuAl2O4 (filled diamonds), and CuO (filled squares). During the aging the CZL and CuO became more crystalline, and some CuAl2O4 formed.
  • EXAMPLE 4 Sweep Test for Catalyst Systems ZPGM-1 through ZPGM-6
  • FIGS. 13-18 show the sweep test results for catalyst systems ZPGM-1 through ZPGM-6 (as described above in Examples 3-8), respectively. The sweep test was performed with an inlet temperature of 600° C., an air/fuel span of ±0.2 and a cycle frequency of 1 Hz. A sweep test indicates the catalyst performance at various R-values (moles of reductant divided by moles of oxidant). High conversions over a large range of R-values indicate a promising catalyst because it can perform well under rich (R-values>1) and lean (R-values<1) engine conditions. The aged catalyst systems were aged at 1050° C. for 10 hrs cycling between a 56 second rich segment and a 4 second lean segment.
  • FIG. 13 shows the sweep test results for the fresh and aged ZPGM-1 catalyst system. The sweep results for the fresh catalyst show that the CO conversion decreases with R-values>1.05, while the hydrocarbon (HC) conversion decreases with increasing R-values. The NO conversion increases with R-value>0.85. The catalytic properties for CO, hydrocarbons and NO decrease after aging; the NO conversion is <5% over the entire R-value range tested. The CO conversion of the aged ZPGM-1 decreases with increasing R-value. The HC conversion for the aged ZPGM-1 is best for R-values between 0.95 and 1.05.
  • FIG. 14 shows the sweep test results for the fresh and aged ZPGM-2 catalyst system. The sweep results for the fresh catalyst show that the CO conversion decreases with R-values>1.05, while the hydrocarbon (HC) conversion decreases with increasing R-values. The NO conversion increases with R-value>0.85. The catalytic properties for CO, hydrocarbons and NO decrease after aging. The CO and HC conversions of the aged ZPGM-2 decrease with increasing R-value. The NO conversion is the highest at R=0.85, for the aged ZPGM-2 catalyst system.
  • FIG. 15 shows the sweep test results for the fresh and aged ZPGM-3 catalyst system. The sweep results for the fresh catalyst show that the CO conversion decreases with R-values>1.05, while the hydrocarbon (HC) conversion decreases with increasing R-values. The NO conversion increases with increasing R-values. The catalytic properties for CO, hydrocarbons and NO decrease after aging. The CO and HC conversions of the aged ZPGM-3 decrease with increasing R-value. The NO conversion for the aged ZPGM-3 increases with R-values>0.95.
  • FIG. 16 shows the sweep test results for the fresh and aged ZPGM-4 catalyst system. The sweep results for the fresh catalyst show that the CO conversion decreases with R-values>0.975, while the hydrocarbon (HC) conversion decreases with increasing R-values. The NO conversion increases with increasing R-values. The catalytic properties for CO, hydrocarbons and NO decrease after aging. The CO and HC conversions of the aged ZPGM-4 decrease with increasing R-value. The NO conversion for the aged ZPGM-4 increases with R-values>0.95.
  • FIG. 17 shows the sweep test results for the fresh and aged ZPGM-5 catalyst system. The sweep results for the fresh catalyst show that the CO conversion decreases with R-values>0.975, while the hydrocarbon (HC) conversion decreases with increasing R-values. The NO conversion increases with increasing R-values. The catalytic properties for CO, hydrocarbons and NO decrease after aging. The CO and HC conversions of the aged ZPGM-5 decrease with increasing R-value. The NO conversion for the aged ZPGM-5 increases with R-values>1.05.
  • FIG. 18 shows the sweep test results for the fresh and aged ZPGM-6 catalyst system. The sweep results for the fresh catalyst show that the CO conversion decreases with R-values>0.975, while the hydrocarbon (HC) conversion decreases with increasing R-values. The NO conversion increases with increasing R-values. The catalytic properties for CO, hydrocarbons and NO decrease after aging. The CO and HC conversions of the aged ZPGM-6 decrease with increasing R-value. The NO conversion for the aged ZPGM-6 increases with R-values>0.975.
  • EXAMPLE 5 Light-Off Test for Type D or Type H ZPGM Transition Metal Catalysts
  • FIGS. 19-21 show the light-off test results for examples of Type D or Type H ZPGM Transition Metal Catalysts. It should be noted that a catalyst may fall into one or more types, such as here, where the catalyst is both Type D and Type H. A light-off test was performed on aged (800° C. for 16 hours, composed of a 56 second rich segment and a 4 second lean segment) catalysts of the present invention. The test was performed by increasing the temperature from about 100° C. to 640° C. at R-value=1.05 and R-value=1.5. The light-off test measures the conversions of nitrogen oxide, carbon monoxide, and hydrocarbons as a function of the catalyst system temperature. For a specific temperature, a higher conversion signifies a more efficient catalyst. Conversely, for a specific conversion, a lower temperature signifies a more efficient catalyst.
  • FIG. 19 shows the results for Type D/H catalyst with a composition of 16% Cu/Ce0.3Zr0.6Nd0.05Pr0.05O2. It should be noted that a catalyst may fall into one or more types, such as here, where the catalyst is both Type D and Type H. The light-off test at R=1.05 shows that the catalyst has T50 for CO at 267° C. and a T50 for HC at 525° C. The maximum conversion for NO is about 2% at 640° C. Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates. The light-off test at R=1.5 shows that the catalyst has T50s for CO and HC decrease to 323° C. and 595° C., respectively. The NO light-off at R=1.5 shows a T50 of 494° C.
  • FIG. 20 shows the results for Type D/H catalyst with a composition of 12% Cu/Ce0.6Zr0.3La0.1O2. It should be noted that a catalyst may fall into one or more types, such as here, where the catalyst is both Type D and Type H. The light-off test at R=1.05 shows that the catalyst has T50 for CO at 237° C. and a T50 for HC at 543° C. The maximum conversion for NO is about 4% at 640° C. Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates. The light-off test at R=1.5 shows that the catalyst has T50s for CO and HC decrease to 329° C. and 611° C., respectively. The NO light-off at R=1.5 shows a T50 of 515° C.
  • FIG. 21 shows the results for Type D/H catalyst with a composition of 10% Cu+12% Ce/La—Al2O3. It should be noted that a catalyst may fall into one or more types, such as here, where the catalyst is both Type D and Type H. The light-off test at R=1.05 shows that the catalyst has T50 for CO at 298° C. and a T50 for HC at 546° C. The maximum conversion for NO is about 3% at 640° C. Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates. The light-off test at R=1.5 shows that the catalyst has T50s for CO and HC decrease to 325° C. and 598° C., respectively. The NO light-off at R=1.5 shows a T50 of 461° C.
  • EXAMPLE 6 Light-Off Test for Type F ZPGM Transition Metal Catalysts
  • FIGS. 22-24 show the light-off test results for examples of Type F catalyst. A light-off test was performed on aged (800° C. for 16 hours, composed of a 56 second rich segment and a 4 second lean segment) catalysts of the present invention. The test was performed by increasing the temperature from about 100° C. to 640° C. at R-value=1.05 and R-value=1.5. The light-off test measures the conversions of nitrogen oxide, carbon monoxide, and hydrocarbons as a function of the catalyst system temperature. For a specific temperature, a higher conversion signifies a more efficient catalyst. Conversely, for a specific conversion, a lower temperature signifies a more efficient catalyst.
  • FIG. 22 shows the results for Type F catalyst with a composition of CuLa0.04Al1.96O4. The light-off test at R=1.05 shows that the catalyst has T50 for CO at 334° C. The maximum conversions for NO and HC at 640° C. are about 6% and 38%, respectively. Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates. The light-off test at R=1.5 shows that the catalyst has T50 for CO decreases to about 453° C. The NO light-off at R=1.5 shows a T50 of 521° C. While, the maximum conversion for HC is about 16% at 640° C.
  • FIG. 23 shows the results for Type F catalyst with a composition of Cu0.5Fe0.5La0.04Al1.96O4. The light-off test at R=1.05 shows that the catalyst has T50 for CO at 346° C. and a T50 for HC at 535° C. The maximum NO conversion is about 1% at 640° C. Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates. The light-off test at R=1.5 shows that the catalyst has T50s for CO and HC decrease to 368° C. and 588° C., respectively. The NO light-off at R=1.5 shows a T50 of 491° C.
  • FIG. 24 shows the results for Type F catalyst with a composition of CuLa0.04Al1.47Mn0.49O4. The light-off test at R=1.05 shows that the catalyst has T50 for CO at 371° C. The maximum conversions for NO and HC at 640° C. are about 2% and 27%, respectively. Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates. The light-off test at R=1.5 shows that the catalyst has T50 for CO decreases to about 479° C. While, the maximum conversions for NO and HC are each about 16% at 640° C.
  • EXAMPLE 7 Light-Off Test for Type G ZPGM Transition Metal Catalysts
  • FIGS. 25 -28 show the light-off test results for examples of Type G/Type D catalyst. It should be noted that a catalyst may fall into one or more types, such as here, where the catalyst is both Type G and Type D. A light-off test was performed on aged (800° C. for 16 hours, composed of a 56 second rich segment and a 4 second lean segment) catalysts of the present invention. The test was performed by increasing the temperature from about 100° C. to 640° C. at R-value=1.05 and R-value=1.5. The light-off test measures the conversions of nitrogen oxide, carbon monoxide, and hydrocarbons as a function of the catalyst system temperature. For a specific temperature, a higher conversion signifies a more efficient catalyst. Conversely, for a specific conversion, a lower temperature signifies a more efficient catalyst.
  • FIG. 25 shows the results for Type G/Type D catalyst with a composition of 10% Ag/Cu0.5Fe0.5La0.04Al1.96O4. It should be noted that a catalyst may fall into one or more types, such as here, where the catalyst is both Type G and Type D. The light-off test at R=1.05 shows that the catalyst has T50 for CO at 383° C. The maximum conversions for NO and HC at 640° C. are about 1% and 33%, respectively. Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates. The light-off test at R=1.5 shows that the catalyst has T50 for CO decreases to about 394° C. The NO light-off at R=1.5 shows a T50 of 485° C. While, the maximum conversion for HC is about 16% at 640° C.
  • FIG. 26 shows the results for Type G/Type D catalyst with a composition of 10% Cu/CuLa0.04Al1.96O4. It should be noted that a catalyst may fall into one or more types, such as here, where the catalyst is both Type G and Type D. The light-off test at R=1.05 shows that the catalyst has T50 for CO at 272° C. and a T50 for HC at 464° C. There is no measured NO conversion up to 640° C. Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates. The light-off test at R=1.5 shows that the catalyst has T50s for CO and HC decrease to 375° C. and 565° C., respectively. The NO light-off at R=1.5 shows a T50 of 500° C.
  • FIG. 27 shows the results for Type G/Type D catalyst with a composition of 20% CuO/MgLa0.04Al1.96O4. It should be noted that a catalyst may fall into one or more types, such as here, where the catalyst is both Type G and Type D. The light-off test at R=1.05 shows that the catalyst has T50 for CO at 305° C. and a T50 for HC at 513° C. The maximum NO conversion is about 1% at 640° C. Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates. The light-off test at R=1.5 shows that the catalyst has T50s for CO and HC decrease to 412° C. and 587° C., respectively. The NO light-off at R=1.5 shows a T50 of 478° C.
  • FIG. 28 shows the results for Type G/Type D catalyst with a composition of 10% Cu+12% Ce/MgLa0.04Al1.96O4. It should be noted that a catalyst may fall into one or more types, such as here, where the catalyst is both Type G and Type D. The light-off test at R=1.05 shows that the catalyst has T50 for CO at 302° C. and a T50 for HC at 506° C. The maximum NO conversion is about 2% at 640° C. Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates. The light-off test at R=1.5 shows that the catalyst has T50s for CO and HC decrease to 338° C. and 585° C., respectively. The NO light-off at R=1.5 shows a T50 of 461° C.
  • EXAMPLE 8 Light-Off Test for Type D ZPGM Transition Metal Catalysts
  • FIG. 29 shows the light-off test results for an example of Type D catalyst. A light-off test was performed on aged (800° C. for 16 hours, composed of a 56 second rich segment and a 4 second lean segment) catalysts of the present invention. The test was performed by increasing the temperature from about 100° C. to 640° C. at R-value=1.05 and R-value=1.5. The light-off test measures the conversions of nitrogen oxide, carbon monoxide, and hydrocarbons as a function of the catalyst system temperature. For a specific temperature, a higher conversion signifies a more efficient catalyst. Conversely, for a specific conversion, a lower temperature signifies a more efficient catalyst.
  • FIG. 29 shows the results for Type D catalyst with a composition of 12% CuO/(Ce0.6Zr0.3La0.1O2+MgLa0.04Al1.96O4 (40:60)). The light-off test at R=1.05 shows that the catalyst has T50s for CO at 258° C., for HC at 381° C., and for NO at 519° C. Increasing the R-value to 1.5 improves the NO conversion, but the CO and HC performance deteriorates. The light-off test at R=1.5 shows that the catalyst has T50s for CO and HC decrease to 316° C. and 464° C., respectively. The NO light-off at R=1.5 shows a T50 of 375° C.
  • EXAMPLE 9 Light-Off Test for Type I Zeolite Catalyst
  • FIG. 30 shows the light-off test results for an example of Type I Zeolite catalyst. A light-off test was performed on a fresh catalyst of the present invention. The test was performed by increasing the temperature from about 100° C. to 640° C. at R-value=1.05. The light-off test measures the conversions of nitrogen oxide, carbon monoxide, and hydrocarbons as a function of the catalyst system temperature. For a specific temperature, a higher conversion signifies a more efficient catalyst. Conversely, for a specific conversion, a lower temperature signifies a more efficient catalyst.
  • FIG. 30 shows the results for Type I catalyst with a composition of 5% Ga+8% Cu/(ZSM-5). The light-off test at R=1.05 shows that the catalyst has T50s for CO at 376° C., for HC at 319° C., and for NO at 343° C.
  • EXAMPLE 10 Light-Off Test for Architecture Type 3, which Comprises a Substrate, a Washcoat, and an Overcoat, wherein the Overcoat Comprises at Least One Catalyst, but the Washcoat does not
  • FIG. 31 shows the light-off test results for an example of Architecture Type 3 Catalyst, which comprises a substrate, a washcoat, and an overcoat, wherein the overcoat comprises at least one catalyst, but the washcoat does not (washcoat comprises La—Al2O3+Ce0.6Zr0.3Nd0.05Pr0.05O2; 60:40; 100 g/L and overcoat comprises 12% Cu on Ce0.6Zr0.3Nd0.05Pr0.05O2; 150 g/L). A light-off test was performed on aged (800° C. for 16 hours, composed of a 56 second rich segment and a 4 second lean segment) catalysts of the present invention. The test was performed by increasing the temperature from about 100° C. to 640° C. at R-value=1.05 and R-value=1.5. The light-off test measures the conversions of nitrogen oxide, carbon monoxide, and hydrocarbons as a function of the catalyst system temperature. For a specific temperature, a higher conversion signifies a more efficient catalyst. Conversely, for a specific conversion, a lower temperature signifies a more efficient catalyst.
  • The light-off test at R=1.05 shows that the catalyst has T50 for CO at 314° C. and a T50 for HC at 464° C. The maximum NO conversion is about 6% at 640° C. Increasing the R-value to 1.5 improves the NO conversion, but the HC performance deteriorates. The light-off test at R=1.5 shows that the catalyst has T50s for CO and HC decrease to 316° C. and 566° C., respectively. The NO light-off at R=1.5 shows a T50 of 453° C.
  • EXAMPLE 11 Light-Off Test for Catalyst Systems ZPGM-1 through ZPGM-6 (Fresh and Aged)
  • FIGS. 32-37 show the light-off test results for ZPGM-1 through ZPGM-6. A light-off test was performed on fresh and aged (1050° C. for 10 hrs cycling between a 56 second rich segment and a 4 second lean segment) catalysts of the present invention. The test was performed by increasing the temperature from about 100° C. to 640° C. at R-value=1.05. The plotted temperatures in the figures were measured at the middle of the catalyst. The light-off test measures the conversions of nitrogen oxide, carbon monoxide, and hydrocarbons as a function of the catalyst system temperature. For a specific temperature, a higher conversion signifies a more efficient catalyst. Conversely, for a specific conversion, a lower temperature signifies a more efficient catalyst.
  • FIG. 32 shows the light-off results at R=1.05 for fresh and aged ZPGM-1 catalyst system (Ce0.6La0.4Mn0.6Cu0.4O3). The light-off test for the fresh catalyst system shows that the CO and HC exhibit T50s at 288° C. and at 503° C., respectively. The maximum NO conversion is about 19% at 600° C. After aging, the catalyst performance decreases for CO, HC and NO. The aged catalyst shows a T50 for CO at about 600° C. The maximum conversions for HC and NO are 19% and 2%, respectively, at 600° C.
  • FIG. 33 shows the light-off results at R=1.05 for fresh and aged ZPGM-2 catalyst system (8% Cu impregnated on Al2O3+Ce0.64Zr0.21La0.15O2 (60:40 weight ratio of Al2O3 to Ce0.64Zr0.21La0.15O2)). The light-off test for the fresh catalyst system shows that the CO and HC exhibit T50s at 205° C. and at 389° C., respectively. The maximum NO conversion is about 22% at 600° C. After aging, the catalyst performance decreases for CO, HC and NO. The maximum conversions for CO, HC and NO are 27%, 24% and 3%, respectively, at 600° C.
  • FIG. 34 shows the light-off results at R=1.05 for fresh and aged ZPGM-3 catalyst system (8% Cu+6.1% Ce+2.4% Zr+1.5% La impregnated on 15% Sn—Al2O3+Ce0.6Zr0.3Nd0.05Pr0.05O2 (60:40 weight ratio of Sn—Al2O3 to Ce0.6Zr0.3Nd0.05Pr0.05O2)). The light-off test for the fresh catalyst system shows that the CO, HC and NO exhibit T50s at 205° C., at 389° C., and 651° C., respectively. After aging, the catalyst performance decreases for CO, HC and NO. The aged catalyst shows a T50 for CO and HC at about 599° C. and 651° C., respectively. The maximum conversion for NO is 5% at 700° C.
  • FIG. 35 shows the light-off results at R=1.05 for fresh and aged ZPGM-4 catalyst system (overcoat containing 12% Cu impregnated on Ce0.64Zr0.21La0.15O2+Al2O3 (60:40 weight ratio of Ce0.64Zr0.21La0.5O2 to Al2O3) and a washcoat containing 8% Cu+6.1% Ce+2.4% Zr+1.5% La impregnated impregnated on 15% Sn—Al2O3+Ce0.6Zr0.3Nd0.05Pr0.05O2 (60:40 weight ratio of Sn—Al2O3 to Ce0.6Zr0.3Nd0.05Pr0.05O2)). The light-off test for the fresh catalyst system shows that the CO, HC and NO exhibit T50s at 254° C., at 442° C., and 636° C., respectively. After aging, the catalyst performance decreases for CO, HC and NO. The aged catalyst shows a T50 for CO and HC at about 462° C. and 604° C., respectively. The maximum conversion for NO is about 30% at 770° C.
  • FIG. 36 shows the light-off results at R=1.05 for fresh and aged ZPGM-5 catalyst system (overcoat containing 12.4% CuO impregnated on La—Al2O3+Ce0.6Zr0.3Nd0.05Pr0.05O2 (25:75 weight ratio of La—Al2O3 to Ce0.6Zr0.3Nd0.05Pr0.05O2) and a washcoat containing 8% Cu+6.1% Ce+2.4% Zr+1.5% La impregnated on La—Al2O3+Ce0.6Zr0.3Nd0.05Pr0.05O2 (60:40 weight ratio of La—Al2O3 to Ce0.6Zr0.3Nd0.05Pr0.05O2)). The light-off test for the fresh catalyst system shows that the CO, HC and NO exhibit T50s at 262° C., at 449° C., and 608° C., respectively. After aging, the catalyst performance decreases for CO, HC and NO. The aged catalyst shows a T50 for CO and HC at about 571° C. and 654° C., respectively. The maximum conversion for NO is about 1% at 700° C.
  • FIG. 37 shows the light-off results at R=1.05 for fresh and aged ZPGM-6 catalyst system (overcoat containing 10% Cu+12% Ce impregnated on MgAl2O4+16% Cu impregnated on Ce0.6Zr0.3Nd0.05Pr0.05O2 (60:40 weight ratio of Ce impregnated on MgAl2O4 to 16% Cu impregnated on Ce0.6Zr0.3Nd0.05Pr0.05O2) (65 g/L) and a washcoat containing 4% Cu+6.1% Ce+2.4% Zr+1.5% La impregnated on MgAl2O4+Ce0.64Zr0.21La0.15O2 (60:40 weight ratio of MgAl2O4 to Ce0.64Zr0.21La0.15O2)). The light-off test for the fresh catalyst system shows that the CO, HC and NO exhibit T50s at 262° C., at 463° C., and 622° C., respectively. After aging, the catalyst performance decreases for CO, HC and NO. The aged catalyst shows a T50 for CO and HC at about 425° C. and 613° C., respectively. The maximum conversion for NO is about 23% at 730° C.
  • Although the present invention has been described in terms of specific embodiments, changes and modifications can be made without departing from the scope of the invention which is intended to be defined only by the scope of the claims. All references cited herein are hereby incorporated by reference in their entirety, including any references cited therein.

Claims (146)

1. A catalyst system, comprising:
a substrate; and
a washcoat,
wherein the washcoat comprises at least one oxide solid,
wherein the oxide solid is selected from the group consisting of a carrier material oxide, a catalyst, and a mixture thereof,
wherein the catalyst system is substantially free of platinum group metals.
2. The catalyst system of claim 1, wherein the carrier material oxide comprises one or more selected from the group consisting of an oxygen storage material, aluminum oxide, doped aluminum oxide, spinel, delafossite, lyonsite, garnet, perovskite, pyrochlore, doped ceria, fluorite, zirconium oxide, doped zirconia, titanium, tin oxide, silicon dioxide, and mixtures thereof.
3. The catalyst system of claim 1, wherein the catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalyst, and mixtures thereof.
4. The catalyst system of claim 2, wherein the catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalyst, and mixtures thereof.
5. The catalyst system of claim 2, wherein the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, yttirum, lanthanides, actinides, and mixtures thereof.
6. The catalyst system of claim 5, wherein the oxygen storage material comprises one or more selected from the group consisting of (a) a mixture of ceria and zirconia; (b) a mixture of ceria, zirconia, and lanthanum; and (c) a mixture of ceria, zirconia, neodymium, and praseodymium.
7. The catalyst system of claim 1, further comprising an overcoat comprising at least one oxide solid, wherein the overcoat oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof.
8. The catalyst system of claim 7, wherein the carrier material oxide comprises one or more selected from the group consisting of an oxygen storage material, aluminum oxide, doped aluminum oxide, spinel, delafossite, lyonsite, garnet, perovskite, pyrochlore, doped ceria, fluorite, zirconium oxide, doped zirconia, titanium, tin oxide, silicon dioxide, and mixtures thereof.
9. The catalyst system of claim 7, wherein the catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalyst, and mixtures thereof.
10. The catalyst system of claim 8, wherein the catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalyst, and mixtures thereof.
11. The catalyst system of claim 8, wherein the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, yttrium, lanthanides, actinides, and mixtures thereof.
12. The catalyst system of claim 1, wherein the catalyst system is completely free of platinum group metals.
13. A catalyst system, comprising:
a substrate;
a washcoat,
wherein the washcoat comprises one or more selected from the group consisting of a carrier material oxide, ceramic, and mixtures thereof; and
an overcoat,
wherein the overcoat comprises a catalyst,
wherein the catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalyst, and a mixture thereof, and
wherein the catalyst system is substantially free of platinum group metals.
14. The catalyst system of claim 13, further comprising one or more selected from the group consisting of a perovskite, a spinel, an oxygen storage material, alumina, and mixtures thereof.
15. The catalyst system of claim 14, further comprising one or more selected from the group consisting of a spinel, an oxygen storage material, alumina, and mixtures thereof.
16. The catalyst system of claim 15, further comprising one or more selected from the group consisting of a spinel, an oxygen storage material, alumina, and mixtures thereof.
17. The catalyst system of claim 15 or 16, further comprising one or more selected from the group consisting of (a) a spinel and at least one oxygen storage material; and (b) alumina and at least one oxygen storage material.
18. The catalyst system of claim 1 or 13 wherein the catalyst comprises at least one transition metal and at least one carrier material oxide,
wherein the transition metal comprises one or more selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, silver, and tungsten.
19. The catalyst system of claim 18, wherein the carrier material oxide comprises one or more selected from the group consisting of an oxygen storage material, aluminum oxide, doped aluminum oxide, spinel, delafossite, lyonsite, garnet, perovskite, pyrochlore, doped ceria, fluorite, zirconium oxide, doped zirconia, titanium, tin oxide, silicon dioxide, and mixtures thereof.
20. The catalyst system of claim 19, wherein the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, yttrium, lanthanides, actinides, and mixtures thereof.
21. The catalyst system of claim 1 or 13, wherein the catalyst comprises copper and at least one carrier material oxide.
22. The catalyst system of claim 21, wherein the catalyst is about 5% to about 50% by weight.
23. A catalyst system, comprising:
a substrate,
wherein the substrate comprises cordierite;
a washcoat,
wherein the washcoat comprises copper, a spinel, and at least one oxygen storage material,
wherein the spinel comprises magnesium aluminum oxide,
wherein the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, and lanthanum; and
an overcoat,
wherein the overcoat comprises copper, a spinel, and at least one oxygen storage material,
wherein the spinel comprises magnesium aluminum oxide,
wherein the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, neodymium, and praseodymium,
wherein the catalyst system is substantially free of platinum group metals.
24. The catalyst system of claim 23, wherein the aluminum oxide and oxygen storage material of the overcoat is present in a weight ratio of about 75 to about 25.
25. The catalyst system of claim 23, wherein the copper in the overcoat is about 5% to about 50% by weight.
26. The catalyst system of claim 25, wherein the copper in the overcoat is about 10% to about 16% by weight.
27. The catalyst system of claim 23, wherein the catalyst system is completely free of platinum group metals.
28. A catalyst system, comprising:
a substrate,
wherein the substrate comprises cordierite;
a washcoat,
wherein the washcoat comprises lanthanum aluminum oxide and at least one oxygen storage material; and
an overcoat,
wherein the overcoat comprises copper oxide, lanthanum aluminum oxide, and at least one oxygen storage material,
wherein the catalyst system is substantially free of platinum group metals.
29. The catalyst system of claim 28, wherein the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, yttrium, lanthanides, actinides, and mixtures thereof.
30. The catalyst system of claim 28, wherein the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, neodymium, praseodeymium, and mixtures thereof.
31. The catalyst system of claim 28, wherein the lanthanum aluminum oxide and oxygen storage material of the overcoat is present in a weight ratio of about 75 to about 25.
32. The catalyst system of claim 28, wherein the copper is present in about 5% to about 50% by weight.
33. The catalyst system of claim 28, wherein the aluminum oxide and the oxygen storage material of the overcoat is present in the overcoat in a weight ratio of about 75 to about 25.
34. The catalyst system of claim 28, wherein the catalyst system is completely free of platinum group metals.
35. A catalyst system, comprising:
a substrate;
a washcoat,
wherein the washcoat comprises tin aluminum oxide, copper, cerium, zirconium, lanthanum, and at least one oxygen storage material,
wherein the oxygen storage material comprises a mixture of cerium, zirconium, neodymium, and praseodymium; and
an overcoat,
wherein the overcoat comprises aluminum, copper, and at least one oxygen storage material,
wherein the catalyst system is substantially free of platinum group metals.
36. The catalyst system of claim 35, wherein the oxygen storage material of the overcoat comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, yttrium, lanthanides, actinides, and mixtures thereof.
37. The catalyst system of claim 35, wherein the aluminum oxide and oxygen storage material are present in the washcoat in a weight ratio of 25:75 to about 75:25.
38. The catalyst system of claim 35, wherein the aluminum oxide and oxygen storage material are present in the washcoat in a weight ratio of about 60 to about 40.
39. The catalyst system of claim 35, wherein the aluminum and at least one oxygen storage material are present in the overcoat in a weight ratio of about 60 to about 40.
40. The catalyst system of claim 35, wherein the copper present in the overcoat is about 5% to about 20% by weight.
41. The catalyst system of claim 35, wherein the catalyst system is completely free of platinum group metals.
42. A catalyst system, comprising:
a substrate; and
a washcoat,
wherein the washcoat comprises copper, tin aluminum oxide, and at least one oxygen storage material,
wherein the catalyst system is substantially free of platinum group metals.
43. The catalyst system of claim 42, wherein the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, neodymium, and praseodymium, and mixtures thereof.
44. The catalyst system of claim 43, wherein the oxygen storage material comprises a mixture of cerium, zirconium, and lanthanum.
45. The catalyst system of claim 44, wherein the cerium, zirconium, and lanthanum is present in the washcoat in a weight ratio of about 60 to about 30 to about 10.
46. The catalyst system of claim 42, wherein the washcoat further comprises at least one transition metal.
47. The catalyst system of claim 42, wherein the copper present in the washcoat is about 5% to about 30% by weight.
48. The catalyst system of claim 42, wherein the catalyst system is completely free of platinum group metals.
49. A catalyst system, comprising:
a substrate; and
a washcoat,
wherein the washcoat comprises aluminum oxide, copper, and at least one oxygen storage material,
wherein the oxygen storage material comprises a mixture of cerium, zirconium, and lanthanum,
wherein the catalyst system is substantially free of platinum group metals.
50. The catalyst system of claim 49, wherein the aluminum oxide and the oxygen storage material are present in the washcoat in a weight ratio of about 60 to about 40.
51. The catalyst system of claim 49, wherein the copper present in the washcoat is about 5% to about 20% by weight.
52. The catalyst system of claim 49, wherein the washcoat further comprises one or more selected from the group consisting of a transition metal, ceria, and a mixture thereof.
53. The catalyst system of claim 49, wherein the catalyst system is completely free of platinum group metals.
54. A catalyst system, comprising:
a substrate; and
a washcoat,
wherein the washcoat comprises at least one carrier material oxide and a perovskite,
wherein the perovskite comprises Ce0.6La0.4Mn0.6Cu0.4O3,
wherein the catalyst system is substantially free of platinum group metals.
55. The catalyst system of claim 54, wherein the carrier material oxide comprises one or more oxygen storage material.
56. The catalyst system of claim 55, wherein the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, neodymium, praseodymium, and mixtures thereof.
57. The catalyst system of claim 1 or 13, wherein the catalyst comprises at least one transition metal, at least one alkaline earth metal, cerium, and a carrier material oxide,
wherein the transition metal comprises one or more selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, tungsten, silver, and mixtures thereof, and
wherein the alkaline earth metal comprises one or more selected from the group consisting of magnesium, calcium, barium, strontium, and mixtures thereof.
58. The catalyst system of claim 57, wherein the alkaline earth metal and cerium are present in about 5% to about 50% by weight.
59. The catalyst system of claim 1 or 13, wherein the catalyst comprises at least one transition metal, at least one alkaline earth metal, and a carrier material oxide,
wherein the transition metal comprises one or more selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, tungsten, silver, and mixtures thereof, and
wherein the alkaline earth metal comprises one or more selected from the group consisting of magnesium, calcium, barium, strontium, and mixtures thereof.
60. The catalyst system of claim 59, wherein the transition metal comprises one or more selected from the group consisting of copper, nickel, cobalt, and mixtures thereof.
61. The catalyst system of claim 59, wherein the alkaline earth metal comprises one or more selected from the group consisting of barium, strontium, and mixtures thereof.
62. The catalyst system of claim 59, wherein the alkaline earth metal and the transition metal are present in a molar ratio of about 1:10 to 1:1.
63. The catalyst system of claim 59, wherein the alkaline earth metal and the transition metal is about 2% to about 50% weight.
64. The catalyst system of claim 1 or 13, wherein the catalyst comprises at least one transition metal and a perovskite having the formula ABO3,
wherein A comprises one or more selected from the group consisting of lanthanum, cerium, magnesium, calcium, barium, strontium, lanthanides, actinides, and mixtures thereof,
wherein B comprises one or more selected from the group consisting of iron, manganese, copper, nickel, cobalt, cerium, and mixtures thereof.
65. The catalyst system of claim 64, wherein the transition metal comprises one or more selected from the group consisting of copper, nickel, cobalt, manganese, iron, chromium, niobium, molybdenum, tungsten, silver, and mixtures thereof.
66. The catalyst system of claim 65, wherein the transition metal comprises one or more selected from the group consisting of copper, nickel, cobalt, and mixtures thereof.
67. The catalyst system of claim 64, wherein the transition metal is present in about 2% to about 30% by weight.
68. The catalyst system of claim 1 or 13, wherein the catalyst comprises a perovskite, at least one transition metal, and at least one carrier material oxide.
69. The catalyst system of claim 68, wherein the transition metal comprises one or more selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, tungsten, and mixtures thereof.
70. The catalyst system of claim 68, wherein the carrier material oxide comprises one or more selected from the group consisting of an oxygen storage material, aluminum oxide, doped aluminum oxide, spinel, delafossite, lyonsite, garnet, perovskite, pyrochlore, doped ceria, fluorite, zirconium oxide, doped zirconia, titanium, tin oxide, silicon dioxide, and mixtures thereof.
71. The catalyst system of claim 70, wherein the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, yttrium, lanthanides, actinides, and mixtures thereof.
72. The catalyst system of claim 68, wherein the perovskite and transition metal are present in about 5% to about 50% by weight.
73. The catalyst system of claim 1 or 13, wherein the catalyst comprises at least one transition metal and a spinel having the formula AB2O4,
wherein A comprises one or more selected from the group consisting of aluminum, magnesium, manganese, gallium, nickel, copper, cobalt, iron, chromium, niobium, titanium, tin, and mixtures thereof; and
wherein B comprises one or more selected from the group consisting of aluminum, magnesium, manganese, gallium, nickel, copper, cobalt, iron, chromium, niobium, titanium, tin, and mixtures thereof,
wherein A and B are different.
74. The catalyst system of claim 73, wherein the transition metal comprises one or more selected from the group consisting of manganese, iron, cobalt, nickel, copper, niobium, molybdenum, tungsten, silver, and mixtures thereof.
75. The catalyst system of claim 73, wherein the spinel has the formula MgAl2O4.
76. The catalyst system of claim 73, wherein the transition metal is present in about 2% to about 30% by weight.
77. The catalyst system of claim 73, further comprising a carrier material oxide.
78. The catalyst system of claim 77, wherein the carrier material oxide comprises one or more selected from the group consisting of an oxygen storage material, aluminum oxide, doped aluminum oxide, spinel, delafossite, lyonsite, garnet, perovskite, pyrochlore, doped ceria, fluorite, zirconium oxide, doped zirconia, titanium, tin oxide, silicon dioxide, and mixtures thereof.
79. The catalyst system of claim 78, wherein the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, yttrium, lanthanides, actinides, and mixtures thereof.
80. The catalyst system of claim 73, wherein the spinel and transition metal are present in about 5% to about 50% by weight.
81. The catalyst system of claim 1 or 13, wherein the catalyst comprises a mixed metal oxide and at least one transition metal,
wherein the mixed metal oxide comprises one or more selected from the group consisting of alkali metals, alkaline earth metals, lanthanides, actinides, and mixtures thereof.
82. The catalyst system of claim 81, wherein the mixed metal oxide comprises one or more selected from the group consisting of a spinel, a perovskite, a delafossite, a lyonsite, a garnet, and a pyrochlore.
83. The catalyst system of claims 1 or 13, wherein the catalyst comprises a perovskite having the formula ABO3,
wherein A comprises one or more selected from the group consisting lanthanum, lanthanides, actinides, cerium, magnesium, calcium, barium, strontium, and mixtures thereof, and
wherein B comprises at least one transition metal.
84. The catalyst system of claim 83, wherein the transition metal comprises one or more selected from the group consisting of iron, manganese, copper, nickel, cobalt, cerium, and mixtures thereof.
85. The catalyst system of claim 1 or 13, wherein the catalyst comprises a perovskite having the formula Aa-xBxMOb,
wherein A comprises one or more selected from the group consisting lanthanum, lanthanides, actinides, cerium, magnesium, calcium, barium, strontium, and mixtures thereof,
wherein B comprises one or more transition metal,
wherein a is selected from the group consisting of 1 and 2,
wherein b is selected from the group consist of 3, when a is 1, and 4 when a is 2, and
wherein z is a number defined by 0.1≦x<0.7.
86. The catalyst system of claim 85, wherein the transition metal comprises one or more selected from the group consisting of iron, manganese, copper, nickel, cobalt, cerium, and mixtures thereof.
87. The catalyst system of claim 1 or 13, wherein the catalyst comprises a perovskite having the formula AMn1-xCuxO3,
wherein A comprises one or more selected from the group consisting of lanthanum, cerium, barium, strontium, lanthanides, actinides, and mixtures thereof, and
wherein x is 0 to 1.
88. The catalyst system of claim 1 or 13, wherein the catalyst comprises a perovskite having the formula ACe1-xCuxO3,
wherein A comprises one or more selected from the group consisting of barium, strontium, calcium, and mixtures thereof, and
wherein x is 0 to 1.
89. The catalyst system of claim 1 or 13, wherein the catalyst comprises a spinel having the formula AB2O4,
wherein A comprises one or more selected from the group consisting of aluminum, magnesium, manganese, gallium, nickel, copper, cobalt, iron, chromium, titanium, tin, and mixtures thereof; and
wherein B comprises one or more selected from the group consisting of aluminum, magnesium, manganese, gallium, nickel, copper, cobalt, iron, chromium, titanium, tin, and mixtures thereof,
wherein A and B are different.
90. The catalyst system of claim 89, further comprising a carrier material oxide.
91. The catalyst system of claim 90, wherein the carrier material oxide comprises one or more selected from the group consisting of an oxygen storage material, aluminum oxide, doped aluminum oxide, spinel, delafossite, lyonsite, garnet, perovskite, pyrochlore, doped ceria, fluorite, zirconium oxide, doped zirconia, titanium, tin oxide, silicon dioxide, and mixtures thereof.
92. The catalyst system of claim 91, wherein the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, yttrium, lanthanides, actinides, and mixtures thereof.
93. The catalyst system of claim 89, wherein the spinel is present in the catalyst in about 5% to about 50% by weight.
94. The catalyst system of claim 1 or 13, wherein the catalyst comprises at least one zeolite and at least one transition metal.
95. The catalyst system of claim 94, wherein the zeolite comprises one or more selected from the group consisting of ZSM5, heulandite, chabazite, and mixtures thereof.
96. The catalyst system of claim 94, wherein the transition metal comprises one or more selected from the group consisting of chromium, gallium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, tungsten, silver, and mixtures thereof.
97. The catalyst system of claim 96, wherein the transition metal comprises one or more selected from the group consisting of copper, nickel, gallium, cobalt, and mixtures thereof.
98. The catalyst system of claim 94, wherein the transition metal is present in about 3% to about 25% by weight.
99. A method of making a catalyst system by impregnation, comprising:
depositing a washcoat on a substrate,
wherein the washcoat comprises at least one oxide solid,
wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and a mixture thereof;
treating the washcoat and the substrate to convert metal salts into metal oxides;
wherein the catalyst system is substantially free of platinum group metals.
100. The method of claim 99, wherein the treating is at a temperature of about 550° C. for about 4 hours.
101. The method of claim 99, wherein the carrier material oxide comprises one or more selected from the group consisting of an oxygen storage material, aluminum oxide, doped aluminum oxide, spinel, delafossite, lyonsite, garnet, perovskite, pyrochlore, doped ceria, fluorite, zirconium oxide, doped zirconia, titanium, tin oxide, silicon dioxide, and mixtures thereof.
102. The method of claim 101, wherein the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, yttrium, lanthanides, actinides, and mixtures thereof.
103. The method of claim 99, wherein the washcoat comprises copper and at least one oxygen storage material.
104. The method of claim 103, wherein the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, yttrium, lanthanides, actinides, and mixtures thereof.
105. The method of claim 99, further comprising after treating:
depositing an overcoat on the washcoat,
wherein the overcoat comprises at least one oxide solid,
wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof,
treating the overcoat and the washcoat at a temperature of about 550° C. for about 4 hours.
106. The method of claim 105, wherein the carrier material oxide comprises one or more selected from the group consisting of an oxygen storage material, aluminum oxide, doped aluminum oxide, spinel, delafossite, lyonsite, garnet, perovskite, pyrochlore, doped ceria, fluorite, zirconium oxide, doped zirconia, titanium, tin oxide, silicon dioxide, and mixtures thereof.
107. The method of claim 106, wherein the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, yttrium, lanthanides, actinides, and mixtures thereof.
108. The method of claim 104, wherein the catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalyst, and mixtures thereof.
109. The method of claim 104, wherein the washcoat further comprises tin.
110. The method of claim 99, wherein the catalyst system is completely free of platinum group metals.
111. A method of making a catalyst system by precipitation, comprising:
precipitating a transition metal salt on a washcoat,
wherein, the transition metal salt comprises at least one transition metal and at least one carrier material oxide,
wherein the washcoat comprises at least one carrier material oxide;
treating the precipitated transition metal salt and the washcoat;
depositing the precipitated transition metal salt and the washcoat on a substrate; and
treating the precipitated transition metal salt and the washcoat on the substrate;
wherein the catalyst system is substantially free of platinum group metals.
112. The method of claim 111, wherein the treating is at a temperature of about 550° C. for about 4 hours.
113. The method of claim 111, further comprising after treating the precipitated transition metal salt and the washcoat on the substrate:
depositing an overcoat on the treated precipitated transition metal salt and the washcoat; and
treating the overcoat, the treated precipitated transition metal salt, and the washcoat.
114. The method of claim 111, wherein the treating is at a temperature of about 550° C. for about 4 hours.
115. The method of claim 111, wherein the overcoat comprises aluminum, copper, and at least one carrier material oxide.
116. The method of claim 111 or 113, wherein the carrier material oxide comprises one or more selected from the group consisting of an oxygen storage material, aluminum oxide, doped aluminum oxide, spinel, delafossite, lyonsite, garnet, perovskite, pyrochlore, doped ceria, fluorite, zirconium oxide, doped zirconia, titanium, tin oxide, silicon dioxide, and mixtures thereof.
117. The method of claim 116, wherein the oxygen storage material comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, yttrium, lanthanides, actinides, and mixtures thereof.
118. The method of claim 111, wherein the transition metal comprises one or more selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, tungsten, silver, and mixtures thereof.
119. The method of claim 118, wherein the transition metal comprises copper.
120. The method of claim 111, wherein the washcoat further comprises tin.
121. The method of claim 111, wherein the catalyst system is completely free of platinum group metals.
122. A method of making a catalyst system by co-milling, comprising:
milling together a catalyst and at least one carrier material oxide,
wherein the catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalyst, and mixtures thereof;
depositing the milled catalyst in the form of a washcoat on to a substrate; and
treating the substrate and the washcoat;
wherein the catalyst system is substantially free of platinum group metals.
123. The method of claim 122, wherein the treating is at a temperature of about 550° C. for about 4 hours.
124. The method of claim 122, further comprising:
depositing an overcoat on the washcoat; and
treating the overcoat and the washcoat.
125. The method of claim 124, wherein the treating is at a temperature of about 550° C. for about 4 hours.
126. The method of claim 124, wherein the overcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof.
127. The method of claim 126, wherein the overcoat comprises aluminum, copper, and at least one carrier material oxide.
128. The method of claim 122, wherein the catalyst system is completely free of platinum group metals.
129. A method of reducing pollutants emitted in exhaust, comprising:
flowing exhaust substantially through a catalyst system,
wherein the catalyst system comprises,
a substrate; and
a washcoat,
wherein the washcoat comprises at least one oxide solid,
 wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and a mixture thereof;
wherein the catalyst system is substantially free of platinum group metals;
wherein the exhaust comprises pollutants; and
reducing the pollutants in the exhaust.
130. The method of claim 129, wherein the washcoat comprises copper.
131. The method of claim 130, wherein the washcoat comprises about 8% copper by weight.
132. The method of claim 129, wherein the catalyst further comprises an overcoat, wherein the overcoat comprises copper and at least one carrier material oxide.
133. The method of claim 129, wherein the aluminum oxide and the carrier material oxide are present in a weight ratio of about 60:40.
134. The method of claim 129, wherein the washcoat further comprises tin.
135. The method of claim 129, wherein the pollutants comprise nitrogen oxide, hydrocarbon, carbon monoxide, and sulfur.
136. The method of claim 129, wherein the catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalyst, and a mixture thereof.
137. The method of claim 129, wherein the catalyst system further comprises:
an overcoat,
wherein the overcoat comprises an catalyst,
wherein the catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalyst, and a mixture thereof.
138. The method of claim 129, wherein the catalyst system is completely free of platinum group metals.
139. A catalyst system, comprising:
a first catalyst system, comprising
a substrate; and
a washcoat,
wherein the washcoat comprises at least one oxide solid,
wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and a mixture thereof;
wherein the first catalyst system is substantially free of platinum group metals; and
a second catalyst system,
wherein the second catalyst system comprises at least one platinum group metal;
wherein the first catalyst and the second catalyst are in series in any order, and
wherein a gas stream is capable of passing through the first catalyst system and the second catalyst system sequentially.
140. The catalyst system of claim 139, wherein the platinum group metal comprises one or more selected from the group consisting of palladium, platinum, ruthenium, iridium, osmium, and rhodium.
141. The catalyst system of claim 139, wherein the gas stream is capable of passing through the first catalyst system and the second catalyst system in any sequence.
142. The catalyst system of claim 139, wherein the second catalyst system comprises one or more platinum group metal and one or more carrier material oxide.
143. The catalyst system of claim 139, wherein the second catalyst system comprises one or more platinum group metal and one or more carrier material oxide.
144. The catalyst system of claim 139, wherein the oxygen storage material of the first catalyst comprises one or more selected from the group consisting of cerium, zirconium, lanthanum, neodymium, praseodymium, and mixtures thereof.
145. The catalyst system of claim 139, wherein the first catalyst system and the second catalyst system are in series such the gas stream is capable of passing through the second catalyst followed by the first catalyst.
146. The catalyst system of claim 139, wherein the first catalyst system further comprises:
an overcoat,
wherein the overcoat comprises a catalyst,
wherein the catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalyst, and a mixture thereof.
US12/215,694 2008-06-27 2008-06-27 Zero platinum group metal catalysts Abandoned US20090324468A1 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
US12/215,694 US20090324468A1 (en) 2008-06-27 2008-06-27 Zero platinum group metal catalysts
US12/229,729 US8496896B2 (en) 2008-06-27 2008-08-26 Zero platinum group metal catalysts
EP09770546A EP2303433A4 (en) 2008-06-27 2009-06-26 Zero platinum group metal catalysts
KR1020107010963A KR101569946B1 (en) 2008-06-27 2009-06-26 Zero platinum group metal catalysts
CN200980105008.1A CN101939097B (en) 2008-06-27 2009-06-26 Zero platinum group metal catalysts
JP2011516309A JP4950359B2 (en) 2008-06-27 2009-06-26 Method to improve the reduction of hydrocarbons, carbon monoxide and nitrogen oxides in exhaust
MX2011000020A MX335990B (en) 2008-06-27 2009-06-26 Zero platinum group metal catalysts.
PCT/US2009/003799 WO2009158008A1 (en) 2008-06-27 2009-06-26 Zero platinum group metal catalysts
KR1020107010982A KR101508799B1 (en) 2008-06-27 2009-06-26 Zero platinum group metal catalysts
CA2729232A CA2729232A1 (en) 2008-06-27 2009-06-26 Zero platinum group metal catalysts
CN2009801051101A CN101939084A (en) 2008-06-27 2009-06-26 Zero platinum group metal catalysts
AU2009263035A AU2009263035A1 (en) 2008-06-27 2009-06-26 Zero platinum group metal catalysts
MX2011000105A MX2011000105A (en) 2008-06-27 2009-06-26 Zero platinum group metal catalysts.
PCT/US2009/003800 WO2009158009A1 (en) 2008-06-27 2009-06-26 Zero platinum group metal catalysts
EP09770547A EP2303454A4 (en) 2008-06-27 2009-06-26 Zero platinum group metal catalysts
JP2011516310A JP5010049B2 (en) 2008-06-27 2009-06-26 Catalysts that do not contain platinum group metals
CA2729235A CA2729235A1 (en) 2008-06-27 2009-06-26 Zero platinum group metal catalysts
AU2009263034A AU2009263034A1 (en) 2008-06-27 2009-06-26 Zero platinum group metal catalysts
US12/791,699 US8685352B2 (en) 2008-06-27 2010-06-01 Zero platinum group metal catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/215,694 US20090324468A1 (en) 2008-06-27 2008-06-27 Zero platinum group metal catalysts

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/229,729 Continuation-In-Part US8496896B2 (en) 2008-06-27 2008-08-26 Zero platinum group metal catalysts
US12/791,699 Continuation US8685352B2 (en) 2008-06-27 2010-06-01 Zero platinum group metal catalysts

Publications (1)

Publication Number Publication Date
US20090324468A1 true US20090324468A1 (en) 2009-12-31

Family

ID=41444842

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/215,694 Abandoned US20090324468A1 (en) 2008-06-27 2008-06-27 Zero platinum group metal catalysts
US12/791,699 Expired - Fee Related US8685352B2 (en) 2008-06-27 2010-06-01 Zero platinum group metal catalysts

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/791,699 Expired - Fee Related US8685352B2 (en) 2008-06-27 2010-06-01 Zero platinum group metal catalysts

Country Status (9)

Country Link
US (2) US20090324468A1 (en)
EP (1) EP2303454A4 (en)
JP (1) JP5010049B2 (en)
KR (1) KR101569946B1 (en)
CN (1) CN101939097B (en)
AU (1) AU2009263035A1 (en)
CA (1) CA2729235A1 (en)
MX (1) MX335990B (en)
WO (1) WO2009158009A1 (en)

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100139152A1 (en) * 2008-12-08 2010-06-10 Dennis Hucul Heterogeneous catalysts for mono-alkyl ester production, method of making, and method of using same
CN102000559A (en) * 2010-11-18 2011-04-06 中国海洋石油总公司 Method for preparing dimethoxymethane by adopting supported niobium oxide catalyst
US20110082030A1 (en) * 2009-10-01 2011-04-07 Gm Global Technology Operations, Inc. Washcoating technique for perovskite catalysts
US8227373B1 (en) * 2009-01-30 2012-07-24 The University Of Toledo Exhaust gas purification catalysts and methods of making the same
CN102886204A (en) * 2011-07-22 2013-01-23 霍尼韦尔国际公司 Next generation combined hydrocarbon/ozone converter
CN103089379A (en) * 2011-11-03 2013-05-08 通用汽车环球科技运作有限责任公司 Low Cost Lean Nox Reduction Catalyst System
US20130236380A1 (en) * 2011-08-10 2013-09-12 Clean Diesel Technologies, Inc. Palladium solid solution catayst and methods of making
US8668803B1 (en) 2009-12-15 2014-03-11 SDCmaterials, Inc. Sandwich of impact resistant material
US8679433B2 (en) 2011-08-19 2014-03-25 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US20140219878A1 (en) * 2011-09-23 2014-08-07 Shubin, Inc. Mixed phase oxide catalysts
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US20140274678A1 (en) * 2013-03-15 2014-09-18 Cdti Coating Process of Zero-PGM Catalysts and Methods Thereof
US20140271387A1 (en) * 2013-03-15 2014-09-18 Cdti Optimal Composition of Copper-Manganese Spinel in ZPGM Catalyst for TWC Applications
US20140271393A1 (en) * 2013-03-15 2014-09-18 Cdti Methods for Variation of Support Oxide Materials for ZPGM Oxidation Catalysts and Systems Using Same
US20140274674A1 (en) * 2013-03-15 2014-09-18 Cdti Influence of Support Oxide Materials on Coating Processes of ZPGM Catalyst Materials for TWC Applications
US20140271388A1 (en) * 2013-03-15 2014-09-18 Cdti Formation and Stability of Cu-Mn Spinel Phase for ZPGM Catalyst Systems
US20140271384A1 (en) * 2013-03-15 2014-09-18 Cdti System and Methods for using Copper- Manganese- Iron Spinel as Zero PGM Catalyst for TWC Applications
US20140274662A1 (en) * 2013-03-15 2014-09-18 Cdti Systems and Methods for Variations of ZPGM Oxidation Catalysts Compositions
US20140301931A1 (en) * 2013-04-04 2014-10-09 Cdti System and Method for Two and Three Way Mixed Metal Oxide ZPGM Catalyst
WO2014165804A1 (en) * 2013-04-04 2014-10-09 Cdti System and method for zpgm catalytic converters
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
CN104117357A (en) * 2013-04-29 2014-10-29 福特全球技术公司 Three-way catalyst comprising mixture of nickel and copper
US20140334989A1 (en) * 2013-05-10 2014-11-13 Cdti ZPGM Diesel Oxidation Catalysts and Methods of Making and Using Same
US20140334990A1 (en) * 2013-05-10 2014-11-13 Cdti ZPGM Diesel Oxidation Catalyst Systems and Methods Thereof
US8893651B1 (en) 2007-05-11 2014-11-25 SDCmaterials, Inc. Plasma-arc vaporization chamber with wide bore
US20140356243A1 (en) * 2013-05-29 2014-12-04 Cdti Systems and Methods for Providing ZPGM Perovskite Catalyst for Diesel Oxidation Applications
WO2014194096A1 (en) * 2013-05-29 2014-12-04 Clean Diesel Technologies, Inc. Systems and methods using cu-mn spinel catalyst on varying carrier material oxides for twc applications
US20140364303A1 (en) * 2013-06-06 2014-12-11 Cdti Systems and Methods for Using Pd1+ in a TWC
WO2014210242A1 (en) * 2013-06-26 2014-12-31 Clean Diesel Technologies, Inc. Methods for identification of materials causing corrosion on metallic substrates within zpgm catalyst systems
US20150005157A1 (en) * 2013-06-26 2015-01-01 Cdti Optimization of Zero-PGM Catalyst Systems on Metallic Substrates
US20150005158A1 (en) * 2013-06-26 2015-01-01 Cdti Optimization of Washcoat Adhesion of Zero-PGM Catalyst on Metallic Substrates
US20150018202A1 (en) * 2013-07-12 2015-01-15 Cdti Variations of Loading of Zero-PGM Oxidation Catalyst on Metallic Substrate
US20150018203A1 (en) * 2013-07-12 2015-01-15 Cdti Optimization of Zero-PGM Washcoat and Overcoat Loadings on Metallic Substrate
US20150050742A1 (en) * 2013-08-16 2015-02-19 Cdti Analysis of Occurrence of Corrosion Products with ZPGM and PGM Catalysts Coated on Metallic Substrates
US8969228B2 (en) * 2013-07-12 2015-03-03 Clean Diesel Technologies, Inc. Process for elimination of hexavalent chromium compounds on metallic substrates within zero-PGM catalyst systems
US20150087503A1 (en) * 2012-04-23 2015-03-26 Mazda Motor Corporation Exhaust gas purification catalyst
WO2015057334A1 (en) * 2013-10-16 2015-04-23 Clean Diesel Technologies, Inc. Zero-pgm catalyst with oxygen storage capacity for twc systems
US20150139883A1 (en) * 2013-11-19 2015-05-21 Toyota Motor Engineering & Manufacturing North America, Inc. Ceria-supported metal catalysts for the selective reduction of nox
US20150148215A1 (en) * 2013-11-26 2015-05-28 Clean Diesel Technologies Inc. (CDTI) Methods for Selecting and Applying a Layer of Cu-Mn Spinel Phase to ZPGM Catalyst Systems for TWC Application
US20150147239A1 (en) * 2013-11-26 2015-05-28 Clean Diesel Technologies Inc. (CDTI) ZPGM Underfloor Catalyst for Hybrid Exhaust Treatment Systems
US20150148224A1 (en) * 2013-11-26 2015-05-28 Clean Diesel Technologies Inc. (CDTI) Oxygen Storage Capacity and Thermal Stability of Synergized PGM Catalyst Systems
US9073011B2 (en) 2013-04-04 2015-07-07 Randal Hatfield Systems and methods for diesel oxidation catalyst with decreased SO3 emissions
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US20150238941A1 (en) * 2013-11-26 2015-08-27 Clean Diesel Technologies Inc. (CDTI) Synergized PGM Catalyst Systems Including Platinum for TWC Application
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US20150352532A1 (en) * 2014-06-06 2015-12-10 Clean Diesel Technologies, Inc. Three-way Catalyst Systems Including Fe-activated Rh and Ba-Pd Material Compositions
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9216383B2 (en) 2013-03-15 2015-12-22 Clean Diesel Technologies, Inc. System and method for two and three way ZPGM catalyst
WO2015199687A1 (en) * 2013-06-26 2015-12-30 Clean Diesel Technologies, Inc. Optimization of zero-pgm metal loading on metallic substrate
US9259716B2 (en) 2013-03-15 2016-02-16 Clean Diesel Technologies, Inc. Oxidation catalyst systems compositions and methods thereof
WO2016039747A1 (en) * 2014-09-11 2016-03-17 Clean Diesel Technologies, Inc. Methods for oxidation and two-way and three-way zpgm catalyst systems and apparatus comprising same
US20160121300A1 (en) * 2013-04-09 2016-05-05 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Catalyst composition and exhaust gas purifying method
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US20160279608A1 (en) * 2013-03-19 2016-09-29 Rhodia Operations Composition based on oxides of zirconium, cerium, niobium and tin, preparation processes and use in catalysis
US20160296910A1 (en) * 2010-12-22 2016-10-13 Pacific Industrial Development Corporation Doped catalyst support materials having oxygen storage capacity (osc) and method of making thereof
US9486784B2 (en) 2013-10-16 2016-11-08 Clean Diesel Technologies, Inc. Thermally stable compositions of OSM free of rare earth metals
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US20160354765A1 (en) * 2015-06-05 2016-12-08 Clean Diesel Technologies, Inc. Nb-Zr-Al-Mixed Oxide Supports for Rh Layer use in TWC Converters
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US9700841B2 (en) 2015-03-13 2017-07-11 Byd Company Limited Synergized PGM close-coupled catalysts for TWC applications
US9731279B2 (en) 2014-10-30 2017-08-15 Clean Diesel Technologies, Inc. Thermal stability of copper-manganese spinel as Zero PGM catalyst for TWC application
US9771534B2 (en) 2013-06-06 2017-09-26 Clean Diesel Technologies, Inc. (Cdti) Diesel exhaust treatment systems and methods
US9828895B2 (en) * 2015-09-30 2017-11-28 Hyundai Motor Company Exhaust gas post-processing system
US9861964B1 (en) 2016-12-13 2018-01-09 Clean Diesel Technologies, Inc. Enhanced catalytic activity at the stoichiometric condition of zero-PGM catalysts for TWC applications
US9951706B2 (en) 2015-04-21 2018-04-24 Clean Diesel Technologies, Inc. Calibration strategies to improve spinel mixed metal oxides catalytic converters
CN109153007A (en) * 2016-05-11 2019-01-04 清洁柴油技术先进材料有限公司 Non-copper binary spinelle and its storage oxygen capacity for TWC
US20190054451A1 (en) * 2016-02-12 2019-02-21 University Court Of The University Of St Andrews Stainless steel foam supported catalysts for the oxidation of aromatic compounds
US10265684B2 (en) 2017-05-04 2019-04-23 Cdti Advanced Materials, Inc. Highly active and thermally stable coated gasoline particulate filters
US10533472B2 (en) 2016-05-12 2020-01-14 Cdti Advanced Materials, Inc. Application of synergized-PGM with ultra-low PGM loadings as close-coupled three-way catalysts for internal combustion engines
US11167272B2 (en) 2019-07-15 2021-11-09 Ford Global Technologies, Llc Exhaust treatment system including nickel-containing catalyst
CN114314763A (en) * 2021-12-14 2022-04-12 安徽元琛环保科技股份有限公司 Preparation method of environment-friendly three-dimensional particle electrode and prepared electrode
CN115532311A (en) * 2022-09-28 2022-12-30 河北国惠环保科技有限公司 Low-temperature plasma synergistic catalyst for treating odor of sludge storage yard
CN117085679A (en) * 2023-10-18 2023-11-21 昆明贵研催化剂有限责任公司 Noble metal catalyst for sulfur-containing waste gas treatment and preparation method thereof

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2791928C (en) * 2010-03-05 2020-06-30 University Of Regina Catalysts for feedstock-flexible and process-flexible hydrogen production
JP5567999B2 (en) * 2010-12-10 2014-08-06 トヨタ自動車株式会社 Base metal exhaust gas purification catalyst
US8668890B2 (en) 2012-04-26 2014-03-11 Basf Corporation Base metal catalyst composition and methods of treating exhaust from a motorcycle
US8765085B2 (en) 2012-04-26 2014-07-01 Basf Corporation Base metal catalyst and method of using same
US8858903B2 (en) 2013-03-15 2014-10-14 Clean Diesel Technology Inc Methods for oxidation and two-way and three-way ZPGM catalyst systems and apparatus comprising same
US9610570B2 (en) * 2013-03-22 2017-04-04 Clean Diesel Technologies, Inc. Methods and processes of coating zero-PGM catalysts including with Cu, Mn, Fe for TWC applications
US20140336044A1 (en) * 2013-05-10 2014-11-13 Cdti Copper-Manganese Spinel Catalysts and Methods of Making Same
US20140336038A1 (en) * 2013-05-10 2014-11-13 Cdti ZPGM Catalytic Converters (TWC application)
US20140357479A1 (en) * 2013-05-29 2014-12-04 Cdti Variations for Synthesizing Zero Platinum Group Metal Catalyst Systems
WO2014194101A1 (en) * 2013-05-29 2014-12-04 Clean Diesel Technologies, Inc. Zpgm diesel oxidation catalyst systems
US20150018204A1 (en) * 2013-07-12 2015-01-15 Cdti Minimizing Washcoat Adhesion Loss of Zero-PGM Catalyst Coated on Metallic Substrate
US20150051067A1 (en) * 2013-08-19 2015-02-19 Cdti Oxygen storage material without rare earth metals
JP5875562B2 (en) * 2013-09-26 2016-03-02 三菱重工業株式会社 Exhaust gas treatment apparatus and exhaust gas treatment method
US20150148225A1 (en) * 2013-11-26 2015-05-28 Clean Diesel Technologies Inc. (CDTI) Systems and Methods for Managing a Synergistic Relationship Between PGM and Copper-Manganese in a Three Way Catalyst Systems
US8845987B1 (en) * 2013-11-26 2014-09-30 Clean Diesel Technologies Inc. (CDTI) Method for improving lean performance of PGM catalyst systems: synergized PGM
US20150148222A1 (en) * 2013-11-26 2015-05-28 Clean Diesel Technologies Inc. (CDTI) Effect of Support Oxides on Optimal Performance and Stability of ZPGM Catalyst Systems
KR101575327B1 (en) * 2014-04-24 2015-12-21 현대자동차 주식회사 Catalyst for abating nitrogen oxide, method for preparing the same, and catalyst system for abating nitrogen oxide
US10252217B2 (en) 2014-06-05 2019-04-09 Basf Corporation Catalytic articles containing platinum group metals and non-platinum group metals and methods of making and using same
US20150352529A1 (en) * 2014-06-05 2015-12-10 Zahra Nazarpoor Influence of Type of Support Oxide on Stability of Copper-Manganese Zero-PGM Catalyst
US20160121309A1 (en) * 2014-10-30 2016-05-05 Clean Diesel Technologies, Inc. Thermally Stable Zero PGM Catalysts System for TWC Application
US9468912B2 (en) * 2014-11-17 2016-10-18 Clean Diesel Technologies, Inc. Zero PGM catalyst including Cu—Co—Mn ternary spinel for TWC applications
US20160136618A1 (en) * 2014-11-19 2016-05-19 Clean Diesel Technologies, Inc. Sulfur-Resistant Synergized PGM Catalysts for Diesel Oxidation Application
JP6133836B2 (en) * 2014-12-12 2017-05-24 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP6133835B2 (en) * 2014-12-12 2017-05-24 トヨタ自動車株式会社 Exhaust gas purification catalyst
WO2016140641A1 (en) * 2015-03-02 2016-09-09 Clean Diesel Technologies, Inc. Method for improving lean performance of pgm catalyst systesm: synergized pgm
US20160346765A1 (en) * 2015-06-01 2016-12-01 Clean Diesel Technologies, Inc. Combination of Pseudobrookite Oxide and Low Loading of PGM as High Sulfur-Resistant Catalyst for Diesel Oxidation Applications
US10906032B2 (en) 2015-08-21 2021-02-02 Basf Corporation Exhaust gas treatment catalysts
CN108138618B (en) 2015-09-24 2020-06-16 本田技研工业株式会社 Exhaust gas purification system for internal combustion engine
WO2017051459A1 (en) * 2015-09-24 2017-03-30 本田技研工業株式会社 Exhaust purification filter
US20170095803A1 (en) * 2015-10-01 2017-04-06 Clean Diesel Technologies, Inc. Effect of Type of Support Oxide on Sulfur Resistance of Synergized PGM as Diesel Oxidation Catalyst
US20170095801A1 (en) * 2015-10-01 2017-04-06 Clean Diesel Technologies, Inc. Thermally Stable Zero-PGM Three Way Catalyst with High Oxygen Storage Capacity
CN105742654B (en) * 2016-03-24 2021-04-23 南开大学 Mixed-phase mullite electrocatalyst for cathode of air battery or fuel battery
JP6701581B2 (en) * 2017-03-02 2020-05-27 株式会社豊田中央研究所 Oxygen absorbing/releasing material
WO2018222873A1 (en) 2017-06-02 2018-12-06 U.S. Department Of Energy Method of exhaust cleanup from combustion processes using mixed-metal oxide based catalysts
JP6906624B2 (en) * 2017-11-06 2021-07-21 新日本電工株式会社 Oxygen absorption and release materials, catalysts, exhaust gas purification systems, and exhaust gas treatment methods
CN108636422A (en) * 2018-04-10 2018-10-12 云南铝业股份有限公司 Manganese cobalt spinel catalyst and preparation method thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3473987A (en) * 1965-07-13 1969-10-21 Du Pont Method of making thin-walled refractory structures
US4790982A (en) * 1986-04-07 1988-12-13 Katalistiks International, Inc. Metal-containing spinel composition and process of using same
US5175132A (en) * 1991-11-19 1992-12-29 Ketcham Thomas D Sinterable ceramic compositions
US5182249A (en) * 1990-10-22 1993-01-26 East China University Of Chemical Technology Non-precious metal three way catalyst
US5879645A (en) * 1994-11-03 1999-03-09 Korea Research Institute Of Chemical Technology Method for removing nitrogen oxides in exhaust gas by selective catalytic reduction and catalyst for reduction of nitrogen oxides
US5965099A (en) * 1995-12-13 1999-10-12 Daimler-Benz Aktiengesellschaft Catalyst and a method for its production and use of same
US6372686B1 (en) * 1996-04-10 2002-04-16 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds and methods of making and using thereof
US20030221360A1 (en) * 2000-03-03 2003-12-04 Brown Kevin F. Process for reducing pollutants from the exhaust of a diesel engine
US20050207956A1 (en) * 2003-12-05 2005-09-22 Albert Vierheilig Mixed metal oxide sorbents
US20050227867A1 (en) * 2004-03-30 2005-10-13 Engelhard Corporation Exhaust gas treatment catalyst
US20050265920A1 (en) * 2002-11-11 2005-12-01 Conocophillips Company Supports and catalysts comprising rare earth aluminates, and their use in partial oxidation
US20060100097A1 (en) * 2002-04-18 2006-05-11 Ford Global Technologies, Llc Pgm-free washcoats for catalyzed diesel particulate filter applications
US20060120936A1 (en) * 2004-10-14 2006-06-08 Catalytic Solutions, Inc. Platinum group metal-free catalysts for reducing the ignition temperature of particulates on a diesel particulate filter
US20060223694A1 (en) * 2002-10-24 2006-10-05 Ford Global Technologies, Inc. Perovskite catalyst system for lean burn engines
US20060228283A1 (en) * 2005-02-28 2006-10-12 Catalytic Solutions, Inc. Catalyst and method for reducing nitrogen oxides in exhaust streams with hydrocarbons or alcohols

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896616A (en) 1972-04-21 1975-07-29 Engelhard Min & Chem Process and apparatus
JPS6118434A (en) * 1984-07-06 1986-01-27 Doudensei Muki Kagoubutsu Gijutsu Kenkyu Kumiai Catalytic body for purifying exhaust gas
JP2620624B2 (en) * 1987-06-08 1997-06-18 株式会社豊田中央研究所 Exhaust gas purification catalyst
JPS6430646A (en) * 1987-07-24 1989-02-01 Toyota Motor Corp Catalyst for purifying exhaust gas
JPH04122447A (en) * 1990-09-10 1992-04-22 Matsushita Electric Ind Co Ltd Catalyst for cleaning exhaust gas
US5185305A (en) * 1991-11-08 1993-02-09 Ford Motor Company Catalyst system for treating the exhaust from a lean-burn gasoline-fueled engine
JP2618319B2 (en) * 1992-12-14 1997-06-11 財団法人石油産業活性化センター Catalyst structure for catalytic reduction of nitrogen oxides
JPH10180103A (en) * 1996-12-26 1998-07-07 Kyocera Corp Oxide catalyst material for removing nitrogen oxide and its preparation

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3473987A (en) * 1965-07-13 1969-10-21 Du Pont Method of making thin-walled refractory structures
US4790982A (en) * 1986-04-07 1988-12-13 Katalistiks International, Inc. Metal-containing spinel composition and process of using same
US5182249A (en) * 1990-10-22 1993-01-26 East China University Of Chemical Technology Non-precious metal three way catalyst
US5175132A (en) * 1991-11-19 1992-12-29 Ketcham Thomas D Sinterable ceramic compositions
US5879645A (en) * 1994-11-03 1999-03-09 Korea Research Institute Of Chemical Technology Method for removing nitrogen oxides in exhaust gas by selective catalytic reduction and catalyst for reduction of nitrogen oxides
US5965099A (en) * 1995-12-13 1999-10-12 Daimler-Benz Aktiengesellschaft Catalyst and a method for its production and use of same
US6372686B1 (en) * 1996-04-10 2002-04-16 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds and methods of making and using thereof
US20030221360A1 (en) * 2000-03-03 2003-12-04 Brown Kevin F. Process for reducing pollutants from the exhaust of a diesel engine
US20060100097A1 (en) * 2002-04-18 2006-05-11 Ford Global Technologies, Llc Pgm-free washcoats for catalyzed diesel particulate filter applications
US20060223694A1 (en) * 2002-10-24 2006-10-05 Ford Global Technologies, Inc. Perovskite catalyst system for lean burn engines
US20050265920A1 (en) * 2002-11-11 2005-12-01 Conocophillips Company Supports and catalysts comprising rare earth aluminates, and their use in partial oxidation
US20050207956A1 (en) * 2003-12-05 2005-09-22 Albert Vierheilig Mixed metal oxide sorbents
US20050227867A1 (en) * 2004-03-30 2005-10-13 Engelhard Corporation Exhaust gas treatment catalyst
US7374729B2 (en) * 2004-03-30 2008-05-20 Basf Catalysts Llc Exhaust gas treatment catalyst
US20060120936A1 (en) * 2004-10-14 2006-06-08 Catalytic Solutions, Inc. Platinum group metal-free catalysts for reducing the ignition temperature of particulates on a diesel particulate filter
US20060228283A1 (en) * 2005-02-28 2006-10-12 Catalytic Solutions, Inc. Catalyst and method for reducing nitrogen oxides in exhaust streams with hydrocarbons or alcohols

Cited By (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US8906316B2 (en) 2007-05-11 2014-12-09 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US8893651B1 (en) 2007-05-11 2014-11-25 SDCmaterials, Inc. Plasma-arc vaporization chamber with wide bore
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US20100139152A1 (en) * 2008-12-08 2010-06-10 Dennis Hucul Heterogeneous catalysts for mono-alkyl ester production, method of making, and method of using same
US8227373B1 (en) * 2009-01-30 2012-07-24 The University Of Toledo Exhaust gas purification catalysts and methods of making the same
US8343888B2 (en) * 2009-10-01 2013-01-01 GM Global Technology Operations LLC Washcoating technique for perovskite catalysts
US20110082030A1 (en) * 2009-10-01 2011-04-07 Gm Global Technology Operations, Inc. Washcoating technique for perovskite catalysts
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8828328B1 (en) 2009-12-15 2014-09-09 SDCmaterails, Inc. Methods and apparatuses for nano-materials powder treatment and preservation
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US8992820B1 (en) 2009-12-15 2015-03-31 SDCmaterials, Inc. Fracture toughness of ceramics
US8859035B1 (en) 2009-12-15 2014-10-14 SDCmaterials, Inc. Powder treatment for enhanced flowability
US8668803B1 (en) 2009-12-15 2014-03-11 SDCmaterials, Inc. Sandwich of impact resistant material
US8906498B1 (en) 2009-12-15 2014-12-09 SDCmaterials, Inc. Sandwich of impact resistant material
US8932514B1 (en) 2009-12-15 2015-01-13 SDCmaterials, Inc. Fracture toughness of glass
US8877357B1 (en) 2009-12-15 2014-11-04 SDCmaterials, Inc. Impact resistant material
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
CN102000559B (en) * 2010-11-18 2012-06-27 中国海洋石油总公司 Method for preparing dimethoxymethane by adopting supported niobium oxide catalyst
CN102000559A (en) * 2010-11-18 2011-04-06 中国海洋石油总公司 Method for preparing dimethoxymethane by adopting supported niobium oxide catalyst
US20160296910A1 (en) * 2010-12-22 2016-10-13 Pacific Industrial Development Corporation Doped catalyst support materials having oxygen storage capacity (osc) and method of making thereof
US10232348B2 (en) * 2010-12-22 2019-03-19 Pacific Industrial Development Corporation Doped catalyst support materials having oxygen storage capacity (OSC) and method of making thereof
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
CN102886204A (en) * 2011-07-22 2013-01-23 霍尼韦尔国际公司 Next generation combined hydrocarbon/ozone converter
US20130236380A1 (en) * 2011-08-10 2013-09-12 Clean Diesel Technologies, Inc. Palladium solid solution catayst and methods of making
US9012353B2 (en) * 2011-08-10 2015-04-21 Clean Diesel Technologies, Inc. Palladium solid solution catayst and methods of making
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8679433B2 (en) 2011-08-19 2014-03-25 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US20140219878A1 (en) * 2011-09-23 2014-08-07 Shubin, Inc. Mixed phase oxide catalysts
US9457344B2 (en) * 2011-09-23 2016-10-04 Shubin, Inc. Mixed phase oxide catalysts
US20130111876A1 (en) * 2011-11-03 2013-05-09 GM Global Technology Operations LLC LOW COST LEAN NOx REDUCTION CATALYST SYSTEM
CN103089379A (en) * 2011-11-03 2013-05-08 通用汽车环球科技运作有限责任公司 Low Cost Lean Nox Reduction Catalyst System
US9186654B2 (en) * 2011-11-03 2015-11-17 GM Global Technology Operations LLC Low cost lean NOx reduction catalyst system
US9174198B2 (en) * 2012-04-23 2015-11-03 Mazda Motor Corporation Exhaust gas purification catalyst
US20150087503A1 (en) * 2012-04-23 2015-03-26 Mazda Motor Corporation Exhaust gas purification catalyst
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9216383B2 (en) 2013-03-15 2015-12-22 Clean Diesel Technologies, Inc. System and method for two and three way ZPGM catalyst
US20140274678A1 (en) * 2013-03-15 2014-09-18 Cdti Coating Process of Zero-PGM Catalysts and Methods Thereof
US9259716B2 (en) 2013-03-15 2016-02-16 Clean Diesel Technologies, Inc. Oxidation catalyst systems compositions and methods thereof
US20140274674A1 (en) * 2013-03-15 2014-09-18 Cdti Influence of Support Oxide Materials on Coating Processes of ZPGM Catalyst Materials for TWC Applications
US20140271388A1 (en) * 2013-03-15 2014-09-18 Cdti Formation and Stability of Cu-Mn Spinel Phase for ZPGM Catalyst Systems
US9227177B2 (en) * 2013-03-15 2016-01-05 Clean Diesel Technologies, Inc. Coating process of Zero-PGM catalysts and methods thereof
US20140271384A1 (en) * 2013-03-15 2014-09-18 Cdti System and Methods for using Copper- Manganese- Iron Spinel as Zero PGM Catalyst for TWC Applications
US20140274662A1 (en) * 2013-03-15 2014-09-18 Cdti Systems and Methods for Variations of ZPGM Oxidation Catalysts Compositions
US20140271387A1 (en) * 2013-03-15 2014-09-18 Cdti Optimal Composition of Copper-Manganese Spinel in ZPGM Catalyst for TWC Applications
US9216382B2 (en) * 2013-03-15 2015-12-22 Clean Diesel Technologies, Inc. Methods for variation of support oxide materials for ZPGM oxidation catalysts and systems using same
US9511353B2 (en) 2013-03-15 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) Firing (calcination) process and method related to metallic substrates coated with ZPGM catalyst
US20140271393A1 (en) * 2013-03-15 2014-09-18 Cdti Methods for Variation of Support Oxide Materials for ZPGM Oxidation Catalysts and Systems Using Same
US20160279608A1 (en) * 2013-03-19 2016-09-29 Rhodia Operations Composition based on oxides of zirconium, cerium, niobium and tin, preparation processes and use in catalysis
US20140301931A1 (en) * 2013-04-04 2014-10-09 Cdti System and Method for Two and Three Way Mixed Metal Oxide ZPGM Catalyst
WO2014165804A1 (en) * 2013-04-04 2014-10-09 Cdti System and method for zpgm catalytic converters
WO2014165803A1 (en) * 2013-04-04 2014-10-09 Cdti System and method for two and three way mixed metal oxide zpgm catalyst
US9073011B2 (en) 2013-04-04 2015-07-07 Randal Hatfield Systems and methods for diesel oxidation catalyst with decreased SO3 emissions
US9216408B2 (en) * 2013-04-04 2015-12-22 Clean Diesel Technologies, Inc. System and method for two and three way mixed metal oxide ZPGM catalyst
US9861959B2 (en) * 2013-04-09 2018-01-09 Toyota Jidosha Kabushiki Kaisha Catalyst composition and exhaust gas purifying method
US20160121300A1 (en) * 2013-04-09 2016-05-05 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Catalyst composition and exhaust gas purifying method
CN104117357A (en) * 2013-04-29 2014-10-29 福特全球技术公司 Three-way catalyst comprising mixture of nickel and copper
US20140322114A1 (en) * 2013-04-29 2014-10-30 Ford Global Technologies, Inc. Three-way catalyst comprising mixture of nickel and copper
US9403157B2 (en) * 2013-04-29 2016-08-02 Ford Global Technologies, Llc Three-way catalyst comprising mixture of nickel and copper
WO2014183006A1 (en) * 2013-05-10 2014-11-13 Clean Diesel Technologies, Inc. Zpgm diesel oxidation catalysts and methods of making and using same
US20140334990A1 (en) * 2013-05-10 2014-11-13 Cdti ZPGM Diesel Oxidation Catalyst Systems and Methods Thereof
US20140334989A1 (en) * 2013-05-10 2014-11-13 Cdti ZPGM Diesel Oxidation Catalysts and Methods of Making and Using Same
US9511350B2 (en) * 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
WO2014194096A1 (en) * 2013-05-29 2014-12-04 Clean Diesel Technologies, Inc. Systems and methods using cu-mn spinel catalyst on varying carrier material oxides for twc applications
US20140356243A1 (en) * 2013-05-29 2014-12-04 Cdti Systems and Methods for Providing ZPGM Perovskite Catalyst for Diesel Oxidation Applications
US9498767B2 (en) * 2013-05-29 2016-11-22 Clean Diesel Technologies, Inc. (Cdti) Systems and methods for providing ZPGM perovskite catalyst for diesel oxidation applications
US9216410B2 (en) * 2013-06-06 2015-12-22 Clean Diesel Technologies, Inc. Systems and methods for using Pd1+ in a TWC
US9771534B2 (en) 2013-06-06 2017-09-26 Clean Diesel Technologies, Inc. (Cdti) Diesel exhaust treatment systems and methods
US20140364303A1 (en) * 2013-06-06 2014-12-11 Cdti Systems and Methods for Using Pd1+ in a TWC
US20150005158A1 (en) * 2013-06-26 2015-01-01 Cdti Optimization of Washcoat Adhesion of Zero-PGM Catalyst on Metallic Substrates
WO2015199687A1 (en) * 2013-06-26 2015-12-30 Clean Diesel Technologies, Inc. Optimization of zero-pgm metal loading on metallic substrate
US9517449B2 (en) * 2013-06-26 2016-12-13 Clean Diesel Technologies, Inc. Optimization of washcoat adhesion of zero-PGM catalyst on metallic substrates
US20150004709A1 (en) * 2013-06-26 2015-01-01 Cdti Methods for Identification of Materials Causing Corrosion on Metallic Substrates within ZPGM Catalyst Systems
US20150005157A1 (en) * 2013-06-26 2015-01-01 Cdti Optimization of Zero-PGM Catalyst Systems on Metallic Substrates
WO2014210242A1 (en) * 2013-06-26 2014-12-31 Clean Diesel Technologies, Inc. Methods for identification of materials causing corrosion on metallic substrates within zpgm catalyst systems
US9545626B2 (en) * 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate
US20150018202A1 (en) * 2013-07-12 2015-01-15 Cdti Variations of Loading of Zero-PGM Oxidation Catalyst on Metallic Substrate
US20150148220A1 (en) * 2013-07-12 2015-05-28 Cdti Process for Elimination of Hexavalent Chromium Compounds on Metallic Substrates within Zero-PGM Catalyst Systems
US8969228B2 (en) * 2013-07-12 2015-03-03 Clean Diesel Technologies, Inc. Process for elimination of hexavalent chromium compounds on metallic substrates within zero-PGM catalyst systems
US20150018203A1 (en) * 2013-07-12 2015-01-15 Cdti Optimization of Zero-PGM Washcoat and Overcoat Loadings on Metallic Substrate
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US20150050742A1 (en) * 2013-08-16 2015-02-19 Cdti Analysis of Occurrence of Corrosion Products with ZPGM and PGM Catalysts Coated on Metallic Substrates
US9486784B2 (en) 2013-10-16 2016-11-08 Clean Diesel Technologies, Inc. Thermally stable compositions of OSM free of rare earth metals
WO2015057334A1 (en) * 2013-10-16 2015-04-23 Clean Diesel Technologies, Inc. Zero-pgm catalyst with oxygen storage capacity for twc systems
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US20150139883A1 (en) * 2013-11-19 2015-05-21 Toyota Motor Engineering & Manufacturing North America, Inc. Ceria-supported metal catalysts for the selective reduction of nox
US9283548B2 (en) * 2013-11-19 2016-03-15 Toyota Motor Engineering & Manufacturing North America, Inc. Ceria-supported metal catalysts for the selective reduction of NOx
US9815044B2 (en) 2013-11-19 2017-11-14 Toyota Motor Engineering & Manufacturing North America, Inc. Ceria-supported metal catalysts for the selective reduction of NOX
US9555400B2 (en) * 2013-11-26 2017-01-31 Clean Diesel Technologies, Inc. Synergized PGM catalyst systems including platinum for TWC application
CN106413879A (en) * 2013-11-26 2017-02-15 克林迪塞尔技术公司 Oxygen storage capacity and thermal stability of synergized PGM catalyst systems
US20150238940A1 (en) * 2013-11-26 2015-08-27 Clean Diesel Technologies Inc. (CDTI) Synergized PGM Catalyst Systems Including Palladium for TWC Application
US20150238941A1 (en) * 2013-11-26 2015-08-27 Clean Diesel Technologies Inc. (CDTI) Synergized PGM Catalyst Systems Including Platinum for TWC Application
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
US20150148215A1 (en) * 2013-11-26 2015-05-28 Clean Diesel Technologies Inc. (CDTI) Methods for Selecting and Applying a Layer of Cu-Mn Spinel Phase to ZPGM Catalyst Systems for TWC Application
US9511355B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) System and methods for using synergized PGM as a three-way catalyst
US20150147239A1 (en) * 2013-11-26 2015-05-28 Clean Diesel Technologies Inc. (CDTI) ZPGM Underfloor Catalyst for Hybrid Exhaust Treatment Systems
CN106413881A (en) * 2013-11-26 2017-02-15 克林迪塞尔技术公司 System and methods for using synergized PGM as a three-way catalyst
CN105682790A (en) * 2013-11-26 2016-06-15 清洁柴油技术有限公司 Synergized PGM catalyst systems for diesel oxidation catalyst applications
US20150148224A1 (en) * 2013-11-26 2015-05-28 Clean Diesel Technologies Inc. (CDTI) Oxygen Storage Capacity and Thermal Stability of Synergized PGM Catalyst Systems
US9433930B2 (en) * 2013-11-26 2016-09-06 Clean Diesel Technologies, Inc. (Cdti) Methods for selecting and applying a layer of Cu—Mn spinel phase to ZPGM catalyst systems for TWC application
WO2015081152A1 (en) * 2013-11-26 2015-06-04 Clean Diesel Technologies, Inc. Zpgm underfloor catalyst for hybrid exhaust treatment systems
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US20150352532A1 (en) * 2014-06-06 2015-12-10 Clean Diesel Technologies, Inc. Three-way Catalyst Systems Including Fe-activated Rh and Ba-Pd Material Compositions
US9475004B2 (en) * 2014-06-06 2016-10-25 Clean Diesel Technologies, Inc. Rhodium-iron catalysts
US9579604B2 (en) * 2014-06-06 2017-02-28 Clean Diesel Technologies, Inc. Base metal activated rhodium coatings for catalysts in three-way catalyst (TWC) applications
US9475005B2 (en) * 2014-06-06 2016-10-25 Clean Diesel Technologies, Inc. Three-way catalyst systems including Fe-activated Rh and Ba-Pd material compositions
US20150352533A1 (en) * 2014-06-06 2015-12-10 Clean Diesel Technologies, Inc. Base Metal Activated Rhodium Coatings for Catalysts in Three-Way Catalyst (TWC) Applications
US20150352531A1 (en) * 2014-06-06 2015-12-10 Clean Diesel Technologies, Inc. Rhodium-Iron Catalysts
WO2016039747A1 (en) * 2014-09-11 2016-03-17 Clean Diesel Technologies, Inc. Methods for oxidation and two-way and three-way zpgm catalyst systems and apparatus comprising same
US9731279B2 (en) 2014-10-30 2017-08-15 Clean Diesel Technologies, Inc. Thermal stability of copper-manganese spinel as Zero PGM catalyst for TWC application
US9700841B2 (en) 2015-03-13 2017-07-11 Byd Company Limited Synergized PGM close-coupled catalysts for TWC applications
US9951706B2 (en) 2015-04-21 2018-04-24 Clean Diesel Technologies, Inc. Calibration strategies to improve spinel mixed metal oxides catalytic converters
US20160354765A1 (en) * 2015-06-05 2016-12-08 Clean Diesel Technologies, Inc. Nb-Zr-Al-Mixed Oxide Supports for Rh Layer use in TWC Converters
US9828895B2 (en) * 2015-09-30 2017-11-28 Hyundai Motor Company Exhaust gas post-processing system
US20190054451A1 (en) * 2016-02-12 2019-02-21 University Court Of The University Of St Andrews Stainless steel foam supported catalysts for the oxidation of aromatic compounds
CN109153007A (en) * 2016-05-11 2019-01-04 清洁柴油技术先进材料有限公司 Non-copper binary spinelle and its storage oxygen capacity for TWC
US10533472B2 (en) 2016-05-12 2020-01-14 Cdti Advanced Materials, Inc. Application of synergized-PGM with ultra-low PGM loadings as close-coupled three-way catalysts for internal combustion engines
US9861964B1 (en) 2016-12-13 2018-01-09 Clean Diesel Technologies, Inc. Enhanced catalytic activity at the stoichiometric condition of zero-PGM catalysts for TWC applications
US10265684B2 (en) 2017-05-04 2019-04-23 Cdti Advanced Materials, Inc. Highly active and thermally stable coated gasoline particulate filters
US11167272B2 (en) 2019-07-15 2021-11-09 Ford Global Technologies, Llc Exhaust treatment system including nickel-containing catalyst
US11794172B2 (en) 2019-07-15 2023-10-24 Ford Global Technologies, Llc Exhaust treatment system including nickel-containing catalyst
CN114314763A (en) * 2021-12-14 2022-04-12 安徽元琛环保科技股份有限公司 Preparation method of environment-friendly three-dimensional particle electrode and prepared electrode
CN115532311A (en) * 2022-09-28 2022-12-30 河北国惠环保科技有限公司 Low-temperature plasma synergistic catalyst for treating odor of sludge storage yard
CN117085679A (en) * 2023-10-18 2023-11-21 昆明贵研催化剂有限责任公司 Noble metal catalyst for sulfur-containing waste gas treatment and preparation method thereof

Also Published As

Publication number Publication date
WO2009158009A1 (en) 2009-12-30
US8685352B2 (en) 2014-04-01
CN101939097A (en) 2011-01-05
MX2011000020A (en) 2011-07-29
JP2011525856A (en) 2011-09-29
CN101939097B (en) 2014-07-30
KR20110028426A (en) 2011-03-18
EP2303454A4 (en) 2013-01-09
KR101569946B1 (en) 2015-11-17
US20100240525A1 (en) 2010-09-23
EP2303454A1 (en) 2011-04-06
CA2729235A1 (en) 2009-12-30
JP5010049B2 (en) 2012-08-29
MX335990B (en) 2016-01-07
AU2009263035A1 (en) 2009-12-30

Similar Documents

Publication Publication Date Title
US8685352B2 (en) Zero platinum group metal catalysts
US8496896B2 (en) Zero platinum group metal catalysts
JP6703537B2 (en) Nitrous oxide removal catalyst for exhaust systems
RU2736939C2 (en) Catalysts for removal of nitrous oxide for exhaust systems
JP6018291B2 (en) Lean NOx trap diesel oxidation catalyst with hydrocarbon storage function
US8323601B2 (en) Catalysts for lean burn engines
US20140271390A1 (en) ZPGM Catalyst Systems and Methods of Making Same
WO2014145775A1 (en) Methods for oxidation and two-way and three-way zpgm catalyst systems and apparatus comprising same
JP2023525580A (en) Metal oxide-based SCR catalyst composition
US20240109036A1 (en) Exhaust gas treatment system for reducing ammonia emissions from mobile gasoline applications
WO2023052578A1 (en) Catalytic coating

Legal Events

Date Code Title Description
AS Assignment

Owner name: CATALYTIC SOLUTIONS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOLDEN, STEPHEN J.;HATFIELD, RANDAL;PLESS, JASON;AND OTHERS;REEL/FRAME:021550/0923

Effective date: 20080819

AS Assignment

Owner name: ENERTECH CAPITAL PARTNERS II L.P. (AS COLLATERAL A

Free format text: SECURITY AGREEMENT;ASSIGNOR:CATALYTIC SOLUTIONS, INC.;REEL/FRAME:024492/0955

Effective date: 20100528

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CATALYTIC SOLUTIONS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ENERTECH CAPITAL PARTNERS II L.P. (AS COLLATERAL AGENT);REEL/FRAME:025227/0102

Effective date: 20101029

Owner name: ECS HOLDINGS, INC., OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ENERTECH CAPITAL PARTNERS II L.P. (AS COLLATERAL AGENT);REEL/FRAME:025227/0102

Effective date: 20101029