JPH0611400B2 - Combustion catalyst with deterioration detection function - Google Patents

Combustion catalyst with deterioration detection function

Info

Publication number
JPH0611400B2
JPH0611400B2 JP60116130A JP11613085A JPH0611400B2 JP H0611400 B2 JPH0611400 B2 JP H0611400B2 JP 60116130 A JP60116130 A JP 60116130A JP 11613085 A JP11613085 A JP 11613085A JP H0611400 B2 JPH0611400 B2 JP H0611400B2
Authority
JP
Japan
Prior art keywords
catalyst
deterioration
component
resistance
combustion catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60116130A
Other languages
Japanese (ja)
Other versions
JPS61274748A (en
Inventor
聰 関戸
弘一 立花
康治 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI
Original Assignee
DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI filed Critical DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI
Priority to JP60116130A priority Critical patent/JPH0611400B2/en
Publication of JPS61274748A publication Critical patent/JPS61274748A/en
Publication of JPH0611400B2 publication Critical patent/JPH0611400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/12Other sensor principles, e.g. using electro conductivity of substrate or radio frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Gas Burners (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、劣化検知機構を有する排ガス浄化々よび低温
燃焼のための触媒体に関する。
Description: TECHNICAL FIELD The present invention relates to a catalyst body for exhaust gas purification and low temperature combustion, which has a deterioration detection mechanism.

従来の技術 従来、この種の触媒に関して白金属金属を活性アルミナ
のような酸化物に担持したものを用いていた。これらは
COやHCのような還元性ガスの酸化ばかりでなく、NO
2のような酸化性ガスの還元も同時に行なわれるので三
元触媒と言われている。また、CuO-Mn2O3や希土類の酸
化物を使用した触媒も使用されているが、これらは三元
触媒と異なり還元性ガスの酸化のみが専ら行なわれる。
これらの触媒は劣化を起しても触媒自体に劣化の指標と
なる顕著な物性変化が起らぬから、排ガス中の不完全燃
焼成分(還元性ガス)の増加を検知するセンサをつける
とか触媒の温度低下を検知するセンサをつけるなど別の
検知手段を設ける必要があった。しかし、これらのセン
サを別に設けるとしても、使用される所が高温であった
りするために長時間実用に耐えるものがなく、現実に
は、劣化検知機構のない触媒が使われ、人体に有害なガ
スを排出することが起っていた。
2. Description of the Related Art Conventionally, a catalyst of this type in which a white metal is supported on an oxide such as activated alumina has been used. These not only oxidize reducing gases such as CO and HC, but also NO
It is said to be a three-way catalyst because reduction of oxidizing gas such as 2 is also performed at the same time. Further, although catalysts using CuO-Mn 2 O 3 and rare earth oxides are also used, these are different from three-way catalysts in that they only oxidize the reducing gas.
Even if these catalysts deteriorate, there is no significant change in the physical properties of the catalyst, which is an indicator of deterioration. Therefore, it is necessary to install a sensor to detect the increase of incomplete combustion components (reducing gas) in the exhaust gas. It was necessary to provide another detection means such as a sensor for detecting the temperature decrease of the. However, even if these sensors are provided separately, they cannot be put to practical use for a long time because they are used at high temperatures, and in reality, a catalyst without a deterioration detection mechanism is used, which is harmful to the human body. Outgassing was happening.

発明者らは、 (Me:Fe,Mn,Cr,Vから選ばれた少なくとも1種の元
素、0≦x≦1,0<δ<0.5)を主体とする物質が酸
化還元触媒や当量点センサとして高温で可逆的にすぐれ
た性能を示すことを見出し、特許出願を行なうと共に、
その理由についても解明して来た。
The inventors (Me: at least one element selected from Fe, Mn, Cr, and V, 0 ≦ x ≦ 1, 0 <δ <0.5) is reversible at high temperature as a redox catalyst or equivalent point sensor. We found that it showed excellent performance, and filed a patent application,
I have also clarified the reason.

その後、第2成分SrMe′O3(M′e:Ti,Zr,Hf)を添加
すると、これが上記第1成分の粒界に入つてO2-イオン
輸率を増大し、触媒やセンサ性能を著しく良くするばか
りか、膨脹係数を他の金属やセラミック材料と同程度に
なる迄低下させ、これらの材料への附着・担持を容易に
するとは、センサの温度依存を無くしたりする効果を附
与できることを見出した。またさらに、これらの触媒性
能やセンサの感度、応答性が主としてO2-イオン導電性
によつて支配され、低温になると低下するのを少量のPd
がPtの添加によって改善し、しかもPdやPtの触媒効果が
高温になると著しく減ずる欠点を防止できることを見出
し、これらを特許出願している。しかし、この時点では
この触媒が劣化した際には必らず抵抗の急増を伴なうこ
とが分らなかった為に、抵抗増大を劣化検知に生かす出
願は行なっていなかった。
After that, when the second component SrMe′O 3 (M′e: Ti, Zr, Hf) is added, it enters the grain boundary of the first component and increases the O 2− ion transport number, which improves the catalyst and sensor performance. Not only is it significantly improved, but the coefficient of expansion is reduced to the same level as that of other metals and ceramic materials, making it easier to attach and support these materials, and the effect of eliminating the temperature dependence of the sensor is added. I found that I could do it. Furthermore, the catalytic performance, sensor sensitivity, and responsiveness are governed mainly by O 2 -ion conductivity, and a small amount of Pd does not decrease at low temperatures.
Has been found to be improved by the addition of Pt, and it is possible to prevent the drawback that the catalytic effect of Pd and Pt is significantly reduced at high temperatures, and we have applied for a patent for these. However, at this point in time, it was not found that the catalyst was inevitably accompanied by a rapid increase in resistance when it deteriorated, so no application was filed to utilize the increase in resistance for deterioration detection.

発明が解決しようとする問題点 本発明は、これらの触媒体が劣化を起した時に必らず電
気抵抗の急増を伴なうことに着目し、従来の燃焼触媒で
問題だった劣化した際に人体に対して有害なガスを放出
することを未然に防ぐ触媒と方法を提供する。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention focuses on the fact that these catalyst bodies are accompanied by a sudden increase in electrical resistance when they deteriorate, and when they deteriorate, which is a problem with conventional combustion catalysts. Provided are a catalyst and a method for preventing the emission of gases harmful to the human body.

問題点を解決するための手段 を主体とする触媒は、従来の貴金属触媒に相当する三元
触媒としての能力をもっており、かつ劣化すると結晶形
が変つて電気抵抗が増大する性質を有する。本発明はこ
の電気抵抗の変化を検知して劣化を知ることによって従
来の触媒では果せなかつた問題点を解決しようとするも
のである。
Means for solving problems The catalyst mainly composed of has the ability as a three-way catalyst equivalent to a conventional noble metal catalyst, and has the property that when deteriorated, the crystal form changes to increase the electric resistance. The present invention is intended to solve the problems that cannot be achieved by the conventional catalyst by detecting the change in the electric resistance and knowing the deterioration.

作用 は、電子とO2-イオンとの混合導電性をもつ。混合導電
性は、燃料やCOなどの還元性物質にO2-イオンを与え
てこれらを酸化して電子を取込み、この電子をOやNO
xのような酸化性物質に与えてこれらを還元してO2-イオ
ンを取込み、再び還元性物質に与える仲立ちをするのに
役立ち、言い換えれば酸化一還触媒作用を示すことを意
味する。たゞ、この物質単独の電子導電率は、O2-イオ
ン導電率よりも104〜105倍も大きいから、触媒作用は、
O2-イオン導電に律速されている。従って電子導電を多
少抑制されても、イオン導電を促進してやれば、触媒能
は大きくなる。第2成分SrM′eO3の添加は、このように
して触媒能を大きくするのに役立つ。電子導電は結晶粒
内で主に行なわれるのに対し、イオン導電は粒界で行わ
れるが、SrM′eO3は2相分離して の粒界を作るのに役立つからである。このようにしても
500℃以下の低温になるとイオン導電率が低下し触媒
能が低下する。そのイオン導電率の低下は、表面での電
荷授受反応が遅くなるために起っているのであって白金
族元素の微量添加によって改善が見られる。従来の貴金
属三元触媒では高温で劣化が早いのに対し、第1成分お
よび第2成分とを併用するとこれをかなり改善できる。
O2-イオンドナーとしての働らきが強いため、貴金属触
媒の劣化原因である焼結を防止するためと考えている。
本発明の触媒体の中でO2-イオン導電は、欠損を通じて
行なわれるから、欠損が多い程O2-イオン導電が増大
し、触媒能も大きくなる。この物質は他の酸化物より欠
損を多くしても安定に存在し、雰囲気の酸素濃度に応じ
て可逆的に酸素を出し入れする。しかし、それでも許容
できる欠損量には限界があって0.5を越えると結晶が崩
壊して修復が極めて遅くなり、これが触媒劣化につなが
る原因であることが分った。
Action Has mixed conductivity of electrons and O 2− ions. Mixed conductivity takes the electrons to reducing substances such as fuels and CO give O 2- ions and oxidizing them, the electronic O 2 or NO
It is useful for giving an oxidizing substance such as x to reduce these to take in O 2− ion, and again providing to the reducing substance for mediating, in other words, exhibiting an oxidation-reduction catalytic action. Since the electronic conductivity of this substance alone is 10 4 to 10 5 times higher than the O 2− ion conductivity, the catalytic action is
It is rate-controlled by O 2- ion conductivity. Therefore, even if the electronic conductivity is suppressed to some extent, if the ionic conductivity is promoted, the catalytic ability becomes large. The addition of the second component SrM'eO 3 serves in this way to increase the catalytic capacity. Electronic conduction is mainly performed in the crystal grains, whereas ionic conduction is performed at the grain boundaries, but SrM'eO 3 is separated into two phases. This is because it helps to create the grain boundaries of. Even in this case, at a low temperature of 500 ° C. or lower, the ionic conductivity is lowered and the catalytic ability is lowered. The decrease in the ionic conductivity occurs because the charge transfer reaction on the surface is delayed, and the improvement can be seen by the addition of a small amount of the platinum group element. The conventional noble metal three-way catalyst deteriorates rapidly at high temperatures, but it can be considerably improved by using the first component and the second component together.
Since it works strongly as an O 2 -ion donor, it is considered to prevent sintering, which is a cause of deterioration of the noble metal catalyst.
In the catalyst body of the present invention, O 2 − ion conduction is carried out through defects, so that the more defects there are, the higher the O 2 − ion conductivity and the greater the catalytic ability. This substance is stable even if it has more defects than other oxides, and reversibly takes in and out oxygen according to the oxygen concentration in the atmosphere. However, the allowable amount of defects is still limited, and if it exceeds 0.5, the crystal collapses and the repair becomes extremely slow, which is the cause of catalyst deterioration.

他方、触媒体の電気抵抗は、電子導電によって支配さ
れ、触媒能が表われる高温では、遷移金属(Co,Fe,M
n,Cr,V,Ti,Zr,Hf)イオンとO2-イオンで構成され
る導電対Me3--O-Me4+の数によって決定される。酸素を
放出して欠損ができると、電気的中性条件を保つため、
Me4+がMe3+となり、導電対が消滅するので電気抵抗が増
大する。結晶が崩壊するδ>0.5では、このような導電
対が全くなくなり、抵抗が著しく増大する。この触媒の
劣化モードはこの導電対が全くなくなり、結晶が崩壊す
ることのみであり、その場合には必らず電気抵抗が急増
するから、その抵抗の増大によって触媒の劣化を知るこ
とができる。
On the other hand, the electrical resistance of the catalytic body is dominated by electronic conduction, and at high temperatures where catalytic activity appears, the transition metals (Co, Fe, M
n, Cr, V, Ti, Zr, Hf) is determined by the ion and O conductivity vs. Me 3- -O-Me number of 4+ composed 2- ions. When oxygen is released and defects occur, an electrically neutral condition is maintained,
Me 4+ becomes Me 3+ , the conductive pair disappears, and the electric resistance increases. When the crystal collapses δ> 0.5, such a conductive pair disappears altogether and the resistance significantly increases. The deterioration mode of this catalyst is only that this conductive pair disappears at all and the crystal collapses. In that case, the electric resistance inevitably increases rapidly, and therefore the deterioration of the catalyst can be known from the increase in the resistance.

実施例 次に実施例に基づいて、本発明の効果を説明する。Example Next, the effect of the present invention will be described based on an example.

<参考例> 第1成分のみの場合の効果を説明する。各金属元素に酸
化物をSr0.5La0.5CoC3、Sr0.65La0.35Co0.7Fe0.3O3、Sr
0.8La0.2Co0.4Fe0.6O3、SrFeO3の組成になるよう混合
し、1200℃で4hr空気中で加熱反応させて化合物
を作り粉砕してその1.5gをシリカアルミナ繊維2.0gに担
持させ、石英ガラスからなる管状炉の中央部に充填し、
一方、同じ材料で第1図(aは側面図、bは上面図)の
ように抵抗測定のための白金リード1を埋め込んだペレ
ット2を成型して劣化検知機能付燃焼触媒体とした。そ
れを触媒充填層の近傍、入口側にセツトし、雰囲気を通
常の貴金属触媒では劣化が著しくなる850℃の温度に
保ち乍ら、CO1000ppm、O2500ppm(残りN)を空間
速度20,000h-1の速度で通じ、定期的に管の出口のCO
濃度とペレットの電気抵抗を測定し、CO除去率と電気
抵抗の変化を求めた。この試験をCO除去率50%にな
るまで継続した。
<Reference Example> The effect of the first component alone will be described. Add oxides to each metal element Sr 0.5 La 0.5 CoC 3 , Sr 0.65 La 0.35 Co 0.7 Fe 0.3 O 3 , Sr
0.8 La 0.2 Co 0.4 Fe 0.6 O 3 and SrFeO 3 are mixed to have a composition, and the mixture is heated and reacted at 1200 ° C. for 4 hours in air to prepare a compound, and 1.5 g of the compound is supported on 2.0 g of silica-alumina fiber, Fill the central part of the tubular furnace made of quartz glass,
On the other hand, as shown in Fig. 1 (a side view, b is a top view), the same material was used to mold a pellet 2 in which a platinum lead 1 for resistance measurement was embedded to form a combustion catalyst body with deterioration detection function. Near its catalyst-packed layer, and excisional the inlet side, notwithstanding et keeping the temperature markedly deteriorate 850 ° C. The atmosphere in the usual of a noble metal catalyst, CO1000ppm, O 2 500ppm (remainder N 2) a space velocity of 20,000 h - CO at the outlet of the pipe at a rate of 1
The concentration and the electric resistance of the pellet were measured, and changes in the CO removal rate and the electric resistance were obtained. This test was continued until the CO removal rate reached 50%.

CO除去率の変化と電気抵抗の変化は第2図のようであ
った。試料の組成によって、例えばCO除去率は初期に
おいてx=0.3附近が最大になるとか、xが大きい方が
寿命が長くなるとか触媒能に関しては前出願に示したよ
うな差が見られたが、総じて劣化を起すと電気抵抗が急
増することがすべての試料について言えることが認めら
れる。
The change in CO removal rate and the change in electric resistance were as shown in FIG. Depending on the composition of the sample, for example, the CO removal rate has a maximum around x = 0.3 in the initial stage, the life is longer when x is larger, and there is a difference as shown in the previous application regarding the catalytic activity. It can be seen that for all samples it can be said that the electrical resistance rapidly increases when deterioration occurs.

<実施例1> 第1成分として、Sr0.65Lc0.35Co0.7Fe0.3O3−δを取
上げ、この粉末に第2成分としてSrTiO3を0,20,4
0,60,80mol%の割り合いで混合し、抵抗測定部
は参考例と同様に第1図のような劣化検知機能付燃焼触
媒体を形成した。また触媒部は大きなペレットに成型
し、1350℃で2hr空気中で加熱焼成した後、再粉砕
してその1.5gをシリカアルミナ繊維2.0gに担持させ、
その他は実施例1と同様にして石英ガラス製管状炉の中
央部に触媒担持物および抵抗測定のためのペレットをセ
ットしてまずCO150ppmNO240ppm(残りN)を
空間速度8000h-1で通じ、一方電気炉で加熱して周
囲温度を変えて制御しながらCO除去率とN生成率を
求め、引続き実施例1と同様な条件でCO除去率の変化
と電気抵抗の変化を求めた。
<Example 1> The first component, taken up Sr 0.65 Lc 0.35 Co 0.7 Fe 0.3 O 3-δ, a SrTiO 3 as the second component to the powder 0,20,4
Mixing was carried out at a ratio of 0, 60, 80 mol%, and the resistance measuring part formed a combustion catalyst body with deterioration detecting function as shown in FIG. 1 as in the reference example. Also, the catalyst part was molded into a large pellet, heated and baked in air at 1350 ° C. for 2 hours, and then re-ground to carry 1.5 g of it on 2.0 g of silica-alumina fiber,
Otherwise, the catalyst carrier and pellets for resistance measurement were set in the center of the quartz glass tube furnace in the same manner as in Example 1, and CO 150 ppm NO 2 40 ppm (remaining N 2 ) was passed through at a space velocity of 8000 h −1 . On the other hand, the CO removal rate and the N 2 production rate were determined while heating in an electric furnace and changing the ambient temperature for control, and subsequently, the change in the CO removal rate and the change in electrical resistance were determined under the same conditions as in Example 1.

初めに求めた各温度でのCO除去率とN生成率は第3
図および第4図のようであり、劣化試験の結果は第5図
のようであった。
The CO removal rate and N 2 production rate at each temperature obtained at the beginning are the third
The result of the deterioration test was as shown in FIG. 5.

これから、触媒能としてSrTiO3の添加が40〜70mol
%の所がすぐれていることが分るが、いずれの組成でも
劣化が起ると電気抵抗の急増が起るということが認めら
れる。
From this, the addition of SrTiO 3 as a catalytic ability is 40 to 70 mol.
It can be seen that the percentage of% is excellent, but it is recognized that a sharp increase in electrical resistance occurs when deterioration occurs in any composition.

また、第1成分のみであると熱膨脹係数が、耐熱金属材
料やセラミック材料に較べて大きくて担持が難かしかっ
たが、第2成分SrTiO3の添加により表のように小さくな
って金属材料やセラミック材料の熱膨脹係数に近づき、
附着、担持が容易になる利点がある。
Further, the thermal expansion coefficient of the first component alone was larger than that of heat-resistant metal materials and ceramic materials, making it difficult to support, but the addition of the second component SrTiO 3 made it smaller as shown in the table. Approaching the coefficient of thermal expansion of ceramic materials,
There is an advantage that attachment and support become easy.

<実施例2> Sr0.65La0.35Co0.7Fe0.3O3−δにSrTiO3を60mol%加
えて混合したものとこの混合物に更にPdを0.6%になる
よう加えて混合したものそれぞれ100部に3号水ガラ
スとトリポリリン酸二水素アルミニウムを10:1の割
り合いで加えた結着剤100部を混合してスラリィ状と
したものに多孔質アルミナからなる円筒形ハニカム(外
径50mm、長さ80mm、見掛け開口率25%)を浸漬
し、120℃で30分間加熱固化させた。これらの触媒
附着量は、ハニカム重量が20gに対し、両方の試料と
も差がなく、約10gであった。別にPd黒0.6部を上記
結着部100部を加えて混合したスラリィにハニカムを
浸漬、加熱を繰返し、上記Pd黒添加のものとほゞ同重量
のPdのみを担持したものを作った。ハニカム1の周辺部
に第6図のように切溝2を入れ、対向するようにPtペー
ストつけ、900℃で30分間焼付けて抵抗測定用の電
極3とした。
Example 2 A mixture of Sr 0.65 La 0.35 Co 0.7 Fe 0.3 O 3−δ with 60 mol% of SrTiO 3 mixed and a mixture of this mixture with Pd further added to 0.6% 3 to 100 parts each Cylindrical honeycomb (outer diameter 50 mm, length 80 mm) made of porous alumina by mixing 100 parts of binder made by adding No. water glass and aluminum dihydrogen tripolyphosphate at a ratio of 10: 1 into a slurry shape , Apparent aperture ratio 25%), and heated and solidified at 120 ° C. for 30 minutes. The amount of these catalysts deposited was about 10 g, which was the same for both the samples and the honeycomb weight of 20 g. Separately, 0.6 part of Pd black was added to 100 parts of the above-mentioned binding part, and the honeycomb was dipped in a slurry and heated repeatedly to prepare a product carrying only Pd of about the same weight as that of the above Pd black addition. As shown in FIG. 6, a kerf 2 was formed in the peripheral portion of the honeycomb 1, and Pt paste was applied so as to face each other, and baked at 900 ° C. for 30 minutes to form an electrode 3 for resistance measurement.

その後、実施例2と同じ条件と方法で触媒能の温度依存
と劣化試験を行なった。
Then, the temperature dependence of the catalytic ability and the deterioration test were conducted under the same conditions and methods as in Example 2.

初めに求めたCO除去率とN生成率を第7図と第8図
に、また劣化試験でのCO除去率と電気抵抗の変化を第
9図に示した。
The CO removal rate and N 2 production rate that were initially obtained are shown in FIGS. 7 and 8, and the CO removal rate and the change in electric resistance in the deterioration test are shown in FIG. 9.

Pdの添加によつて低温の触媒能が著しく向上する。ま
た、ペロブスカイト複合材料とPdとの併用はPdのみを使
う場合の欠点とされる高温劣化を防ぐ効果を有する。総
じて、本発明の触媒材料は劣化を起すと必らず電気抵抗
の急増を伴なうことがこの場合にも成立することが認め
られる。
The addition of Pd significantly improves the low temperature catalytic ability. Further, the combined use of the perovskite composite material and Pd has an effect of preventing deterioration at high temperature, which is a drawback of using only Pd. In general, it is recognized that the catalyst material of the present invention inevitably accompanies a sudden increase in electric resistance even when it deteriorates.

なお、燃焼触媒体は混合物でもよいし、焼結物でもよ
い。
The combustion catalyst may be a mixture or a sinter.

以上の実施例では何れの場合も触媒が劣化すると抵抗の
急増を伴なうから、触媒自体の電気抵抗の変化を見れ
ば、劣化の起ったことを知ることができる。実施例3中
にPdのみを担持する従来の触媒も示したが、従来のもの
はこのような変化が殆んどないから、劣化して人体に有
害なガスを発生するようになってもそれを知ることが出
来なかった。
In any of the above examples, when the catalyst deteriorates, the resistance is rapidly increased. Therefore, it can be known that the deterioration has occurred by observing the change in the electric resistance of the catalyst itself. A conventional catalyst supporting only Pd is also shown in Example 3, but since the conventional catalyst hardly causes such a change, even if it deteriorates and emits a harmful gas to the human body, I could not know.

なお、実施例1では第1成分においてMeにFeを加える場
合のみを示したが、劣化モードは、0.5<δとなつて結
晶形が変ることだけに限られ、この結晶形の変ることは
Fe以外の他の元素による置換の場合も同様に起る。
In addition, in Example 1, only the case where Fe was added to Me in the first component was shown, but the deterioration mode is limited to 0.5 <δ and the crystal form is changed, and the crystal form is not changed.
The same applies to the case of substitution with an element other than Fe.

また、実施例2において第2成分としてSrTiO3を添加す
る場合のみを述べたが、第2成分の添加はこれが第1成
分と2相分離して粒界形成剤として働らき、O2-イオン
輸率を増大せしめるために触媒能が増大することを目的
にしており、′MeにZrやHfを加える場合も同様な役割り
もするだけで、劣化を起すと電気抵抗を起すことには変
りないと考えられる。
Although only the case where SrTiO 3 is added as the second component is described in Example 2, the addition of the second component causes the phase separation of the second component from the first component to act as a grain boundary forming agent, and O 2 − ion The purpose is to increase the catalytic ability in order to increase the transport number, and when Zr and Hf are added to'Me, it also plays a similar role, and when deterioration occurs, it changes to electrical resistance. Not considered.

さらに、実施例3においては第3成分としてPdの添加の
効果を示したが、これは低温での電荷授受反応を促進し
て低温の触媒能を向上するためのものであり、同様な働
らきをする白金族元素の添加でも低温触媒能向上に役立
つが、劣化によって電気抵抗が増大することはPdの場合
と同様に期待できる。
Furthermore, in Example 3, the effect of the addition of Pd as the third component was shown, but this is for promoting the charge transfer reaction at low temperature and improving the catalytic ability at low temperature, and it has the same function. Although the addition of a platinum group element to improve the low-temperature catalytic activity is also useful, the increase in electrical resistance due to deterioration can be expected as in the case of Pd.

以上の実施例には、触媒体として混合物、焼結物そして
また、これら混合物や焼結物の結着物を用いたが、それ
ら加工法によって触媒能に程度の差があったが、劣化は
いずれも電気抵抗の急増を伴った。劣化の本質が、0.5
<δとなることによる結晶崩壊と導電対の消滅にあるた
めであり、触媒体の結着、担持法に無関係に電気抵抗の
測定によつて劣化検知が出来ることを意味するものと考
えられる。
In the above examples, the mixture, the sintered product, and the binder of the mixture and the sintered product were used as the catalyst body, and there was a difference in the catalytic ability depending on the processing method, but the deterioration was Was also accompanied by a surge in electrical resistance. The essence of deterioration is 0.5
This is because the crystal collapse and the disappearance of the conductive pair due to <δ are considered to mean that the deterioration can be detected by measuring the electric resistance regardless of the binding of the catalyst body and the supporting method.

発明の効果 以上のように本発明の劣化検知機能付燃焼触媒体によ
り、使用状態において触媒の劣化を抵抗値変化として検
出することができる。
EFFECTS OF THE INVENTION As described above, the combustion catalyst body with deterioration detecting function of the present invention can detect deterioration of the catalyst as a change in resistance value in use.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例における劣化検知機能付燃焼触
媒体に用いる抵抗測定用焼結体ペレットの構成図、第2
図は参考例におけるCO除去率および電気抵抗の変化
図、第3図は本発明の第1の実施例におけるSrTiO
添加量によるCO除去率の変化図、第4図は同第1の
実施例におけるSrTiO添加量によるN生成率の
変化図、第5図は同実施例1におけるSrTiO添加
量によるCO除去率および電気抵抗の変化図、第6図は
本発明の第2の実施例における触媒体担持ハニカムおよ
び電気抵抗測定体の構成図、第7図は従来例との比較に
おいて前記第2の実施例の試料の触媒能に及ぼす効果を
CO除去率で示す図、第8図は同N生成率で示す図、
第9図は同CO除去率と電気抵抗の変化を示す図であ
る。
FIG. 1 is a configuration diagram of a sintered pellet for resistance measurement used in a combustion catalyst body having a deterioration detecting function according to an embodiment of the present invention.
FIG. 3 is a change diagram of CO removal rate and electric resistance in the reference example, and FIG. 3 is SrTiO 3 in the first embodiment of the present invention.
3 is a change diagram of the CO removal rate depending on the addition amount, FIG. 4 is a change diagram of the N 2 production rate according to the addition amount of SrTiO 3 in the first embodiment, and FIG. 5 is a CO change according to the addition amount of SrTiO 3 in the first embodiment. FIG. 6 is a change diagram of the removal rate and the electric resistance, FIG. 6 is a configuration diagram of the catalyst-supporting honeycomb and the electric resistance measuring body in the second embodiment of the present invention, and FIG. 7 is the second embodiment in comparison with the conventional example. FIG. 8 is a diagram showing the effect of the sample of the example on the catalytic ability by the CO removal rate, FIG. 8 is a diagram showing the same N 2 production rate,
FIG. 9 is a diagram showing changes in the CO removal rate and electric resistance.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/84 301 M 8017−4G A 8017−4G 311 M 8017−4G A 8017−4G 23/86 M 8017−4G ZAB A 8017−4G F23D 14/18 Z G01N 27/00 L 7414−2J Continuation of front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location B01J 23/84 301 M 8017-4G A 8017-4G 311 M 8017-4G A 8017-4G 23/86 M 8017- 4G ZAB A 8017-4G F23D 14/18 Z G01N 27/00 L 7414-2J

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】化学式 (Me:Fe,Mn,Cr,Vから選ばれた少なくとも1種の元
素、0≦x≦1,0≦δ≦0.5)を主体とし第2成分と
してSrMe′O3(Me′:Ti,Zr,Hfから選ばれた少なくとも
1種の元素)を添加し、必要に応じて白金族の少なくと
も1種を添加した触媒体と、前記触媒体に離間して設け
たリードを有し、燃焼中の前記リード間の電気抵抗を測
定することによって前記触媒体の変化を検知することを
特徴とする劣化検知機能付燃焼触媒体。
1. A chemical formula (Me: at least one element selected from Fe, Mn, Cr, V, 0 ≦ x ≦ 1, 0 ≦ δ ≦ 0.5) as a main component and SrMe′O 3 (Me ′: Ti, Zr) as the second component , At least one element selected from Hf) and, if necessary, at least one element of the platinum group, and a lead provided separately from the catalyst body. A combustion catalyst body with a deterioration detecting function, characterized in that a change in the catalyst body is detected by measuring an electric resistance between the leads.
【請求項2】第2成分を40〜70mol%の割り合い
で添加してなる特許請求の範囲第1項記載の劣化検知機
能付燃焼触媒体。
2. A combustion catalyst body with a deterioration detecting function according to claim 1, wherein the second component is added in a proportion of 40 to 70 mol%.
JP60116130A 1985-05-29 1985-05-29 Combustion catalyst with deterioration detection function Expired - Lifetime JPH0611400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60116130A JPH0611400B2 (en) 1985-05-29 1985-05-29 Combustion catalyst with deterioration detection function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60116130A JPH0611400B2 (en) 1985-05-29 1985-05-29 Combustion catalyst with deterioration detection function

Publications (2)

Publication Number Publication Date
JPS61274748A JPS61274748A (en) 1986-12-04
JPH0611400B2 true JPH0611400B2 (en) 1994-02-16

Family

ID=14679458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60116130A Expired - Lifetime JPH0611400B2 (en) 1985-05-29 1985-05-29 Combustion catalyst with deterioration detection function

Country Status (1)

Country Link
JP (1) JPH0611400B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620624B2 (en) * 1987-06-08 1997-06-18 株式会社豊田中央研究所 Exhaust gas purification catalyst
JPH01168343A (en) * 1987-12-22 1989-07-03 Toyota Central Res & Dev Lab Inc Exhaust gas purifying catalyst
CN1022542C (en) * 1990-07-26 1993-10-27 北京大学 Perovskite-type rare-earth composite oxides catalyst for combustion
JP3368758B2 (en) * 1996-07-16 2003-01-20 株式会社豊田中央研究所 Thermal history detection method and thermal history detection sensor
DE19805928C2 (en) 1998-02-13 2002-12-05 Daimler Chrysler Ag Method for determining the degree of filling or the quality of a gas-storing catalyst
JP4226275B2 (en) * 2002-06-07 2009-02-18 日本パイオニクス株式会社 Exhaust gas purification method
DE102008012050A1 (en) 2008-02-29 2009-09-03 Fischerauer, Gerhard, Prof. Dr.-Ing. Exhaust after-treatment system operating method for motor vehicle, involves regulating condition of catalyzer as continues input variable of engine control for regulation of exhaust after-treatment system
FR2932533B1 (en) * 2008-06-13 2010-07-30 Peugeot Citroen Automobiles Sa DEVICE AND METHOD FOR MONITORING THE INTEGRITY OF A CERAMIC PARTICLE FILTER STRUCTURE

Also Published As

Publication number Publication date
JPS61274748A (en) 1986-12-04

Similar Documents

Publication Publication Date Title
CN102967641B (en) YSZ (Yttria Stabilized Zirconia)-based blended potential type NO2 sensor using porous NiMn2O4 as sensing electrode and preparation method of sensor
US4601883A (en) Sensor element
JP2009511859A (en) Multi-cell ammonia sensor and method of use thereof
EP0806657A2 (en) Tin oxide gas sensors
JPH0611400B2 (en) Combustion catalyst with deterioration detection function
EP1658420B1 (en) Method of evaluating low-temperature purifying ability of catalysts for purifying exhaust gases
US5015616A (en) Composition for catalytically cleaning exhaust gas and to improve the sensitivity of sensors
EP0002375B1 (en) Oxygen sensor for use in engine fuel control systems
JP3327335B2 (en) Highly active electrode for exhaust gas sensor
JP2003329644A (en) Electrochemical oxygen pump cell and nitrogen oxide detecting device using it
EP0001509B1 (en) Variably resistive gas sensor and method of fabrication
JPH09257747A (en) Carbon dioxide sensor
JPS5950352A (en) Detection element for nox
JPH07107524B2 (en) Oxygen gas detector
JPS604849A (en) Nitrogen oxide detecting element
JP3669807B2 (en) Carbon monoxide detection sensor
JP3966616B2 (en) CO gas sensor and manufacturing method thereof, CO gas detection method
JP3845490B2 (en) Carbon dioxide sensor
JP3415676B2 (en) Gas sensor
JP2904002B2 (en) Temperature sensor
JP3655394B2 (en) NOx sensor
JPS58201057A (en) Sensing element of gas
JPS6128937B2 (en)
JPH04269648A (en) Gas sensor
JPH0980019A (en) Method for measuring total nox content