JPH0398644A - Preparation of catalyst for purifying exhaust gas - Google Patents

Preparation of catalyst for purifying exhaust gas

Info

Publication number
JPH0398644A
JPH0398644A JP1233003A JP23300389A JPH0398644A JP H0398644 A JPH0398644 A JP H0398644A JP 1233003 A JP1233003 A JP 1233003A JP 23300389 A JP23300389 A JP 23300389A JP H0398644 A JPH0398644 A JP H0398644A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
citric acid
carrier
purifying exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1233003A
Other languages
Japanese (ja)
Inventor
Hisaki Itou
寿記 伊藤
Shinichi Matsumoto
伸一 松本
Hideo Sobukawa
英夫 曽布川
Mareo Kimura
希夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP1233003A priority Critical patent/JPH0398644A/en
Publication of JPH0398644A publication Critical patent/JPH0398644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst for purifying exhaust gas having heat resistance by adding a specific noble metal to an inorg. catalyst carrier. CONSTITUTION:An inorg. catalyst carrier is immersed in a solution mixture of platinum and/or rhodium, iridium and/or ruthenium and citric acid. Next, said carrier is dried, calcined and reduced to support the above-mentioned noble metals on the inorg. catalyst carrier. The catalyst for purifying exhaust gas thus obtained has heat resistance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は排ガス浄化用触媒の製造方法に係り、特に金属
触媒自体の耐熱性を向上させた排ガス浄化用触媒の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an exhaust gas purifying catalyst, and particularly to a method for producing an exhaust gas purifying catalyst in which the heat resistance of the metal catalyst itself is improved.

〔従来の技術〕[Conventional technology]

自動車の排ガス中に含まれる炭化水素、一酸化炭素、酸
化窒素などの有害物質を浄化する触媒として、白金、パ
ラジウム、ロジウムなどの貴金属をアル嵩ナ、コージエ
ライトなどの無機質触媒担体に担持した触媒が用いられ
ている。これは、白金、パラジウム、ロジウムなどの貴
金属は高価ではあるが、触媒性能及び耐久性能に優れて
いるからである。そして、白金、パラジウム、ロジウム
のうち1種を主触媒或分とし、ルテニウム、ロジウム、
パラジウム、オスミウム、イリジウムのうち1種以上を
助触媒成分として担持した触媒が低温活性に優れるとし
て開示されている(特開昭48−103484号公報)
Catalysts that purify harmful substances such as hydrocarbons, carbon monoxide, and nitrogen oxides contained in automobile exhaust gas are made by supporting precious metals such as platinum, palladium, and rhodium on inorganic catalyst carriers such as alumina and cordierite. It is used. This is because noble metals such as platinum, palladium, and rhodium are expensive but have excellent catalytic performance and durability. One of platinum, palladium, and rhodium is used as the main catalyst, and ruthenium, rhodium,
A catalyst supporting one or more of palladium, osmium, and iridium as a promoter component has been disclosed as having excellent low-temperature activity (Japanese Patent Laid-Open No. 103484/1984).
.

また、一無機質担体は、通常、ペレント型又はモノリス
型のコージエライト等の担体基材表面にアルξナ等の多
孔賞無機酸化物をコーティングした触媒担持層で構或さ
れるが、この触媒担持層のアルξナに希土類元素や遷移
金属を添加してこれを安定化させ、耐熱性を向上させる
技術が開示されている(特開昭57−87839号、同
4B−18180号、同61−3531号公報、特公昭
60 − 7537号公報、米国特許第3003020
号、同3951860号、同4170573号明細書等
参照〉。
In addition, an inorganic support is usually composed of a catalyst support layer in which a porous inorganic oxide such as alumina is coated on the surface of a carrier base material such as pellet type or monolith type cordierite. A technique has been disclosed in which rare earth elements and transition metals are added to alumina to stabilize it and improve heat resistance (Japanese Patent Application Laid-open Nos. 57-87839, 4B-18180, and 61-3531). No. 60-7537, U.S. Patent No. 3003020
No., No. 3951860, No. 4170573, etc.).

〔発明が解決しようとする課題] 上記の貴金属は耐久性能に優れるとはいえ、自動車触媒
の使用条件は極めて厳しく、高速走行時には1000゜
C近くに達し、このような高温条件下ではそれらの貴金
属でも粒戊長を起こし、熱劣化を起こす。そこで、現在
でもなお、触媒の耐熱性の向上が求められている。
[Problems to be Solved by the Invention] Although the above-mentioned precious metals have excellent durability, the usage conditions for autocatalysts are extremely severe, reaching nearly 1000°C during high-speed driving, and under such high-temperature conditions, these precious metals degrade. However, it causes grain lengthening and thermal deterioration. Therefore, there is still a demand for improvement in the heat resistance of catalysts.

上記の触媒担持層に希土類金属や遷移金属を添加する技
術はこのような要求に応じて触媒の耐熱性を向上させる
目的で提案されたものである。しかしながら、これらは
触媒担体を安定化するものであって直接貴金属に作用す
るものではないため、貴金属の粒成長を十分に抑制でき
ず、耐熱性向上の効果も十分ではない。
The above-mentioned technique of adding rare earth metals or transition metals to the catalyst supporting layer was proposed for the purpose of improving the heat resistance of the catalyst in response to such demands. However, since these stabilize the catalyst carrier and do not act directly on the noble metal, grain growth of the noble metal cannot be sufficiently suppressed, and the effect of improving heat resistance is not sufficient.

そこで、本発明は貴金属に直接作用して安定化させて耐
熱性を向上させた排ガス浄化用触媒の製造方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for producing an exhaust gas purifying catalyst that directly acts on noble metals to stabilize them and improve heat resistance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達或するために、無機質触媒担体を
、白金及び/又はロジウムと、イリジウム及び/又はル
テニウムと、クエン酸との混合溶液に浸漬し、乾燥後、
仮焼及び還元することを特徴とする排ガス浄化用触媒の
製造方法を提供する。
In order to achieve the above object, the present invention immerses an inorganic catalyst carrier in a mixed solution of platinum and/or rhodium, iridium and/or ruthenium, and citric acid, and after drying,
Provided is a method for producing an exhaust gas purifying catalyst, which comprises calcination and reduction.

用いる無機質触媒担体は特に制約はなく、従来より用い
られている担体のいずれでもよいが、ペレット型、ある
いはハニカム状またはフォーム状のモノリス型などが代
表的であり、またこのような形状のコーディエライトな
どの無N¥t担体基材表面に活性アルξナなどの多孔質
無機物からなる触媒担持層を形成したものが好ましい。
There are no particular restrictions on the inorganic catalyst carrier used, and it may be any conventionally used carrier, but pellet-type, honeycomb-shaped, or foam-shaped monolithic carriers are typical. Preferably, a catalyst support layer made of a porous inorganic material such as activated alumina is formed on the surface of a N\t-free carrier base material such as light.

触媒金属としては、Pt,Rhの1方又は双方と、Ru
,Irの1方又は双方を組合せ、Pt,Rhの担持量に
対するRu,Irの担持量の比は原子数比で0.01〜
0.5とする。本発明では、これらの金属を触媒担体上
に担持するに当って、Rt及び/又はRhと、Ru及び
/又はIrと、クエン酸との混合溶液を用いる。クエン
酸との混合溶液を用いることによって、担持されるPL
,RhとRu,Irとの間の固溶が促進される効果があ
る。クエン酸の濃度は用いるP t, Rh. Ru,
 r rの濃度と当量で用いることが好ましい。クエン
酸はpt等を錯体化していると考えられるから、用いる
金属を錯化しうるに適した量のクエン酸を用いるためで
ある。
The catalytic metals include one or both of Pt and Rh, and Ru.
, Ir, or both, and the ratio of the supported amounts of Ru and Ir to the supported amounts of Pt and Rh is 0.01 to 0.01 in terms of atomic ratio.
It is set to 0.5. In the present invention, a mixed solution of Rt and/or Rh, Ru and/or Ir, and citric acid is used to support these metals on the catalyst carrier. PL supported by using a mixed solution with citric acid
, Rh and Ru, Ir have the effect of promoting solid solution. The concentration of citric acid depends on the Pt, Rh. Ru,
It is preferable to use it in an amount equivalent to the concentration of r r. This is because citric acid is thought to complex pt and the like, so an amount of citric acid suitable for complexing the metal used is used.

Pt,Rh,Ru,Irの溶液はこれらの金属の硝酸塩
等公知のものを用いる。
As the solutions of Pt, Rh, Ru, and Ir, known solutions such as nitrates of these metals are used.

無機質触媒担体を上記混合溶液に浸漬及び乾燥した後は
、仮焼及び還元処理を行なう。仮焼は大気中200〜5
00゜Cで1〜5時間程度行ない、還元は、例えば、1
00%水素ガス雰囲気中300〜800゜C、1〜5時
間程度処理して行なうことができる。
After the inorganic catalyst carrier is immersed in the mixed solution and dried, it is subjected to calcining and reduction treatment. Calcination is in the air at 200-5
The reduction is carried out at 00°C for about 1 to 5 hours, for example, 1 to 5 hours.
This can be carried out by processing in a 00% hydrogen gas atmosphere at 300 to 800°C for about 1 to 5 hours.

〔作 用〕[For production]

Ru,Irの融点(゜C)は下記の如<Pt,Rhの融
点(゛C)より高く、これらの間では固溶体を生成する
The melting points (°C) of Ru and Ir are higher than the melting points (°C) of Pt and Rh, as shown below, and a solid solution is formed between them.

Pt   Rh   Ru    rr1769   
1960   2250   2243PL,RhはR
u,Lrと固溶体を形成することによって融点が高くな
り、粒成長が抑制される効果がある。また、Ir,Ru
はNO.還元反応、HC改質反応などに優れる触媒金属
であることが知られているが、酸化物(RuOz, I
rO3など)が揮発しやすく、自動車用には難しい元素
であったが、本発明では酸化物となっても安定なPt,
Rhと固溶体を形成したことによって酸化条件下でも揮
発しないようになり、その結果これまで困難であったI
r,Ruの使用が可能となる。従って、これらの元素の
触媒性能も期待できる。
Pt Rh Ru rr1769
1960 2250 2243PL, Rh is R
Forming a solid solution with u and Lr increases the melting point and has the effect of suppressing grain growth. Also, Ir, Ru
is NO. It is known that it is a catalytic metal that is excellent in reduction reactions, HC reforming reactions, etc., but oxides (RuOz, I
Pt, which is stable even in the form of an oxide, has been developed in the present invention.
By forming a solid solution with Rh, it does not volatilize even under oxidizing conditions, and as a result, I
r, Ru can be used. Therefore, the catalytic performance of these elements can also be expected.

そして、本発明では、クエン酸とPL,Rh とRu.
Irの混合溶液を用いることによって、Pt,RhとR
u,Irとの固溶が促進され、上記の効果が実現される
。クエン酸を用いなくても、Pt,RhとRu,Irは
一部分において固溶するかもしれないが、それでは粒成
長抑制、r2u,Irの揮発防止の効果が十分ではない
In the present invention, citric acid and PL, Rh and Ru.
By using a mixed solution of Ir, Pt, Rh and R
Solid solution with u and Ir is promoted, and the above effects are achieved. Even if citric acid is not used, Pt, Rh, Ru, and Ir may partially form a solid solution, but this is not sufficient to suppress grain growth and prevent volatilization of r2u and Ir.

[実施例〕 尖施史上 硝酸アルξニウムを40wt%含有する水溶液30重量
部と水100重量部の混合溶液中に撹拌しながら活性ア
ルミナ100重量部を加え、良く撹拌してスラリーを調
製した。このスラリーにコーディエライト質からなるハ
ニカム形状のモノリス触媒担体基材を1分間浸漬後引き
上げ、空気流により余分のスラリーを吹き飛ばし、20
0゜Cで1時間乾燥後600゜Cで2時間焼成した。
[Example] 100 parts by weight of activated alumina was added to a mixed solution of 30 parts by weight of an aqueous solution containing 40 wt% of aluminum ξ nitrate and 100 parts by weight of water with stirring, and the mixture was thoroughly stirred to prepare a slurry. A honeycomb-shaped monolithic catalyst carrier base material made of cordierite was immersed in this slurry for 1 minute, then pulled up, and the excess slurry was blown off with an air flow.
After drying at 0°C for 1 hour, it was fired at 600°C for 2 hours.

次にこのモノリス担体にジニトロジアンミン白金、硝酸
ルテニウム、それらと当量のクエン酸を含む水溶液を浸
漬して吸わせ、引き上げて余分な液を吹き飛ばし、70
゜Cでロータリーエバボレーターによりl2時間真空乾
燥し、300℃で2時間仮焼し、600゜Cで3時間H
z100%気流中で還元処理を行い触媒1aを得た。
Next, this monolithic carrier was immersed in an aqueous solution containing dinitrodiammine platinum, ruthenium nitrate, and an equivalent amount of citric acid, and then pulled out and the excess liquid was blown off.
Vacuum-dried at °C for 12 hours using a rotary evaporator, calcined at 300 °C for 2 hours, and heated at 600 °C for 3 hours.
Reduction treatment was performed in a z100% air flow to obtain catalyst 1a.

又、同様な操作によりルテニウムをイリジウムに替えた
触媒1bを得た。
Further, a catalyst 1b in which ruthenium was replaced with iridium was obtained by the same operation.

北ム朋土 実施例1のようにして作成した、アルミナをコートシた
担体にジニトロジアンミン白金、硝酸ルテニウムを含む
水溶液を浸漬して吸わせ、引き上げて余分な液を吹き飛
ばし、100’Cで1時間乾燥して、600゜Cで3時
間H zloo%気流中で還元処理を行い触媒ICを得
た. 又、同様な操作によりルテニウムをイリジウムに替えた
触媒1dを得た。
Hokumu Tomodo An alumina-coated carrier prepared as in Example 1 was immersed in an aqueous solution containing dinitrodiammine platinum and ruthenium nitrate to absorb it, pulled out, blown off the excess liquid, and heated at 100'C for 1 hour. After drying, reduction treatment was performed at 600°C for 3 hours in a Hzloo% air flow to obtain a catalyst IC. Further, a catalyst 1d in which ruthenium was replaced with iridium was obtained by the same operation.

裏益班1 実施例lのジニトロジアンミン白金を硝酸ロジウムに替
えて同様な操作を行い。触媒2a,2bを得た. 比較狙1 比較例工のジニトロジアンミン白金を硝酸ロジウムに替
えて同様な操作を行い、触媒2c , 2dを得た。
Uragai Group 1 Perform the same operation as in Example 1, replacing dinitrodiammine platinum with rhodium nitrate. Catalysts 2a and 2b were obtained. Comparison Aim 1 Catalysts 2c and 2d were obtained in the same manner as in Comparative Example except that dinitrodiammine platinum was replaced with rhodium nitrate.

裏旌班主 実施例1の溶液をジニトロジアン≧ン白金、硝酸ロジウ
ムの混合溶液に替えて同様の操作を行い、触媒3a,3
’bを得た。
The same operation was carried out by replacing the solution of Main Example 1 with a mixed solution of dinitrodiane≧platinum and rhodium nitrate to prepare catalysts 3a and 3.
'b got.

北較皿1 比較例lの溶液をジニトロジアンξン白金、硝酸ロジウ
ムの混合溶液に替えて同様の操作を行い、触媒3c .
3dを得た。
Northern Comparison Plate 1 The same operation was carried out except that the solution of Comparative Example 1 was replaced with a mixed solution of dinitrodiane platinum and rhodium nitrate, and catalyst 3c.
I got 3d.

裏胤桝土 実施例工のジニトロジアンミン白金、硝酸ルテニウム、
それらと当量のクエン酸を含む水溶液を、ジニトロジア
ンミン白金、硝酸ルテニウム、硝酸イリジウム、それら
と当量のクエン酸を含む水溶液に替えて同様の操作を行
い、触媒4aを得た。
Dinitrodiammine platinum, ruthenium nitrate,
The same operation was performed by replacing the aqueous solution containing citric acid in an equivalent amount with dinitrodiammine platinum, ruthenium nitrate, iridium nitrate, and an aqueous solution containing citric acid in an equivalent amount thereto to obtain catalyst 4a.

北較班土 比較例lの溶液をジニトロジアンミン白金、硝酸ルテニ
ウム、硝酸イリジウムの混合溶液に替えて同様の操作を
行い、触媒4bを得た。
Catalyst 4b was obtained by performing the same operation except for replacing the solution of Comparative Example 1 with a mixed solution of dinitrodiammine platinum, ruthenium nitrate, and iridium nitrate.

以上の実施例及び比較例で得られたそれぞれの排気ガス
浄化触媒を自動車排気ガスを模したモデルガス中に、9
00’C * 5 hさらして、耐久試験を行った。ス
トイキ相当のモデルガスを用いて、No.が50%に達
した時の温度を測定した。さらに、耐久試験後の触媒を
分解し、触媒担持層をはぎ取り、化学処理によりアルξ
ナを溶かし貴金属を濃縮してX#A回折の測定を行い。
Each of the exhaust gas purification catalysts obtained in the above Examples and Comparative Examples was added to a model gas simulating automobile exhaust gas at 9%
A durability test was conducted by exposing the sample to 00'C*5 hours. Using a model gas equivalent to stoichiometry, No. The temperature when the amount reached 50% was measured. Furthermore, after the durability test, the catalyst is decomposed, the catalyst support layer is stripped off, and the alkali
The precious metals were concentrated and the X#A diffraction was measured.

回折ピークの半値幅より貴金属粒径を測定した。又、格
子定数も測定した。結果を表1に示す。
The noble metal particle size was measured from the half width of the diffraction peak. The lattice constant was also measured. The results are shown in Table 1.

Rh単独の触媒は実用的でないので耐久試験は行なわな
かった。
Since a catalyst containing only Rh is not practical, durability tests were not conducted.

表より明らかなように、クエン酸を用いた方は、触媒の
粒径は小さく、粒成長が抑制され、この結果として触媒
性能が優れている。又同時にX線回折によりクエン酸を
用いた方が、Ir,RuとPt,Rbとの固溶が促進さ
れていることも確認した.また粒戒長抑制効果は、この
固溶体生成促進のためと考えることができる。
As is clear from the table, in the case of using citric acid, the particle size of the catalyst is small, grain growth is suppressed, and as a result, the catalyst performance is excellent. At the same time, it was confirmed by X-ray diffraction that the use of citric acid promoted the solid solution of Ir, Ru and Pt, Rb. Moreover, the effect of suppressing grain length can be considered to be due to the promotion of solid solution formation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、クエン酸を用いることによってPt,
RhとRu,Irとの固溶を促進し、それによって触媒
の粒戒長を抑制しかつRu,Irの揮発を防止し、よっ
て自動車排ガス浄化用触媒の耐久性と性能の向上を図る
ことができる。
According to the present invention, by using citric acid, Pt,
It is possible to promote the solid solution of Rh with Ru and Ir, thereby suppressing the grain size of the catalyst and preventing the volatilization of Ru and Ir, thereby improving the durability and performance of catalysts for purifying automobile exhaust gas. can.

Claims (1)

【特許請求の範囲】[Claims] 1、無機質触媒担体を、白金及び/又はロジウムと、イ
リジウム及び/又はルテニウムと、クエン酸との混合溶
液に浸漬し、乾燥後、仮焼及び還元することを特徴とす
る排ガス浄化用触媒の製造方法。
1. Production of a catalyst for exhaust gas purification, characterized in that an inorganic catalyst carrier is immersed in a mixed solution of platinum and/or rhodium, iridium and/or ruthenium, and citric acid, dried, then calcined and reduced. Method.
JP1233003A 1989-09-11 1989-09-11 Preparation of catalyst for purifying exhaust gas Pending JPH0398644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1233003A JPH0398644A (en) 1989-09-11 1989-09-11 Preparation of catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1233003A JPH0398644A (en) 1989-09-11 1989-09-11 Preparation of catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH0398644A true JPH0398644A (en) 1991-04-24

Family

ID=16948293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233003A Pending JPH0398644A (en) 1989-09-11 1989-09-11 Preparation of catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH0398644A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105209A (en) * 2001-09-28 2003-04-09 Okura Ind Co Ltd Thermoplastic resin composition and molding therefrom
JP2003105208A (en) * 2001-09-28 2003-04-09 Okura Ind Co Ltd Thermoplastic resin composition and molding therefrom
JP2006198490A (en) * 2005-01-19 2006-08-03 Mitsubishi Heavy Ind Ltd Exhaust gas cleaning catalyst, its manufacturing method and exhaust gas cleaning method
US7364712B2 (en) 2000-11-17 2008-04-29 Osaka Gas Company Limited Catalyst for purifying methane-containing waste gas and method of purifying methane-containing waste gas
WO2014136279A1 (en) * 2013-03-07 2014-09-12 大阪瓦斯株式会社 Reforming catalyst for hydrocarbon compounds, and production method therefor
JP2015180485A (en) * 2014-03-05 2015-10-15 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP2016163874A (en) * 2015-02-26 2016-09-08 大阪瓦斯株式会社 Catalyst for oxidation removal of methane and method for oxidation removal of methane
JP2017100120A (en) * 2015-11-24 2017-06-08 大阪瓦斯株式会社 Method for producing catalyst for methane oxidation removal, and catalyst for methane oxidation removal
WO2021132335A1 (en) * 2019-12-27 2021-07-01 国立大学法人京都大学 Solid solution nanoparticles, method for producing same, dispersion liquid of solution solid nanoparticles, and catalyst

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7364712B2 (en) 2000-11-17 2008-04-29 Osaka Gas Company Limited Catalyst for purifying methane-containing waste gas and method of purifying methane-containing waste gas
JP2003105209A (en) * 2001-09-28 2003-04-09 Okura Ind Co Ltd Thermoplastic resin composition and molding therefrom
JP2003105208A (en) * 2001-09-28 2003-04-09 Okura Ind Co Ltd Thermoplastic resin composition and molding therefrom
JP2006198490A (en) * 2005-01-19 2006-08-03 Mitsubishi Heavy Ind Ltd Exhaust gas cleaning catalyst, its manufacturing method and exhaust gas cleaning method
WO2014136279A1 (en) * 2013-03-07 2014-09-12 大阪瓦斯株式会社 Reforming catalyst for hydrocarbon compounds, and production method therefor
JP2014171950A (en) * 2013-03-07 2014-09-22 Osaka Gas Co Ltd Autothermal modification catalyst for hydrocarbon compound and production method thereof
JP2015180485A (en) * 2014-03-05 2015-10-15 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP2016163874A (en) * 2015-02-26 2016-09-08 大阪瓦斯株式会社 Catalyst for oxidation removal of methane and method for oxidation removal of methane
JP2017100120A (en) * 2015-11-24 2017-06-08 大阪瓦斯株式会社 Method for producing catalyst for methane oxidation removal, and catalyst for methane oxidation removal
WO2021132335A1 (en) * 2019-12-27 2021-07-01 国立大学法人京都大学 Solid solution nanoparticles, method for producing same, dispersion liquid of solution solid nanoparticles, and catalyst

Similar Documents

Publication Publication Date Title
US7641875B1 (en) Mixed-phase ceramic oxide three-way catalyst formulations and methods for preparing the catalysts
EP0320243B1 (en) Method of treating gaseous effluents with a catalyst containing cerium and copper oxides
US6423293B1 (en) Oxygen storage material for automotive catalysts and process of using
JPS63162043A (en) Catalyst for cleaning exhaust gas
JP2773428B2 (en) Exhaust gas purification method
JPH0817942B2 (en) Exhaust purification catalyst manufacturing method
JPS59127649A (en) Catalyst for purifying exhaust gas
JP2003246624A (en) Method of producing pyrochlore type oxide
JPH0398644A (en) Preparation of catalyst for purifying exhaust gas
JPH08131830A (en) Catalyst for purification of exhaust gas
JPH09501348A (en) Base metal catalysts and catalyst supports for automobile exhaust gas purification and a further two-step process.
JPH09248462A (en) Exhaust gas-purifying catalyst
JPH05277369A (en) Catalyst for purification of exhaust gas
JP2001058130A (en) Catalyst for nitrogen oxide decomposition
JP3222184B2 (en) Method for producing exhaust gas purifying catalyst
JPH0356140A (en) Catalyst for purifying exhaust gas
JP2000296339A (en) Composite metal colloid and its production as well as catalyst for purification of gas and its production
JPH0859236A (en) Highly heat-resistant copper-alumina double oxide and cleaning method of exhaust gas
JPS59162948A (en) Catalyst for purifying exhaust gas
JPH0538435A (en) Catalyst composition
JPH0884931A (en) Catalyst for purifying exhaust gas
JPH0538442A (en) Catalyst composition
JPH08173811A (en) Catalyst for purification of exhaust gas and its production
JP3332441B2 (en) Method for producing exhaust gas purifying catalyst
JP3300029B2 (en) Method for producing exhaust gas purifying catalyst