JPH09501348A - Base metal catalysts and catalyst supports for automobile exhaust gas purification and a further two-step process. - Google Patents

Base metal catalysts and catalyst supports for automobile exhaust gas purification and a further two-step process.

Info

Publication number
JPH09501348A
JPH09501348A JP7505661A JP50566195A JPH09501348A JP H09501348 A JPH09501348 A JP H09501348A JP 7505661 A JP7505661 A JP 7505661A JP 50566195 A JP50566195 A JP 50566195A JP H09501348 A JPH09501348 A JP H09501348A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
oxide
oxides
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7505661A
Other languages
Japanese (ja)
Inventor
バタチャリャ,アショク
Original Assignee
ローバー グループ リミティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローバー グループ リミティド filed Critical ローバー グループ リミティド
Publication of JPH09501348A publication Critical patent/JPH09501348A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

(57)【要約】 (A)酸化第一銅と酸化第二銅を含有する銅成分、及び(B)(1)ランタノイド酸化物の1種以上、(2)メンデレーフ周期律表のII族元素の酸化物の1種以上、(3)IIIb族元素の酸化物の1種以上、(4)IV族元素の酸化物の1種以上を含む混合担体、を含んでなり、(A)の銅成分が(B)の担体の上に分散された自動車排ガス処理用触媒。   (57) [Summary] (A) a copper component containing cuprous oxide and cupric oxide, and (B) one or more kinds of lanthanoid oxides, (2) one kind of an oxide of a group II element of the Mendeleev periodic table As described above, (3) a mixed carrier containing one or more kinds of Group IIIb oxides and (4) one or more kinds of Group IV element oxides, wherein the copper component of (A) is (B) A catalyst for treating automobile exhaust gas dispersed on a carrier.

Description

【発明の詳細な説明】 自動車排ガス浄化のための卑金属触媒と触媒担体さらに二段階プロセス 本発明は、ガスを処理するための触媒に関するものであり、とりわけ自動車排 ガスのような燃焼生成物である排ガスを処理するための触媒に関する。 内燃式エンジンからの排ガスによる大気汚染は、公共的に非常に大きな関心を 集めており、そのような排ガスから未燃焼炭化水素、窒素酸化物、一酸化炭素の ような汚染物質を除去するため、多くの検討がなされている。 一つの通常の解決策は、排ガスを大気に放出する前に、汚染物質から比較的毒 性の低い物質への転化を促進するための触媒床に排ガスを通すことである。現在 使用されているこのような排ガス触媒の触媒成分は、白金、及び併用の他の白金 族金属からなる。白金族金属は供給が少なく、それらの価格は既に高く、公害対 策の法的規制による排ガス触媒の広範囲な使用の増加が、排ガス触媒のコストが 自動車の全体のコストのかなりの割合を占めるまで、白金族金属のコストを高く することが懸念されている。 従って、本発明の目的は、白金又はその他の白金族金属のような希少で高価な 物質に依存しない、有効な排ガス触媒を提供することである。 特定の卑金属、特に銅を利用した排ガス浄化触媒もまた検討されてきた。しか しながら、使用中に触媒活性が低下し、長期の使用寿命が必須の自動車排ガスの 浄化に使用するには不適切であるといった欠点がある。この点をさらに説明する ため、図1aと1bを参照 すると、γ−Al23に担持された典型的な卑金属酸化物である酸化銅は、CO によるNOの還元について250℃の着火(light off)温度を有するが、75 0℃のガスを8時間供給した後には、その活性は劇的に減少する(図1b)。 その上、卑金属触媒系は、硫黄の毒化に対して変化に富む抵抗性を示し、白金 族金属系よりも低い特有の活性を有することが分かっている。 本発明は、上記の問題を解決する。 本発明に従うと、 A.銅成分、 B.(1) ランタノイド酸化物の1種以上 (2) メンデレーフ周期律表のII族元素の酸化物の1種以上 (3) IIIb族元素の酸化物の1種以上 (4) IV族元素の酸化物の1種以上 を含む混合担体 を含んで、銅成分が担体Bの上に分散された触媒が提供される。 「銅成分」とは、 A(1) 酸化第一銅と酸化第二銅であり、これらの単体、金属銅との混合物、又 は酸化第一銅と酸化第二銅の混合物、及び A(2) 遷移金属、好ましくはコバルト、マンガン、ニッケル、及ひ鉄から選択 された1種以上の金属の酸化物 を含む混合物を意味する。 遷移金属酸化物の存在は、相乗メカニズムによって一酸化炭素によるNO1の 還元における銅触媒の活性の増加をもたらすことが分かっている。 あるいは、遷移金属は、二座反応の活性座を提供することがあり、第一座での NO1の分解、他の座への酸素の移動、第一座で生じる 窒素の再結合(N+N=N2)を伴う他の座でのCOからCO2への酸化を含む。 有利には、ランタノイド酸化物の成分B(1)は、セリウム、ランタン、及びイ ットリウムから選択される。好ましくは、成分B(1)は二酸化セリウムの単体又 は1種以上の他のランタノイド酸化物との混合物である。 好ましくは、II族の成分B(2)は、マグネシウム、カルシウム、ストロンチウ ム、及びバリウムの1種以上の酸化物から選択される。 好ましくは、IV族の成分B(4)は、ジルコニウム、チタン、及びハフニウムの 1種以上の酸化物から選択される。 IIIb族の成分B(3)は、好ましくはアルミナ(Al32)である。 混合担体Bの成分は、担体の全重量(W)を基準に0.005〜99.0重量 %の量で各々が存在することができ、ここで成分B(1)〜成分B(4)の合計は常に 合計で100重量%以下である。 担体上に分配又は担持される銅成分の素成分は、担体の全重量(W)を基準に 0.005〜25重量%の量で各々が存在することができる。 一酸化炭素(CO)、酸化窒素(NO)、プロパン(C38)(実際の排ガス に存在する全炭化水素を代表する)、二酸化炭素(CO2)、水(H2O)、酸素 (O2)、水素(H2)、及び窒素(N2)を含む合成排ガス混合物を用いる実験 において、本発明の触媒は、市販の白金族金属触媒に比較して同等以上の良好な 安定性と触媒活性を呈した。 本発明の触媒は、当業者の知識の範囲内の各種の異なる方法によって調製する ことができる。 適切には、限定されるものではないが、担体の調製方法には、尿 素加水分解、プロポキシドの加水分解、水酸化アンモニウム(NH4OH)又は シュウ酸アンモニウム((NH4224・H2O)による共沈、カルボネート としての共沈、アセテートの機械的混合と分解、ニトレートの分解などがある。 適切には、限定されるものではないが、銅配合剤の担体上の分散方法には、酢 酸銅、ギ酸銅、銅アミン錯体、炭酸銅、及び硝酸銅による沈着がある。 高い空間速度での効率的なNOx除去を促進するため、触媒は、次のNOx除去 反応 2CO+2NO → CO2+N2 が割合に速い次の「シフト反応」 CO+H2O → CO2+H2 と競合するように調製すべきである。 別な面において、本発明は、排ガス浄化のための次の二段階プロセスを提供し 、 (1) 前記の混合担体Bの上に銅成分Aを含む第一触媒の上に排ガスを導き、第 一段階において一酸化炭素と炭化水素を除去し、 (2) その第一触媒と直列に配置された第二触媒の上に排ガスを導き、第二段階 においてNOxと残存炭化水素を除去し、第二触媒は強い酸性の担体上に銅成分 Aを含む。 強い酸性の担体は、 (a) 1種以上のゼオライト、又は (b) 好ましくは3〜15%、より好ましくは7%の量で存在する酸化ジルコニ ウム(ZrO2)、酸化タングステン(WO3)、酸化モリブデン(MoO3)、 アルミナ(Al23)の2種以上を含む固溶体であり、所望によりアルミナ(A l23)のような高い表面積の担体(好ましくは酸化マグネシウムで安定化され る)の 上に支持され、又は (c) アルミナ(Al23)と、酸化ケイ素(SiO2)、酸化チタン(TiO2 )、及び酸化ジルコニウム(ZrO2)の1種以上との共ゲル化によって得られ た強い酸性の化合物 を含むことができる。 一般に、排ガスの空気/燃焼の比(λ)が、化学量論(λ=1)から酸化条件 (λ≧1)の間で変動するとき、触媒活性は低下し、NOx転化率は減少する。 しかしながら、上記の二段階プロセスを用いると、酸化性条件下でのNOx転化 率は、500000/hのGHSVにおいて、化学量論で達成された転化率より も20%以上向上する。 別な態様として、第一触媒は、混合担体Bの上に酸化第一銅と酸化第二銅と随 意の金属銅を含むことができ、混合担体Bの上に分散された白金族金属を含む第 二触媒を併用することができる。 好ましくは、白金族金属はパラジウムを含み、金属パラジウムと酸化パラジウ ムの混合物が特に好ましい。 上記の態様に従うと、商業的触媒で知られる貴金属担持量の10%未満を含有 するパラジウム触媒が、化学量論、即ち、空気と燃焼の比が14.67のとき( λ=1)において得られたNOx転化率の約40%の転化率を達成した。この値 は、完全酸化に必要な空気の量に相当する。 別な面において、本発明は、排ガス浄化に使用される卑金属又は白金族金属の 触媒のための混合酸化物担体Bを提供する。 次に本発明で採用する触媒の例(単なる例に過ぎない)を、添付の図面を参照 しながら説明する。 図1aと1bは、γ−Al23に担持された酸化銅を含む、本発明の範囲外の 卑金属触媒を用いて得られた結果を示す。 図2は、本発明の触媒を用い、5000/hのGHSV空間速度のλ=1に相 当する合成排ガス混合物の触媒転化率を、温度に対して示す。 担体B−Mg0.935Zr0.03Ce0.03La0.005Al24±δ−の調製 NH4OHによる共沈 400mlの蒸留水に必要量のニトレートを添加し、60℃に加熱した。この 溶液を攪拌しながら約35mlの(1:1)NH4OHを短時間に添加した。得 られたpHは9であった。このスラリーを70〜80℃で4時間熟成し、濾過し 、それぞれ200mlの冷水を用いて4回洗浄し、110℃で終夜にわたって乾 燥し、次いで粉末にした。 550℃の6時間で191.0m2/g、1000℃の24時間で57.8m2 /g 担体の調製 50℃の蒸留水の500mlを攪拌しながら、その中にAl(NO33・9H2 O(246ミリモル)、Mg(NO32・6H2O(123ミリモル)、Ce( NO33・6H2O(6.2ミリモル)、ZrO(NO32(6.2ミリモル) 、及びLa(NO33・6H2O(1ミリモル)を溶解させた。次いでNH4OH の10%溶液をゆっくり添加し、pHを9に調節した。次いで得られた沈殿を8 0℃で5時間熟成し、濾過し、300mlの水で3回洗浄した。乾燥後、この混 合物を1℃/分にて550℃で6時間仮焼し、次いで100μmの篩にかけた。 これによって名目上の組成がMg0.935Ce0.03Zr0.03La0.005Al24で、 表面積が137m2/gの担体(B)が得られた。 金属堆積 その後の堆積工程において、500℃で仮焼した担体Bと1000℃で仮焼し た担体B(10℃/分にて1000℃で2時間加熱)の両方に溶液を添加した。 合計で5重量%の銅を担体上に担持した。 銅アミン錯体による堆積 19mlの50℃の水を攪拌しながら、それにCu(NO32・5/2H2O (11.6ミリモル)を添加した。次いで攪拌しながら5mlの33%NH4O Hを添加し、濃紫色の銅アンモニウムニトレート溶液を生成させた。次いで攪拌 しながら、この溶液の1.2mlを1.5gの担体Bに添加した。この混合物を 乾燥させ、同じ手順を繰り返した。前記と同様にして、550℃で6時間と10 00℃で2時間の両方の仮焼を行った。 図2は、CO(1.0%)、NO(1500ppm)、O2(0.85%)、 H2(0.33%)、CH4(500ppm)、C38(167ppm)、H2O (10%)、CO2(15%)、SO2(20ppm)、N2(残余)を含んでλ =1の合成排ガスの触媒転化率を、本発明の触媒を用い、5000/hのGHS V空間速度において温度に対して示す。 示されているように、本発明の触媒は、525℃において90%を超えるNO 転化率を達成することができる。 また、供給ガスに0.05%のSO2を導入することによって、本発明の上記 触媒について硫黄毒化の作用を検討した。驚くべきことに、このような処理は、 触媒活性に全く影響を有しないことが分かった。 図3は、本発明の二段階プロセスにおける15000/hのGHSV空間速度 での合成排ガス組成物の触媒転化率を示し、第1段階の触媒は図2の触媒を含み 、第二段階の触媒は、ゼオライト担体上 に分散させた図2の触媒の銅成分を含んだ。示されているように、本発明の二段 階プロセスを使用することにより、225℃において100%のNO転化率を得 ることができる。 図4は、本発明の二段階プロセスにおける15000/hGHSVの空間速度 での合成排ガス組成物の触媒転化率を示し、第一段階の触媒は図2の触媒を含み 、第二段階の触媒は、混合酸化物担体Bの上に分散された担体の全重量を基準に 1重量%のパラジウムを有する図2の触媒の混合酸化物担体Bを含む。示されて いるように、わずか1重量%のパラジウム担持量を用いることにより、本発明の 二段階プロセスを行うことによって優れたNO転化率を得ることができる。Detailed Description of the Invention   Base metal catalysts and catalyst supports for automobile exhaust gas purification and a further two-step process.   The present invention relates to a catalyst for treating gas, in particular for automobile exhaust. The present invention relates to a catalyst for treating exhaust gas which is a combustion product such as gas.   Air pollution from exhaust gas from internal combustion engines is of great public concern. Of unburned hydrocarbons, nitrogen oxides and carbon monoxide from such exhaust gases. Many studies have been conducted to remove such pollutants.   One common solution is to make the pollutants relatively poisonous before releasing the exhaust gas into the atmosphere. Passing the exhaust gas through the catalyst bed to promote conversion to less aggressive materials. Current The catalyst component of such exhaust gas catalysts used is platinum, and other platinum compounds in combination. It consists of group metals. Platinum group metals are in low supply, their prices are already high, and Increased widespread use of exhaust gas catalysts due to legal regulation of Increase the cost of platinum group metals until they account for a significant proportion of the total cost of the vehicle. There is concern about doing so.   Accordingly, it is an object of the present invention to provide a rare and expensive material such as platinum or other platinum group metals. The object is to provide an effective exhaust gas catalyst that does not depend on the substance.   Exhaust gas purification catalysts utilizing certain base metals, especially copper, have also been investigated. Only However, the catalytic activity declines during use, and long-term service life of automobile exhaust gas is essential. It has the drawback of being unsuitable for use in purification. This point will be explained further See Figures 1a and 1b Then, γ-Al2OThreeCopper oxide, which is a typical base metal oxide supported on, is CO Has a light off temperature of 250 ° C. for the reduction of NO by After feeding gas at 0 ° C. for 8 hours, its activity is dramatically reduced (FIG. 1b).   Moreover, the base metal catalyst system exhibits a variable resistance to sulfur poisoning, It has been found to have a lower specific activity than group metal systems.   The present invention solves the above problems.   According to the invention,   A. Copper composition,   B. (1) One or more lanthanide oxides       (2) One or more oxides of Group II elements of the Mendeleev Periodic Table       (3) One or more oxides of group IIIb elements       (4) One or more oxides of group IV elements     Mixed carrier containing A catalyst having a copper component dispersed on a carrier B is provided.   What is a "copper component"?   A (1) Cuprous oxide and cupric oxide, a simple substance of these, a mixture with metallic copper, or Is a mixture of cuprous oxide and cupric oxide, and   A (2) transition metal, preferably selected from cobalt, manganese, nickel, and iron Oxides of one or more metals Means a mixture containing.   The presence of transition metal oxides causes NO due to carbon monoxide by a synergistic mechanism.1of It has been found to result in increased activity of the copper catalyst in the reduction.   Alternatively, the transition metal may provide the active site of the bidentate reaction, NO1Of oxygen, transfer of oxygen to other loci, occurs at the first locus Recombination of nitrogen (N + N = N2) From other CO to CO2Including oxidation to.   Advantageously, the component B (1) of the lanthanoid oxide is cerium, lanthanum and Selected from thorium. Preferably, component B (1) is cerium dioxide alone or Is a mixture with one or more other lanthanoid oxides.   Preferably, Group II component B (2) is magnesium, calcium, strontium. And one or more oxides of barium.   Preferably, the Group IV component B (4) comprises zirconium, titanium, and hafnium. It is selected from one or more oxides.   Component B (3) of group IIIb is preferably alumina (AlThreeO2).   The components of the mixed carrier B are 0.005 to 99.0 weight based on the total weight (W) of the carrier. %, Each of which can be present, where the sum of components B (1) to B (4) is always It is 100% by weight or less in total.   The base component of the copper component distributed or carried on the carrier is based on the total weight (W) of the carrier. Each can be present in an amount of 0.005 to 25% by weight.   Carbon monoxide (CO), nitric oxide (NO), propane (CThreeH8) (Actual exhaust gas Carbon dioxide (representing all hydrocarbons present in CO)2), Water (H2O), oxygen (O2), Hydrogen (H2), And nitrogen (N2Experiments with synthetic exhaust gas mixtures containing In, the catalyst of the present invention is equivalent to or better than the commercially available platinum group metal catalyst. It exhibited stability and catalytic activity.   The catalyst of the present invention is prepared by a variety of different methods within the purview of those skilled in the art. be able to.   Suitably, but not exclusively, the method of preparing the carrier includes urine. Elementary hydrolysis, Propoxide hydrolysis, Ammonium hydroxide (NHFourOH) or Ammonium oxalate ((NHFour)2C2OFour・ H2O) coprecipitation, carbonate As co-precipitation, mechanical mixing and decomposition of acetate, decomposition of nitrate, etc.   Appropriately, but not exclusively, the method of dispersing the copper compound on the carrier includes vinegar. There are deposits with acid copper, copper formate, copper amine complexes, copper carbonate, and copper nitrate.   Efficient NO at high space velocityxTo facilitate removal, the catalyst isxRemoval reaction     2CO + 2NO → CO2+ N2 The next "shift reaction" is relatively fast     CO + H2O → CO2+ H2 Should be prepared to compete with.   In another aspect, the present invention provides the following two-stage process for exhaust gas purification. ,   (1) The exhaust gas is introduced onto the first catalyst containing the copper component A on the mixed carrier B, and Removes carbon monoxide and hydrocarbons in one step,   (2) Direct the exhaust gas onto the second catalyst arranged in series with the first catalyst, and At NOxAnd residual hydrocarbons are removed, and the second catalyst is a copper component on a strongly acidic carrier. Including A.   Strong acidic carriers,   (a) one or more zeolites, or   (b) Zirconium oxide preferably present in an amount of 3-15%, more preferably 7%. Um (ZrO2), Tungsten oxide (WOThree), Molybdenum oxide (MoOThree), Alumina (Al2OThree) Is a solid solution containing two or more of l2OThreeHigh surface area carriers such as), preferably stabilized with magnesium oxide Of) Supported on, or   (c) Alumina (Al2OThree) And silicon oxide (SiO2), Titanium oxide (TiO)2 ), And zirconium oxide (ZrO2) Obtained by co-gelling with one or more of Strong acidic compounds Can be included.   Generally, the air / combustion ratio (λ) of the exhaust gas changes from the stoichiometry (λ = 1) to the oxidation condition. When it fluctuates between (λ ≧ 1), the catalyst activity decreases and NOxThe conversion rate decreases. However, using the two-step process described above, NO under oxidizing conditionsxConversion The rate is from the stoichiometric conversion achieved at a GHSV of 500000 / h. Is also improved by 20% or more.   In another embodiment, the first catalyst comprises cuprous oxide and cupric oxide on the mixed carrier B. Any metal, which may include copper, and which includes a platinum group metal dispersed on the mixed carrier B. Two catalysts can be used in combination.   Preferably, the platinum group metal comprises palladium, the metal palladium and palladium oxide. Especially preferred is a mixture of gums.   According to the above embodiment, it contains less than 10% of the noble metal loading known in commercial catalysts. When the palladium catalyst is stoichiometric, that is, when the ratio of air to combustion is 14.67 ( NO obtained at λ = 1)xA conversion of about 40% of the conversion was achieved. This value Corresponds to the amount of air required for complete oxidation.   In another aspect, the present invention relates to a base metal or platinum group metal used for exhaust gas purification. A mixed oxide support B for the catalyst is provided.   Reference will now be made to the accompanying drawings for examples of catalysts employed in the present invention (merely by way of example) While explaining.   1a and 1b show γ-Al2OThreeIncluding copper oxide supported on, outside the scope of the present invention. The results obtained using a base metal catalyst are shown.   FIG. 2 shows that the GHSV space velocity of 5000 / h was measured at λ = 1 using the catalyst of the present invention. The catalytic conversion of the corresponding synthesis exhaust gas mixture is shown with respect to temperature.   Carrier B-Mg0.935Zr0.03Ce0.03La0.005Al2OFourPreparation of ± δ-   Coprecipitation with NH 4 OH   The required amount of nitrate was added to 400 ml of distilled water and heated to 60 ° C. this Approximately 35 ml of (1: 1) NH while stirring the solutionFourOH was added in a short time. Profit The pH obtained was 9. The slurry was aged at 70-80 ° C for 4 hours, filtered and , Wash 4 times with 200 ml cold water each and dry overnight at 110 ° C. Dried and then powdered.   191.0m in 6 hours at 550 ° C2/ G, 57.8m for 24 hours at 1000 ° C2 / G   Preparation of carrier   While stirring 500 ml of distilled water at 50 ° C., Al (NOThree)Three・ 9H2 O (246 mmol), Mg (NOThree)2・ 6H2O (123 mmol), Ce ( NOThree)Three・ 6H2O (6.2 mmol), ZrO (NOThree)2(6.2 mmol) , And La (NOThree)Three・ 6H2O (1 mmol) was dissolved. Then NHFourOH 10% solution of was added slowly to adjust pH to 9. The precipitate obtained is then 8 The mixture was aged at 0 ° C. for 5 hours, filtered, and washed with 300 ml of water three times. After drying, this mixture The mixture was calcined at 1 ° C./min at 550 ° C. for 6 hours and then passed through a 100 μm sieve. This gives a nominal composition of Mg0.935Ce0.03Zr0.03La0.005Al2OFourso, Surface area is 137m2/ G of carrier (B) was obtained.   Metal deposition   In the subsequent deposition process, carrier B calcined at 500 ° C. and calcined at 1000 ° C. The solution was added to both Carrier B (heated at 1000C for 2 hours at 10C / min). A total of 5% by weight of copper was supported on the carrier.   Deposition with copper amine complex   While stirring 19 ml of water at 50 ° C., Cu (NOThree)2・ 5 / 2H2O (11.6 mmol) was added. Then 5 ml of 33% NH with stirringFourO H was added to produce a deep purple copper ammonium nitrate solution. Then stir However, 1.2 ml of this solution was added to 1.5 g of carrier B. This mixture Allow to dry and repeat the same procedure. Same as above, at 550 ° C for 6 hours and 10 Both calcinations were carried out at 00 ° C. for 2 hours.   FIG. 2 shows CO (1.0%), NO (1500 ppm), O2(0.85%), H2(0.33%), CHFour(500ppm), CThreeH8(167ppm), H2O (10%), CO2(15%), SO2(20ppm), N2Λ including (residual) The catalyst conversion rate of the synthetic exhaust gas of = 1 using the catalyst of the present invention is GHS of 5000 / h. Shown against temperature in V space velocity.   As shown, the catalyst of the present invention has greater than 90% NO at 525 ° C. A conversion rate can be achieved.   In addition, the supply gas is 0.05% SO2By introducing the above The effect of sulfur poisoning on the catalyst was examined. Surprisingly, such processing It was found to have no effect on the catalytic activity.   FIG. 3 is a GHSV space velocity of 15000 / h in the two-step process of the present invention. 2 shows the catalyst conversion rate of the synthetic exhaust gas composition in which the first stage catalyst includes the catalyst of FIG. , The second stage catalyst is on a zeolite support 2 containing the copper component of the catalyst of FIG. As shown, the two stages of the present invention A 100% NO conversion was obtained at 225 ° C by using the double layer process. Can be   FIG. 4 shows the space velocity of 15000 / hGHSV in the two-step process of the present invention. 2 shows the catalyst conversion rate of the synthetic exhaust gas composition in FIG. , The second stage catalyst is based on the total weight of the support dispersed on the mixed oxide support B. It contains mixed oxide support B of the catalyst of FIG. 2 with 1% by weight of palladium. Shown Thus, by using a palladium loading of only 1% by weight, Excellent NO conversion can be obtained by performing a two-step process.

【手続補正書】特許法第184条の8 【提出日】1995年9月6日 【補正内容】 請求の範囲 1.A.酸化第一銅と酸化第二銅を含有する銅成分、及び B.(1) 酸化イットリウム又は1種以上のランタノイド酸化物 (2) IIA族元素の酸化物の1種以上 (3) IIIA族元素の酸化物の1種以上 (4) Zr、Ti、及びHfから選択された元素の酸化物の1種以上 を含む混合担体、 を含んでなり、Aの成分がBの担体の上に分散された触媒。 2.銅触媒成分A(1)がさらに金属銅を含む請求の範囲第1項に記載の触媒。 3.銅触媒成分がさらにA(2)の1種以上の遷移金属酸化物を含む請求の範囲 第1又は2項に記載の触媒。 4.A(2)がコバルト、マンガン、ニッケル、及び鉄から選択された請求の範 囲第3項に記載の触媒。 5.成分B(1)がセリウム、ランタン、及びイットリウムの酸化物から選択さ れた請求の範囲第1〜4項のいずれか1項に記載の触媒。 6.成分B(1)が二酸化セリウム単体、又は二酸化セリウムと他の1種以上の ランタノイド酸化物との混合物である請求の範囲第1〜5項のいずれか1項に記 載の触媒。 7.B(2)がマンガン、カルシウム、ストロンチウム、及びバリウムの1種以 上の酸化物から選択された請求の範囲第1〜6項のいずれか1項に記載の触媒。 8.B(3)がアルミナである請求の範囲第1〜7項のいずれか1 項に記載の触媒。 9.担体Bがマグネシウム(Mg)、ジルコニウム(Zr)、セリウム(Ce )、ランタン(La)の酸化物、及びアルミナ(Al24)を含む請求の範囲第 1〜8項のいずれか1項に記載の触媒。 10.混合担体Bの各々の成分が、担体の全重量を基準に0.005〜99. 0重量%の量で存在する請求の範囲第1〜10項のいずれか1項に記載の触媒。 11.銅成分の各々の素成分が、担体Bの全重量を基準に0.005〜25重 量%の量で存在する請求の範囲第1〜10項のいずれか1項に記載の触媒。 12.担体Bの成分がMg0.935、Zr0.03、Ce0.03、La0.005、Al24 ±δ(25.42%のMgO、2.49%のZrO2、3.48%のCeO2、0 .55%のLa23)の比率で存在する請求の範囲第9項に記載の触媒。 13.請求の範囲第1〜12項のいずれか1項に記載の触媒の上に排ガスを導 くことを含む車両排ガスの浄化方法。 14.(1) 請求の範囲第1〜12項のいずれか1項に記載の混合担体Bの上に 銅成分Aを含む第一触媒に排ガスを導き、第一段階において一酸化炭素と炭化水 素を除去し、 (2) 第一触媒と直列に配置した、強い酸性の担体上に銅成分Aを含む第 二触媒に排ガスを導き、第二段階においてNO1と存炭化水素を除去する ことを含む排ガスの浄化のための二段階方法。 15.第二触媒の強い酸性の担体が (a) セオライト、又は (b) 酸化ジルコニウム(ZrO2)、酸化タングステン(WO3)、酸化モリブ デン(MoO3)、アルミナ(Al23)の2種以上 を含む固溶体、又は (c) アルミナ(Al23)と、酸化ケイ素(SiO2)、酸化チタン(TiO2 )、及び酸化ジルコニウム(ZrO2)の1種以上との共ゲル化によって得られ た強い酸性の化合物 を含む請求の範囲第14項に記載の方法。 16.第二触媒中に酸化ジルコニウムが3〜15%の量で存在する請求の範囲 第15項に記載の方法。 17.第二触媒が、混合担体Bの上に分散された白金族金属を含む、請求の範 囲第14項に記載の方法。 18.請求の範囲第1、5、6〜10、及び12のいずれか1項に記載の混合 酸化物担体Bを含み、排ガス浄化のために使用する白金族金属触媒の卑金属の担 体。[Procedure of Amendment] Article 184-8 of the Patent Act [Submission date] September 6, 1995 [Correction contents]                                The scope of the claims   1. A. Copper component containing cuprous oxide and cupric oxide, and       B. (1) Yttrium oxide or one or more lanthanoid oxides           (2) One or more IIA group element oxides           (3) One or more oxides of group IIIA elements           (4) One or more kinds of oxides of elements selected from Zr, Ti, and Hf         A mixed carrier containing A catalyst comprising the components of A dispersed on a carrier of B.   2. The catalyst according to claim 1, wherein the copper catalyst component A (1) further contains metallic copper.   3. The copper catalyst component further comprises one or more transition metal oxides of A (2). The catalyst according to item 1 or 2.   4. Claims where A (2) is selected from cobalt, manganese, nickel, and iron. The catalyst according to item 3 above.   5. Component B (1) is selected from oxides of cerium, lanthanum, and yttrium. The catalyst according to any one of claims 1 to 4, wherein   6. Component B (1) is cerium dioxide alone or cerium dioxide and one or more other The mixture according to any one of claims 1 to 5, which is a mixture with a lanthanoid oxide. The listed catalyst.   7. B (2) is one or more of manganese, calcium, strontium, and barium 7. A catalyst according to any one of claims 1 to 6 selected from the above oxides.   8. Any one of claims 1 to 7 in which B (3) is alumina The catalyst according to the item.   9. The carrier B is magnesium (Mg), zirconium (Zr), cerium (Ce). ), Lanthanum (La) oxide, and alumina (Al2OFour) Claims including The catalyst according to any one of items 1 to 8.   10. Each component of the mixed carrier B is 0.005 to 99., based on the total weight of the carrier. A catalyst according to any one of claims 1 to 10 present in an amount of 0% by weight.   11. Each element of the copper component is 0.005 to 25 times the total weight of the carrier B. A catalyst according to any one of claims 1 to 10 which is present in an amount of% by weight.   12. The component of carrier B is Mg0.935, Zr0.03, Ce0.03, La0.005, Al2OFour ± δ (25.42% MgO, 2.49% ZrO23.48% CeO2, 0 . 55% La2OThreeThe catalyst according to claim 9, which is present in the ratio of).   13. The exhaust gas is introduced onto the catalyst according to any one of claims 1 to 12. A method for purifying vehicle exhaust gas, including:   14. (1) On the mixed carrier B according to any one of claims 1 to 12. The exhaust gas is guided to the first catalyst containing the copper component A, and carbon monoxide and hydrocarbon Remove the element,         (2) The first component containing copper component A on a strongly acidic carrier arranged in series with the first catalyst. Directs exhaust gas to the two catalysts, NO in the second stage1And remove hydrocarbons present A two-stage method for purification of exhaust gas including:   15. The strong acidic carrier of the second catalyst   (a) Theolite, or   (b) Zirconium oxide (ZrO2), Tungsten oxide (WOThree), Molybdenum oxide Den (MoOThree), Alumina (Al2OThree) Two or more A solid solution containing   (c) Alumina (Al2OThree) And silicon oxide (SiO2), Titanium oxide (TiO)2 ), And zirconium oxide (ZrO2) Obtained by co-gelling with one or more of Strong acidic compounds 15. The method of claim 14 including.   16. Zirconium oxide is present in the second catalyst in an amount of 3 to 15%. The method according to paragraph 15.   17. Claims wherein the second catalyst comprises a platinum group metal dispersed on mixed support B. The method according to Item 14.   18. Mixture according to any one of claims 1, 5, 6-10 and 12. Contains the oxide carrier B and is used as a base metal of a platinum group metal catalyst used for purification of exhaust gas. body.

Claims (1)

【特許請求の範囲】 1.A.酸化第一銅と酸化第二銅を含有する銅成分、及び B.(1) ランタノイド酸化物の1種以上 (2) メンデレーフ周期律表のII族元素の酸化物の1種以上 (3) IIIb族元素の酸化物の1種以上 (4) IV族元素の酸化物の1種以上 を含む混合担体、 を含んでなり、Aの銅成分がBの担体の上に分散された触媒。 2.銅触媒成分A(1)がさらに金属銅を含む請求の範囲第1項に記載の触媒 。 3.銅触媒成分かさらにA(1)の1種以上の遷移金属酸化物を含む請求の範 囲第1又は2項に記載の触媒。 4.A(1)がコバルト、マンガン、ニッケル、及び鉄から選択された請求の 範囲第3項に記載の触媒。 5.成分B(1)がセリウム、ランタン、及びイットリウムの酸化物から選択 された請求の範囲第1〜4項のいずれか1項に記載の触媒。 6.成分B(1)が二酸化セリウム単体、又は二酸化セリウムと他の1種以上 のランタノイド酸化物との混合物である請求の範囲第1〜5項のいずれか1項に 記載の触媒。 7.B(2)がマンガン、カルシウム、ストロンチウム、及びバリウムの1種 以上の酸化物から選択された請求の範囲第1〜6項のいずれか1項に記載の触媒 。 8.B(4)がジルコニウム、チタン、及びハフニウムの1種以上の酸化物か ら選択された請求の範囲第1〜8項のいずれか1項に記 載の触媒。 9.B(3)がアルミナである請求の範囲第1〜8項のいずれか1項に記載の 触媒。 10.担体Bがマグネシウム(Mg)、ジルコニウム(Zr)、セリウム( Ce)、ランタン(La)の酸化物、及びアルミナ(Al24)を含む請求の範 囲第1〜10項のいずれか1項に記載の触媒。 11.混合担体Bの各々の成分が、担体の全重量を基準に0.005〜99 .0重量%の量で存在する請求の範囲第1〜10項のいずれか1項に記載の触媒 。 12.銅成分の各々の素成分が、担体Bの全重量を基準に0.005〜25 重量%の量で存在する請求の範囲第1〜11項のいずれか1項に記載の触媒。 13.担体Bの成分がMg0.935、Zr0.03、Ce0.03、La0.005、Al2 4±δ(25.42%のMgO、2.49%のZrO2、3.48%のCeO2 、0.55%のLa23)の比率で存在する請求の範囲第10項に記載の触媒。 14.請求の範囲第1〜13項のいずれか1項に記載の触媒の上にガスを導 くことを含む車両排ガスの浄化方法。 15.(1) 請求の範囲第1〜13項のいずれか1項に記載の混合担体Bの上 に銅成分Aを含む第一触媒に排ガスを導き、第一段階において、一酸化炭素と炭 化水素を除去し、 (2) 第一触媒と直列に配置した第二触媒に排ガスを導き、第二段階に おいて、NO1と残存炭化水素を除去し、第二触媒は強い酸性の担体上に銅成分 Aを含む、 ことを含む排ガスの浄化のための二段階方法。 16.強い酸性の担体が (a) ゼオライト又は (b) 酸化ジルコニウム(ZrO2)、酸化タングステン(WO3)、酸化モリ ブデン(MoO3)、アルミナ(Al23)の2種以上を含む固溶体又は (c) アルミナ(Al23)と、酸化ケイ素(SiO2)、酸化チタン(Ti O2)、及び酸化ジルコニウム(ZrO2)の1種以上との共ゲル化によって得ら れた強い酸性の化合物 を含み、請求の範囲第15項に記載の方法に使用するための第二触媒。 17.酸化ジルコニウムが3〜15%の量で存在する請求の範囲第16項に 記載の第二触媒。 18.混合担体Bの上に分散された白金族金属を含む、請求の範囲第14項 に記載の方法に使用するための第二触媒。 19.請求の範囲第1、5、6〜11、及び13のいずれか1項に記載の混 合酸化物担体Bを含み、排ガス浄化のために使用する卑金属又は白金族金属触媒 の担体。[Claims]     1. A. Copper component containing cuprous oxide and cupric oxide, and         B. (1) One or more lanthanide oxides             (2) One or more oxides of Group II elements of the Mendeleev Periodic Table             (3) One or more oxides of group IIIb elements             (4) One or more oxides of group IV elements           A mixed carrier containing A catalyst in which the copper component of A is dispersed on the carrier of B.     2. The catalyst according to claim 1, wherein the copper catalyst component A (1) further contains metallic copper. .     3. Claims including copper catalyst components or one or more transition metal oxides of A (1) The catalyst according to item 1 or 2.     4. Claims in which A (1) is selected from cobalt, manganese, nickel, and iron A catalyst according to claim 3.     5. Component B (1) is selected from oxides of cerium, lanthanum and yttrium The catalyst according to any one of claims 1 to 4, which is provided.     6. Component B (1) is cerium dioxide alone, or cerium dioxide and at least one other 6. A mixture with the lanthanoid oxide according to any one of claims 1 to 5. The described catalyst.     7. B (2) is one of manganese, calcium, strontium, and barium The catalyst according to any one of claims 1 to 6 selected from the above oxides. .     8. Whether B (4) is one or more oxides of zirconium, titanium, and hafnium The statement according to any one of claims 1 to 8 selected from The listed catalyst.     9. The B (3) is alumina, according to any one of claims 1 to 8. catalyst.     10. The carrier B is magnesium (Mg), zirconium (Zr), cerium ( Ce), oxides of lanthanum (La), and alumina (Al)2OFour) Including claims The catalyst according to any one of items 1 to 10.     11. Each component of the mixed carrier B is 0.005 to 99 based on the total weight of the carrier. . Catalyst according to any one of claims 1 to 10 present in an amount of 0% by weight. .     12. Each of the copper components has an amount of 0.005 to 25 based on the total weight of the carrier B. The catalyst according to any one of claims 1 to 11, which is present in an amount of% by weight.     13. The component of carrier B is Mg0.935, Zr0.03, Ce0.03, La0.005, Al2 OFour± δ (25.42% MgO, 2.49% ZrO23.48% CeO2 , 0.55% La2OThreeThe catalyst according to claim 10, which is present in a ratio of).     14. A gas is introduced onto the catalyst according to any one of claims 1 to 13. A method for purifying vehicle exhaust gas, including:     15. (1) On the mixed carrier B according to any one of claims 1 to 13. The exhaust gas is led to the first catalyst containing copper component A in the first step, and carbon monoxide and carbon are added in the first step. Remove hydrogen fluoride,           (2) Guide the exhaust gas to the second catalyst that is placed in series with the first catalyst, and By the way, NO1And residual hydrocarbons are removed, and the second catalyst is a copper component on a strongly acidic carrier. Including A,   A two-stage method for purification of exhaust gas including:     16. Strong acidic carrier     (a) Zeolite or     (b) Zirconium oxide (ZrO2), Tungsten oxide (WOThree), Molybdenum oxide Buden (MoOThree), Alumina (Al2OThree) A solid solution containing two or more of     (c) Alumina (Al2OThree) And silicon oxide (SiO2), Titanium oxide (Ti O2), And zirconium oxide (ZrO2) Obtained by co-gelling with one or more of Strong acidic compounds   A second catalyst comprising: and for use in the method of claim 15.     17. The method according to claim 16, wherein zirconium oxide is present in an amount of 3 to 15%. The second catalyst described.     18. 15. The method according to claim 14, comprising a platinum group metal dispersed on the mixed carrier B. A second catalyst for use in the method described in.     19. The mixture according to any one of claims 1, 5, 6 to 11, and 13. A base metal or platinum group metal catalyst containing a mixed oxide carrier B and used for purification of exhaust gas Carrier.
JP7505661A 1993-07-29 1994-07-28 Base metal catalysts and catalyst supports for automobile exhaust gas purification and a further two-step process. Pending JPH09501348A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9315679.2 1993-07-29
GB939315679A GB9315679D0 (en) 1993-07-29 1993-07-29 Base metal catalyst,catalytic support and two-stage process for the purification of vehicle exhaust gases
PCT/GB1994/001635 WO1995003877A1 (en) 1993-07-29 1994-07-28 Base metal catalyst, catalytic support and two-stage process for the purification of vehicle exhaust gases

Publications (1)

Publication Number Publication Date
JPH09501348A true JPH09501348A (en) 1997-02-10

Family

ID=10739618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7505661A Pending JPH09501348A (en) 1993-07-29 1994-07-28 Base metal catalysts and catalyst supports for automobile exhaust gas purification and a further two-step process.

Country Status (4)

Country Link
EP (1) EP0711198A1 (en)
JP (1) JPH09501348A (en)
GB (2) GB9315679D0 (en)
WO (1) WO1995003877A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217220A (en) * 1998-02-02 1999-08-10 Mitsui Mining & Smelting Co Ltd Compound oxide, its production and exhaust gas-cleaning catalyst using the same
JP2012066166A (en) * 2010-09-21 2012-04-05 Denso Corp Catalyst for purifying exhaust gas
JP2012121006A (en) * 2010-12-10 2012-06-28 Toyota Motor Corp Base metal-based exhaust gas cleaning catalyst
JP2013022558A (en) * 2011-07-25 2013-02-04 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
KR20150008886A (en) * 2012-04-26 2015-01-23 바스프 코포레이션 Base metal catalyst and method of using same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10252103A1 (en) 2002-11-08 2004-05-27 Süd-Chemie AG Mixed oxide catalyst, e.g. for carbon monoxide oxidation in fuel cells or automobile exhaust treatment, comprises copper, manganese and cerium
DE102007037796A1 (en) * 2007-08-10 2009-02-12 Süd-Chemie AG A method for removing CO, H2 and / or CH4 from the anode exhaust gas of a fuel cell with mixed oxide catalysts comprising Cu, Mn and optionally at least one rare earth metal
US8668890B2 (en) 2012-04-26 2014-03-11 Basf Corporation Base metal catalyst composition and methods of treating exhaust from a motorcycle
CN111565838B (en) * 2018-02-23 2023-09-26 株式会社Lg化学 Catalyst for oxychlorination process of hydrocarbon, preparation method thereof and method for preparing oxychlorinated compound of hydrocarbon using the same
CN111151262B (en) * 2020-01-14 2022-11-04 西安理工大学 Mn-Cu 2 O-modified photocatalyst and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521396B2 (en) * 1972-08-25 1977-01-13
GB8824543D0 (en) * 1988-10-20 1988-11-23 Austin Rover Group Catalyst
CA2024154C (en) * 1989-08-31 1995-02-14 Senshi Kasahara Catalyst for reducing nitrogen oxides from exhaust gas
GB9020568D0 (en) * 1990-09-20 1990-10-31 Rover Group Supported palladium catalysts
CN1060793A (en) * 1990-10-22 1992-05-06 华东化工学院 Multieffective non-noble metal catalyst
EP0513469A1 (en) * 1991-05-13 1992-11-19 Imcs Ab Catalyst containing rare earth and carrier
JP3086015B2 (en) * 1991-08-07 2000-09-11 トヨタ自動車株式会社 Exhaust gas purification catalyst
US5185305A (en) * 1991-11-08 1993-02-09 Ford Motor Company Catalyst system for treating the exhaust from a lean-burn gasoline-fueled engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217220A (en) * 1998-02-02 1999-08-10 Mitsui Mining & Smelting Co Ltd Compound oxide, its production and exhaust gas-cleaning catalyst using the same
JP2012066166A (en) * 2010-09-21 2012-04-05 Denso Corp Catalyst for purifying exhaust gas
JP2012121006A (en) * 2010-12-10 2012-06-28 Toyota Motor Corp Base metal-based exhaust gas cleaning catalyst
JP2013022558A (en) * 2011-07-25 2013-02-04 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
KR20150008886A (en) * 2012-04-26 2015-01-23 바스프 코포레이션 Base metal catalyst and method of using same

Also Published As

Publication number Publication date
GB9315679D0 (en) 1993-09-15
EP0711198A1 (en) 1996-05-15
GB2295780A (en) 1996-06-12
WO1995003877A1 (en) 1995-02-09
GB9600502D0 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
KR0136893B1 (en) Selective catalytic reduction of nitrogen oxide
US7641875B1 (en) Mixed-phase ceramic oxide three-way catalyst formulations and methods for preparing the catalysts
EP0091814B1 (en) Catalyst composition and method for its manufacture
JP4950365B2 (en) Mixed phase ceramic oxide ternary alloy catalyst formulation and method for producing the catalyst
JPH067923B2 (en) Three-way catalyst and method for producing the same
CA2379960C (en) Thermally stable support material and method for making the same
JP3788141B2 (en) Exhaust gas purification system
JPH09501348A (en) Base metal catalysts and catalyst supports for automobile exhaust gas purification and a further two-step process.
EP0781592A1 (en) Exhaust gas purification method by reduction of nitrogen oxides
CN109689205A (en) Purposes of the vanadate as oxidation catalyst
JPH06378A (en) Catalyst for purification of exhaust gas
JP2001058130A (en) Catalyst for nitrogen oxide decomposition
JPH06190276A (en) Nitrogen oxide reducing catalyst and treatment device for nitrogen oxide
JPH0859236A (en) Highly heat-resistant copper-alumina double oxide and cleaning method of exhaust gas
JPH0824648A (en) Exhaust gas purifying catalyst and preparation of the sam
JP3298133B2 (en) Method for producing zeolite containing cobalt and palladium and method for purifying exhaust gas
JP5582490B2 (en) Exhaust gas treatment catalyst and method for producing the same
JPH02191548A (en) Catalyst for purification of exhaust gas
JPH09220440A (en) Exhaust gas purifying method
JP3711363B2 (en) Nitrogen oxide catalytic reduction removal catalyst and nitrogen oxide catalytic reduction removal method
JP2001162171A (en) Catalyst for purification of exhaust gas and method of purifying exhaust gas
JPH0819739A (en) Exhaust gas purifying catalyst and producing method therefor
JPH09141102A (en) Oxide catalyst material for removing nitrogen oxide and removal of nitrogen oxide
JPH01317542A (en) Preparation of catalyst for exhaust gas clean-up
JPH06205975A (en) Catalyst for purifying exhaust gas