JPH11217220A - Compound oxide, its production and exhaust gas-cleaning catalyst using the same - Google Patents

Compound oxide, its production and exhaust gas-cleaning catalyst using the same

Info

Publication number
JPH11217220A
JPH11217220A JP10020742A JP2074298A JPH11217220A JP H11217220 A JPH11217220 A JP H11217220A JP 10020742 A JP10020742 A JP 10020742A JP 2074298 A JP2074298 A JP 2074298A JP H11217220 A JPH11217220 A JP H11217220A
Authority
JP
Japan
Prior art keywords
alumina
ceria
zirconia
composite oxide
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10020742A
Other languages
Japanese (ja)
Other versions
JP4045002B2 (en
Inventor
Jun Fujii
純 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP02074298A priority Critical patent/JP4045002B2/en
Publication of JPH11217220A publication Critical patent/JPH11217220A/en
Application granted granted Critical
Publication of JP4045002B2 publication Critical patent/JP4045002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a compound oxide having an improved catalyst performance after exposed to high temperature by using three components comprising alumina, ceria and zirconia and increasing the content of the zirconia on the basis of the ceria. SOLUTION: This compound oxide comprises the three components of alumina, ceria and zirconia. The ceria and the zirconia are contained in a weight ratio of 1/(>1 to 3). The weight ratio of the alumina to the total amount of the ceria and the zirconia is preferably 1/(1-4). The compound oxide is obtained by stirring and dissolving an alumina compound, cerium nitrate and zirconium nitrate in pure water, dropping the obtained mixture solution into an ammonia aqueous solution with agitation until to reach a pH of 9-9.5, and subsequently aging the produced precipitates. It is desirable that the mixture solution has an oxide concentration of 10-100 g/L.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排ガス
浄化用触媒に使用し得る複合酸化物及びその製造方法、
並びに該複合酸化物を用いることにより浄化性能を向上
させた排ガス浄化用触媒に関する。
The present invention relates to a composite oxide which can be used as a catalyst for purifying exhaust gas of an internal combustion engine and a method for producing the same.
Also, the present invention relates to an exhaust gas purifying catalyst having improved purification performance by using the composite oxide.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】内燃機
関の排ガス浄化用触媒は、排ガス規制強化に伴い、浄化
性能の向上が益々要求されている。そのため、触媒をエ
ンジンに近いマニホールドに直結させ、高い排ガス温度
で使用して浄化性能を向上させること等が行われてい
る。しかし、その場合は使用温度が高くなることから耐
熱性向上が一層要求される。
2. Description of the Related Art Improvements in purification performance of exhaust gas purifying catalysts for internal combustion engines are increasingly demanded as exhaust gas regulations are tightened. Therefore, a catalyst is directly connected to a manifold close to the engine and used at a high exhaust gas temperature to improve the purification performance. However, in that case, the use temperature is increased, so that the improvement of heat resistance is further required.

【0003】従来、例えば、特開平5−277375号
公報において、活性アルミナ、セリウム化合物、ジルコ
ニム化合物及びニッケル化合物を含有するスラリーを担
体にコーティングし、乾燥、焼成して得たウォッシュコ
ート担体に貴金属成分を担持した後、アルカリ土類金属
成分を担持した触媒が理論混合比近傍でCO、HC性能
が優れていることが報告されている。また、特開平6−
279027号公報において、セリア、ジルコニアを主
成分とした複合酸化物が開示されている。しかしなが
ら、これらの触媒や複合酸化物を排ガス浄化用触媒に用
いたとしても、より厳しい高温耐久性の向上要求には不
充分である。
[0003] Conventionally, for example, in Japanese Unexamined Patent Publication No. Hei 5-277375, a washcoat carrier obtained by coating a carrier with a slurry containing activated alumina, a cerium compound, a zirconium compound and a nickel compound, drying and calcining the carrier is used as a precious metal component. It has been reported that a catalyst supporting an alkaline earth metal component after carrying the compound has excellent CO and HC performance in the vicinity of the theoretical mixing ratio. In addition, Japanese Unexamined Patent Publication No.
Japanese Patent Publication No. 279027 discloses a composite oxide containing ceria and zirconia as main components. However, even if these catalysts and composite oxides are used as exhaust gas purifying catalysts, they are not sufficient for more stringent demands for high-temperature durability.

【0004】本発明者らは、上記した問題を解決すべ
く、アルミナ、セリア及びジルコニアの3成分を含み、
セリアとジルコニアの重量比が1対1である複合酸化物
を用いた排ガス浄化用触媒を提案した(特願平9−28
9436号)。かかる排ガス浄化用触媒によって、高温
耐久性は向上するが、さらなる高温耐久性の向上が要望
されていた。
[0004] In order to solve the above-mentioned problems, the present inventors include three components of alumina, ceria and zirconia,
An exhaust gas purifying catalyst using a composite oxide in which the weight ratio of ceria to zirconia is 1 to 1 has been proposed (Japanese Patent Application No. 9-28).
9436). Although the high-temperature durability is improved by such an exhaust gas purifying catalyst, a further improvement in high-temperature durability has been demanded.

【0005】従って、本発明の目的は、内燃機関の排ガ
ス浄化用触媒の耐熱性(高温耐久性)の向上に有効であ
る複合酸化物及びその製造方法、並びに高温耐久後の触
媒性能に優れる排ガス浄化用触媒を提供することにあ
る。
Accordingly, an object of the present invention is to provide a composite oxide effective for improving the heat resistance (high-temperature durability) of an exhaust gas purifying catalyst for an internal combustion engine, a method for producing the same, and an exhaust gas excellent in catalytic performance after high-temperature durability. An object of the present invention is to provide a purification catalyst.

【0006】[0006]

【課題を解決するための手段】本発明者等は、鋭意研究
した結果、セリアに対してジルコニアを多く含有した複
合酸化物を用いて調製した排ガス浄化触媒が、上記目的
を達成し得ることを知見した。
Means for Solving the Problems The present inventors have conducted intensive studies and as a result, have found that an exhaust gas purifying catalyst prepared by using a composite oxide containing a large amount of zirconia with respect to ceria can achieve the above object. I learned.

【0007】本発明は、上記知見に基づきなされたもの
で、アルミナ、セリア及びジルコニアの3成分を含み、
該セリアとジルコニアの重量比が、該セリア1に対して
ジルコニアが1超〜3であることを特徴とする複合酸化
物を提供するものである。
[0007] The present invention has been made based on the above findings, and comprises three components of alumina, ceria and zirconia,
An object of the present invention is to provide a composite oxide characterized in that the weight ratio of ceria to zirconia is more than 1 to 3 for ceria 1.

【0008】また、本発明は、アルミナ化合物、硝酸セ
リウム及び硝酸ジルコニウムを、純水中で撹拌、溶解し
て混合溶液を得、該混合溶液を撹拌しながらアンモニア
水溶液中に滴下し、pHを9〜9.5にした後、生成し
た沈殿物を熟成させたことを特徴とする上記複合酸化物
の製造方法を提供するものである。
In the present invention, an alumina compound, cerium nitrate and zirconium nitrate are stirred and dissolved in pure water to obtain a mixed solution. It is another object of the present invention to provide a method for producing the above-mentioned composite oxide, wherein the produced precipitate is aged after adjusting to 9.5.

【0009】また、本発明は、上記複合酸化物を用いて
製造された排ガス浄化用触媒を提供するものである。
Further, the present invention provides an exhaust gas purifying catalyst produced by using the above composite oxide.

【0010】[0010]

【発明の実施の形態】以下、本発明の複合酸化物につい
て詳細に説明する。本発明の複合酸化物は、アルミナ、
セリア及びジルコニアの3成分からなり、該セリアとジ
ルコニアの重量比が、該セリア1に対してジルコニアが
1超〜3である。ジルコニアの重量比がセリア1に対し
て1以下では熱履歴による複合酸化物の結晶子径の増加
率が大きくなり、また、比表面積の低下率も大きい、こ
れは、触媒性能を低下させる原因となる。また、3を超
えると触媒化した時に酸素貯蔵成分であるセリアの量が
減少するため、触媒性能が低下する原因となる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the composite oxide of the present invention will be described in detail. The composite oxide of the present invention is alumina,
It is composed of three components, ceria and zirconia, and the weight ratio of the ceria and zirconia is more than 1 to 3 for 1 cerium. When the weight ratio of zirconia to ceria 1 is 1 or less, the rate of increase in the crystallite diameter of the composite oxide due to the thermal history increases, and the rate of decrease in the specific surface area also increases. Become. On the other hand, if it exceeds 3, the amount of ceria, which is an oxygen storage component, is reduced when the catalyst is formed, which causes a reduction in catalytic performance.

【0011】また、上記アルミナに対する上記セリアと
ジルコニアの合計量の重量比が、該アルミナ1に対して
該セリアとジルコニアの合計量が1〜4であることが望
ましい。上記アルミナに対する上記セリアとジルコニア
の合計量の重量比が、該アルミナ1に対して該セリアと
ジルコニアの合計量が1未満では、明確な理由は不明で
あるが触媒性能が低下する。また、4を超えると、熱履
歴後の比表面積の低下率が大きくなり、触媒性能が低下
する原因となる。
The weight ratio of the total amount of the ceria and zirconia to the alumina is preferably 1 to 4 in the total amount of the ceria and zirconia to the alumina. When the weight ratio of the total amount of the ceria and zirconia to the alumina is less than 1, the catalyst performance is deteriorated for unknown reasons, although the reason is not clear. On the other hand, if it exceeds 4, the rate of decrease in the specific surface area after the heat history becomes large, which causes the catalyst performance to decrease.

【0012】本発明の複合酸化物は、上述の如く構成さ
れているため、内燃機関の排ガス浄化用触媒の耐熱性
(高温耐久性)の向上に有効なものである。本発明の複
合酸化物を用いることにより、排ガス浄化触媒が高温耐
久性能において優れる理由は明確ではないが、セリアと
ジルコニアとが複合化することで酸素貯蔵能が優れた特
性になったこと、複合化によりアルミナ、セリア及びジ
ルコニアが互いに作用し合うこと、即ち、各成分がそれ
ぞれの耐熱性向上成分として作用すること、及びアルミ
ナの高比表面積が複合酸化物の比表面積を高くすること
で耐熱性を向上させたことが考えられる。
Since the composite oxide of the present invention is constituted as described above, it is effective for improving the heat resistance (high-temperature durability) of an exhaust gas purifying catalyst for an internal combustion engine. By using the composite oxide of the present invention, the reason why the exhaust gas purifying catalyst is excellent in high-temperature durability performance is not clear, but the fact that ceria and zirconia are compounded to have excellent oxygen storage ability, Alumina, ceria, and zirconia interact with each other due to the chemical conversion, that is, each component acts as a heat resistance improving component, and the high specific surface area of alumina increases the specific surface area of the composite oxide to achieve heat resistance. Is considered to have been improved.

【0013】次に、本発明の複合酸化物の製造方法につ
いて詳細に説明する。本発明の複合酸化物の製造方法
は、上述した本発明の複合酸化物を製造する好ましい方
法であり、アルミナ化合物、硝酸セリウム及び硝酸ジル
コニウムを、純水中で撹拌、溶解して混合溶液を得、該
混合溶液を撹拌しながらアンモニア水溶液中に滴下し、
pHを9〜9.5にした後、生成した沈殿物を熟成させ
たことを特徴とする。
Next, the method for producing a composite oxide of the present invention will be described in detail. The method for producing a composite oxide of the present invention is a preferred method for producing the above-described composite oxide of the present invention, in which an alumina compound, cerium nitrate and zirconium nitrate are stirred and dissolved in pure water to obtain a mixed solution. The mixed solution is added dropwise to an aqueous ammonia solution while stirring,
After the pH is adjusted to 9 to 9.5, the formed precipitate is aged.

【0014】本発明の製造方法においては、アルミナ化
合物、硝酸セリウム及び硝酸ジルコニウムを、純水中で
撹拌、溶解して混合溶液を得、該混合溶液を撹拌しなが
らアンモニア水溶液中に滴下し、pHを9〜9.5にし
た後、沈殿物を生成することが特に重要である。即ち、
アルミナ化合物、硝酸セリウム及び硝酸ジルコニウムの
三成分を同時に共沈する方法により、沈殿物(共沈物)
を生成することが特に重要である。この滴下方法を逆に
すると、即ち、アンモニア水溶液を撹拌しながら該混合
溶液中に滴下すると、各成分が別々のpHで沈澱し始め
るため共沈物が得られず有効な複合酸化物が得られな
い。
In the production method of the present invention, an alumina compound, cerium nitrate and zirconium nitrate are stirred and dissolved in pure water to obtain a mixed solution. It is particularly important to produce a precipitate after the pH of 9 to 9.5. That is,
Precipitate (co-precipitate) by co-precipitation of the three components of alumina compound, cerium nitrate and zirconium nitrate
It is particularly important to generate If this dropping method is reversed, that is, if the aqueous ammonia solution is dropped into the mixed solution while stirring, each component starts to precipitate at a different pH, so that a coprecipitate is not obtained and an effective composite oxide is obtained. Absent.

【0015】ここで、アルミナ化合物、硝酸セリウム及
び硝酸ジルコニウムから上記混合溶液を得る方法として
は、例えば、硝酸セリウム及び硝酸ジルコニウムの水溶
液中に、アルミナ化合物を添加し、撹拌、混合する方法
等が挙げられる。この際、各成分の使用量は、上述した
本発明の複合酸化物におけるアルミナ、セリア及びジル
コニアの重量比率の範囲内になるような量であることが
好ましい。
Here, as a method of obtaining the above mixed solution from the alumina compound, cerium nitrate and zirconium nitrate, for example, a method of adding an alumina compound to an aqueous solution of cerium nitrate and zirconium nitrate, stirring and mixing, etc. Can be At this time, the amount of each component used is preferably such that it falls within the range of the weight ratio of alumina, ceria, and zirconia in the composite oxide of the present invention described above.

【0016】また、上記混合溶液中の酸化物としての濃
度は、10〜100g/lであることが好ましく、30
〜80g/lであることが更に好ましい。
The concentration of the oxide in the mixed solution is preferably 10 to 100 g / l, and more preferably 30 to 100 g / l.
More preferably, it is 〜80 g / l.

【0017】また、上記混合溶液を撹拌しながらアンモ
ニア水溶液中に滴下するに際し、該アンモニア水溶液の
量は、該混合溶液に対して、0.2〜0.7倍容量であ
ることが好ましく、0.3〜0.6倍容量であることが
更に好ましい。
When the mixed solution is dropped into the aqueous ammonia solution with stirring, the amount of the aqueous ammonia solution is preferably 0.2 to 0.7 times the volume of the mixed solution. The capacity is more preferably 0.3 to 0.6 times.

【0018】そして、上述の通り、上記混合溶液を上記
アンモニア水溶液中に滴下して、pHを9〜9.5にす
る。ここで、pHが9未満であると、沈殿が不十分とな
り、一方、pHを9.5超にしても、沈澱状態は変わら
ないため、使用するアンモニア水溶液が無駄となる。
Then, as described above, the mixed solution is dropped into the ammonia aqueous solution to adjust the pH to 9 to 9.5. Here, when the pH is less than 9, precipitation is insufficient, and when the pH exceeds 9.5, the precipitation state does not change, and the aqueous ammonia solution to be used is wasted.

【0019】また、生成した沈殿物を熟成させる際の時
間は、10〜20時間であることが好ましく、14〜1
6時間であることが更に好ましい。
The time for aging the formed precipitate is preferably 10 to 20 hours, and 14 to 1 hour.
More preferably, it is 6 hours.

【0020】本発明の製造方法に用いられるアルミナ化
合物としては、硝酸アルミニウム、ベーマイトアルミナ
又は活性アルミナ粉末等が好ましく用いられる。
As the alumina compound used in the production method of the present invention, aluminum nitrate, boehmite alumina, activated alumina powder and the like are preferably used.

【0021】また、本発明の製造方法に用いられるアン
モニア水溶液としては、(1+9)アンモニア水溶液、
カ性ソーダ水溶液、カ性カリ水溶液等が挙げられが、特
に(1+9)アンモニア水溶液が好ましい。
The aqueous ammonia used in the production method of the present invention includes (1 + 9) aqueous ammonia,
An aqueous solution of caustic soda, an aqueous solution of potassium caustic, and the like are mentioned, and an aqueous solution of (1 + 9) ammonia is particularly preferable.

【0022】本発明の製造方法においては、上記沈殿物
を熟成させた後、通常公知の方法により、該沈殿物をデ
カンテーションで水洗した後、濾過し、再度水洗し、乾
燥、粉砕した後、焼成する。例えば、熟成させた上記沈
殿物を水洗、濾過した後に乾燥をする際の温度は、10
0〜200℃であることが好ましく、140〜160℃
であることが更に好ましい。また、この乾燥をする際の
時間は、25〜35時間であることが好ましく、28〜
33時間であることが更に好ましい。
In the production method of the present invention, after the precipitate is aged, the precipitate is washed with water by decantation, filtered, washed again with water, dried and pulverized by a generally known method. Bake. For example, the temperature at which the aged precipitate is washed with water, filtered and then dried is 10
0 to 200 ° C., preferably 140 to 160 ° C.
Is more preferable. The time for this drying is preferably 25 to 35 hours, and 28 to 35 hours.
More preferably, it is 33 hours.

【0023】また、乾燥した上記沈殿物を、粉砕した
後、焼成をする際の温度は、500〜700℃であるこ
とが好ましく、550〜650℃であることが更に好ま
しい。また、この焼成をする際の時間は、2〜7時間で
あることが好ましく、3〜5時間であることが更に好ま
しい。
The temperature at which the dried precipitate is pulverized and then fired is preferably from 500 to 700 ° C, more preferably from 550 to 650 ° C. In addition, the time for this firing is preferably 2 to 7 hours, and more preferably 3 to 5 hours.

【0024】次に、本発明の排ガス浄化用触媒について
詳細に説明する。本発明の排ガス浄化用触媒は、上述し
た本発明の複合酸化物を用いて製造したものである。
Next, the exhaust gas purifying catalyst of the present invention will be described in detail. The exhaust gas purifying catalyst of the present invention is produced using the above-described composite oxide of the present invention.

【0025】ここで、本発明の排ガス浄化用触媒の調製
方法の一例を以下に示す。上記複合酸化物、γ−アルミ
ナ(活性アルミナ)、ニッケル化合物、アルミナゾル及
び純水を所定の割合でボールミルに投入して約20時間
混合、粉砕してスラリー化してウォッシュコート液とし
た後、これを一体型構造担体に担持し乾燥、焼成して、
ウォッシュコート層を有するウォッシュコート担体を調
製する。その後、白金、パラジウム及びロジウム等の貴
金属成分を所定量含浸し、乾燥、焼成する。その後、バ
リウム化合物の水溶液を所定量含浸し、乾燥、焼成して
完成触媒とする。
Here, an example of a method for preparing the exhaust gas purifying catalyst of the present invention will be described below. The above-mentioned composite oxide, γ-alumina (activated alumina), nickel compound, alumina sol and pure water were charged into a ball mill at a predetermined ratio, mixed for about 20 hours, pulverized to form a slurry to obtain a washcoat liquid, and It is carried on an integral structure carrier, dried, fired,
A washcoat carrier having a washcoat layer is prepared. Thereafter, a predetermined amount of a noble metal component such as platinum, palladium and rhodium is impregnated, dried and fired. Thereafter, a predetermined amount of an aqueous solution of a barium compound is impregnated, dried and calcined to obtain a completed catalyst.

【0026】ここで、上記ウォッシュコート液の原料と
して、複合酸化物、活性アルミナ、ニッケル化合物、ア
ルミナゾルに加えて、酢酸セリウム、酢酸ジルコニウム
を添加することもできる。
Here, cerium acetate or zirconium acetate can be added as a raw material of the washcoat liquid in addition to the composite oxide, activated alumina, nickel compound and alumina sol.

【0027】また、上記ウォッシュコート層中の各成分
の担持量は、アルミナ重量を100として、セリアが3
〜60、ジルコニアが5〜60、ニッケル酸化物が2〜
8及びアルカリ土類金属酸化物が1〜10であることが
好ましい。また、上記ウォッシュコート層中の複合酸化
物の割合は10〜80重量%であることが好ましい。
The amount of each component carried in the washcoat layer is 3% for ceria with respect to 100 weight of alumina.
~ 60, zirconia 5-60, nickel oxide 2 ~
It is preferable that 8 and the alkaline earth metal oxide be 1 to 10. The ratio of the composite oxide in the washcoat layer is preferably from 10 to 80% by weight.

【0028】本発明の排ガス浄化用触媒は、上述した本
発明の複合酸化物を用いて製造されているため、耐熱性
を向上させ、高温耐久後の触媒性能を向上させたもので
ある。
Since the exhaust gas purifying catalyst of the present invention is produced using the above-described composite oxide of the present invention, the catalyst has improved heat resistance and improved catalytic performance after high-temperature durability.

【0029】[0029]

【実施例】以下、実施例等により本発明を更に詳細に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0030】〔実施例1〕 a)複合酸化物の調製 硝酸セリウム溶液(酸化セリウムとして50g)に硝酸
ジルコニウム溶液(酸化ジルコニウムとして150g)
を添加、混合した溶液を調製する。この混合溶液にベー
マイトアルミナ(アルミナとして100g)を添加した
後、十分撹拌し均一溶液6リットルを調製する。この溶
液中の酸化物としての濃度は50g/lである。この溶
液を(1+9)アンモニア溶液2.1リットル中に撹拌
しながら徐々に滴下、中和し、pHを9.3にした。こ
こで生成した沈澱物は15時間熟成させる。その後、デ
カンテーションで2回水洗し、濾過後、150℃で28
時間乾燥する。その後、粉砕し、620℃で4時間焼成
して複合酸化物Aを調製した。得られた複合酸化物A中
のアルミナ、セリア、ジルコニアの重量比は2:1:3
であった。
Example 1 a) Preparation of Composite Oxide A zirconium nitrate solution (150 g as zirconium oxide) in a cerium nitrate solution (50 g as cerium oxide)
Is added to prepare a mixed solution. After adding boehmite alumina (100 g as alumina) to this mixed solution, the mixture is sufficiently stirred to prepare a 6 liter homogeneous solution. The concentration as oxide in this solution is 50 g / l. This solution was slowly added dropwise and neutralized to 2.1 liters of a (1 + 9) ammonia solution with stirring to adjust the pH to 9.3. The precipitate formed here is aged for 15 hours. Then, it is washed twice with decantation, filtered and then filtered at 150 ° C. for 28 hours.
Let dry for hours. Thereafter, the mixture was pulverized and calcined at 620 ° C. for 4 hours to prepare a composite oxide A. The weight ratio of alumina, ceria, and zirconia in the obtained composite oxide A was 2: 1: 3.
Met.

【0031】b)触媒の調製 複合金属酸化物A144g、BET比表面積が150m
2 /gで平均粒径が30μの活性アルミナ258g、酸
化ニッケル12g相当の硝酸ニッケル、アルミナ15g
含有のアルミナゾル及び蒸留水550gをボールミルに
入れ、20時間粉砕混合し、ウォッシュコート液とす
る。コージライト製ハニカム担体(400セル、容量
0.34リットル)を該ウォッシュコート液に浸漬した
後、エアーブローでセル中の余分のウォッシュコート液
を除去し乾燥する。このウォッシュコート液への浸漬及
び乾燥を2回行った後、500℃で2時間焼成する。こ
のウォッシュコート担体のウォッシュコート量は143
g/lで、アルミナが107g/l、セリアが8g/
l、ジルコニアが24g/l、及びニッケル酸化物が4
g/lであった。
B) Preparation of catalyst: 144 g of composite metal oxide A, having a BET specific surface area of 150 m
258 g of activated alumina having an average particle size of 30 μm 2 / g, nickel nitrate equivalent to 12 g of nickel oxide, 15 g of alumina
The contained alumina sol and 550 g of distilled water are put into a ball mill and pulverized and mixed for 20 hours to obtain a wash coat liquid. After a cordierite honeycomb carrier (400 cells, capacity 0.34 liter) is immersed in the washcoat solution, excess washcoat solution in the cells is removed by air blow and dried. After immersion and drying in the washcoat solution twice, baking is performed at 500 ° C. for 2 hours. The wash coat amount of this wash coat carrier is 143.
g / l, alumina 107 g / l, ceria 8 g / l
1, 24 g / l of zirconia and 4 of nickel oxide
g / l.

【0032】次に、硝酸パラジウム及び塩化ロジウムを
蒸留水中に溶解し、パラジウム濃度1.67g/l、ロ
ジウム濃度0.167g/lの含浸溶液を調製する。こ
の含浸溶液300ml中に、上記ウォッシュコート担体
を浸漬した後、エアーブローでセル中の余分の含浸溶液
を除去した後乾燥する。その後、500℃で2時間焼成
し触媒(No.1)を得た。得られた触媒は、Pd
1.47g/l、Rh0.147g/lを担持してい
た。
Next, palladium nitrate and rhodium chloride are dissolved in distilled water to prepare an impregnation solution having a palladium concentration of 1.67 g / l and a rhodium concentration of 0.167 g / l. After immersing the washcoat carrier in 300 ml of the impregnating solution, the excess impregnating solution in the cell is removed by air blow, and then the cell is dried. Then, it was calcined at 500 ° C. for 2 hours to obtain a catalyst (No. 1). The resulting catalyst is Pd
1.47 g / l and Rh of 0.147 g / l were carried.

【0033】〔実施例2〕 a)複合酸化物の調製 硝酸セリウム溶液(酸化セリウムとして100g)、硝
酸ジルコニウム溶液(酸化ジルコニウムとして100
g)及びベーマイトアルミナ(アルミナとして100
g)を使用した以外は、実施例1と同様に調製して複合
酸化物Bを得た。得られた複合酸化物Bのアルミナ、セ
リア、ジルコニアの重量比は2:2:2であった。
Example 2 a) Preparation of Composite Oxide A cerium nitrate solution (100 g as cerium oxide) and a zirconium nitrate solution (100 g as zirconium oxide)
g) and boehmite alumina (100 as alumina)
Except for using g), the procedure of Example 1 was repeated to prepare a composite oxide B. The weight ratio of alumina, ceria, and zirconia in the obtained composite oxide B was 2: 2: 2.

【0034】b)触媒の調製 複合金属酸化物B144gを使用した以外は、実施例1
と同様に調製して触媒(No.2)を得た。得られた触
媒のウォッシュコート量は143g/lで、アルミナが
107g/l、セリアが16g/l、ジルコニアが16
g/l、及びニッケル酸化物が4g/lであった。ま
た、貴金属成分(Pd、Rh)の担持量は、実施例1と
同量である。
B) Preparation of catalyst Example 1 except that 144 g of the composite metal oxide B was used.
And a catalyst (No. 2) was obtained. The wash coat amount of the obtained catalyst was 143 g / l, alumina was 107 g / l, ceria was 16 g / l, and zirconia was 16 g / l.
g / l and nickel oxide was 4 g / l. The amount of the noble metal component (Pd, Rh) carried is the same as in Example 1.

【0035】〔実施例3〕 a)複合酸化物の調製 硝酸セリウム溶液(酸化セリウムとして100g)、硝
酸ジルコニウム溶液(酸化ジルコニウムとして100
g)及びベーマイトアルミナ(アルミナとして50g)
を使用して得た均一溶液6リットルを用いた以外は、実
施例1と同様に調製して複合酸化物Cを得た。得られた
複合酸化物Cのアルミナ、セリア、ジルコニアの重量比
は1:2:2であった。
Example 3 a) Preparation of Composite Oxide A cerium nitrate solution (100 g as cerium oxide), a zirconium nitrate solution (100 g as zirconium oxide)
g) and boehmite alumina (50 g as alumina)
Was prepared in the same manner as in Example 1 except that 6 liters of the homogeneous solution obtained by using the above was used to obtain a composite oxide C. The weight ratio of alumina, ceria, and zirconia in the obtained composite oxide C was 1: 2: 2.

【0036】b)触媒の調製 複合金属酸化物C120g及び活性アルミナ282gを
使用した以外は、実施例1と同様に調製して触媒(N
o.3)を得た。得られた触媒のウォッシュコート量は
143g/lで、アルミナが107g/l、セリアが1
6g/l、ジルコニアが16g/l、及びニッケル酸化
物が4g/lであった。また、貴金属成分(Pd、R
h)の担持量は、実施例1と同量である。
B) Preparation of catalyst A catalyst (N) was prepared in the same manner as in Example 1 except that 120 g of the composite metal oxide C and 282 g of activated alumina were used.
o. 3) was obtained. The wash coat amount of the obtained catalyst was 143 g / l, alumina was 107 g / l, and ceria was 1
6 g / l, zirconia 16 g / l and nickel oxide 4 g / l. In addition, noble metal components (Pd, R
The supported amount of h) is the same as in Example 1.

【0037】〔実施例4〕 a)複合酸化物の調製 硝酸セリウム溶液(酸化セリウムとして100g)、硝
酸ジルコニウム溶液(酸化ジルコニウムとして100
g)及びベーマイトアルミナ(アルミナとして200
g)を使用して得た均一溶液6リットルを用いた以外
は、実施例1と同様に調製して複合酸化物Dを得た。得
られた複合酸化物Dのアルミナ、セリア、ジルコニアの
重量比は4:2:2であった。
Example 4 a) Preparation of Composite Oxide Cerium nitrate solution (100 g as cerium oxide), zirconium nitrate solution (100 as zirconium oxide)
g) and boehmite alumina (200 as alumina)
A composite oxide D was prepared in the same manner as in Example 1 except that 6 liters of the homogeneous solution obtained using g) was used. The weight ratio of alumina, ceria, and zirconia in the obtained composite oxide D was 4: 2: 2.

【0038】b)触媒の調製 複合金属酸化物D192g及び活性アルミナ210gを
使用した以外は、実施例1と同様に調製して触媒(N
o.4)を得た。得られた触媒のウォッシュコート量は
143g/lで、アルミナが107g/l、セリアが1
6g/l、ジルコニアが16g/l、及びニッケル酸化
物が4g/lであった。また、貴金属成分(Pd、R
h)の担持量は、実施例1と同量である。
B) Preparation of catalyst A catalyst (N) was prepared in the same manner as in Example 1 except that 192 g of the composite metal oxide D and 210 g of activated alumina were used.
o. 4) was obtained. The wash coat amount of the obtained catalyst was 143 g / l, alumina was 107 g / l, and ceria was 1
6 g / l, zirconia 16 g / l and nickel oxide 4 g / l. In addition, noble metal components (Pd, R
The supported amount of h) is the same as in Example 1.

【0039】〔比較例1〕 a)複合酸化物の調製 硝酸セリウム溶液(酸化セリウムとして150g)、硝
酸ジルコニウム溶液(酸化ジルコニウムとして50g)
及びベーマイトアルミナ(アルミナとして100g)を
使用した以外は、実施例1と同様に調製して複合酸化物
Eを得た。得られた複合酸化物Eのアルミナ、セリア、
ジルコニアの重量比は2:3:1であった。
Comparative Example 1 a) Preparation of Composite Oxide Cerium nitrate solution (150 g as cerium oxide), zirconium nitrate solution (50 g as zirconium oxide)
A composite oxide E was prepared in the same manner as in Example 1, except that boehmite alumina (100 g as alumina) was used. Alumina, ceria, and the like of the obtained composite oxide E;
The weight ratio of zirconia was 2: 3: 1.

【0040】b)触媒の調製 複合金属酸化物E144gを使用した以外は、実施例1
と同様に調製して触媒(No.a)を得た。得られた触
媒のウォッシュコート量は143g/lで、アルミナが
107g/l、セリアが24g/l、ジルコニアが8g
/l、及びニッケル酸化物が4g/lであった。また、
貴金属成分(Pd、Rh)の担持量は、実施例1と同量
である。
B) Preparation of the catalyst Example 1 except that 144 g of the composite metal oxide E was used.
And a catalyst (No. a) was obtained. The wash coat amount of the obtained catalyst was 143 g / l, alumina was 107 g / l, ceria was 24 g / l, and zirconia was 8 g.
/ L, and 4 g / l of nickel oxide. Also,
The amount of the noble metal component (Pd, Rh) carried was the same as in Example 1.

【0041】〔比較例2〕 a)複合酸化物の調製 硝酸セリウム溶液(酸化セリウムとして100g)、硝
酸ジルコニウム溶液(酸化ジルコニウムとして100
g)を使用して得た均一溶液6リットルを用いた以外
は、実施例1と同様に調製して複合酸化物Fを得た。得
られた複合酸化物Fのアルミナ、セリア、ジルコニアの
重量比は0:2:2であった。
Comparative Example 2 a) Preparation of Composite Oxide A cerium nitrate solution (100 g as cerium oxide) and a zirconium nitrate solution (100 g as zirconium oxide)
A composite oxide F was prepared in the same manner as in Example 1, except that 6 liters of the homogeneous solution obtained using g) was used. The weight ratio of alumina, ceria, and zirconia in the obtained composite oxide F was 0: 2: 2.

【0042】b)触媒の調製 複合金属酸化物F96g及び活性アルミナ306gを使
用した以外は、実施例1と同様に調製して触媒(No.
b)を得た。得られた触媒のウォッシュコート量は14
3g/lで、アルミナが107g/l、セリアが16g
/l、ジルコニアが16g/l、及びニッケル酸化物が
4g/lであった。また、貴金属成分(Pd、Rh)の
担持量は、実施例1と同量である。
B) Preparation of Catalyst A catalyst (No. 1) was prepared in the same manner as in Example 1 except that 96 g of the composite metal oxide F and 306 g of activated alumina were used.
b) was obtained. The obtained catalyst had a wash coat amount of 14
3g / l, alumina 107g / l, ceria 16g
/ L, zirconia was 16 g / l, and nickel oxide was 4 g / l. The amount of the noble metal component (Pd, Rh) carried is the same as in Example 1.

【0043】〔実験例1〕実施例1〜4及び比較例1及
び2で調製した複合酸化物A〜Fの新品(熱耐久前の試
料)及び電気炉中で900℃×20時間+950℃×2
0時間、熱耐久した後の試料のBET比表面積を測定し
た。その結果を表1に示す。また、複合酸化物中のAl
2 3 /CeO2 /ZrO2 比率(重量比率)も併せて
表1に示す。
[Experimental Example 1] New composite oxides A to F (samples before heat endurance) prepared in Examples 1 to 4 and Comparative Examples 1 and 2 and 900 ° C. × 20 hours + 950 ° C. × in an electric furnace. 2
The BET specific surface area of the sample after heat endurance for 0 hour was measured. Table 1 shows the results. In addition, Al in the composite oxide
Table 1 also shows the 2 O 3 / CeO 2 / ZrO 2 ratio (weight ratio).

【0044】[0044]

【表1】 [Table 1]

【0045】表1の結果から明らかなように、Al2
3 含有複合酸化物A〜Eの熱耐久による比表面積の低下
率は、Al2 3 を含有しない複合酸化物Fの熱耐久に
よる比表面積の低下率に比べて小さく、本発明のAl2
3 含有複合酸化物が耐熱性に優れていることが判る。
As is clear from the results in Table 1, Al 2 O
3 reduction rate of specific surface area by the thermal endurance of containing composite oxide A~E is smaller than the decreasing rate of the specific surface area due to the thermal durability of the composite oxide F containing no Al 2 O 3, Al 2 of the present invention
It can be seen that the O 3 -containing composite oxide has excellent heat resistance.

【0046】〔実験例2〕実施例1〜4及び比較例1及
び2で調製した複合酸化物A〜Fの新品(熱耐久前の試
料)及び電気炉中で900℃×20時間+950℃×2
0時間、熱耐久した後の試料のX線回折による解析によ
って検出された化合物を表2に示す。
[Experimental Example 2] New composite oxides A to F prepared in Examples 1 to 4 and Comparative Examples 1 and 2 (samples before heat endurance) and 900 ° C. × 20 hours + 950 ° C. × in an electric furnace. 2
Table 2 shows compounds detected by X-ray diffraction analysis of the sample after heat endurance for 0 hour.

【0047】[0047]

【表2】 [Table 2]

【0048】表2の結果から明らかなように、複合酸化
物B〜Fからは配合比に相当するCe、Zr、Oからな
る複合酸化物が検出された。複合酸化物Aは複合酸化物
の他にZrO2 比率が多いためZrO2 も検出された。
As is clear from the results in Table 2, a composite oxide composed of Ce, Zr, and O corresponding to the compounding ratio was detected from the composite oxides BF. Composite oxide A was also detected ZrO 2 because many ZrO 2 ratio in addition to the composite oxide.

【0049】また、同じX線回折による測定からシェラ
ーの式で計算した結晶子径を表3に示す。
Table 3 shows the crystallite diameter calculated by the Scherrer equation from the same measurement by X-ray diffraction.

【0050】[0050]

【表3】 [Table 3]

【0051】表3の結果から明らかなように、複合酸化
物A〜Dの熱耐久後の結晶子径は、複合酸化物E〜Fに
比べて小さく、本発明の複合酸化物が熱耐久による結晶
の成長が小さく耐熱性があることを示している。
As is clear from the results in Table 3, the crystallite diameters of the composite oxides A to D after heat endurance are smaller than those of the composite oxides E to F. This indicates that the crystal growth is small and has heat resistance.

【0052】〔実験例3〕実施例1〜4で調製した触媒
(No.1〜4)及び比較例1〜2で調製した触媒(N
o.a〜b)について、下記条件で耐久試験を行った
後、性能評価を行った。評価は、CO、HC、NOx
CO×NOx の平方根それぞれの転化率で表した。その
結果を下記表4に示す。 ・耐久試験条件 エンジン:排気量 2000cc 触媒温度:900℃×20時間+950℃×20時間 A/F :14.6±0.5、1Hz ・性能評価条件 車両 :660cc、EFI車 評価モード:10−15モード
EXPERIMENTAL EXAMPLE 3 The catalysts prepared in Examples 1 to 4 (Nos. 1 to 4) and the catalysts prepared in Comparative Examples 1 and 2 (N
o. For a and b), after a durability test was performed under the following conditions, performance evaluation was performed. The evaluation was CO, HC, NO x ,
The conversion was represented by the square root of CO × NO x . The results are shown in Table 4 below.・ Durability test conditions Engine: Displacement 2000cc Catalyst temperature: 900 ° C × 20 hours + 950 ° C. × 20 hours A / F: 14.6 ± 0.5, 1Hz ・ Performance evaluation conditions Vehicle: 660cc, EFI vehicle Evaluation mode: 10- 15 modes

【0053】[0053]

【表4】 [Table 4]

【0054】表4の結果から明らかなように、実施例1
〜4の触媒(No.1〜4)は、比較例1〜2の触媒
(No.a〜b)に比較して、高温耐久試験後におい
て、優れた性能を有していることが判る。
As is clear from the results in Table 4, Example 1
It can be seen that the catalysts of Nos. To 4 (Nos. 1 to 4) have excellent performance after the high-temperature durability test as compared with the catalysts of Nos. A to b of Comparative Examples 1 and 2.

【0055】[0055]

【発明の効果】以上説明したように、本発明の複合酸化
物は、内燃機関の排ガス浄化用触媒の耐熱性(高温耐久
性)の向上に有効である。また、本発明の製造方法によ
れば、内燃機関の排ガス浄化用触媒の耐熱性(高温耐久
性)の向上に有効な上記複合酸化物を得ることができ
る。また、本発明の排ガス浄化用触媒は、高温耐久性に
優れたものである。
As described above, the composite oxide of the present invention is effective for improving the heat resistance (high-temperature durability) of an exhaust gas purifying catalyst for an internal combustion engine. Further, according to the production method of the present invention, it is possible to obtain the above-mentioned composite oxide which is effective for improving the heat resistance (high-temperature durability) of an exhaust gas purifying catalyst for an internal combustion engine. Further, the exhaust gas purifying catalyst of the present invention has excellent high-temperature durability.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 37/03 B01D 53/36 104A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 37/03 B01D 53/36 104A

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ、セリア及びジルコニアの3成
分を含み、該セリアとジルコニアの重量比が、該セリア
1に対してジルコニアが1超〜3であることを特徴とす
る複合酸化物。
1. A composite oxide comprising three components of alumina, ceria and zirconia, wherein the weight ratio of said ceria and zirconia is more than 1 to 3 of zirconia to 1 of said ceria.
【請求項2】 上記アルミナに対する上記セリアとジル
コニアの合計量の重量比が、該アルミナ1に対して該セ
リアとジルコニアの合計量が1〜4である請求項1に記
載の複合酸化物。
2. The composite oxide according to claim 1, wherein the weight ratio of the total amount of said ceria and zirconia to said alumina is 1 to 4 with respect to said alumina.
【請求項3】 アルミナ化合物、硝酸セリウム及び硝酸
ジルコニウムを、純水中で撹拌、溶解して混合溶液を
得、該混合溶液を撹拌しながらアンモニア水溶液中に滴
下し、pHを9〜9.5にした後、生成した沈殿物を熟
成させたことを特徴とする請求項1又は2に記載の複合
酸化物の製造方法。
3. A mixed solution is obtained by stirring and dissolving an alumina compound, cerium nitrate and zirconium nitrate in pure water, and the mixed solution is dropped into an aqueous ammonia solution with stirring to adjust the pH to 9 to 9.5. 3. The method for producing a composite oxide according to claim 1, wherein the produced precipitate is aged after the formation.
【請求項4】 上記アルミナ化合物が、硝酸アルミニウ
ム、ベーマイトアルミナ又は活性アルミナ粉末である請
求項3記載の複合酸化物の製造方法。
4. The method according to claim 3, wherein the alumina compound is aluminum nitrate, boehmite alumina or activated alumina powder.
【請求項5】 請求項1又は2に記載の複合酸化物を用
いて製造された排ガス浄化用触媒。
5. An exhaust gas purifying catalyst produced using the composite oxide according to claim 1 or 2.
JP02074298A 1998-02-02 1998-02-02 Composite oxide and exhaust gas purification catalyst using the same Expired - Fee Related JP4045002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02074298A JP4045002B2 (en) 1998-02-02 1998-02-02 Composite oxide and exhaust gas purification catalyst using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02074298A JP4045002B2 (en) 1998-02-02 1998-02-02 Composite oxide and exhaust gas purification catalyst using the same

Publications (2)

Publication Number Publication Date
JPH11217220A true JPH11217220A (en) 1999-08-10
JP4045002B2 JP4045002B2 (en) 2008-02-13

Family

ID=12035657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02074298A Expired - Fee Related JP4045002B2 (en) 1998-02-02 1998-02-02 Composite oxide and exhaust gas purification catalyst using the same

Country Status (1)

Country Link
JP (1) JP4045002B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005334791A (en) * 2004-05-28 2005-12-08 Toda Kogyo Corp Catalyst for cleaning exhaust gas and oxygen storage material for the catalyst
JP2005342580A (en) * 2004-06-01 2005-12-15 Toyota Central Res & Dev Lab Inc Catalyst carrier and its production method
JP2006055768A (en) * 2004-08-20 2006-03-02 Toyota Motor Corp Exhaust gas cleaning catalyst and its manufacturing method
WO2007052821A1 (en) * 2005-11-04 2007-05-10 Toyota Jidosha Kabushiki Kaisha Catalyst carrier particle, exhaust gas purifying catalyst, and methods for producing those
JP2012187518A (en) * 2011-03-10 2012-10-04 Toyota Motor Corp Exhaust gas purification catalyst
JP2014534938A (en) * 2011-07-14 2014-12-25 サゾル ジャーマニー ゲーエムベーハー Method for producing composite of aluminum oxide and cerium / zirconium composite oxide
JP2015521538A (en) * 2012-06-15 2015-07-30 ビーエーエスエフ コーポレーション Mixed metal oxide composites for oxygen storage
JP2016209858A (en) * 2015-05-13 2016-12-15 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JPWO2021220727A1 (en) * 2020-04-28 2021-11-04

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279027A (en) * 1993-02-10 1994-10-04 Rhone Poulenc Chim Composition based on mixture of zirconium oxide and cerium oxide and method for synthetic production and use thereof
JPH06316416A (en) * 1993-02-10 1994-11-15 Rhone Poulenc Chim Preparation of composition wherein mixed oxide of zirconium and cerium are base material
JPH07300315A (en) * 1994-04-28 1995-11-14 Nissan Motor Co Ltd Complex, catalyst body using the same and its production
JPH07315840A (en) * 1994-05-27 1995-12-05 Rhone Poulenc Chim Highly reductive base material compound of alumina, cerium oxide and zirconium oxide,production thereof and use thereofin catalyst manufacture
JPH08109021A (en) * 1994-10-05 1996-04-30 Santoku Kinzoku Kogyo Kk Composite oxide having oxygen-absorbing and releasing ability and its production
JPH08229394A (en) * 1994-12-28 1996-09-10 Toyota Central Res & Dev Lab Inc Production of oxide-deposited catalyst carrier
JPH08325015A (en) * 1994-12-21 1996-12-10 Eniricerche Spa Sol-gel preparative method for producing sphere, microsphereand wash coat of pure and mixed zirconia oxide, useful as catalyst or catalyst carrier
WO1997002213A1 (en) * 1995-07-03 1997-01-23 Rhone-Poulenc Chimie Composition based on zirconium oxide and cerium oxide, preparation method therefor and use thereof
JPH09501348A (en) * 1993-07-29 1997-02-10 ローバー グループ リミティド Base metal catalysts and catalyst supports for automobile exhaust gas purification and a further two-step process.
JPH09155192A (en) * 1995-12-07 1997-06-17 Toyota Central Res & Dev Lab Inc Exhaust gas purifying catalyst

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279027A (en) * 1993-02-10 1994-10-04 Rhone Poulenc Chim Composition based on mixture of zirconium oxide and cerium oxide and method for synthetic production and use thereof
JPH06316416A (en) * 1993-02-10 1994-11-15 Rhone Poulenc Chim Preparation of composition wherein mixed oxide of zirconium and cerium are base material
JPH09501348A (en) * 1993-07-29 1997-02-10 ローバー グループ リミティド Base metal catalysts and catalyst supports for automobile exhaust gas purification and a further two-step process.
JPH07300315A (en) * 1994-04-28 1995-11-14 Nissan Motor Co Ltd Complex, catalyst body using the same and its production
JPH07315840A (en) * 1994-05-27 1995-12-05 Rhone Poulenc Chim Highly reductive base material compound of alumina, cerium oxide and zirconium oxide,production thereof and use thereofin catalyst manufacture
JPH08109021A (en) * 1994-10-05 1996-04-30 Santoku Kinzoku Kogyo Kk Composite oxide having oxygen-absorbing and releasing ability and its production
JPH08325015A (en) * 1994-12-21 1996-12-10 Eniricerche Spa Sol-gel preparative method for producing sphere, microsphereand wash coat of pure and mixed zirconia oxide, useful as catalyst or catalyst carrier
JPH08229394A (en) * 1994-12-28 1996-09-10 Toyota Central Res & Dev Lab Inc Production of oxide-deposited catalyst carrier
WO1997002213A1 (en) * 1995-07-03 1997-01-23 Rhone-Poulenc Chimie Composition based on zirconium oxide and cerium oxide, preparation method therefor and use thereof
JPH09155192A (en) * 1995-12-07 1997-06-17 Toyota Central Res & Dev Lab Inc Exhaust gas purifying catalyst

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005334791A (en) * 2004-05-28 2005-12-08 Toda Kogyo Corp Catalyst for cleaning exhaust gas and oxygen storage material for the catalyst
JP4589032B2 (en) * 2004-05-28 2010-12-01 戸田工業株式会社 Exhaust gas purification catalyst and oxygen storage material for the catalyst
JP2005342580A (en) * 2004-06-01 2005-12-15 Toyota Central Res & Dev Lab Inc Catalyst carrier and its production method
JP4665458B2 (en) * 2004-08-20 2011-04-06 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP2006055768A (en) * 2004-08-20 2006-03-02 Toyota Motor Corp Exhaust gas cleaning catalyst and its manufacturing method
US8053388B2 (en) 2005-11-04 2011-11-08 Toyota Jidosha Kabushiki Kaisha Catalyst support particle, exhaust gas purifying catalyst, and production processes thereof
WO2007052821A1 (en) * 2005-11-04 2007-05-10 Toyota Jidosha Kabushiki Kaisha Catalyst carrier particle, exhaust gas purifying catalyst, and methods for producing those
JP4835595B2 (en) * 2005-11-04 2011-12-14 トヨタ自動車株式会社 Catalyst carrier particles, exhaust gas purification catalyst, and production method thereof
JP2012187518A (en) * 2011-03-10 2012-10-04 Toyota Motor Corp Exhaust gas purification catalyst
JP2014534938A (en) * 2011-07-14 2014-12-25 サゾル ジャーマニー ゲーエムベーハー Method for producing composite of aluminum oxide and cerium / zirconium composite oxide
JP2015521538A (en) * 2012-06-15 2015-07-30 ビーエーエスエフ コーポレーション Mixed metal oxide composites for oxygen storage
JP2016209858A (en) * 2015-05-13 2016-12-15 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JPWO2021220727A1 (en) * 2020-04-28 2021-11-04
WO2021220727A1 (en) * 2020-04-28 2021-11-04 ユミコア日本触媒株式会社 Ce-Zr COMPOSITE OXIDE AND METHOD FOR PRODUCING SAME, AND EXHAUST GAS CLEANING CATALYST USING SAME

Also Published As

Publication number Publication date
JP4045002B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
JP3797313B2 (en) Method for producing metal oxide particles and catalyst for exhaust gas purification
KR100199909B1 (en) A high heat-resistant catalyst support and its production method, and a high heat-resistant catalyst and its production method
EP0428752B1 (en) Exhaust gas purifying catalyst excellent in thermal resistance and method of production thereof
JP2659796B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3861303B2 (en) Exhaust gas purification catalyst
WO2005102524A1 (en) Metal oxide particle, production process thereof and exhaust gas purifying catalyst
WO2005102523A1 (en) Process for producing metal oxide particle and exhaust gas purifying catalyst
WO2005102933A2 (en) Zirconia core particles coated with ceria particles, production process thereof and exhaust gas purifying catalyst
WO2005084796A1 (en) Exhaust gas purifying catalyst, metal oxide particle and production process thereof
JP3831093B2 (en) Composite oxide, method for producing the same, and exhaust gas purification catalyst using the same
JP3144880B2 (en) Method for producing three-way catalyst with excellent low-temperature activity
JP3275356B2 (en) Method for producing exhaust gas purifying catalyst
JP4045002B2 (en) Composite oxide and exhaust gas purification catalyst using the same
JP2578219B2 (en) Method for producing exhaust gas purifying catalyst
JP4316586B2 (en) Exhaust gas purification catalyst
JPH0780311A (en) Catalyst for purification of exhaust gas
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2734808B2 (en) Exhaust gas purification catalyst
JPH0768175A (en) Catalyst for purification of exhaust gas
JPH0582258B2 (en)
JP3229054B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH06106062A (en) Catalyst for purification of exhaust gas and its production
JP3426792B2 (en) Exhaust gas purification catalyst
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JP3878766B2 (en) Catalyst carrier and exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees