JPH08173811A - Catalyst for purification of exhaust gas and its production - Google Patents

Catalyst for purification of exhaust gas and its production

Info

Publication number
JPH08173811A
JPH08173811A JP6322757A JP32275794A JPH08173811A JP H08173811 A JPH08173811 A JP H08173811A JP 6322757 A JP6322757 A JP 6322757A JP 32275794 A JP32275794 A JP 32275794A JP H08173811 A JPH08173811 A JP H08173811A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
silver
alumina
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6322757A
Other languages
Japanese (ja)
Inventor
Shinji Yamamoto
伸司 山本
Junji Ito
淳二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6322757A priority Critical patent/JPH08173811A/en
Publication of JPH08173811A publication Critical patent/JPH08173811A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a catalyst capable of enhancing NOx removing performance in an excess oxygen-contg. atmosphere in which the conventional catalyst has no activity and capable of removing NOx in exhaust gas over the wide temp. region from a low temp. to a high temp. CONSTITUTION: This catalyst is made of a silver carried alumina-based multiple oxide obtd. by carrying silver on an alumina-based multiple oxide and represented by the formula, Aga /Xb Alc Od (where X is at least one kind of element selected from among Fe, Co, Ni, Cu and Zn; (b) and (c) show the atomic ratio between the element; (b) is 0.005-0.5 when (c) is 2.0; (a) is 0.1-10wt.% (expressed in terms of elemental silver); and (d) is the number of oxygen atoms required to satisfy the valence of each component).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排気ガス浄化用触媒に
関し、特に酸素過剰雰囲気下における窒素化物(以下、
「NOx 」と称す)を浄化することができる排気ガス浄
化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst, and more particularly to a nitrogen compound (hereinafter,
The present invention relates to an exhaust gas purifying catalyst capable of purifying "NO x ").

【0002】[0002]

【従来の技術】従来、自動車等の内燃機関から排出され
る排気ガスを浄化する排気ガス浄化用触媒としては、ア
ルミナや酸化セリウム等に白金(Pt)、バラジウム
(Pd)及びロジウム(Rh)等の貴金属を担持させ、
これをモノリス担体にコーティングした構造のものが使
用されている。この触媒は、主としてストイキにおける
排気ガス浄化能を向上させることを重点とするため、酸
素過剰雰囲気下ではNOxを除去するに充分な性能が得
られなかった。
2. Description of the Related Art Conventionally, as an exhaust gas purifying catalyst for purifying exhaust gas emitted from an internal combustion engine of an automobile or the like, platinum (Pt), palladium (Pd), rhodium (Rh), etc. are added to alumina, cerium oxide, etc. Carrying noble metal of
A monolith carrier coated with this is used. Since this catalyst mainly focuses on improving the exhaust gas purifying ability in stoichiometry, sufficient performance for removing NO x could not be obtained in an oxygen excess atmosphere.

【0003】一方、酸素過剰雰囲気下におけるNOx
浄化性能を向上させる触媒が数多く提案されている。特
に、特開平4−298235号公報、特開平5−103
953号公報及び特開平5−212248号公報にはア
ルミナ系複合酸化物を用いたNOx 浄化用触媒が、また
特開平6−71139号公報及び特開平6−71175
号公報には銀担持アルミナを用いたNOx 浄化用触媒が
提案されている。前記これらの公報に記載されたアルミ
ナ系複合酸化物及び銀担持アルミナを用いたNOx 浄化
用触媒は、触媒成分を多孔質の無機酸化物(アルミナ)
に含浸又は浸漬することにより分散・担持させ、触媒性
能を向上させて酸素過剰雰囲気における排気ガス中のN
x を還元除去するものである。
On the other hand, many catalysts have been proposed which improve the purification performance of NO x in an oxygen excess atmosphere. In particular, JP-A-4-298235 and JP-A-5-103
953 and JP-A-5-212248 disclose NO x purification catalysts using an alumina-based composite oxide, and JP-A-6-71139 and JP-A-6-71175.
In the publication, a NO x purification catalyst using silver-supported alumina is proposed. The catalyst for NO x purification using the alumina-based composite oxide and the silver-supported alumina described in these publications uses a porous inorganic oxide (alumina) as a catalyst component.
It is dispersed / supported by impregnation or immersion in N to improve the catalytic performance, and N in exhaust gas in an oxygen excess atmosphere
Ox is reduced and removed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記従
来のアルミナ系複合酸化物及び銀担持アルミナ触媒は、
活性成分を含浸法又は浸漬法によりアルミナに後から担
持させ、又は活性成分のみを沈殿法により後から担持さ
せているため、触媒の比表面積が低下したり、活性相が
アルミナ担体表面に偏在し、排気ガス流量の大きい条件
下ではNOx 浄化性能が充分でなかった。
However, the above conventional alumina-based composite oxide and silver-supported alumina catalyst are
Since the active ingredient is later loaded on alumina by the impregnation method or the dipping method, or only the active ingredient is loaded later by the precipitation method, the specific surface area of the catalyst is reduced, and the active phase is unevenly distributed on the alumina carrier surface. However, the NO x purification performance was not sufficient under the condition of a large exhaust gas flow rate.

【0005】また、排気ガス中の有害成分(HC,C
O,NOx )のうち、特にNOx の触媒浄化性能は排気
ガス組成(HC種)、温度及び排気ガス中に含まれる水
分の影響を強く受け、一般に 500℃以上の高温域でなけ
ればNOx 浄化性能が有効に発現しない。このため、低
温から高温までの幅広い温度域においてNOx 浄化性能
を有するように触媒活性を向上させることが大きな課題
となっていた。
Also, harmful components (HC, C
O, NO x ), especially NO x catalyst purification performance is strongly influenced by exhaust gas composition (HC species), temperature and moisture contained in the exhaust gas. x Purification performance does not appear effectively. Therefore, it has been a major problem to improve the catalytic activity so as to have the NO x purification performance in a wide temperature range from low temperature to high temperature.

【0006】従って、本発明の目的は、従来の触媒では
活性がなかった酸素過剰雰囲気下におけるNOx 浄化性
能を向上させることができ、また低温から高温までの幅
広い温度域において排気ガス中のNOx を浄化すること
ができる排気ガス浄化用触媒を提供するにある。
Therefore, the object of the present invention is to improve the NO x purification performance in an oxygen-rich atmosphere, which was not active in conventional catalysts, and to reduce NO in exhaust gas over a wide temperature range from low temperature to high temperature. An object is to provide an exhaust gas purifying catalyst that can purify x .

【0007】[0007]

【課題を解決するための手段及び作用】本発明者らは、
上記課題を解決するために研究した結果、鉄、コバル
ト、ニッケル、銅及び亜鉛から成る群より選ばれる少な
くとも1種以上の遷移金属元素を触媒活性成分として特
定の組成比でかつ均一にアルミナ結晶構造中に組み込ん
だアルミナ系複合酸化物に銀を担持させた触媒は、酸素
過剰雰囲気下においても低温域から高温域まで、充分な
NOx 浄化性能を有することを見出し、本発明に到達し
た。
Means and Action for Solving the Problems The present inventors have
As a result of research for solving the above problems, at least one transition metal element selected from the group consisting of iron, cobalt, nickel, copper and zinc is used as a catalytically active component at a specific composition ratio and uniformly has an alumina crystal structure. The inventors have found that the catalyst in which silver is supported on the alumina-based composite oxide incorporated therein has sufficient NO x purification performance in a low temperature range to a high temperature range even in an oxygen excess atmosphere, and has reached the present invention.

【0008】本発明に係る排気ガス浄化用触媒は、次の
一般式: Aga /Xb Alc d (1) (式中、Xは鉄、コバルト、ニッケル、銅及び亜鉛から
なる群より選ばれる少なくとも1種以上の元素であ
り、、b及びcは各元素の原子比率を示し、c=2.0の
ときb= 0.005〜0.5 であり、aは銀元素に換算した重
量%を示し、a=0.1〜10重量%であり、dは上記各成
分の原子価を満足させるのに必要な酸素原子数である)
で表される銀担持アルミナ系複合酸化物触媒であること
を特徴とするものである。
The exhaust gas purifying catalyst according to the present invention has the following general formula: Ag a / X b Al c O d (1) (wherein X is a group consisting of iron, cobalt, nickel, copper and zinc). At least one element selected, b and c represent atomic ratios of each element, b = 0.005 to 0.5 when c = 2.0, and a represents weight% converted to silver element, a = 0.1 to 10% by weight, and d is the number of oxygen atoms required to satisfy the valences of the above components)
The silver-loaded alumina-based composite oxide catalyst represented by

【0009】上記一般式(1)で表わされる本発明に係
る銀担持アルミナ系複合酸化物触媒は、アルミナ(Al
2 3 )に、鉄、コバルト、ニッケル、銅及び亜鉛から
成る群より選ばれる少なくとも1種の遷移金属元素を特
定の組成比で添加したアルミナ系複合酸化物に、銀を担
持させることにより、銀担持アルミナ触媒に比べてHC
及びNOx に対する触媒活性を大幅に向上させることが
できる。
The silver-supported alumina-based composite oxide catalyst according to the present invention represented by the above general formula (1) is composed of alumina (Al
2 O 3 ), at least one transition metal element selected from the group consisting of iron, cobalt, nickel, copper and zinc is added at a specific composition ratio to allow silver to be supported on an alumina-based composite oxide, HC compared to silver-supported alumina catalyst
And the catalytic activity for NO x can be significantly improved.

【0010】アルミナに添加する前記遷移金属元素の最
適組成比は、上記一般式(1)中のc=2.0 に対しb=
0.005〜0.5 の範囲である。c=2.0 に対してbが 0.0
05未満になるとHC及びNOx の双方に対する触媒活性
が低下し、逆にbが 0.5を超えるとNOx 浄化性能が低
下する。
The optimum composition ratio of the transition metal element to be added to alumina is such that c = 2.0 in the general formula (1) but b =
It is in the range of 0.005 to 0.5. b = 0.0 for c = 2.0
When it is less than 05, the catalytic activity for both HC and NO x decreases, and when b exceeds 0.5, the NO x purification performance deteriorates.

【0011】これらの遷移金属元素は、アルミナ結晶構
造に入ってスピネル構造を形成し、さらに金属アルミネ
ートの活性相は触媒表面及びバルクに均一に分散してい
ると考えられる。
It is considered that these transition metal elements enter the alumina crystal structure to form a spinel structure, and the active phase of the metal aluminate is uniformly dispersed on the catalyst surface and bulk.

【0012】遷移金属元素の組成が限定された上記アル
ミナ系複合酸化物に、銀を元素に換算して、上記一般式
(1)中のaが 0.1〜10重量%の範囲となるように銀を
担持させる。かかる担持銀は金属アルミネート上に均一
分散し、HC及びNOx に対する触媒活性を顕著に向上
させる。上記一般式(1)中の銀の担持量を示すaが0.
1未満になると銀の添加効果が発揮されず、逆にaが10
を超えると担体表面の銀が凝集してNOx 転換性能が低
下し易くなる。
In the above-mentioned alumina-based composite oxide in which the composition of the transition metal element is limited, silver is converted into an element so that a in the general formula (1) is in the range of 0.1 to 10% by weight. Are carried. Such supported silver is uniformly dispersed on a metal aluminate, to significantly improve the catalyst activity for HC and NO x. In the above general formula (1), a indicating the amount of silver supported is 0.
If it is less than 1, the effect of adding silver is not exhibited, and conversely, a is 10
When it exceeds, the silver on the surface of the carrier aggregates and the NO x conversion performance tends to deteriorate.

【0013】酸素の原子数については全ての元素の原子
価を同定しなければならないが、多成分系では形成され
る酸化物の構造や配位状態によって元素の原子価が異な
るため特定することは非常に困難である。
Regarding the number of oxygen atoms, it is necessary to identify the valences of all elements, but in a multi-component system, the valences of the elements differ depending on the structure and coordination state of the oxide formed, so it is not possible to specify it. Very difficult.

【0014】本発明に用いる触媒調製用の原料化合物と
しては、各元素の硝酸塩、炭酸塩、アンモニウム塩、酢
酸塩、ハロゲン化物及び酸化物等を任意に組み合わせて
使用することができるが、特に水溶性塩を使用すること
がHC及びNOx に対する触媒性能を向上させる点から
好ましい。
As the raw material compound for preparing the catalyst used in the present invention, nitrates, carbonates, ammonium salts, acetates, halides, oxides and the like of each element can be used in any combination, but especially water-soluble. it is preferred from the viewpoint of improving the catalytic performance for HC and NO x to use sexual salt.

【0015】本発明に係る触媒の調製法としては特別な
方法に限定されず、成分の著しい偏在を伴わない限り、
公知の蒸発乾固法、沈殿法、含浸法等の種々の方法の中
から適宜選択して使用することができるが、特にアンモ
ニア水、炭酸アンモニウム、炭酸水素アンモニウム、硫
酸アンモニウム及び硫酸水素アンモニウムからなる群よ
り選ばれる少なくとも1種の化合物の水溶液を沈澱剤と
して加える沈澱法を用いることが、触媒の表面積を十分
に確保し、担持金属を均一に分散できるため好ましい。
The method for preparing the catalyst according to the present invention is not limited to a special method, and unless significant uneven distribution of components is involved,
It can be appropriately selected and used from various methods such as known evaporation-drying method, precipitation method, impregnation method, and the like, and in particular, a group consisting of aqueous ammonia, ammonium carbonate, ammonium hydrogen carbonate, ammonium sulfate and ammonium hydrogen sulfate. It is preferable to use a precipitation method in which an aqueous solution of at least one compound selected from the above is added as a precipitant, because the surface area of the catalyst can be sufficiently secured and the supported metal can be uniformly dispersed.

【0016】本発明に係る排気ガス浄化触媒を製造する
に際しては、鉄、コバルト、ニッケル、銅及び亜鉛から
なる群より選ばれる少なくとも1種以上の成分とアルミ
ニウム成分を含む触媒原料を純水に加えて攪拌する。こ
の際、各触媒原料を同時に又は別個に溶解した液を加え
ても良い。次いで、この触媒原料を加えた混合溶液にア
ンモニア水、炭酸アンモニウム、炭酸水素アンモニウ
ム、硫酸アンモニウム及び硫酸水素アンモニウムからな
る群より選ばれる少なくとも1種の水溶液を徐々に添加
し、溶液のpHを7.0 〜9.0の範囲になるように調整し
た後、水分を除去し、残留物を熱処理してアルミナ系複
合酸化物を得、これに銀を添加してさらに熱処理する
と、本発明の触媒が得られる。
In producing the exhaust gas purifying catalyst according to the present invention, a catalyst raw material containing at least one component selected from the group consisting of iron, cobalt, nickel, copper and zinc and an aluminum component is added to pure water. And stir. At this time, a liquid in which each catalyst raw material is dissolved simultaneously or separately may be added. Then, at least one aqueous solution selected from the group consisting of aqueous ammonia, ammonium carbonate, ammonium hydrogencarbonate, ammonium sulfate and ammonium hydrogensulfate is gradually added to the mixed solution containing the catalyst raw material to adjust the pH of the solution to 7.0 to 9.0. After adjusting the content to be within the range, water is removed, the residue is heat-treated to obtain an alumina-based composite oxide, and silver is added to this to further heat-treat to obtain the catalyst of the present invention.

【0017】本発明に係る排気ガス浄化用触媒は、沈澱
法で得られたアルミナ系複合酸化物が有する微細な細孔
構造と大きな比表面積及び金属アルミネートの活性相の
均一分散状態が、低温における触媒活性の発現に重要な
役割を果たしている。これに対し、上記沈澱法を用いず
に、例えば含浸法を用いてアルミナに遷移金属成分を担
持させて得たアルミナ系複合酸化物は、沈澱法で得たア
ルミナ系複合酸化物に比して微細な細孔構造に欠けるた
め反応に有効な表面積が小さくなり、また、活性相が担
体表面に遍在し銀との相互作用が十分に発揮されないた
め、触媒活性や耐久後のNOx 浄化性能が低下する。
The exhaust gas purifying catalyst according to the present invention has a fine pore structure and a large specific surface area of the alumina-based composite oxide obtained by the precipitation method, and a uniformly dispersed state of the active phase of the metal aluminate at a low temperature. Plays an important role in the expression of catalytic activity. On the other hand, an alumina-based composite oxide obtained by supporting a transition metal component on alumina by using, for example, an impregnation method without using the above-mentioned precipitation method is more excellent than an alumina-based composite oxide obtained by the precipitation method. The surface area effective for the reaction becomes small due to lack of fine pore structure, and the active phase is ubiquitous on the surface of the carrier and the interaction with silver is not fully exerted, so the catalytic activity and NO x purification performance after endurance Is reduced.

【0018】前記沈澱法に用いる沈澱剤として、上記ア
ンモニア水やアンモニウム化合物を使用すれば、洗浄が
不十分でも金属元素は残留せず、またアンモニウム化合
物(滴下後は、主として硝酸アンモニウム等)が残留し
ても後の焼成で容易に分解除去することができる。これ
に対し、水酸化ナトリウムや炭酸ナトリウムなどの金属
塩を使用すると、得られる沈澱物中にナトリウムなどの
金属元素が残留し、これらの残留元素が触媒性能に悪影
響を及ぼすので、これらを除去するための洗浄工程が必
要となる。
If the above-mentioned ammonia water or ammonium compound is used as the precipitant used in the above-mentioned precipitation method, the metal element does not remain even if the washing is insufficient, and the ammonium compound (mainly ammonium nitrate etc. after dropping) remains. However, it can be easily decomposed and removed by subsequent firing. On the other hand, when a metal salt such as sodium hydroxide or sodium carbonate is used, metal elements such as sodium remain in the obtained precipitate, and these residual elements adversely affect the catalytic performance, so these are removed. Therefore, a cleaning process is required.

【0019】上記沈澱法を実施するに際しては、溶液の
pHを 7.9〜9.0 の範囲に調整することにより、各種金
属塩の沈澱物を形成することができる。pHが 7.0より
低いと各種元素が充分に沈澱物を形成せず、逆にpHが
9.0より高いと沈澱した成分の一部が再溶解することが
ある。
In carrying out the above-mentioned precipitation method, the pH of the solution is adjusted within the range of 7.9 to 9.0, whereby precipitates of various metal salts can be formed. If the pH is lower than 7.0, various elements will not form a precipitate sufficiently, and conversely the pH will be low.
If it is higher than 9.0, some of the precipitated components may be redissolved.

【0020】水の除去は、例えば濾過法や蒸発乾固法等
の公知の方法の中から適宜選択して行うことができる。
本発明に用いるアルミナ系複合酸化物を得るための最初
の熱処理は、特に制限されないが、例えば 500〜1000℃
の範囲の温度で空気中及び/又は空気流通下で行うこと
が好ましい。
Water can be removed by appropriately selecting from known methods such as filtration and evaporation to dryness.
The first heat treatment for obtaining the alumina-based composite oxide used in the present invention is not particularly limited, but is, for example, 500 to 1000 ° C.
It is preferable to carry out at a temperature in the range of and in the air and / or under air circulation.

【0021】前記アルミナ系複合酸化物に銀を添加する
方法としては、例えば含浸法や混練法等の公知の方法の
中から適宜選択して行うことができるが、特に含浸法を
用いることが好ましい。銀添加後の熱処理は、特に制限
されないが、例えば 400〜800 ℃の範囲の温度で空気中
及び/又は空気流通下で行うことが好ましい。
The method of adding silver to the alumina-based composite oxide can be appropriately selected from known methods such as an impregnation method and a kneading method, but the impregnation method is particularly preferable. . The heat treatment after the addition of silver is not particularly limited, but it is preferably performed in the air and / or under the air flow at a temperature in the range of 400 to 800 ° C, for example.

【0022】このようにして得られる本発明に係る排気
ガス浄化用触媒は、無担体でも有効に使用することがで
きるが、粉砕・スラリーとし、触媒担体にコートして、
400〜900 ℃で焼成して用いることが好ましい。触媒担
体としては、公知の触媒担体の中から適宜選択して使用
することができ、例えばモノリス担体やメタル担体等が
挙げられる。
The thus obtained exhaust gas purifying catalyst according to the present invention can be effectively used even without a carrier, but it is pulverized and slurried and coated on a catalyst carrier,
It is preferable to use by firing at 400 to 900 ° C. The catalyst carrier can be appropriately selected and used from known catalyst carriers, and examples thereof include a monolith carrier and a metal carrier.

【0023】前記触媒担体の形状は、特に制限されない
が、通常はハニカム形状で使用することが好ましく、ハ
ニカム状の各種基材に触媒粉末を塗布して用いられる。
このハニカム材料としては、一般にコージェライト質の
ものが多く用いられるが、金属材料からなるハニカム材
料を用いることも可能であり、更には触媒粉末そのもの
をハニカム形状に成形しても良い。触媒の形状をハニカ
ム状とすることにより、触媒と排気ガスとの接触面積が
大きくなり、圧力損失も抑制できるため自動車用排気ガ
ス浄化用触媒として用いる場合に極めて有効である。
The shape of the catalyst carrier is not particularly limited, but it is usually preferable to use it in a honeycomb shape, and the catalyst powder is applied to various honeycomb-shaped base materials for use.
As the honeycomb material, a cordierite material is generally used, but a honeycomb material made of a metal material can be used, and the catalyst powder itself may be formed into a honeycomb shape. By making the shape of the catalyst honeycomb, the contact area between the catalyst and the exhaust gas becomes large and the pressure loss can be suppressed, which is extremely effective when used as a catalyst for purifying exhaust gas for automobiles.

【0024】[0024]

【実施例】以下、本発明を次の実施例及び比較例により
説明するが、本発明はこれによって制限されるものでは
ない。実施例及び比較例において特に断らない限り、部
は重量部、%は重量%を示す。
The present invention will be described below with reference to the following examples and comparative examples, but the present invention is not limited thereto. In Examples and Comparative Examples, unless otherwise specified, parts are parts by weight and% are% by weight.

【0025】実施例1 硝酸銅 0.3部及び硝酸アルミニウム50部を純水 400部に
加え、攪拌・溶解した。次に、この溶液を攪拌しなが
ら、5%のアンモニア水を徐々に滴下して、溶液のpH
が 7.0〜9.0 の間になるように調整した。生成した沈殿
物を濾過して取り出し、150 ℃で12時間乾燥した後、80
0 ℃で2時間、空気中で焼成した。こうして得られたア
ルミナ系複合酸化物の粉末50部に、硝酸銀 1.6部を純水
50部に溶解した溶液を加え、150 ℃で12時間乾燥した
後、600 ℃で2時間、空気中で焼成して銀担持アルミナ
系複合酸化物を得た。前記銀担持アルミナ系複合酸化物
の粉末 500部及び純水1000部をボールミルで混合した
後、粉砕し、得られたスラリーをモノリス担体基材に付
着させ、400 ℃で1時間焼成して排気ガス浄化用触媒を
得た。この時の銀担持アルミナ系複合酸化物の付着量を
200g/Lに設定した。得られた触媒の酸素以外の成分
の組成は、Ag 2%/Cu0.02Al2.0 であった。
Example 1 0.3 part of copper nitrate and 50 parts of aluminum nitrate were added to 400 parts of pure water and stirred and dissolved. Next, while stirring this solution, 5% ammonia water was gradually added dropwise to adjust the pH of the solution.
Was adjusted to be between 7.0 and 9.0. The precipitate formed is filtered off, dried at 150 ° C for 12 hours and then
It was calcined in air at 0 ° C. for 2 hours. To 50 parts of the alumina-based composite oxide powder thus obtained, 1.6 parts of silver nitrate was added with pure water.
A solution dissolved in 50 parts was added, dried at 150 ° C. for 12 hours, and calcined in air at 600 ° C. for 2 hours to obtain a silver-supported alumina-based composite oxide. After mixing 500 parts of the above silver-supported alumina-based composite oxide powder and 1000 parts of pure water with a ball mill, pulverizing and adhering the resulting slurry to a monolith carrier substrate, firing at 400 ° C for 1 hour, and exhaust gas A purification catalyst was obtained. At this time, the adhesion amount of silver-supported alumina-based composite oxide
It was set to 200 g / L. The composition of components other than oxygen of the obtained catalyst was Ag 2% / Cu 0.02 Al 2.0 .

【0026】実施例2 5%アンモニア水の代わりに5%の炭酸アンモニウム水
溶液を用いた以外は、実施例1と同様に実施した。得ら
れた触媒の酸素以外の成分の組成は、Ag2%/Cu
0.02Al2.0 であった。
Example 2 Example 2 was repeated except that 5% aqueous ammonium carbonate solution was used instead of 5% aqueous ammonia. The composition of components other than oxygen of the obtained catalyst was Ag2% / Cu.
It was 0.02 Al 2.0 .

【0027】実施例3 5%アンモニア水の代わりに5%の炭酸水素アンモニウ
ム水溶液を用いた以外は、実施例1と同様に実施した。
得られた触媒の酸素以外の成分の組成は、Ag2%/C
0.02Al2.0 であった。
Example 3 Example 3 was repeated except that 5% aqueous ammonium hydrogen carbonate solution was used instead of 5% aqueous ammonia.
The composition of components other than oxygen of the obtained catalyst was Ag2% / C.
It was u 0.02 Al 2.0 .

【0028】実施例4 5%アンモニア水の代わりに5%の硫酸アンモニウム水
溶液を用いた以外は、実施例1と同様に実施した。得ら
れた触媒の酸素以外の成分の組成は、Ag 2%/Cu
0.02Al2.0 であった。
Example 4 Example 4 was repeated except that a 5% aqueous ammonium sulfate solution was used instead of the 5% aqueous ammonia. The composition of components other than oxygen of the obtained catalyst was Ag 2% / Cu.
It was 0.02 Al 2.0 .

【0029】実施例5 5%アンモニア水の代わりに5%の硫酸水素アンモニウ
ム水溶液を用いた以外は、実施例1と同様に実施した。
得られた触媒の酸素以外の成分の組成は、Ag2%/C
0.02Al2.0 であった。
Example 5 Example 5 was repeated except that a 5% ammonium hydrogensulfate aqueous solution was used instead of the 5% ammonia water.
The composition of components other than oxygen of the obtained catalyst was Ag2% / C.
It was u 0.02 Al 2.0 .

【0030】実施例6 硝酸銀 4.1部を用いた以外は、実施例1と同様に実施し
た。得られた触媒の酸素以外の成分の組成は、Ag5%
/Cu0.02Al2.0 であった。
Example 6 Example 6 was repeated except that 4.1 parts of silver nitrate was used. The composition of the components other than oxygen of the obtained catalyst was Ag 5%.
/ Cu 0.02 Al 2.0 .

【0031】実施例7 硝酸銅 0.3部の代わりに硝酸ニッケル 1.9部を用いた以
外は、実施例1と同様に実施した。得られた触媒の酸素
以外の成分の組成は、Ag2%/Ni0.1 Al2.0 であ
った。
Example 7 Example 1 was repeated except that 1.9 parts of nickel nitrate was used in place of 0.3 part of copper nitrate. The composition of components other than oxygen of the obtained catalyst was Ag 2% / Ni 0.1 Al 2.0 .

【0032】実施例8 硝酸銅 0.3部の代わりに硝酸亜鉛 5.9部を用いた以外
は、実施例1と同様に実施した。得られた触媒の酸素以
外の成分の組成は、Ag2%/Zn0.3 Al2.0 であっ
た。
Example 8 Example 8 was repeated except that 5.9 parts of zinc nitrate was used instead of 0.3 part of copper nitrate. The composition of components other than oxygen of the obtained catalyst was Ag 2% / Zn 0.3 Al 2.0 .

【0033】実施例9 硝酸銅 0.3部の代わりに硝酸コバルト 1.0部を用いた以
外は、実施例1と同様に実施した。得られた触媒の酸素
以外の成分の組成は、Ag2%/Co0.05Al2.0 であ
った。
Example 9 Example 9 was repeated except that 1.0 part of cobalt nitrate was used instead of 0.3 part of copper nitrate. The composition of components other than oxygen of the obtained catalyst was Ag 2% / Co 0.05 Al 2.0 .

【0034】実施例10 硝酸銅 0.3部の代わりに硝酸鉄 1.4部を用いた以外は、
実施例1と同様に実施した。得られた触媒の酸素以外の
成分の組成は、Ag2%/Fe0.05Al2.0 であった。
Example 10 Except that 1.4 parts of iron nitrate was used instead of 0.3 part of copper nitrate,
It carried out like Example 1. The composition of components other than oxygen of the obtained catalyst was Ag 2% / Fe 0.05 Al 2.0 .

【0035】実施例11 硝酸銅 0.3部の代わりに、硝酸ニッケル 0.2部及び硝酸
コバルト 0.2部を用いた以外は、実施例1と同様に実施
した。得られた触媒の酸素以外の成分の組成は、Ag2
%/Ni0.01Co0.01Al2.0 であった。
Example 11 Example 11 was repeated except that 0.2 part of nickel nitrate and 0.2 part of cobalt nitrate were used in place of 0.3 part of copper nitrate. The composition of components other than oxygen of the obtained catalyst was Ag2.
% / Ni 0.01 Co 0.01 Al 2.0 .

【0036】実施例12 硝酸銅 0.3部の代わりに、硝酸ニッケル 0.2部及び硝酸
銅0.16部を用いた以外は、実施例1と同様に実施した。
得られた触媒の酸素以外の成分の組成は、Ag2%/N
0.01Cu0.01Al2.0 であった。
Example 12 The procedure of Example 1 was repeated except that 0.2 part of nickel nitrate and 0.16 part of copper nitrate were used instead of 0.3 part of copper nitrate.
The composition of components other than oxygen of the obtained catalyst was Ag2% / N
It was i 0.01 Cu 0.01 Al 2.0 .

【0037】実施例13 硝酸銅 0.3部の代わりに、硝酸ニッケル 0.2部及び硝酸
亜鉛 0.2部を用いた以外は、実施例1と同様に実施し
た。得られた触媒の酸素以外の成分の組成は、Ag2%
/Ni0.01Zn0.01Al2.0 であった。
Example 13 Example 13 was effected in the same manner as in Example 1 except that 0.2 part of nickel nitrate and 0.2 part of zinc nitrate were used instead of 0.3 part of copper nitrate. The composition of the components other than oxygen of the obtained catalyst was Ag 2%
/ Ni 0.01 Zn 0.01 Al 2.0 .

【0038】実施例14 硝酸銅 0.3部の代わりに、硝酸銅0.16部及び硝酸コバル
ト 0.2部を用いた以外は、実施例1と同様に実施した。
得られた触媒の酸素以外の成分の組成は、Ag2%/C
0.01Co0.01Al2.0 であった。
Example 14 The procedure of Example 1 was repeated except that 0.16 parts of copper nitrate and 0.2 parts of cobalt nitrate were used instead of 0.3 part of copper nitrate.
The composition of components other than oxygen of the obtained catalyst was Ag2% / C.
It was u 0.01 Co 0.01 Al 2.0 .

【0039】実施例15 硝酸銅 0.3部の代わりに、硝酸銅0.16部及び硝酸コバル
ト 0.2部を用いた以外は、実施例1と同様に実施した。
得られた触媒の酸素以外の成分の組成は、Ag2%/C
0.01Zn0.01Al2.0 であった。
Example 15 The procedure of Example 1 was repeated except that 0.16 parts of copper nitrate and 0.2 parts of cobalt nitrate were used instead of 0.3 part of copper nitrate.
The composition of components other than oxygen of the obtained catalyst was Ag2% / C.
It was u 0.01 Zn 0.01 Al 2.0 .

【0040】比較例1 硝酸アルミニウム50部を純水 400部に加え、攪拌・溶解
した。次に、この溶液を攪拌しながら、5%のアンモニ
ア水を徐々に滴下して、溶液のpHが 7.0から9.0の間
になるように調整した。生成した沈殿物を濾過して取り
出し、 150℃で12時間乾燥した後、 800℃で2時間、空
気中で焼成した。こうして得られたアルミナの粉末50部
に、硝酸銀 1.6部を純水50部に溶解した溶液を加え、 1
50℃で12時間乾燥した後、 600℃で2時間、空気中で焼
成して銀担持アルミナを得た。前記銀担持アルミナの粉
末 500部及び純水1000部をボールミルで混合した後、粉
砕し、得られたスラリーをモノリス担体基材に付着さ
せ、400℃で1時間焼成して排気ガス浄化用触媒を得
た。この時の銀担持アルミナの付着量を 200g/Lに設
定した。得られた触媒の酸素以外の成分の組成は、Ag
2%/Al2.0 であった。
Comparative Example 1 50 parts of aluminum nitrate was added to 400 parts of pure water and stirred and dissolved. Next, while stirring this solution, 5% ammonia water was gradually added dropwise to adjust the pH of the solution to 7.0 to 9.0. The precipitate formed was filtered off, dried at 150 ° C. for 12 hours and then calcined in air at 800 ° C. for 2 hours. To 50 parts of the alumina powder thus obtained, a solution of 1.6 parts of silver nitrate in 50 parts of pure water was added.
After being dried at 50 ° C. for 12 hours, it was calcined at 600 ° C. for 2 hours in air to obtain silver-supported alumina. After mixing 500 parts of the silver-supported alumina powder and 1000 parts of pure water with a ball mill, the mixture was pulverized, and the resulting slurry was attached to a monolith carrier substrate and calcined at 400 ° C for 1 hour to prepare an exhaust gas purifying catalyst. Obtained. At this time, the adhesion amount of silver-supported alumina was set to 200 g / L. The composition of components other than oxygen of the obtained catalyst was Ag.
It was 2% / Al 2.0 .

【0041】比較例2 5%のアンモニア水を用いない以外は、実施例1と同様
に実施した。得られた触媒の酸素以外の成分の組成は、
Ag2%/Al2.0 であった。
Comparative Example 2 The procedure of Example 1 was repeated except that 5% aqueous ammonia was not used. The composition of the components other than oxygen of the obtained catalyst,
It was Ag 2% / Al 2.0 .

【0042】比較例3 硝酸銅 0.3部の代わりに、硝酸銅16.1部を用いた以外
は、実施例1と同様に実施した。得られた触媒の酸素以
外の成分の組成は、Ag2%/Cu1.0 Al2.0 であっ
た。
Comparative Example 3 The procedure of Example 1 was repeated except that 16.1 parts of copper nitrate was used instead of 0.3 part of copper nitrate. The composition of components other than oxygen of the obtained catalyst was Ag 2% / Cu 1.0 Al 2.0 .

【0043】比較例4 硝酸銅 1.6部の代わりに、硝酸銀19.7部を用いた以外
は、実施例1と同様に実施した。得られた触媒の酸素以
外の成分の組成は、Ag20%/Cu0.02Al2.0 であっ
た。
Comparative Example 4 The procedure of Example 1 was repeated except that 19.7 parts of silver nitrate was used instead of 1.6 parts of copper nitrate. The composition of components other than oxygen of the obtained catalyst was Ag 20% / Cu 0.02 Al 2.0 .

【0044】比較例5 硝酸銅 0.3部及び硝酸銀 1.6部を用いない以外は、実施
例1と同様に実施した。得られた触媒の酸素以外の成分
の組成は、Al2.0 であった。
Comparative Example 5 The procedure of Example 1 was repeated except that 0.3 part of copper nitrate and 1.6 parts of silver nitrate were not used. The composition of components other than oxygen of the obtained catalyst was Al 2.0 .

【0045】比較例6 比較例5で調製したアルミナに、硝酸銅 4.0部と硝酸銀
1.6部を含浸した。得られた触媒の酸素以外の成分の組
成は、Ag2%−Cu2%/Cu1.0 Al2.0 であっ
た。
Comparative Example 6 4.0 parts of copper nitrate and silver nitrate were added to the alumina prepared in Comparative Example 5.
1.6 parts were impregnated. The composition of the resulting components other than oxygen in the catalyst was Ag2% -Cu2% / Cu 1.0 Al 2.0.

【0046】試験例1 前記実施例1〜15及び比較例1〜6の触媒について、以
下の評価条件で触媒活性評価を行った。活性評価には、
自動車の排気ガスを模したモデルガスを用いる自動評価
装置を用いた。また、ここで用いたL値は、酸化性ガス
(NO,O2 )と還元性ガス(CO,C3 9 )との量
論比率を表し、下式で定義される。
Test Example 1 The catalysts of Examples 1 to 15 and Comparative Examples 1 to 6 were evaluated for catalytic activity under the following evaluation conditions. For activity evaluation,
An automatic evaluation device using model gas simulating the exhaust gas of an automobile was used. The L value used here represents the stoichiometric ratio of the oxidizing gas (NO, O 2 ) and the reducing gas (CO, C 3 H 9 ) and is defined by the following formula.

【数1】 評価条件1(L=10.9) 触媒 モノリス型多成分系触媒 総ガス流量 40 L/分 触媒入口ガス温度 100 〜 600℃ 昇温速度 30℃/分 空間速度 約20000 H-1 入口ガス組成 平均空燃比が20.0に相当するモデルガス組成 CO 0.2 % C3 6 3000 ppmC NO 200 ppm O2 6.0 % CO2 10.0 % H2 O 10.0 % N2 バランス A/F振幅 なし 触媒活性評価値を以下の式により決定した。[Equation 1] Evaluation condition 1 (L = 10.9) Catalyst Monolith type multi-component catalyst Total gas flow rate 40 L / min Catalyst inlet gas temperature 100-600 ° C Temperature rising rate 30 ° C / min Space velocity About 20000 H -1 Inlet gas composition Average air-fuel ratio A model gas composition corresponding to 20.0 CO 0.2% C 3 H 6 3000 ppmC NO 200 ppm O 2 6.0% CO 2 10.0% H 2 O 10.0% N 2 balance A / F amplitude None The catalytic activity evaluation value is calculated by the following formula. Decided.

【数2】 得られた触媒活性評価結果を表1及び表2に示す。実施
例は比較例に比べて触媒活性が高く、後述する本発明の
効果を確認することができた。
[Equation 2] The obtained catalytic activity evaluation results are shown in Tables 1 and 2. The catalytic activity of the example was higher than that of the comparative example, and the effect of the present invention described later could be confirmed.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【発明の効果】本発明の排気ガス浄化用触媒は、特定の
組成比で鉄、コバルト、ニッケル、銅及び亜鉛から成る
群より選ばれる少なくとも1種の遷移金属元素を含有さ
せたアルミナ系複合酸化物を用い、該アルミナ系複合酸
化物に銀を担持させることによって、従来の銀担持アル
ミナ触媒には活性のない酸素過剰雰囲気における低温域
のNOx 浄化性能を向上させることができ、従って低温
から高温までの幅広い温度域において排気ガス中のNO
x に対する触媒性能を有効に維持できる。
The exhaust gas purifying catalyst of the present invention is an alumina-based composite oxide containing at least one transition metal element selected from the group consisting of iron, cobalt, nickel, copper and zinc in a specific composition ratio. By using a substance to support silver on the alumina-based composite oxide, it is possible to improve the NO x purification performance in a low temperature range in an oxygen excess atmosphere, which is not active in conventional silver-supported alumina catalysts, and therefore from low temperatures. NO in exhaust gas over a wide temperature range up to high temperature
The catalyst performance for x can be effectively maintained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/50 ZAB A 23/60 ZAB A 23/72 ZAB A 23/755 B01D 53/36 102 A 102 B B01J 23/74 321 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 23/50 ZAB A 23/60 ZAB A 23/72 ZAB A 23/755 B01D 53/36 102 A 102 B B01J 23/74 321 A

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 次の一般式: Aga /Xb Alc d (式中、Xは鉄、コバルト、ニッケル、銅及び亜鉛から
なる群より選ばれる少なくとも1種の元素であり、b及
びcは各元素の原子比率を示し、c=2.0 のときb=
0.005〜0.5 であり、aは銀元素に換算した重量%を示
し、a= 0.1〜10重量%であり、dは上記各成分の原子
価を満足させるのに必要な酸素原子数である)で表され
る、アルミナ系複合酸化物に銀を担持させた銀担持アル
ミナ系複合酸化物からなることを特徴とする排気ガス浄
化用触媒。
1. The following general formula: Ag a / X b Al c O d (wherein X is at least one element selected from the group consisting of iron, cobalt, nickel, copper and zinc, and b and c indicates the atomic ratio of each element, and when c = 2.0, b =
0.005 to 0.5, a represents weight% converted to silver element, a = 0.1 to 10% by weight, and d is the number of oxygen atoms required to satisfy the valences of the above components). An exhaust gas purifying catalyst comprising a silver-supported alumina-based composite oxide represented by supporting silver on the alumina-based composite oxide.
【請求項2】 請求項1に記載の排気ガス浄化用触媒に
おいて、アルミナ系複合酸化物は、前記酸化物を構成す
る各金属成分を含有する水溶液又は水分散液に、アンモ
ニア水、炭酸アンモニウム、炭酸水素アンモニウム、硫
酸アンモニウム及び硫酸水素アンモニウムからなる群よ
り選ばれる少なくとも1種の水溶液を加え、溶液のpH
を 7.0〜9.0 の範囲になるように調整した後、水分を除
去し、残留物を熱処理することにより得られるアルミナ
系複合酸化物であることを特徴とする排気ガス浄化用触
媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the alumina-based composite oxide is an aqueous solution or a water dispersion containing each metal component constituting the oxide, and an aqueous ammonia solution, an ammonium carbonate, Add at least one aqueous solution selected from the group consisting of ammonium hydrogen carbonate, ammonium sulfate and ammonium hydrogen sulfate to adjust the pH of the solution.
A catalyst for exhaust gas purification, which is an alumina-based composite oxide obtained by adjusting the water content in the range of 7.0 to 9.0, removing water, and heat-treating the residue.
【請求項3】 請求項1又は2に記載の排気ガス浄化用
触媒において、銀担持アルミナ系複合酸化物を触媒担体
にコート層として備えたことを特徴とする排気ガス浄化
用触媒。
3. The exhaust gas purifying catalyst according to claim 1 or 2, wherein the catalyst carrier is provided with a silver-supported alumina-based composite oxide as a coat layer.
【請求項4】 請求項3に記載の排気ガス浄化用触媒に
おいて、触媒担体がハニカム状モノリス担体基材である
ことを特徴とする排気ガス浄化用触媒。
4. The exhaust gas purifying catalyst according to claim 3, wherein the catalyst carrier is a honeycomb monolith carrier substrate.
【請求項5】 請求項1記載の排気ガス浄化用触媒を製
造するにあたり、鉄、コバルト、ニッケル、銅及び亜鉛
からなる群より選ばれる少なくとも1種以上の成分とア
ルミニウム成分を含む触媒原料を純水に加えて攪拌し、
前記攪拌混合溶液にアンモニア水、炭酸アンモニウム、
炭酸水素アンモニウム、硫酸アンモニウム及び硫酸水素
アンモニウムからなる群より選ばれる少なくとも1種の
水溶液を徐々に添加して溶液のpHを 7.0〜9.0 の範囲
になるように調整した後、水分を除去して熱処理し、次
いでこれに銀を添加して更に熱処理することを特徴とす
る排気ガス浄化用触媒の製造方法。
5. In producing the exhaust gas purifying catalyst according to claim 1, a catalyst raw material containing at least one component selected from the group consisting of iron, cobalt, nickel, copper and zinc and an aluminum component is pure. Add to water and stir,
Ammonia water, ammonium carbonate,
At least one aqueous solution selected from the group consisting of ammonium hydrogencarbonate, ammonium sulfate and ammonium hydrogensulfate is gradually added to adjust the pH of the solution to be in the range of 7.0 to 9.0, then water is removed and heat treatment is performed. Then, a method for producing an exhaust gas purifying catalyst, characterized in that silver is added to this and further heat treatment is performed.
JP6322757A 1994-12-26 1994-12-26 Catalyst for purification of exhaust gas and its production Pending JPH08173811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6322757A JPH08173811A (en) 1994-12-26 1994-12-26 Catalyst for purification of exhaust gas and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6322757A JPH08173811A (en) 1994-12-26 1994-12-26 Catalyst for purification of exhaust gas and its production

Publications (1)

Publication Number Publication Date
JPH08173811A true JPH08173811A (en) 1996-07-09

Family

ID=18147309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6322757A Pending JPH08173811A (en) 1994-12-26 1994-12-26 Catalyst for purification of exhaust gas and its production

Country Status (1)

Country Link
JP (1) JPH08173811A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512907A (en) * 1997-06-11 2000-10-03 ダイムラークライスラー アクチエンゲゼルシヤフト Storage catalyst
JP2001252566A (en) * 2000-03-10 2001-09-18 Tokyo Roki Co Ltd Exhaust gas cleaning catalyst and manufacturing method therefor
KR100435365B1 (en) * 2001-09-17 2004-06-10 현대자동차주식회사 A de-NOx catalyst for diesel engine and its constitution
JP2009279584A (en) * 2003-08-13 2009-12-03 Haldor Topsoe As Catalytic method for reduction and oxidation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512907A (en) * 1997-06-11 2000-10-03 ダイムラークライスラー アクチエンゲゼルシヤフト Storage catalyst
JP2001252566A (en) * 2000-03-10 2001-09-18 Tokyo Roki Co Ltd Exhaust gas cleaning catalyst and manufacturing method therefor
KR100435365B1 (en) * 2001-09-17 2004-06-10 현대자동차주식회사 A de-NOx catalyst for diesel engine and its constitution
JP2009279584A (en) * 2003-08-13 2009-12-03 Haldor Topsoe As Catalytic method for reduction and oxidation

Similar Documents

Publication Publication Date Title
EP0272136B1 (en) Catalyst for purifying exhaust gas and method for its production
US6069111A (en) Catalysts for the purification of exhaust gas and method of manufacturing thereof
JP3130903B2 (en) Catalyst for purifying waste gas from internal combustion engine, method for producing catalyst and method for purifying waste gas
JPH0675676B2 (en) Exhaust gas purification catalyst
JP2003126694A (en) Catalyst for cleaning exhaust gas
JP3483190B2 (en) Nitrogen oxide removal catalyst and method for producing the same
JP2003246624A (en) Method of producing pyrochlore type oxide
CN113751023A (en) Bimetallic-based catalyst for low-temperature high-selectivity catalytic oxidation of ammonia, and preparation method and application thereof
JP3406001B2 (en) Exhaust gas purification catalyst
JP3219480B2 (en) Exhaust gas treatment method and catalyst
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH08173811A (en) Catalyst for purification of exhaust gas and its production
JP4275801B2 (en) Exhaust gas purification catalyst
JPH0824648A (en) Exhaust gas purifying catalyst and preparation of the sam
JPH0398644A (en) Preparation of catalyst for purifying exhaust gas
JPH0768175A (en) Catalyst for purification of exhaust gas
JPH1076159A (en) Exhaust gas purification catalyst and its production
JP3222184B2 (en) Method for producing exhaust gas purifying catalyst
JPH0244580B2 (en)
JP3309711B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3246295B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH07251074A (en) Exhaust gas cleaning catalyst and producing method thereof
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JPH07155605A (en) Exhaust gas purifying catalyst and production thereof
JP3156577B2 (en) Material for exhaust gas purification catalyst and method for producing the same