JPH07251074A - Exhaust gas cleaning catalyst and producing method thereof - Google Patents

Exhaust gas cleaning catalyst and producing method thereof

Info

Publication number
JPH07251074A
JPH07251074A JP6045702A JP4570294A JPH07251074A JP H07251074 A JPH07251074 A JP H07251074A JP 6045702 A JP6045702 A JP 6045702A JP 4570294 A JP4570294 A JP 4570294A JP H07251074 A JPH07251074 A JP H07251074A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
composition
nickel
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6045702A
Other languages
Japanese (ja)
Inventor
Shinji Yamamoto
伸司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6045702A priority Critical patent/JPH07251074A/en
Publication of JPH07251074A publication Critical patent/JPH07251074A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To improve the NOx cleaning function of a catalyst in an oxygen excessive atmosphere (thereafter lean atmosphere) in which a conventional catalyst shows no activity, provide an exhaust gas cleaning catalyst which maintains high catalytic function to NOx in an exhaust gas in a wide temperature range from low temperature to high temperature and to provide a producing method of the catalyst. CONSTITUTION:This exhaust gas cleaning catalyst is a catalyst consisting of a multicomponents-compounded oxide containing copper, nickel, and aluminum and has the formula; CuaNibAlOg, wherein (a), (b), and (d) stand for atomic ratios of respective elements and in the case d=2.0, a=-0.01-0.3 and b=0.2-0.8, and (g) stands for the number of oxygen atoms necessary to satisfy the atomic valence of all the elements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス浄化用触媒に関
し、特に、従来の触媒には活性のなかった酸素過剰雰囲
気(以下、リーン雰囲気という)におけるNOX 浄化能
を向上することができ、しかも低温から高温までの幅広
い温度域において排気ガス中のNOXに対して高性能を
維持することができる排ガス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst, and more particularly, it is possible to improve the NO x purifying ability in an oxygen excess atmosphere (hereinafter referred to as a lean atmosphere), which is not active in conventional catalysts. Moreover, the present invention relates to an exhaust gas purifying catalyst capable of maintaining high performance with respect to NO X in exhaust gas in a wide temperature range from low temperature to high temperature.

【0002】[0002]

【従来技術】従来、自動車などの内燃機関から排出され
る排気ガス洗浄用触媒としては、活性アルミナや酸化セ
リウムなどに白金(Pt)、パラジウム(Pd)及びロ
ジウム(Rh)などの貴金属を担持させ、これをモノリ
ス担体にコーティングした構造のものが使用されてい
る。この触媒は主としてストイキにおける排ガス浄化能
を向上させることを重点とするため、リーン雰囲気にお
けるNOX 浄化用として使用しても充分な性能が得られ
なかった。
2. Description of the Related Art Conventionally, as a catalyst for cleaning exhaust gas emitted from an internal combustion engine of an automobile or the like, activated alumina, cerium oxide or the like is loaded with a noble metal such as platinum (Pt), palladium (Pd) and rhodium (Rh). A monolith carrier coated with this is used. Since this catalyst mainly focuses on improving the exhaust gas purifying ability in stoichiometry, sufficient performance was not obtained even when used for NO X purification in a lean atmosphere.

【0003】一方、リーン雰囲気におけるNOx 浄化性
能を向上させる触媒が数多く報告されている。この中で
も、アルミナを用いる排ガス浄化用触媒が提案されてい
る(特開平4−284848号公報、特開平4−358
525号公報)。これらの特許公報に記載されたアルミ
ナを用いる排ガス浄化用触媒は、触媒として金属を担持
させたアルミナや金属及びアルミナの複合酸化物である
金属アルミネートを用いることにより、触媒性能を向上
させることができ、リーン雰囲気における排気ガス中の
NOX を還元除去するのみならず、効率良くNOX 、C
O及びHCを浄化することができる。
On the other hand, many catalysts have been reported which improve the NO x purification performance in a lean atmosphere. Among them, exhaust gas-purifying catalysts using alumina have been proposed (JP-A-4-284848 and JP-A-4-358).
525). Exhaust gas-purifying catalysts using alumina described in these patent publications can improve catalytic performance by using metal-supported alumina or metal aluminate that is a composite oxide of metal and alumina as a catalyst. In addition to reducing and removing NO X in exhaust gas in a lean atmosphere, NO X and C can be efficiently used.
O and HC can be purified.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
たアルミナを主成分とした触媒では、排気ガス中の有害
成分(HC、CO、NOX )のうち、特にNOX の触媒
浄化能は排気ガス組成(HC種)や温度及び排気ガス中
に含まれる水分の影響を強く受けるので、500℃以上
の高温域でなければ充分なNOX 浄化性能が発現しな
い。このため、低温域からの触媒活性(NOX 浄化性
能)の向上が大きな課題となっていた。
However, in the above-mentioned catalyst containing alumina as a main component, the catalyst cleaning ability of NO x out of harmful components (HC, CO, NO x ) in the exhaust gas is particularly high in the exhaust gas composition. Since it is strongly affected by (HC species), temperature, and water contained in exhaust gas, sufficient NO x purification performance is not exhibited unless in a high temperature range of 500 ° C. or higher. Therefore, improvement of the catalyst activity (NO x purification performance) from a low temperature range has been a major issue.

【0005】従って本発明の目的は、従来の触媒では活
性のなかったリーン雰囲気におけるNOX 浄化能を向上
させることができ、しかも低温から高温までの幅広い温
度域において排気ガス中のNOX を浄化することのでき
る排ガス浄化用触媒を提供することにある。
Therefore, an object of the present invention is to improve the NO X purification capacity in a lean atmosphere, which was not active with conventional catalysts, and to purify NO X in exhaust gas in a wide temperature range from low temperature to high temperature. An object of the present invention is to provide an exhaust gas-purifying catalyst that can be used.

【0006】[0006]

【課題を解決するための手段及び作用】本発明者は、上
記課題を解決するために鋭意検討した結果、銅、ニッケ
ル、アルミニウム及び必要に応じてインジウム成分を含
有する多成分系触媒を触媒担体にコートした場合には、
リーン雰囲気下であっても低温から高温まで充分なNO
X 浄化能を有することを見出し、本発明に到達した。
The inventor of the present invention has
As a result of diligent study to solve the above problems, copper and nickel
Aluminum, aluminum and, if necessary, an indium component.
When a multi-component catalyst having is coated on the catalyst carrier,
Sufficient NO from low temperature to high temperature even in lean atmosphere
XThey have found that they have a purifying ability and have reached the present invention.

【0007】本発明の上記の目的は、 一般式: Cua Nib Ald g (式中、a、b及びdは各元素の原子比率を表し、d=
2.0のとき、a=0.01〜0.3、b=0.2〜
0.8であり、gは上記各成分の原子価を満足させるの
に必要な酸素原子数である)で表される銅、ニッケル及
びアルミニウムを含む多成分系複合酸化物からなること
を特徴とする排ガス浄化用触媒により達成された。
The above-mentioned object of the present invention has the general formula: Cu a Ni b Al d O g (where a, b and d represent the atomic ratio of each element, and d =
When 2.0, a = 0.01 to 0.3, b = 0.2 to
0.8, and g is the number of oxygen atoms required to satisfy the valences of the above components) and is composed of a multi-component composite oxide containing copper, nickel and aluminum. It was achieved by the exhaust gas purifying catalyst.

【0008】また、本発明の上記の目的は、 一般式: Cua Nib Inc Ald g (式中、a、b、c及びdは各元素の原子比率を表し、
d=2.0のとき、a=0.01〜0.3、b=0.2
〜0.8、c=0.01〜0.3であり、gは上記各成
分の原子価を満足させるのに必要な酸素原子数である)
で表される銅、ニッケル、インジウム及びアルミニウム
を含む多成分系複合酸化物からなることを特徴とする排
ガス浄化用触媒により達成された。
Further, the above object of the present invention is to provide a compound represented by the general formula: Cu a Ni b In c Al d O g (wherein a, b, c and d represent atomic ratios of respective elements,
When d = 2.0, a = 0.01 to 0.3, b = 0.2
Is 0.8, c = 0.01 to 0.3, and g is the number of oxygen atoms required to satisfy the valences of the above components.)
It was achieved by an exhaust gas purifying catalyst comprising a multi-component composite oxide containing copper, nickel, indium and aluminum represented by

【0009】更に、本発明の上記の目的は、 一般式: Cua Nib Inc Ald e g (式中、xはクロム、マンガン、鉄、コバルト、亜鉛、
錫、ガリウム、マグネシウム、セリウム、珪素、銀、ラ
ンタン、ストロンチウム及びジルコニウムからなる群か
ら選ばれた少なくとも1種の元素であり、a、b、c、
d及びeは各元素の原子比率を表し、d=2.0のと
き、a=0.01〜0.3、b=0.2〜0.8、c=
0.01〜0.3、e=0〜0.2であり、gは上記各
成分の原子価を満足させるのに必要な酸素原子数であ
る)で表される銅、ニッケル、インジウム及びアルミニ
ウムを含む多成分系複合酸化物からなることを特徴とす
る排ガス浄化用触媒により達成された。以下、本発明に
ついて更に詳細に説明する。
Further, the above-mentioned object of the present invention has the general formula: Cu a Ni b In c Al d X e O g (where x is chromium, manganese, iron, cobalt, zinc,
At least one element selected from the group consisting of tin, gallium, magnesium, cerium, silicon, silver, lanthanum, strontium, and zirconium, a, b, c,
d and e represent the atomic ratio of each element, and when d = 2.0, a = 0.01 to 0.3, b = 0.2 to 0.8, c =
0.01 to 0.3, e = 0 to 0.2, and g is the number of oxygen atoms required to satisfy the valences of the above components), copper, nickel, indium and aluminum It was achieved by an exhaust gas purifying catalyst characterized by comprising a multi-component complex oxide containing Hereinafter, the present invention will be described in more detail.

【0010】本発明においては、アルミナ(Al
2 3 )に特定の組成比のニッケルを添加したニッケル
アルミネート(以下、ニッケル−アルミニウム系複合酸
化物という)とすることにより量論比のニッケル−アル
ミニウム系複合酸化物に比べて触媒活性(HCとNOX
の両方の活性)を大幅に向上させることができる。ニッ
ケルの最適組成は上記一般式のd=2.0に対しb=
0.2〜0.8の範囲である。b=0.2より小さいと
HCとNOX の両方に対する触媒活性が低下し、b=
0.8より大きくなるとNOX 浄化能は低下する。
In the present invention, alumina (Al
2 O 3 ) is a nickel aluminate (hereinafter referred to as a nickel-aluminum composite oxide) in which a specific composition ratio of nickel is added, whereby a catalytic activity (compared to a stoichiometric ratio of nickel-aluminum composite oxide) ( HC and NO x
Both activities) can be significantly improved. The optimum composition of nickel is b =
It is in the range of 0.2 to 0.8. When b is smaller than 0.2, the catalytic activity for both HC and NO x decreases, and b =
When it exceeds 0.8, the NO x purification capacity decreases.

【0011】また、本発明においては、銅をd=2.0
に対しa=0.01〜0.3の範囲の組成とすることに
より、上記組成限定ニッケル−アルミニウム系複合酸化
物の活性向上に顕著な効果を示す。特に、NO転換性能
(NOからN2 への選択性)を低下させずに、低温域か
らの高い活性が得られる。但し、銅の組成がd=2.0
に対しa=0.01より小さいと触媒本来の効果が発揮
されず、逆にa=0.3を超えるとNO転換性能が低下
する。なお、銅はニッケルと同様にアルミナの結晶構造
に入り、スピネル構造を形成していると考えられる。
Further, in the present invention, copper is d = 2.0.
On the other hand, by setting the composition in the range of a = 0.01 to 0.3, a remarkable effect is shown in improving the activity of the composition-limited nickel-aluminum composite oxide. In particular, high activity from a low temperature range can be obtained without lowering the NO conversion performance (selectivity from NO to N 2 ). However, the composition of copper is d = 2.0
On the other hand, if a = 0.01 or less, the original effect of the catalyst is not exhibited, and conversely, if a = 0.3 or more, the NO conversion performance deteriorates. It is considered that copper enters the crystal structure of alumina like nickel and forms a spinel structure.

【0012】更に、本発明においては、インジウムをd
=2.0に対しc=0.01〜0.3の範囲の組成とす
ることにより、上記銅−ニッケル−アルミニウム系複合
酸化物の選択性の向上に顕著な効果を示す。特に、HC
酸化活性が低下せずに、低温域から高い選択性が得られ
る。但し、インジウムの組成がd=2.0に対しc=
0.01より小さいと触媒本来の効果が発揮されず、逆
にa=0.3を超えるとHC及びNO転換性能が低下す
る。なお、インジウムは酸化物(In2 3 )の形で銅
−ニッケル−アルミニウム系複合酸化物の表面に分散し
ていると考えられる。
Further, in the present invention, indium is d
= 2.0, the composition of c = 0.01 to 0.3 exhibits a remarkable effect in improving the selectivity of the copper-nickel-aluminum composite oxide. In particular, HC
High selectivity can be obtained in the low temperature range without lowering the oxidation activity. However, when the composition of indium is d = 2.0, c =
If it is less than 0.01, the original effect of the catalyst is not exhibited, and conversely, if it exceeds a = 0.3, the HC and NO conversion performance deteriorates. Indium is considered to be dispersed in the form of oxide (In 2 O 3 ) on the surface of the copper-nickel-aluminum composite oxide.

【0013】X成分は、上記インジウム−銅−ニッケル
−アルミニウム系複合酸化物の活性、選択性及び耐久性
を更に改善したい場合に必要に応じて用いられる。この
X成分の組成はd=2.0に対しe=0〜0.2の範囲
である。X成分は使用条件において充分な性能が得られ
る場合には、上記インジウム−銅−ニッケル−アルミニ
ウム系複合酸化物そのままで用いることができ、特に添
加する必要はない。従って、X成分は触媒性能を改善す
る必要がある場合に添加すれば良いが、その添加量がd
=2.0に対しe=0.2を超えると基本組成であるイ
ンジウム−銅−ニッケル−アルミニウム系複合酸化物の
触媒性能が却って低下する。
The component X is used as necessary when it is desired to further improve the activity, selectivity and durability of the indium-copper-nickel-aluminum composite oxide. The composition of this X component is in the range of e = 0 to 0.2 for d = 2.0. The component X can be used as it is as the indium-copper-nickel-aluminum composite oxide as long as sufficient performance can be obtained under the use conditions, and it is not particularly necessary to add it. Therefore, the X component may be added when it is necessary to improve the catalyst performance, but the addition amount is d
= 2.0, when e = 0.2 is exceeded, the catalytic performance of the indium-copper-nickel-aluminum composite oxide, which is the basic composition, rather deteriorates.

【0014】酸素の原子数については全ての元素の原子
価を同定しなければならないが、多成分系では形成され
る酸化物の構造や配位状態によって元素の原子価が異な
るため特定することは非常に困難である。
Regarding the number of oxygen atoms, it is necessary to identify the valences of all elements, but in a multi-component system the valences of the elements differ depending on the structure and coordination state of the oxide formed, so it is not possible to specify it. Very difficult.

【0015】本発明に用いる触媒調製用の原料化合物と
しては、各元素の硝酸塩、炭酸塩、アンモニウム塩、酢
酸塩、ハロゲン化物及び酸化物等を任意に組み合わせて
使用することができるが、特に水溶性塩を使用すること
が触媒性能を向上させる観点から好ましい。
As the raw material compound for preparing the catalyst used in the present invention, nitrates, carbonates, ammonium salts, acetates, halides, oxides and the like of each element can be used in any combination. It is preferable to use the organic salt from the viewpoint of improving the catalyst performance.

【0016】以下、本発明に係る排ガス浄化用触媒の製
造方法について説明する。本発明に係る排ガス浄化用触
媒を製造するに際しては、まず銅、ニッケル、インジウ
ム及びアルミニウム成分を含む触媒原料を純水に加えて
攪拌する。この際、各触媒原料を同時に又は別個に溶解
した液を加えても良い。次いで、この触媒原料を加えた
混合溶液にアンモニア水、炭酸アンモニウム、炭酸水素
アンモニウム、硫酸アンモニウム及び硫酸水素アンモニ
ウムからなる群から選ばれた少なくとも1種の化合物の
水溶液を徐々に添加し、溶液のpHを7.0〜9.0の
範囲になるように調製した後、水を除去し、残留物を熱
処理すると、目的の触媒が得られる。
The method for producing the exhaust gas purifying catalyst according to the present invention will be described below. When manufacturing the exhaust gas purifying catalyst according to the present invention, first, a catalyst raw material containing copper, nickel, indium and aluminum components is added to pure water and stirred. At this time, a liquid in which each catalyst raw material is dissolved simultaneously or separately may be added. Then, an aqueous solution of at least one compound selected from the group consisting of aqueous ammonia, ammonium carbonate, ammonium hydrogen carbonate, ammonium sulfate and ammonium hydrogen sulfate is gradually added to the mixed solution containing the catalyst raw material to adjust the pH of the solution. After preparing it in the range of 7.0 to 9.0, water is removed and the residue is heat-treated to obtain the desired catalyst.

【0017】触媒の調製法としては、特別な方法に限定
されず、成分の著しい偏在を伴わない限り、公知の方法
の中から適宜選択して使用することができるが、特にア
ンモニア水、炭酸アンモニウム、炭酸水素アンモニウ
ム、硫酸アンモニウム及硫酸水素アンモニウムからなる
群から選ばれた少なくとも1種の化合物の水溶液を沈澱
剤として加える沈澱法を用いることが好ましい。
The method for preparing the catalyst is not limited to a special method and may be appropriately selected from known methods as long as it does not cause the uneven distribution of the components. In particular, aqueous ammonia and ammonium carbonate are used. It is preferable to use a precipitation method in which an aqueous solution of at least one compound selected from the group consisting of ammonium hydrogencarbonate, ammonium sulfate and ammonium hydrogensulfate is added as a precipitation agent.

【0018】本発明による排ガス浄化用触媒は、沈澱法
で得られた酸化物触媒が有する微細な細孔構造と大きな
表面積が低温活性の発現に重要な役割を果している。こ
れに対し、上記沈澱剤を用いないで得た触媒は、微細な
細孔構造に欠け、しかも反応に有効な表面積が小さくな
り、触媒活性が低下する。この沈澱法に用いる沈澱剤と
して、上記アンモニア水やアンモニウム化合物を使用す
れば洗浄が不十分でも金属元素は残留せず、またアンモ
ニウム化合物(滴下後は、主として硝酸アンモニウム)
が残留しても後の焼成で容易に分解除去することができ
る。これに対し、水酸化ナトリウムや炭酸ナトリウムな
どの金属塩を使用すると、得られる沈澱中にナトリウム
などの金属元素が残留し、これらの残留金属元素が触媒
性能に悪影響を及ぼすので、これらを除去するため洗浄
工程が必要になる。
In the exhaust gas purifying catalyst according to the present invention, the fine pore structure and large surface area of the oxide catalyst obtained by the precipitation method play an important role in exhibiting low temperature activity. On the other hand, the catalyst obtained without using the above-mentioned precipitant lacks a fine pore structure, and the surface area effective for the reaction becomes small, so that the catalytic activity decreases. If the above-mentioned aqueous ammonia or ammonium compound is used as the precipitant used in this precipitation method, no metal element remains even if the washing is insufficient, and the ammonium compound (mainly ammonium nitrate after dropping)
Even if it remains, it can be easily decomposed and removed by subsequent firing. On the other hand, when a metal salt such as sodium hydroxide or sodium carbonate is used, metal elements such as sodium remain in the obtained precipitate, and these residual metal elements adversely affect the catalytic performance. Therefore, a cleaning process is required.

【0019】上記沈澱法を実施するに際しては、溶液の
pHを7.0〜9.0の範囲に調整することにより、各
種の金属塩に沈澱を形成することができる。pHが7.
0より低いと各種元素が充分に沈澱を形成せず、逆にp
Hが9.0より高いと沈澱した成分の一部が再溶解する
ことがある。
When carrying out the above-mentioned precipitation method, by adjusting the pH of the solution to a range of 7.0 to 9.0, it is possible to form precipitates on various metal salts. pH is 7.
When it is lower than 0, various elements do not form a precipitate sufficiently, and conversely p
When H is higher than 9.0, some of the precipitated components may be redissolved.

【0020】水の除去は、例えば濾過法や蒸発乾固法等
の公知の方法の中から適宜選択して行うことができる。
熱処理は、特に制限されないが、例えば500〜100
0℃の範囲の温度で空気中及び/又は空気流通下で行う
ことが好ましい。
Water can be removed by appropriately selecting from known methods such as filtration and evaporation to dryness.
The heat treatment is not particularly limited, but is, for example, 500 to 100.
It is preferable to carry out at a temperature in the range of 0 ° C. in air and / or under air flow.

【0021】こうして得られる本発明に係る排ガス浄化
用触媒は、無担体でも有効に使用することができるが、
粉砕・スラリーとし、触媒担体にコートして、400〜
900℃で焼成して用いることが好ましい。触媒担体と
しては、公知の触媒担体の中から適宜選択して使用する
ことができ、例えばモノリス担体やメタル担体などが挙
げられる。
The thus obtained exhaust gas-purifying catalyst according to the present invention can be effectively used without a carrier,
400 ~
It is preferable to use it after firing at 900 ° C. The catalyst carrier can be appropriately selected and used from known catalyst carriers, and examples thereof include a monolith carrier and a metal carrier.

【0022】この触媒担体の形状は、特に制限されない
が、通常はハニカム形状で使用することが好ましく、ハ
ニカム状の各種基材に触媒粉末を塗布して用いられる。
このハニカム材料としては、一般にコージエライト質の
ものが多く用いられるが、金属材料からなるハニカムを
用いることも可能であり、更には触媒粉末そのものをハ
ニカム形状に成形しても良い。触媒の形状をハニカム状
とすることにより、触媒と排気ガスの接触面積が大きく
なり、圧力損失も抑えられるため自動車用として用いる
場合に極めて有利である。
The shape of this catalyst carrier is not particularly limited, but it is usually preferable to use it in a honeycomb shape, and the catalyst powder is applied to various honeycomb-shaped base materials and used.
As the honeycomb material, a cordierite material is generally used, but a honeycomb made of a metal material can be used, and the catalyst powder itself may be formed into a honeycomb shape. By making the shape of the catalyst honeycomb, the contact area between the catalyst and the exhaust gas becomes large and the pressure loss can be suppressed, which is extremely advantageous when used for automobiles.

【0023】[0023]

【実施例】以下、本発明を実施例によって更に詳述する
が、本発明はこれによって限定されるものではない。実
施例において特に断らない限り、部及び%はそれぞれ重
量部及び重量%を示す。
EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited thereto. Unless otherwise specified in the examples, parts and% refer to parts by weight and% by weight, respectively.

【0024】実施例1 硝酸銅1.6部、硝酸ニッケル9.7部及び硝酸アルミ
ニウム50部を純水400部に加え、攪拌・溶解した。
次に、溶液を攪拌しながら、5%アンモニア水を溶液の
pHが7.0〜9.0の範囲になるように徐々に滴下し
た。生成した沈澱物を濾過して取り出し、150℃で1
2時間乾燥した後、800℃で2時間、空気中で焼成し
た。こうして得られた粉末500部及び純水1000部
をボールミルで混合、粉砕して得られたスラリーをモノ
リス担体基材に付着させ焼成(400℃で1時間)し
た。この時の付着量は200g/Lに設定した。得られ
た触媒の酸素以外の成分の組成(以下、同じ)は、Cu
0.1 Ni0.5 Al2.0 であった。
Example 1 1.6 parts of copper nitrate, 9.7 parts of nickel nitrate and 50 parts of aluminum nitrate were added to 400 parts of pure water and stirred and dissolved.
Next, while stirring the solution, 5% ammonia water was gradually added dropwise so that the pH of the solution was in the range of 7.0 to 9.0. The precipitate formed is filtered off and washed at 150 ° C.
After drying for 2 hours, it was baked in air at 800 ° C. for 2 hours. 500 parts of the powder thus obtained and 1000 parts of pure water were mixed and pulverized by a ball mill, and the resulting slurry was adhered to a monolith carrier substrate and baked (at 400 ° C. for 1 hour). The adhesion amount at this time was set to 200 g / L. The composition of the components other than oxygen of the obtained catalyst (hereinafter the same) is Cu
It was 0.1 Ni 0.5 Al 2.0 .

【0025】実施例2 5%アンモニア水の代わりに5%炭酸アンモニウム水溶
液を用いた他は、実施例1と全く同様な方法で組成がC
0.1 Ni0.5 Al2.0 の触媒を調製した。
Example 2 The composition was changed to C by the same method as in Example 1 except that 5% ammonium carbonate aqueous solution was used instead of 5% ammonia water.
A catalyst of u 0.1 Ni 0.5 Al 2.0 was prepared.

【0026】実施例3 5%アンモニア水の代わりに5%炭酸水素アンモニウム
水溶液を用いた他は、実施例1と全く同様な方法で組成
がCu0.1 Ni0.5 Al2.0 の触媒を調製した。
Example 3 A catalyst having a composition of Cu 0.1 Ni 0.5 Al 2.0 was prepared in exactly the same manner as in Example 1, except that 5% ammonium hydrogen carbonate aqueous solution was used instead of 5% ammonia water.

【0027】実施例4 5%アンモニア水の代わりに5%硫酸アンモニウム水溶
液を用いた他は、実施例1と全く同様な方法で組成がC
0.1 Ni0.5 Al2.0 の触媒を調製した。
Example 4 The composition was changed to C by the same method as in Example 1 except that 5% ammonium sulfate aqueous solution was used instead of 5% ammonia water.
A catalyst of u 0.1 Ni 0.5 Al 2.0 was prepared.

【0028】実施例5 5%アンモニア水の代わりに5%硫酸水素アンモニウム
水溶液を用いた他は、実施例1と全く同様な方法で組成
がCu0.1 Ni0.5 Al2.0 の触媒を調製した。
Example 5 A catalyst having a composition of Cu 0.1 Ni 0.5 Al 2.0 was prepared in the same manner as in Example 1 except that 5% ammonium hydrogensulfate aqueous solution was used instead of 5% ammonia water.

【0029】実施例6 硝酸銅を0.8部に代えた他は、実施例1と全く同様な
方法で組成がCu0.05Ni0.5 Al2.0 の触媒を調製し
た。
Example 6 A catalyst having a composition of Cu 0.05 Ni 0.5 Al 2.0 was prepared in exactly the same manner as in Example 1 except that copper nitrate was changed to 0.8 part.

【0030】実施例7 硝酸銅を2.4部に代えた他は、実施例1と全く同様な
方法で組成がCu0.15Ni0.5 Al2.0 の触媒を調製し
た。
Example 7 A catalyst having a composition of Cu 0.15 Ni 0.5 Al 2.0 was prepared in exactly the same manner as in Example 1 except that the copper nitrate was changed to 2.4 parts.

【0031】実施例8 硝酸ニッケルを5.9部に代えた他は、実施例1と全く
同様な方法で組成がCu0.1 Ni0.3 Al2.0 の触媒を
調製した。
Example 8 A catalyst having a composition of Cu 0.1 Ni 0.3 Al 2.0 was prepared in exactly the same manner as in Example 1 except that nickel nitrate was replaced by 5.9 parts.

【0032】実施例9 硝酸ニッケルを13.6部に代えた他は、実施例1と全
く同様な方法で組成がCu0.1 Ni0.7 Al2.0 の触媒
を調製した。
Example 9 A catalyst having a composition of Cu 0.1 Ni 0.7 Al 2.0 was prepared in exactly the same manner as in Example 1 except that nickel nitrate was replaced by 13.6 parts.

【0033】実施例10 硝酸インジウム2.4部を加えた他は、実施例1と全く
同様な方法で組成がIn0.1 Cu0.1 Ni0.5 Al2.0
の触媒を調製した。
Example 10 The composition was In 0.1 Cu 0.1 Ni 0.5 Al 2.0 in the same manner as in Example 1 except that 2.4 parts of indium nitrate was added.
Was prepared.

【0034】実施例11 5%アンモニア水の代わりに5%の炭酸アンモニウム水
溶液を用いた他は、実施例10と全く同様な方法で組成
がIn0.1 Cu0.1 Ni0.5 Al2.0 の触媒を調製し
た。
Example 11 A catalyst having a composition of In 0.1 Cu 0.1 Ni 0.5 Al 2.0 was prepared in exactly the same manner as in Example 10 except that 5% aqueous ammonium carbonate solution was used instead of 5% ammonia water.

【0035】実施例12 5%アンモニア水の代わりに5%炭酸水素アンモニウム
水溶液を用いた他は、実施例10と全く同様な方法で組
成がIn0.1 Cu0.1 Ni0.5 Al2.0 の触媒を調製し
た。
Example 12 A catalyst having a composition of In 0.1 Cu 0.1 Ni 0.5 Al 2.0 was prepared in exactly the same manner as in Example 10 except that 5% ammonium hydrogen carbonate aqueous solution was used instead of 5% ammonia water.

【0036】実施例13 5%アンモニア水の代わりに5%硫酸アンモニウム水溶
液を用いた他は、実施例10と全く同様な方法で組成が
In0.1 Cu0.1 Ni0.5 Al2.0 の触媒を調製した。
Example 13 A catalyst having a composition of In 0.1 Cu 0.1 Ni 0.5 Al 2.0 was prepared in exactly the same manner as in Example 10 except that 5% ammonium sulfate aqueous solution was used instead of 5% ammonia water.

【0037】実施例14 5%アンモニア水の代わりに5%硫酸水素アンモニウム
水溶液を用いた他は、実施例10と全く同様な方法で組
成がIn0.1 Cu0.1 Ni0.5 Al2.0 の触媒を調製し
た。
Example 14 A catalyst having a composition of In 0.1 Cu 0.1 Ni 0.5 Al 2.0 was prepared in exactly the same manner as in Example 10 except that 5% ammonium hydrogensulfate aqueous solution was used instead of 5% ammonia water.

【0038】実施例15 硝酸ニッケル5.9部に代えた他は、実施例10と全く
同様な方法で組成がIn0.1 Cu0.1 Ni0.3 Al2.0
の触媒を調製した。
Example 15 The composition was In 0.1 Cu 0.1 Ni 0.3 Al 2.0 in the same manner as in Example 10 except that 5.9 parts of nickel nitrate was used.
Was prepared.

【0039】実施例16 硝酸ニッケル13.6部に代えた他は、実施例10と全
く同様な方法で組成がIn0.1 Cu0.1 Ni0.7 Al
2.0 の触媒を調製した。
Example 16 The composition was In 0.1 Cu 0.1 Ni 0.7 Al in the same manner as in Example 10 except that 13.6 parts of nickel nitrate was used.
A 2.0 catalyst was prepared.

【0040】実施例17 硝酸銅0.8部に代えた他は、実施例10と全く同様な
方法で組成がIn0.1 Cu0.05Ni0.5 Al2.0 の触媒
を調製した。
Example 17 A catalyst having a composition of In 0.1 Cu 0.05 Ni 0.5 Al 2.0 was prepared in the same manner as in Example 10 except that 0.8 part of copper nitrate was used.

【0041】実施例18 硝酸銅2.4部に代えた他は、実施例10と全く同様な
方法で組成がIn0.1 Cu0.15Ni0.5 Al2.0 の触媒
を調製した。
Example 18 A catalyst having a composition of In 0.1 Cu 0.15 Ni 0.5 Al 2.0 was prepared in exactly the same manner as in Example 10 except that 2.4 parts of copper nitrate was used.

【0042】実施例19 硝酸インジウム1.6部に代えた他は、実施例10と全
く同様な方法で組成がIn0.05Cu0.1 Ni0.5 Al
2.0 の触媒を調製した。
Example 19 The composition was In 0.05 Cu 0.1 Ni 0.5 Al in the same manner as in Example 10 except that 1.6 parts of indium nitrate was used.
A 2.0 catalyst was prepared.

【0043】実施例20 硝酸インジウム4.8部に代えた他は、実施例10と全
く同様な方法で組成がIn0.2 Cu0.1 Ni0.5 Al
2.0 の触媒を調製した。
Example 20 The composition was In 0.2 Cu 0.1 Ni 0.5 Al in the same manner as in Example 10 except that 4.8 parts of indium nitrate was used.
A 2.0 catalyst was prepared.

【0044】実施例21 硝酸亜鉛0.2部を加えた他は、実施例10と全く同様
な方法で組成がZn0.01In0.1 Cu0.1 Ni0.5 Al
2.0 の触媒を調製した。
Example 21 The composition was Zn 0.01 In 0.1 Cu 0.1 Ni 0.5 Al in the same manner as in Example 10 except that 0.2 part of zinc nitrate was added.
A 2.0 catalyst was prepared.

【0045】実施例22 硝酸銀0.11部を加えた他は、実施例10と全く同様
な方法で組成がAg0.01In0.1 Cu0.1 Ni0.5 Al
2.0 の触媒を調製した。
[0045] Another plus Example 22 Silver nitrate 0.11 part, the composition in exactly the same manner as in Example 10 Ag 0.01 In 0.1 Cu 0.1 Ni 0.5 Al
A 2.0 catalyst was prepared.

【0046】実施例23 硝酸クロム0.27部及び硝酸マンガン0.19部を加
えた他は、実施例10と全く同様な方法で組成がCr
0.01Mn0.01In0.1 Cu0.1 Ni0.5 Al2.0 の触媒
を調製した。
Example 23 The composition of Cr was the same as in Example 10 except that 0.27 part of chromium nitrate and 0.19 part of manganese nitrate were added.
A catalyst of 0.01 Mn 0.01 In 0.1 Cu 0.1 Ni 0.5 Al 2.0 was prepared.

【0047】実施例24 硝酸鉄0.27部及び硝酸コバルト0.19部を加えた
他は、実施例10と全く同様な方法で組成がFe0.01
0.01In0.1 Cu0.1 Ni0.5 Al2.0 の触媒を調製
した。
Example 24 The composition was Fe 0.01 C in the same manner as in Example 10 except that 0.27 part of iron nitrate and 0.19 part of cobalt nitrate were added.
A catalyst of 0.01 In 0.1 Cu 0.1 Ni 0.5 Al 2.0 was prepared.

【0048】実施例25 硝酸錫0.17部、硝酸ガリウム0.27部及び硝酸マ
グネシウム0.17部を加えた他は、実施例10と全く
同様な方法で組成がSn0.01Ga0.01Mg0.01In0.1
Cu0.1 Ni0.5 Al2.0 の触媒を調製した。
Example 25 The composition was Sn 0.01 Ga 0.01 Mg 0.01 In in the same manner as in Example 10 except that 0.17 part of tin nitrate, 0.27 part of gallium nitrate and 0.17 part of magnesium nitrate were added. 0.1
A catalyst of Cu 0.1 Ni 0.5 Al 2.0 was prepared.

【0049】実施例26 硝酸セリウム0.29部、20%シリカゾル0.2部及
び硝酸ランタン0.29部を加えた他は、実施例10と
全く同様な方法で組成がCe0.01Si0.01La0.01In
0.1 Cu0.1 Ni0.5 Al2.0 の触媒を調製した。
Example 26 The composition was Ce 0.01 Si 0.01 La 0.01 in the same manner as in Example 10 except that 0.29 part of cerium nitrate, 0.2 part of 20% silica sol and 0.29 part of lanthanum nitrate were added. In
A catalyst of 0.1 Cu 0.1 Ni 0.5 Al 2.0 was prepared.

【0050】実施例27 硝酸ストロンチウム0.15部及び硝酸ジルコニウム
0.18部を加えた他は、実施例10と全く同様な方法
で組成がSr0.01Zr0.01In0.1 Cu0.1 Ni0.5
2.0 の触媒を調製した。
Example 27 The composition was Sr 0.01 Zr 0.01 In 0.1 Cu 0.1 Ni 0.5 A in the same manner as in Example 10 except that 0.15 part of strontium nitrate and 0.18 part of zirconium nitrate were added.
A catalyst of l 2.0 was prepared.

【0051】比較例1 硝酸銅及び硝酸ニッケルを加えなかった他は、実施例1
と全く同様な方法で組成がAl2.0 の触媒を調製した。
Comparative Example 1 Example 1 was repeated except that copper nitrate and nickel nitrate were not added.
A catalyst having a composition of Al 2.0 was prepared in exactly the same manner as in.

【0052】比較例2 5%アンモニア水を用いなかった他は、実施例1と全く
同様な方法で組成がCu0.1 Ni0.5 Al2.0 の触媒を
調製した。
Comparative Example 2 A catalyst having a composition of Cu 0.1 Ni 0.5 Al 2.0 was prepared in exactly the same manner as in Example 1 except that 5% ammonia water was not used.

【0053】比較例3 硝酸ニッケル0.97部を用いた他は、実施例1と全く
同様な方法で組成がCu0.1 Ni0.05Al2.0 の触媒を
調製した。
Comparative Example 3 A catalyst having a composition of Cu 0.1 Ni 0.05 Al 2.0 was prepared in exactly the same manner as in Example 1 except that 0.97 part of nickel nitrate was used.

【0054】比較例4 硝酸ニッケル19.4部を用いた他は、実施例1と全く
同様な方法で組成がCu0.1 Ni1.0 Al2.0 の触媒を
調製した。
Comparative Example 4 A catalyst having a composition of Cu 0.1 Ni 1.0 Al 2.0 was prepared in the same manner as in Example 1 except that 19.4 parts of nickel nitrate was used.

【0055】比較例5 硝酸銅0.016部を用いた他は、実施例1と全く同様
な方法で組成がCu0.001 Ni0.5 Al2.0 の触媒を調
製した。
Comparative Example 5 A catalyst having a composition of Cu 0.001 Ni 0.5 Al 2.0 was prepared in exactly the same manner as in Example 1 except that 0.016 part of copper nitrate was used.

【0056】比較例6 硝酸銅8.1部を用いた他は、実施例1と全く同様な方
法で組成がCu0.5 Ni0.5 Al2.0 の触媒を調製し
た。
Comparative Example 6 A catalyst having a composition of Cu 0.5 Ni 0.5 Al 2.0 was prepared in the same manner as in Example 1 except that 8.1 parts of copper nitrate was used.

【0057】比較例7 硝酸銅、硝酸ニッケル及び硝酸インジウムを加えなかっ
た他は、実施例10と全く同様な方法で組成がAl2.0
の触媒を調製した。
Comparative Example 7 The composition was Al 2.0 in the same manner as in Example 10 except that copper nitrate, nickel nitrate and indium nitrate were not added.
Was prepared.

【0058】比較例8 5%アンモニア水を用いなかった他は、実施例1と全く
同様な方法で組成がCu0.1 Ni0.5 In0.1 Al2.0
の触媒を調製した。
Comparative Example 8 The composition was Cu 0.1 Ni 0.5 In 0.1 Al 2.0 in the same manner as in Example 1 except that 5% aqueous ammonia was not used.
Was prepared.

【0059】比較例9 硝酸ニッケル0.97部を加えた他は、実施例10と全
く同様な方法で組成がCu0.1 Ni0.05In0.1 Al
2.0 の触媒を調製した。
Comparative Example 9 The composition was Cu 0.1 Ni 0.05 In 0.1 Al in the same manner as in Example 10 except that 0.97 part of nickel nitrate was added.
A 2.0 catalyst was prepared.

【0060】比較例10 硝酸ニッケル19.4部を加えた他は、実施例10と全
く同様な方法で組成がCu0.1 Ni1.0 In0.1 Al
2.0 の触媒を調製した。
Comparative Example 10 The composition was Cu 0.1 Ni 1.0 In 0.1 Al in the same manner as in Example 10 except that 19.4 parts of nickel nitrate was added.
A 2.0 catalyst was prepared.

【0061】比較例11 硝酸銅0.016部を加えた他は、実施例10と全く同
様な方法で組成がCu0.001 Ni0.5 In0.1 Al2.0
の触媒を調製した。
Comparative Example 11 The composition was Cu 0.001 Ni 0.5 In 0.1 Al 2.0 by the same method as in Example 10 except that 0.016 parts of copper nitrate was added.
Was prepared.

【0062】比較例12 硝酸銅8.1部を加えた他は、実施例10と全く同様な
方法で組成がCu0.5 Ni0.5 In0.1 Al2.0 の触媒
を調製した。
Comparative Example 12 A catalyst having a composition of Cu 0.5 Ni 0.5 In 0.1 Al 2.0 was prepared in exactly the same manner as in Example 10 except that 8.1 parts of copper nitrate was added.

【0063】比較例13 硝酸インジウム0.024部を加えた他は、実施例10
と全く同様な方法で組成がCu0.1 Ni0.5 In0.001
Al2.0 の触媒を調製した。
Comparative Example 13 Example 10 except that 0.024 part of indium nitrate was added.
And the composition is Cu 0.1 Ni 0.5 In 0.001
An Al 2.0 catalyst was prepared.

【0064】比較例14 硝酸インジウム11.8部を加えた他は、実施例10と
全く同様な方法で組成がCu0.1 Ni0.5 In0.5 Al
2.0 の触媒を調製した。
Comparative Example 14 The composition was Cu 0.1 Ni 0.5 In 0.5 Al in the same manner as in Example 10 except that 11.8 parts of indium nitrate was added.
A 2.0 catalyst was prepared.

【0065】試験例1 前記実施例1〜26及び比較例1〜14の触媒につい
て、以下の条件で活性評価を行った。活性評価には、自
動車の排気ガスを模したモデルガスを用いる自動評価装
置を用いた。 評価条件 触媒 モノリス型多成分系貴金属触媒 総ガス流量 40 L/分 触媒入口ガス温度 100〜600℃ 昇温速度 30℃/分 空間速度 約10,000H-1 入口ガス組成 平均空燃比18.0相当のモデルガス組成 CO 0.2 % C3 6 5000 ppmC NO 500 ppm O2 4.50 % CO2 10.0 % H2 O 10.0 % N2 バランス A/F振幅 なし 評価結果を表1、表2、表3、表4及び表5に示す。比
較例に比べて実施例は、触媒活性が高く、本発明の効果
を確認することができた。
Test Example 1 The catalysts of Examples 1 to 26 and Comparative Examples 1 to 14 were evaluated for activity under the following conditions. For the activity evaluation, an automatic evaluation device using a model gas imitating automobile exhaust gas was used. Evaluation conditions Catalyst Monolith-type multi-component precious metal catalyst Total gas flow rate 40 L / min Catalyst inlet gas temperature 100 to 600 ° C. Temperature rising rate 30 ° C./min Space velocity Approx. 10,000 H −1 Inlet gas composition Average air-fuel ratio equivalent to 18.0 Model gas composition of CO 0.2% C 3 H 6 5000 ppm C NO 500 ppm O 2 4.50% CO 2 10.0% H 2 O 10.0% N 2 balance A / F No amplitude Evaluation results are shown in Table 1. , Table 2, Table 3, Table 4 and Table 5. The catalytic activity of the example was higher than that of the comparative example, and the effect of the present invention could be confirmed.

【0066】[0066]

【表1】 [Table 1]

【0067】[0067]

【表2】 表1及び表2中、C300は300℃におけるNOX
換率(%)、C400は400℃におけるNOX 転換率
(%)、C500は500℃におけるNOX 転換率
(%)をそれぞれ示す。
[Table 2] In Tables 1 and 2, C300 indicates the NO X conversion rate (%) at 300 ° C, C400 indicates the NO X conversion rate (%) at 400 ° C, and C500 indicates the NO X conversion rate (%) at 500 ° C.

【0068】[0068]

【表3】 [Table 3]

【0069】[0069]

【表4】 表4中、C300は300℃におけるNOX 転換率
(%)、C400は400℃におけるNOX 転換率
(%)、C500は500℃におけるNOX 転換率
(%)をそれぞれ示す。
[Table 4] In Table 4, C300 shows the NO x conversion rate (%) at 300 ° C., C400 shows the NO x conversion rate (%) at 400 ° C., and C500 shows the NO x conversion rate (%) at 500 ° C.

【0070】[0070]

【表5】 [Table 5]

【0071】[0071]

【発明の効果】本発明の排ガス浄化用触媒は、銅、ニッ
ケル、インジウム及びアルミニウムを主成分とする多成
分系触媒を用いることによって、従来の触媒には活性の
なかった酸素過剰雰囲気におけるNOX 浄化能を向上す
ることができ、しかも低温から高温までの幅広い温度域
において排気ガス中のNOX に対して高性能を維持する
ことができる。
The exhaust gas-purifying catalyst of the present invention uses a multi-component catalyst containing copper, nickel, indium and aluminum as the main components, whereby NO x in an oxygen excess atmosphere, which is not active in conventional catalysts, is used. The purifying ability can be improved, and high performance can be maintained with respect to NO X in the exhaust gas in a wide temperature range from low temperature to high temperature.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/74 ZAB 23/835 ZAB 23/84 ZAB 23/889 23/85 ZAB A 23/89 ZAB A B01D 53/36 102 B 102 H B01J 23/82 ZAB A 23/84 311 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location B01J 23/74 ZAB 23/835 ZAB 23/84 ZAB 23/889 23/85 ZAB A 23/89 ZAB A B01D 53/36 102 B 102 H B01J 23/82 ZAB A 23/84 311 A

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一般式: Cua Nib Ald g (式中、a、b及びdは各元素の原子比率を表し、d=
2.0のとき、a=0.01〜0.3、b=0.2〜
0.8であり、gは上記各成分の原子価を満足させるの
に必要な酸素原子数である)で表される銅、ニッケル及
びアルミニウムを含む多成分系複合酸化物からなること
を特徴とする排ガス浄化用触媒。
1. A general formula: Cu a Ni b Al d O g (where a, b and d represent the atomic ratio of each element, and d =
When 2.0, a = 0.01 to 0.3, b = 0.2 to
0.8, and g is the number of oxygen atoms required to satisfy the valences of the above components) and is composed of a multi-component composite oxide containing copper, nickel and aluminum. Exhaust gas purification catalyst.
【請求項2】 一般式: Cua Nib Inc Ald g (式中、a、b、c及びdは各元素の原子比率を表し、
d=2.0のとき、a=0.01〜0.3、b=0.2
〜0.8、c=0.01〜0.3であり、gは上記各成
分の原子価を満足させるのに必要な酸素原子数である)
で表される銅、ニッケル、インジウム及びアルミニウム
を含む多成分系複合酸化物からなることを特徴とする排
ガス浄化用触媒。
2. A general formula: Cu a Ni b In c Al d O g (wherein a, b, c and d represent atomic ratios of respective elements,
When d = 2.0, a = 0.01 to 0.3, b = 0.2
Is 0.8, c = 0.01 to 0.3, and g is the number of oxygen atoms required to satisfy the valences of the above components.)
An exhaust gas-purifying catalyst comprising a multi-component composite oxide containing copper, nickel, indium and aluminum represented by:
【請求項3】 一般式: Cua Nib Inc Ald e g (式中、xはクロム、マンガン、鉄、コバルト、亜鉛、
錫、ガリウム、マグネシウム、セリウム、珪素、銀、ラ
ンタン、ストロンチウム及びジルコニウムからなる群か
ら選ばれた少なくとも1種の元素であり、a、b、c、
d及びeは各元素の原子比率を表し、d=2.0のと
き、a=0.01〜0.3、b=0.2〜0.8、c=
0.01〜0.3、e=0〜0.2であり、gは上記各
成分の原子価を満足させるのに必要な酸素原子数であ
る)で表される銅、ニッケル、インジウム及びアルミニ
ウムを含む多成分系複合酸化物からなることを特徴とす
る排ガス浄化用触媒。
3. A general formula: Cu a Ni b In c Al d X e O g (where x is chromium, manganese, iron, cobalt, zinc,
At least one element selected from the group consisting of tin, gallium, magnesium, cerium, silicon, silver, lanthanum, strontium, and zirconium, a, b, c,
d and e represent the atomic ratio of each element, and when d = 2.0, a = 0.01 to 0.3, b = 0.2 to 0.8, c =
0.01 to 0.3, e = 0 to 0.2, and g is the number of oxygen atoms required to satisfy the valences of the above components), copper, nickel, indium and aluminum An exhaust gas purifying catalyst comprising a multi-component complex oxide containing
【請求項4】 請求項1、2又は3に記載の触媒を触媒
担体にコート層として備えたことを特徴とする排ガス浄
化用触媒。
4. An exhaust gas purifying catalyst comprising the catalyst carrier according to claim 1, 2 or 3 as a coat layer on a catalyst carrier.
【請求項5】 触媒担体がハニカム状モノリス担体基材
であることを特徴とする請求項1、2、3又は4記載の
排ガス浄化用触媒。
5. The exhaust gas purifying catalyst according to claim 1, 2, 3 or 4, wherein the catalyst carrier is a honeycomb-shaped monolith carrier substrate.
【請求項6】 請求項1、2又は3に記載の触媒を製造
するにあたり、触媒を構成する各金属化合物を含有する
水溶液又は水分散液に、アンモニア水、炭酸アンモニウ
ム、炭酸水素アンモニウム、硫酸アンモニウム及び硫酸
水素アンモニウムからなる群から選ばれた少なくとも1
種の水溶液を加え、溶液のpHを7.0〜9.0の範囲
になるように調製した後、水分を除去し、残留物を熱処
理することを特徴とする排ガス浄化用触媒の製造方法。
6. In producing the catalyst according to claim 1, 2 or 3, an aqueous solution or an aqueous dispersion containing each metal compound constituting the catalyst is added to aqueous ammonia, ammonium carbonate, ammonium hydrogen carbonate, ammonium sulfate, and At least one selected from the group consisting of ammonium hydrogen sulfate
A method for producing an exhaust gas purifying catalyst, which comprises adding an aqueous solution of seeds and adjusting the pH of the solution to a range of 7.0 to 9.0, removing water, and heat-treating the residue.
JP6045702A 1994-03-16 1994-03-16 Exhaust gas cleaning catalyst and producing method thereof Pending JPH07251074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6045702A JPH07251074A (en) 1994-03-16 1994-03-16 Exhaust gas cleaning catalyst and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6045702A JPH07251074A (en) 1994-03-16 1994-03-16 Exhaust gas cleaning catalyst and producing method thereof

Publications (1)

Publication Number Publication Date
JPH07251074A true JPH07251074A (en) 1995-10-03

Family

ID=12726708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6045702A Pending JPH07251074A (en) 1994-03-16 1994-03-16 Exhaust gas cleaning catalyst and producing method thereof

Country Status (1)

Country Link
JP (1) JPH07251074A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905056A (en) * 1995-12-13 1999-05-18 Daimler-Benz Aktiengesellschaft Catalyst and a method for its production and use of same
US6004520A (en) * 1995-12-13 1999-12-21 Daimler-Benz Ag Method for operating a purification device, a purification device and use of the same
US6027703A (en) * 1994-12-13 2000-02-22 Daimlerchrysler Ag Method for operating a purification device for gases as well as a purification device for gases
US6030589A (en) * 1995-12-13 2000-02-29 Daimlerchrysler Ag Catalyst, method for its production and use of same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027703A (en) * 1994-12-13 2000-02-22 Daimlerchrysler Ag Method for operating a purification device for gases as well as a purification device for gases
US5905056A (en) * 1995-12-13 1999-05-18 Daimler-Benz Aktiengesellschaft Catalyst and a method for its production and use of same
US6004520A (en) * 1995-12-13 1999-12-21 Daimler-Benz Ag Method for operating a purification device, a purification device and use of the same
US6030589A (en) * 1995-12-13 2000-02-29 Daimlerchrysler Ag Catalyst, method for its production and use of same
US6200535B1 (en) 1995-12-13 2001-03-13 Daimlerchrysler Ag Purification device having a porous body for purifying pollutants from an exhaust gas stream
US6444178B1 (en) 1995-12-13 2002-09-03 Daimlerchrysler Ag Purification device for gases

Similar Documents

Publication Publication Date Title
US6069111A (en) Catalysts for the purification of exhaust gas and method of manufacturing thereof
JP4950365B2 (en) Mixed phase ceramic oxide ternary alloy catalyst formulation and method for producing the catalyst
JPH10235192A (en) Catalyst for cleaning exhaust gas
JPH01242149A (en) Catalyst for purification of exhaust gas
WO1990014888A1 (en) Exhaust gas purifying catalyst excellent in thermal resistance and method of production thereof
JPH0675676B2 (en) Exhaust gas purification catalyst
JP2003126694A (en) Catalyst for cleaning exhaust gas
JP3144880B2 (en) Method for producing three-way catalyst with excellent low-temperature activity
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH07251074A (en) Exhaust gas cleaning catalyst and producing method thereof
JP3251009B2 (en) Exhaust gas purification catalyst
JPH0824648A (en) Exhaust gas purifying catalyst and preparation of the sam
JP3222184B2 (en) Method for producing exhaust gas purifying catalyst
JP2007301471A (en) Catalyst for cleaning exhaust gas
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JPH08173811A (en) Catalyst for purification of exhaust gas and its production
JP3246295B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH0819739A (en) Exhaust gas purifying catalyst and producing method therefor
JP3309711B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2000051700A (en) Exhaust emission purifying catalyst and its production
JPH07155605A (en) Exhaust gas purifying catalyst and production thereof
JP3156577B2 (en) Material for exhaust gas purification catalyst and method for producing the same
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JPH0824649A (en) Exhaust gas purifying catalyst and preparation of the same
JPH08229397A (en) Exhaust gas purifying catalyst and its production