WO2021132335A1 - Solid solution nanoparticles, method for producing same, dispersion liquid of solution solid nanoparticles, and catalyst - Google Patents
Solid solution nanoparticles, method for producing same, dispersion liquid of solution solid nanoparticles, and catalyst Download PDFInfo
- Publication number
- WO2021132335A1 WO2021132335A1 PCT/JP2020/048169 JP2020048169W WO2021132335A1 WO 2021132335 A1 WO2021132335 A1 WO 2021132335A1 JP 2020048169 W JP2020048169 W JP 2020048169W WO 2021132335 A1 WO2021132335 A1 WO 2021132335A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanoparticles
- salt
- solid solution
- catalyst
- solution
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
Definitions
- the present invention relates to solid solution nanoparticles, a method for producing the same, a dispersion of solid solution nanoparticles, and a catalyst.
- Precious metal nanoparticles such as Pt nanoparticles are known to exhibit different optical, electrical, and chemical properties than bulk nanoparticles, and are known to exhibit electronic, magnetic, catalytic, pharmaceutical, cosmetic, or cosmetic materials. It is used in various fields as a food material.
- catalysts are one of the most well-known uses of precious metal nanoparticles.
- Patent Document 5 describes that noble metal nanoparticles are used as an antioxidant.
- Patent Document 6 describes that noble metal nanoparticles are used as a material for a contrast medium.
- Pt nanoparticles are highly useful because they exert various effects. It is conceivable to alloy a noble metal other than Pt with Pt in order to improve the desired effect.
- PtIr forms a total solid solution at high temperatures, but is immiscible over a wide composition range of 1370 ° C. or lower.
- PtRu and IrRu also have an immiscible composition range of about 15 atom% in the entire temperature range. Therefore, even if noble metal nanoparticles are synthesized by a conventional reduction method using a solution containing a plurality of noble metal salts, only a mixture of simple noble metal nanoparticles can be obtained.
- An object of the present invention is to provide a novel solid solution nanoparticles, a method for producing the same, a dispersion liquid of the solid solution nanoparticles, and a catalyst using the solid solution nanoparticles.
- the present invention It has a composition represented by the formula Pt x M1 y M2 1-xy (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x + y ⁇ 1).
- M1 is Ru or Ir and
- M2 is at least one selected from the group consisting of Ir, Rh, Ag, Cu and Au.
- M1 is Ir
- M2 is at least one selected from the group consisting of Rh, Pd, Ag, Cu and Au.
- Pt, M1 and M2 form a solid solution, Provided are solid solution nanoparticles.
- the present invention Provided is a catalyst containing the solid solution nanoparticles of the present invention.
- the present invention With solvent With the solid solution nanoparticles of the present invention dispersed in the solvent, Provided is a dispersion liquid of solid solution nanoparticles provided with.
- the present invention A method for producing solid solution nanoparticles having a composition represented by the formula Pt x M1 y M2 1-xy (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x + y ⁇ 1). It involves adding a solution containing a Pt salt, a salt of M1 and a salt of M2 to a liquid reducing agent heated to a temperature in the range of 150 ° C. or higher and 250 ° C. or lower for reaction.
- the salt of M1 is a Ru salt or an Ir salt.
- the salt of M2 contains at least one selected from the group consisting of Ir salt, Rh salt, Ag salt, Cu salt and Au salt.
- the salt of M1 is an Ir salt
- the salt of M2 contains at least one selected from the group consisting of Rh salt, Pd salt, Ag salt, Cu salt and Au salt.
- a method for producing solid solution nanoparticles is provided.
- FIG. 1 is a TEM image of PtRuIr solid solution nanoparticles supported on ZrO 2 of Example 1.
- FIG. 2A is a HAADF-STEM image of PtRuIr solid solution nanoparticles supported on ZrO 2 of Example 1.
- FIG. 2B shows the result of elemental mapping of Pt in Example 1.
- FIG. 2C shows the result of elemental mapping of Ir in Example 1.
- FIG. 2D shows the result of elemental mapping of Ru in Example 1.
- FIG. 3A is a STEM image of PtRuIr solid solution nanoparticles subjected to EDX ray analysis.
- FIG. 3B is a graph showing the results of EDX ray analysis.
- FIG. 4 is a TEM image of Pt nanoparticles supported on ZrO 2 of Reference Example 1.
- FIG. 5 is a TEM image of Ru nanoparticles supported on ZrO 2 of Reference Example 2.
- FIG. 6 is a TEM image of Ir nanoparticles supported on ZrO 2 of Reference Example 3.
- FIG. 7 is a TEM image of Pd nanoparticles supported on ZrO 2 of Reference Example 4.
- FIG. 8 is a graph showing the evaluation of the methane oxidation activity of the catalysts of Examples, Reference Examples and Comparative Examples.
- FIG. 9 is a graph showing the evaluation of the methane oxidation activity of the catalysts of Examples 1 to 6.
- FIG. 10 is a triangular graph showing the relationship between the methane conversion rate at 400 ° C. and the composition of the solid solution nanoparticles.
- FIG. 10 is a triangular graph showing the relationship between the methane conversion rate at 400 ° C. and the composition of the solid solution nanoparticles.
- FIG. 11A is a graph showing the time course of methane oxidation activity at 400 ° C.
- FIG. 11B is a graph showing the time course of methane oxidation activity at 400 ° C.
- FIG. 12 is a graph showing the time course of the methane oxidation activity of the catalysts of Examples 3, 5 and 7 at 400 ° C.
- FIG. 13A is a graph showing the measurement results of NH 3-TPD.
- FIG. 13B is a graph showing the measurement results of CO 2-TPD.
- FIG. 14 is a TEM image of PtIrPd solid solution nanoparticles of Example 8.
- FIG. 15 is an X-ray diffraction pattern of the PtIrPd solid solution nanoparticles of Example 8.
- FIG. 16 is a TEM image of PtIrPdRh solid solution nanoparticles of Example 9.
- FIG. 17 is an X-ray diffraction pattern of the PtIrPdRh solid solution nanoparticles
- Patent Documents 1 to 4 disclose catalysts using a plurality of precious metals. These catalysts are produced by impregnating a carrier with an aqueous solution containing a plurality of noble metal salts, and then calcining the carrier in air at 550 to 600 ° C. for 3 to 6 hours. This method is called the impregnation method. According to the impregnation method, it is presumed that the plurality of noble metals constituting the catalyst exist in the state of simple noble metal particles without alloying, or form noble metal particles having a variable and non-uniform composition. Therefore, the catalyst produced by the impregnation method cannot sufficiently exert the effect of alloying.
- methane when the main component of hydrocarbons in exhaust gas is methane, such as combustion exhaust gas of natural gas, methane has high chemical stability, so oxidative decomposition of hydrocarbons (removal of methane) proceeds sufficiently. It's not easy to get it done. Further, there is also a problem that the activity of the catalyst decreases with time due to the precipitation of a reaction inhibitor such as sulfur oxide (SOx) derived from the sulfur compound contained in the fuel on the surface of the catalyst.
- SOx sulfur oxide
- the present inventors have found that solid solution nanoparticles in which metals that normally do not dissolve in solid solution are solid-solved can be produced, and that the solid solution nanoparticles can be used as a novel catalyst.
- the present invention is based on this new finding.
- the present invention reveals that by mixing and alloying Pt with various metals, it is possible to adjust the catalytic activity of Pt on a nanoscale, which was difficult in the past.
- This demonstrates the new industrial applicability of Pt as a catalyst.
- the following embodiments show one aspect of Pt in which such catalytic activity is adjusted at the nano level.
- the solid solution nanoparticles of the present embodiment have a composition represented by the following formula (1).
- M1 is Ru or Ir.
- M2 is at least one selected from the group consisting of Ir, Rh, Ag, Cu and Au.
- M1 is Ir, M2 is at least one selected from the group consisting of Rh, Pd, Ag, Cu and Au.
- Pt, M1 and M2 form a solid solution. In other words, Pt, M1 and M2 are in solid solution with each other at the atomic level. In the solid solution nanoparticles, a region in which each element is uniformly distributed is included. It is preferable that each element is uniformly distributed throughout the solid solution nanoparticles.
- a solid solution is one form included in the concept of alloy, and means a state in which constituent elements are mixed at the atomic level.
- alloy means an alloy in a broad sense that includes not only solid solutions but also non-solid solutions.
- the local alloy composition is uniform in a solid solution, whereas it is not uniform in a non-solid solution system.
- the physical characteristics of alloys generally differ depending on whether a plurality of metal elements are mixed as a solid solution alloy as a whole at the atomic level or simply form a non-solid solution type alloy.
- the solid solution nanoparticles of this embodiment can be precious metal nanoparticles.
- Cu is not classified as a noble metal, but is treated as a noble metal in the present specification.
- the noble metal nanoparticles are a solid solution
- element mapping by energy dispersive X-ray analysis (EDX) using a scanning transmission electron microscope (STEM), EDX ray analysis, and X-ray diffraction (XRD) are performed.
- Structural analysis and the like can be mentioned.
- the average particle size of the solid solution nanoparticles of the present embodiment may be in the range of 0.5 nm or more and 100 nm or less, or may be in the range of 1 nm or more and 10 nm or less. When the average particle size is small enough, the solid solution nanoparticles can exhibit high activity.
- the average particle size can be calculated from the electron microscope image of the solid solution nanoparticles. In the electron microscope image, the particle size (major axis) of a plurality of solid solution nanoparticles (for example, 100) is measured. The average value of the measured particle sizes represents the average particle size of the solid solution nanoparticles.
- x representing the content ratio of Pt satisfies, for example, 0.01 ⁇ x ⁇ 0.98.
- y representing the content ratio of M1 satisfies, for example, 0.01 ⁇ y ⁇ 0.98.
- (1-xy) representing the content ratio of M2 satisfies 0.01 ⁇ (1-xy) ⁇ 0.98.
- the respective content ratios of Pt, M1 and M2 are in the range of, for example, 1 mol% or more and 98 mol% or less based on the solid solution nanoparticles (100 mol%).
- the respective content ratios of Pt, M1 and M2 may be in the range of 5 mol% or more and 90 mol% or less, or may be in the range of 10 mol% or more and 80 mol% or less.
- the solid solution nanoparticles of this embodiment contain Pt as an essential component.
- Pt nanoparticles can be used in various applications such as electronic materials, magnetic materials, catalytic materials, pharmaceutical materials, cosmetic materials, food materials and the like.
- Pt is expensive. Therefore, if the function and activity equal to or higher than those of the Pt nanoparticles can be achieved while lowering the Pt content ratio, the solid solution nanoparticles having excellent economic efficiency can be provided.
- the solid solution nanoparticles of the present embodiment exhibit catalytic activity exceeding that of Pt nanoparticles.
- catalytic activity is only one function of solid solution nanoparticles.
- M1 can be Ru. Ru is cheaper than Pt and is suitable as a substitute element for Pt in solid solution nanoparticles.
- M1 may be Ir.
- Ir is an expensive precious metal like Pt, it often exhibits higher activity than Ru, and is suitable as a material for the solid solution nanoparticles of the present embodiment. By including Ir, the solid solution nanoparticles can exhibit higher activity.
- M1 may be Ru and M2 may be Ir.
- M1 may be Ru and M2 may be Ir.
- M2 may consist of 1 type, 2 types, 3 types, 4 types or 5 types of metal elements.
- the solid solution nanoparticles of the present embodiment are ternary solid solution nanoparticles. That is, in the formula (1), when M1 is Ru, M2 is Ir, Rh, Ag, Cu or Au. When M1 is Ir, M2 is Rh, Pd, Ag, Cu or Au. Compared with the quaternary system or the quaternary system, the production of the ternary solid solution nanoparticles is easy.
- M1 Ir and M2 is composed of three kinds of metal elements
- the content ratio of Pt can be in the range of 10 mol% or more and 30 mol% or less.
- Pt is considered to be the main component that influences the catalytic activity. Therefore, it is predicted that if the Pt content ratio is lowered, the catalytic activity is also lowered.
- catalysts containing solid solution nanoparticles exhibit the highest methane oxidative degradation activity when the Pt content is reduced. Specifically, the catalytic activity tends to increase as the Pt content ratio decreases to 50 mol%, 40 mol%, and 30 mol%. Regarding the lower limit, the catalytic activity tends to increase as the Pt content ratio increases to 5 mol% and 10 mol%. This becomes clear from the examples described later.
- the solid solution nanoparticles of the present embodiment can be suitably used as various catalysts.
- catalytic reactions include chemical reactions such as reduction reaction, oxidation reaction, dehydrogenation reaction, and coupling reaction.
- the catalyst of this embodiment can be used in a process or apparatus involving these catalytic reactions.
- Specific applications of the catalyst include environmental applications including purification of exhaust gas, electrode applications, and chemical process applications.
- catalysts are used in at least one reaction selected from the group consisting of nitrogen oxide reduction reactions, carbon monoxide oxidation reactions, hydrocarbon oxidation reactions, and volatile organic compound (VOC) oxidation reactions.
- VOC volatile organic compound
- catalysts are used in at least one reaction selected from the group consisting of hydrogen oxidation reactions, oxygen reduction reactions, and water electrolysis reactions.
- catalysts are used in at least one reaction selected from the group consisting of hydrogenation reactions of unsaturated hydrocarbons and dehydrogenation reactions of saturated or unsaturated hydrocarbons.
- the catalyst of the present embodiment can be suitably used for purifying the exhaust gas discharged from the heat engine, generating hydrogen in the fuel cell, and removing the volatile organic compounds.
- methane may be the main component of hydrocarbons in the exhaust gas, such as the combustion exhaust gas of natural gas.
- Methane has a greenhouse effect about 25 times that of carbon dioxide. Therefore, it is recommended to reduce the release of methane into the atmosphere as much as possible from the viewpoint of global environmental protection.
- the catalyst of this embodiment is suitable for oxidative decomposition of hydrocarbons, particularly methane. Although the chemical stability of methane is high, the catalyst of the present embodiment exhibits high activity, so that the oxidative decomposition of methane can proceed sufficiently at a relatively low temperature. In addition, the catalyst of the present embodiment is also excellent in durability against reaction inhibitors such as sulfur oxides (SO x). Examples of heat engines that use natural gas as fuel include gas turbines.
- the catalyst of this embodiment is suitable for a purification device for combustion exhaust gas of a gas turbine.
- the catalyst of the present embodiment may further include a carrier supporting solid solution nanoparticles.
- a carrier supporting solid solution nanoparticles By supporting the solid solution nanoparticles on the carrier, aggregation of the solid solution nanoparticles can be suppressed.
- the electronic interaction from the carrier can promote the adsorption and activation of the reaction molecule on the surface of the solid solution nanoparticles.
- the structure of the carrier is not particularly limited.
- the carrier is typically particles.
- the shape of the particles is not particularly limited, and particles having various shapes such as spherical, elliptical spherical, and scaly can be used.
- the material of the carrier is not particularly limited.
- the carrier material include oxides, nitrides, carbides, carbon materials, and metal materials.
- Oxides include silica, alumina, ceria, titania, zirconia, niobia, silica-alumina, titania-zirconia, ceria-zirconia, tin oxide, tungsten trioxide, molybdenum trioxide, tantalum pentaoxide, and strontium titanate.
- the oxide may be a metal oxide.
- nitride examples include boron nitride, silicon nitride, gallium nitride, indium nitride, aluminum nitride, zirconium nitride, vanadium nitride, tungsten nitride, molybdenum nitride, titanium nitride, and niobium nitride.
- the nitride may be a metal nitride.
- Examples of the carbide include silicon carbide, gallium carbide, indium carbide, aluminum carbide, zirconium carbide, vanadium carbide, tungsten carbide, molybdenum carbide, titanium carbide, niobium carbide, and boron carbide.
- the carbide may be a metal carbide.
- Examples of the carbon material include activated carbon, carbon black, graphite, carbon nanotubes, and activated carbon fiber.
- Examples of the metal material include pure metals such as iron, copper and aluminum, and alloys such as stainless steel. One kind or a combination of two or more kinds selected from these carriers can be used.
- metal oxide particles such as zirconia particles can be suitably used as a carrier.
- the metal oxide has a large specific surface area and is excellent in heat resistance, chemical stability, mechanical strength, and dispersibility.
- the carrier may contain at least one selected from the group consisting of SnO 2 , WO 3 , MoO 3 , Ta 2 O 5 , and Nb 2 O 5. Since these materials have excellent durability against SO x, they may have the effect of maintaining the activity of the catalyst for a long period of time.
- the carrier may contain any of these materials as a main component, or may be substantially composed of these materials.
- the "main component” means the component contained most in the mass ratio. By “substantially consisting of ", it means that no material other than a specific material is intentionally added except for unavoidable impurities.
- the solid solution nanoparticles may be used as a catalyst without being supported on a carrier.
- the solid solution nanoparticles may be protected with a protective agent.
- the solid solution nanoparticles having the composition represented by the formula (1) are produced through a step of adding a solution containing a Pt salt, a salt of M1 and a salt of M2 to a liquid reducing agent heated to a predetermined temperature T and reacting them. ..
- the composition of the solid solution nanoparticles can be controlled by adjusting the ratio of the metal salt as the raw material.
- a solution containing a Pt salt, a salt of M1 and a salt of M2 is prepared.
- the solution is typically an aqueous solution.
- the salt of M1 is Ru salt or Ir salt.
- the salt of M2 contains at least one selected from the group consisting of Ir salt, Rh salt, Ag salt, Cu salt and Au salt.
- the salt of M1 is an Ir salt
- the salt of M2 contains at least one selected from the group consisting of Rh salt, Pd salt, Ag salt, Cu salt and Au salt.
- the Pt salt, the salt of M1 and the salt of M2 can be water-soluble, respectively.
- Examples of the Pt salt, Ru salt, Ir salt, Rh salt, Pd salt, Ag salt, Cu salt and Au salt include the following salts.
- Pt K 2 PtCl 4 , (NH 4 ) 2 K 2 PtCl 4 , (NH 4 ) 2 PtCl 6 , Na 2 PtCl 6 , [Pt (NO 2 ) 2 (NH 3 ) 2 ]
- Ru Ruthenium halides such as RuCl 3 , RuBr 3 , Ruthenium nitrate
- Ir Iridium chloride, iridium acetylacetonate, potassium iridium cyanate, potassium iridium Rh: rhodium acetate, rhodium nitrate, rhodium chloride
- Pd K 2 PdCl 4 , Na 2 PdCl 4 , K 2 PdBr 4 , Na 2 PdBr 4 , Palladium nitrate Ag: Silver nitrate, Silver
- the Pt salt, the salt of M1 and the salt of M2 are weighed and added to water to prepare a solution. Acids or alkalis may be added to the water to adjust the pH of the solution.
- the temperature of the solution is, for example, room temperature (20 ° C. ⁇ 15 ° C.).
- the carrier to the solution.
- the timing of adding the carrier to the solution is not particularly limited.
- the reaction for forming the solid solution nanoparticles is allowed to proceed while the carrier is present in the solution, the solid solution nanoparticles can be directly supported on the carrier without using a protective agent such as a polymer.
- the liquid reducing agent and the solution are mixed to obtain a reaction solution.
- the liquid reducing agent and the solution are mixed by spraying the solution onto the liquid reducing agent heated to a predetermined temperature T.
- the reaction is allowed to proceed over a predetermined time t while maintaining the reaction solution at a predetermined temperature T.
- the solution may be added dropwise to the liquid reducing agent.
- the reaction solution is allowed to cool to perform solid-liquid separation, whereby solid solution nanoparticles having a desired composition can be obtained.
- the predetermined temperature T is, for example, in the range of 150 ° C. or higher and 250 ° C. or lower.
- the predetermined time t is, for example, in the range of 1 minute or more and 12 hours or less.
- the liquid reducing agent include polyhydric alcohols such as ethylene glycol, glycerin, diethylene glycol, and triethylene glycol.
- One or both of the liquid reducing agent and the solution may be preheated and mixed.
- the reaction solution may contain a protective agent.
- the protective agent has a role of suppressing the aggregation of solid solution nanoparticles.
- Protective agents include polymers, amines, and carboxylic acids. Polymers include poly (N-vinyl-2-pyrrolidone) (PVP) and polyethylene glycol (PEG). Examples of the amine include oleylamine. Examples of the carboxylic acid include oleic acid.
- the solid-liquid separation process may be omitted. That is, the solid solution nanoparticles may be provided in the form of a dispersion.
- the dispersion liquid contains a solvent and solid solution nanoparticles dispersed in the solvent. Depending on the application, it is desirable to provide solid solution nanoparticles in the form of a dispersion.
- Example 1 PtRuIr solid solution nanoparticles >> Dilute hydrochloric acid was prepared by adding 0.117 ml of hydrochloric acid to 40 ml of water. The pH of dilute hydrochloric acid was 1.64 and the temperature was 24.7 ° C. 0.1025 mmol of K 2 PtCl 4 was dissolved in 8 ml of dilute hydrochloric acid to obtain a Pt salt aqueous solution. 0.205 mmol of RuCl 3 ⁇ nH 2 O was dissolved in 8 ml of dilute hydrochloric acid to obtain an aqueous Ru salt solution.
- an aqueous NaOH solution was prepared by dissolving 1.3 mmol of NaOH in 2 ml of water.
- the pH of the triethylene glycol was adjusted to 7 by slowly adding an aqueous NaOH solution to 400 ml of triethylene glycol. Then, the triethylene glycol was heated to 232 ° C.
- the raw material solution was sprayed on the heated triethylene glycol over 19 minutes.
- the temperature of triethylene glycol at the time of spraying was 229 to 232 ° C.
- the reaction solution containing triethylene glycol and the raw material solution was stirred over 10 minutes while maintaining the temperature at 232 ° C.
- the precipitate was separated by centrifugation and washed with water. Then, the separated solid matter was vacuum dried. As a result, PtRuIr solid solution nanoparticles supported on ZrO 2 were obtained.
- composition analysis, TEM observation The composition of PtRuIr solid solution nanoparticles was identified using a fluorescent X-ray analyzer. The results are shown in Table 1. PtRuIr solid solution nanoparticles supported on ZrO 2 were observed by a transmission electron microscope. The obtained TEM image is shown in FIG.
- the amount of Pt supported was 1.08 wt%, which was almost the same as the target value (1 wt%).
- HfO 2 is an impurity inevitably contained in zirconia particles.
- the large particles are ZrO 2 particles.
- the small particles attached to the surface of the ZrO 2 particles are PtRuIr solid solution nanoparticles.
- the PtRuIr solid solution nanoparticles were uniformly attached to the surface of the ZrO 2 particles.
- the average particle size of the PtRuIr solid solution nanoparticles was 2.2 ⁇ 0.4 nm. In the notation of "A ⁇ Bnm", A represents the average particle size and B represents the standard deviation.
- FIGS. 2A to 2D The image by HAADF-STEM (High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy) and the result of element mapping are shown in FIGS. 2A to 2D.
- FIG. 2A shows a HAADF-STEM image.
- 2B, 2C and 2D show elemental mapping data for Pt, Ir and Ru, respectively.
- the results of the line analysis are shown in FIGS. 3A and 3B.
- FIG. 3B shows the results of line analysis of PtRuIr solid solution nanoparticles appearing in the STEM image of FIG. 3A.
- FIGS. 2B to 2D corresponds to the portion of small particles in FIG. 2A.
- PtRuIr solid solution nanoparticles were uniformly formed on the ZnO 2 particles.
- the results of the line analysis of FIGS. 3A and 3B show that Pt, Ir and Ru are not present separately from each other, but that Pt, Ir and Ru are uniformly distributed throughout the particles. .. That is, the data in FIGS. 2A-2D, 3A and 3B show that Pt, Ir and Ru are solid-solved at the atomic level in the PtRuIr nanoparticles.
- Examples 2 to 6 PtRuIr solid solution nanoparticles >> PtRuIr solid solution nanoparticles of Examples 2 to 6 having different composition ratios were prepared by the same method as in Example 1 except that the charging ratios of Pt salt, Ru salt and Ir salt were changed.
- the target composition in each example was as follows.
- the target value of the amount of Pt supported in each example was 1 wt%.
- Example 2 Pt 0.2 Ru 0.6 Ir 0.2
- Example 3 Pt 0.2 Ru 0.2 Ir 0.6
- Example 4 Pt 0.25 Ru 0.25 Ir 0.5
- Example 5 Pt 0.3 Ru 0.3 Ir 0.3
- Example 6 Pt 0.6 Ru 0.2 Ir 0.2
- the raw material solution was sprayed on 300 ml of triethylene glycol heated to 232 ° C. over 19 minutes.
- the temperature of triethylene glycol at the time of spraying was 228 to 233 ° C.
- the reaction solution containing triethylene glycol and the raw material solution was stirred over 10 minutes while maintaining the temperature at 230 ° C.
- the precipitate was separated by centrifugation and washed with water. Then, the separated solid matter was vacuum dried.
- the amount of Pt supported was 1.02 wt%, which was almost the same as the target value (1 wt%).
- FIG. 4 is a TEM image of Pt nanoparticles supported on ZrO 2 of Reference Example 1.
- the large particles are ZrO 2 particles.
- the small particles attached to the surface of the ZrO 2 particles are Pt nanoparticles.
- the average particle size of the Pt nanoparticles was 2.9 ⁇ 0.8 nm.
- Reference example 2 Ru nanoparticles >> Dilute hydrochloric acid was prepared by adding 0.088 ml of hydrochloric acid to 30 ml of water. 0.07689 mmol of RuCl 3 ⁇ nH 2 O was dissolved in 8 ml of dilute hydrochloric acid to obtain an aqueous Ru salt solution. Using an ultrasonic homogenizer, 1462.45 mg of ZrO 2 powder was dispersed in 12 ml of dilute hydrochloric acid to obtain a ZrO 2 dispersion. The Ru salt solution was added to ZrO 2 dispersion with stirring ZrO 2 dispersion, to obtain a raw material solution. Stirring of the raw material solution was continued for 15 minutes.
- the raw material solution was sprayed on the heated triethylene glycol over 13 minutes.
- the temperature of triethylene glycol at the time of spraying was 229 to 232 ° C.
- the reaction solution containing triethylene glycol and the raw material solution was stirred over 10 minutes while maintaining the temperature at 230 ° C.
- the precipitate was separated by centrifugation and washed with water. Then, the separated solid matter was vacuum dried.
- Ru nanoparticles supported on ZrO 2 were obtained.
- the amount of Ru carried was 0.43 wt%, which was almost the same as the target value (0.5 wt%).
- FIG. 5 is a TEM image of Ru nanoparticles supported on ZrO 2 of Reference Example 2.
- the large particles are ZrO 2 particles.
- the small particles attached to the surface of the ZrO 2 particles are Ru nanoparticles.
- the average particle size of the Ru nanoparticles was 4.2 ⁇ 0.8 nm.
- the raw material solution was sprayed on 300 ml of triethylene glycol heated to 232 ° C. over 12 minutes.
- the temperature of triethylene glycol at the time of spraying was 228 to 232 ° C.
- the reaction solution containing triethylene glycol and the raw material solution was stirred over 10 minutes while maintaining the temperature at 230 ° C.
- the precipitate was separated by centrifugation and washed with water. Then, the separated solid matter was vacuum dried.
- Ir nanoparticles supported on ZrO 2 were obtained.
- the amount of Ir carried was 1.1 wt%, which was almost the same as the target value (1 wt%).
- FIG. 6 is a TEM image of Ir nanoparticles supported on ZrO 2 of Reference Example 3.
- the large particles are ZrO 2 particles.
- the small particles attached to the surface of the ZrO 2 particles are Ir nanoparticles.
- the average particle size of the Ir nanoparticles was 1.3 ⁇ 0.3 nm.
- the raw material solution was sprayed on 300 ml of triethylene glycol heated to 232 ° C. over 22 minutes.
- the temperature of triethylene glycol at the time of spraying was 228 to 233 ° C.
- the reaction solution containing triethylene glycol and the raw material solution was stirred over 10 minutes while maintaining the temperature at 230 ° C.
- the precipitate was separated by centrifugation and washed with water. Then, the separated solid matter was vacuum dried.
- the amount of Pd supported was 1.06 wt%, which was almost the same as the target value (1 wt%).
- FIG. 7 is a TEM image of Pd nanoparticles supported on ZrO 2 of Reference Example 4.
- the large particles are ZrO 2 particles.
- the small particles attached to the surface of the ZrO 2 particles are Pd nanoparticles.
- the average particle size of the Pd nanoparticles was 3.9 ⁇ 0.8 nm.
- the methane oxidation activity of the catalysts of Example 5, Reference Examples 1 to 4 and Comparative Example 1 was evaluated using a fixed bed flow type reactor. First, a pellet-shaped 50 mg catalyst was filled in a quartz reaction tube having an inner diameter of 7 mm using quartz wool. A reaction gas (CH 4 : 0.1%, O 2 : 10%, SO 2 : 5 volppm, H 2 O: 3%, He: balance) that simulates the combustion exhaust gas of natural gas by connecting the reaction tube to the gas supply device. Gas) was supplied towards the catalyst.
- the catalyst was heated to 600 ° C. in the above reaction gas and held for 1 hour. Then, the temperature of the catalyst was lowered to 200 ° C., and the reaction gas was supplied at a flow rate of 100 ml / min. The temperature of the catalyst was increased by 50 ° C. from 200 ° C. to 600 ° C. The temperature of the catalyst was maintained at each temperature for 20 minutes, and the concentration of methane in the reaction gas that passed through the catalyst in a steady state was measured. The methane conversion rate (%) was calculated from the measured concentration. The results are shown in FIG. The "methane conversion rate" on the vertical axis indicates the ratio of oxidatively decomposed methane. The higher the methane conversion rate, the higher the methane-oxidizing activity of the catalyst.
- the methane conversion rate of the catalyst of Example 5 at 400 ° C. was 41% (FIG. 8).
- the methane conversion rate of the catalyst of Comparative Example 1 at 400 ° C. was 29%.
- the rate constant k was calculated based on the following formula, the rate constant of the catalyst of Example 5 was 4.71 ⁇ 10 -5 mol / min / g-cat.
- the rate constant of the catalyst of Comparative Example 1 was 3.06 ⁇ 10 -5 mol / min / g-cat.
- the rate constant of the catalyst of Example 5 was about 1.5 times the rate constant of the catalyst of Comparative Example 1.
- the PtRuIr catalyst of Example 5 (Pt 0.3 Ru 0.3 Ir 0.3 / ZnO 2 ) showed a high activity equal to or higher than that of the Pd catalyst of Reference Example 4. In the low temperature range of 350 to 500 ° C., the activity of the PtRuIr catalyst of Example 5 exceeded that of the catalyst of Comparative Example 1.
- the activity of the PtRuIr catalyst of Example 5 was significantly higher than that of the Pt catalyst, Ru catalyst and Ir catalyst of Reference Examples 1 to 3.
- the methane conversion rates of the Pt catalyst, Ru catalyst and Ir catalyst of Reference Examples 1 to 3 were less than 10%.
- the methane conversion rate of the catalyst of Example 5 at 400 ° C. was about 40%.
- 400 ° C is, for example, a temperature sufficiently lower than the temperature of the exhaust gas of a general gas turbine. Therefore, it can be said that a catalyst capable of exhibiting sufficient activity at 400 ° C. is suitable for use in removing methane from the exhaust gas of a gas turbine.
- the total supported amount (wt%) of the noble metal is different from each other.
- the amount of Pt supported is equal at 1 wt%.
- the activity at 400 ° C. methane conversion rate
- the activity of the PtRuIr catalyst of Example 1 Pt 0.2 Ru 0.4 Ir 0.4
- the activity of the PtRuIr catalyst of Example 6 Pt 0.6 Ru 0.2 Ir 0.2
- the amount of Pt supported in Example 1 and the amount of Pt supported in Example 6 are approximately 1 wt% and equal. When the Pt content was relatively low, the PtRuIr catalyst showed high activity.
- the PtRuIr catalyst having various compositions has the same tendency as that of the above example. Presumed to show.
- FIG. 10 is a triangular graph showing the relationship between the methane conversion rate at 400 ° C. and the composition of the solid solution nanoparticles.
- the PtRuIr catalyst showed the highest activity (77.3%).
- the catalytic activity tended to increase as the Pt content ratio decreased to 50 mol%, 40 mol%, and 30 mol%.
- the catalytic activity tended to increase as the Pt content ratio increased to 5 mol% and 10 mol%. Therefore, the upper limit of the Pt content ratio in the PtRuIr solid solution nanoparticles is, for example, 50 mol%, 40 mol% or 30 mol%.
- the lower limit of the Pt content ratio in the PtRuIr solid solution nanoparticles is, for example, 5 mol% or 10 mol%.
- the content ratio of Pt in the PtRuIr solid solution nanoparticles may be in the range of 10 mol% or more and 30 mol% or less.
- Example 1 The activity of the catalysts of Example 1, Example 5, and Comparative Example 1 was substantially constant over the test period of 30 hours, respectively. This result indicates that the PtRuIr catalyst is less susceptible to sulfur poisoning. Moreover, the activity of the catalysts of Examples 1 and 5 was much higher than that of the catalyst of Comparative Example 1.
- the activity of the catalysts of Reference Examples 1 to 3 decreased slightly with the passage of time. However, the activity of the catalysts of Reference Examples 1 to 3 was low from the initial stage. Comparing the rate of decrease based on the initial activity, the rate of decrease in the activity of the catalysts of Reference Examples 1 to 3 was large. This indicates that Pt, Ru and Ir are also subject to sulfur poisoning, though not as much as Pd. Since the activity of the catalyst of Example 1 was hardly reduced, it is considered that the PtRuIr catalyst newly acquired excellent durability against sulfur poisoning by forming a solid solution of Pt, Ru and Ir.
- Example 7 PtRuIr solid solution nanoparticles / SnO 2 >> The same method as in Example 5 except that 1438.5 mg of SnO 2 powder was used instead of ZrO 2 powder and the amount of metal salt charged was adjusted so that the total amount of metal after support was 4.1 wt%. Obtained PtRuIr solid solution nanoparticles supported on SnO 2. That is, the composition of the PtRuIr solid solution nanoparticles in Example 7 is Pt 0.3 Ru 0.3 Ir 0.3 .
- Example 3 catalyst (Pt 0.2 Ru 0.2 Ir 0.6 / ZrO 2 ) 200 mg 50 mg of catalyst of Example 5 (Pt 0.3 Ru 0.3 Ir 0.3 / ZrO 2)
- Example 7 catalyst (Pt 0.3 Ru 0.3 Ir 0.3 / SnO 2 ) 200 mg
- Example 7 catalyst (Pt 0.3 Ru 0.3 Ir 0.3 / SnO 2 ) 50 mg
- FIG. 12 is a graph showing the time course of the methane oxidation activity of the catalysts of Examples 3, 5 and 7 at 400 ° C.
- the initial activity (0 to 50 hours) of 200 mg of the catalyst of Example 3 using ZrO 2 as a carrier was superior to the initial activity of 200 mg of the catalyst of Example 7 using SnO 2 as a carrier.
- the activity of the catalyst of Example 7 exceeded that of the catalyst of Sample 1. That is, the catalyst using SnO 2 as a carrier was excellent in durability.
- the composition of the PtRuIr solid solution nanoparticles in the catalyst of Example 5 is the same as the composition of the PtRuIr solid solution nanoparticles in the catalyst of Example 7.
- the activity of 50 mg of the catalyst of Example 5 decreased immediately after the start of the test, and then remained around 40%.
- 50 mg of the catalyst of Example 7 maintained the initial activity (60%) even after the lapse of 100 hours. That is, the catalyst using SnO 2 as a carrier was excellent in durability.
- Preprocessing 100 mg of ZrO 2 particles or SnO 2 particles were filled in a reaction tube as a sample, the temperature was raised to 600 ° C. while flowing Ar, and Ar treatment was carried out over 30 minutes. Then, after switching to 100% O 2 and performing the treatment for 30 minutes, switching to Ar and performing the treatment for 30 minutes. The sample was then cooled to 100 ° C. (NH 3- TPD) or 50 ° C. (CO 2-TPD). NH 3 at a concentration of 0.5 vol% for 1 hour at -TPD at 100 ° C. was circulated NH 3 / Ar mixed gas containing NH 3 and was adsorbed NH 3 in the sample.
- CO 2- TPD a CO 2 / Ar mixed gas containing 0.5 vol% concentration of CO 2 was circulated at 50 ° C. for 1 hour to adsorb CO 2 to the sample. Then, it was switched to Ar, and the physically adsorbed species was desorbed from the sample over 30 minutes.
- FIG. 13A is a graph showing the measurement results of NH 3-TPD.
- FIG. 13B is a graph showing the measurement results of CO 2-TPD.
- the horizontal axis shows the temperature of the sample.
- the vertical axis shows the MS signal intensity.
- ZrO 2 showed desorption of NH 3 and CO 2 over a wide temperature range. That is, ZrO 2 had both an acid point and a base point.
- SnO 2 showed desorption of NH 3 over a wide temperature range, but showed almost no desorption of CO 2.
- No CO 2 signal was detected above 200 ° C. That is, there were almost no base points in SnO 2.
- Example 8 PtIrPd solid solution nanoparticles >> Using an ultrasonic homogenizer, 0.3 mmol of K 2 PtCl 4 , 0.3 mmol of IrCl 4 ⁇ nH 2 O, and 0.3 mmol of K 2 PdCl 4 were dissolved in 40 ml of water. As a result, a raw material liquid containing a noble metal salt was obtained.
- composition analysis, TEM observation The composition of PtIrPd solid solution nanoparticles was identified using a fluorescent X-ray analyzer. The results are shown in Table 2. PtIrPd solid solution nanoparticles were observed with a transmission electron microscope. The obtained TEM image is shown in FIG.
- the quantitative result (wt%) is a value calculated on the assumption that the balance other than the precious metal is PVP.
- FIG. 14 is a TEM image of the PtIrPd solid solution nanoparticles of Example 8. As shown in FIG. 14, nano-sized PtIrPd solid solution nanoparticles were obtained. The average particle size of the PtIrPd solid solution nanoparticles was 4.4 ⁇ 0.9 nm. The average particle size was calculated by measuring the particle size (major axis) of the particles (100 particles) in the TEM image and calculating the average. A in the notation A ⁇ Bnm represents the average particle size, and B represents the standard deviation. "Major axis" means the longest distance between two points on the outer edge of a particle.
- FIG. 15 is an X-ray diffraction pattern of the PtIrPd solid solution nanoparticles of Example 8.
- X-ray diffraction measurement was performed at room temperature using CuK ⁇ rays.
- the X-ray diffraction pattern showed a single fcc pattern. This indicates that the sample is a solid solution rather than a mixture of Pt, Ir and Pd.
- the lattice constant of each single noble metal is Since they are different, a plurality of fcc patterns having different peak positions are observed.
- the lattice constant is determined by the composition ratio of each element and the atomic radius to a single value, so that only a single fcc pattern is observed.
- Example 9 PtIrPdRh solid solution nanoparticles >> Using an ultrasonic homogenizer, 0.25mmol of K 2 PtCl 4, IrCl 4 ⁇ nH 2 O of 0.25mmol, K 2 PdCl 4 of 0.25mmol, and RhCl 3 ⁇ 3H 2 O of 0.25mmol in 40ml water was dissolved in. As a result, a raw material liquid containing a noble metal salt was obtained.
- composition analysis, TEM observation The composition of PtIrPdRh solid solution nanoparticles was identified using a fluorescent X-ray analyzer. The results are shown in Table 3. PtIrPdRh solid solution nanoparticles were observed with a transmission electron microscope. The obtained TEM image is shown in FIG.
- the quantitative result (wt%) is a value calculated on the assumption that the balance other than the precious metal is PVP.
- FIG. 16 is a TEM image of the PtIrPdRh solid solution nanoparticles of Example 9. As shown in FIG. 16, nano-sized PtIrPdRh solid solution nanoparticles were obtained. The average particle size of the PtIrPdRh solid solution nanoparticles was 3.9 ⁇ 1.2 nm.
- FIG. 17 is an X-ray diffraction pattern of the PtIrPdRh solid solution nanoparticles of Example 9.
- the X-ray diffraction pattern showed a single fcc pattern. This indicates that the sample is a solid solution rather than a mixture of Pt, Ir, Pd and Rh.
- the lattice constant of each single noble metal is Since they are different, a plurality of fcc patterns having different peak positions are observed.
- the lattice constant is determined by the composition ratio of each element and the atomic radius to a single value, so that only a single fcc pattern is observed.
- the solid solution nanoparticles of the present invention are useful as electronic materials, magnetic materials, catalyst materials, pharmaceutical materials, cosmetic materials or food materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Toxicology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
Abstract
The solid solution nanoparticles according to the present invention have a compositional makeup represented by formula PtxM1yM21-x-y (0<x<1, 0<y<1, x+y<1). M1 represents Ru or Ir. When M1 represents Ru, M2 represents at least one selected from the group consisting of Ir, Rh, Ag, Cu, and Au. When M1 represents Ir, M2 represents at least one selected from the group consisting of Rh, Pd, Ag, Cu, and Au. Pt, M1, and M2 form a solid solution.
Description
本発明は、固溶体ナノ粒子、その製造方法、固溶体ナノ粒子の分散液及び触媒に関する。
The present invention relates to solid solution nanoparticles, a method for producing the same, a dispersion of solid solution nanoparticles, and a catalyst.
Ptナノ粒子などの貴金属ナノ粒子は、バルク体とは異なる光学的性質、電気的性質、化学的性質を示すことが知られており、電子材料、磁性材料、触媒材料、医薬品材料、化粧品材料又は食料品材料として、様々な分野で使用されている。
Precious metal nanoparticles such as Pt nanoparticles are known to exhibit different optical, electrical, and chemical properties than bulk nanoparticles, and are known to exhibit electronic, magnetic, catalytic, pharmaceutical, cosmetic, or cosmetic materials. It is used in various fields as a food material.
特許文献1~4に記載されているように、触媒は、貴金属ナノ粒子の最もよく知られた用途の1つである。
As described in Patent Documents 1-4, catalysts are one of the most well-known uses of precious metal nanoparticles.
特許文献5には、抗酸化剤として貴金属ナノ粒子を使用することが記載されている。
Patent Document 5 describes that noble metal nanoparticles are used as an antioxidant.
特許文献6には、造影剤の材料として貴金属ナノ粒子を使用することが記載されている。
Patent Document 6 describes that noble metal nanoparticles are used as a material for a contrast medium.
貴金属ナノ粒子の中でも、Ptナノ粒子は、様々な効果を発揮するので有用性が高い。所望の効果を向上させるために、Pt以外の貴金属をPtと合金化することが考えられる。
Among the precious metal nanoparticles, Pt nanoparticles are highly useful because they exert various effects. It is conceivable to alloy a noble metal other than Pt with Pt in order to improve the desired effect.
ただし、PtRhのような特定の組み合わせを除き、貴金属元素の組み合わせの多くは、完全な全率固溶型の合金状態図を示さない。例えば、PtIrは、高温では全率固溶体を形成するが、1370℃以下の広い組成範囲で不混和である。同様に、PtRu及びIrRuも全温度領域において、15atom%程度の不混和な組成範囲を持つ。そのため、複数の貴金属塩を含む溶液を用いて従来の還元法で貴金属ナノ粒子を合成したとしても、単体の貴金属ナノ粒子の混合物が得られるだけである。
However, except for specific combinations such as PtRh, many combinations of noble metal elements do not show a complete total rate solid-state alloy phase diagram. For example, PtIr forms a total solid solution at high temperatures, but is immiscible over a wide composition range of 1370 ° C. or lower. Similarly, PtRu and IrRu also have an immiscible composition range of about 15 atom% in the entire temperature range. Therefore, even if noble metal nanoparticles are synthesized by a conventional reduction method using a solution containing a plurality of noble metal salts, only a mixture of simple noble metal nanoparticles can be obtained.
合金状態図から予測し得ない固溶体型の金属ナノ粒子を得ることができれば、金属ナノ粒子の既存の用途における所望の効果の向上を期待できる。新たな物性の発現及び新たな物性に基づく金属ナノ粒子の用途の拡大も期待できる。
If solid solution type metal nanoparticles that cannot be predicted from the alloy phase diagram can be obtained, it can be expected that the desired effect of the metal nanoparticles in existing applications will be improved. It is expected that new physical properties will be developed and the applications of metal nanoparticles based on the new physical properties will be expanded.
本発明は、新規な固溶体ナノ粒子、その製造方法、固溶体ナノ粒子の分散液、及び、固溶体ナノ粒子を用いた触媒を提供することを目的とする。
An object of the present invention is to provide a novel solid solution nanoparticles, a method for producing the same, a dispersion liquid of the solid solution nanoparticles, and a catalyst using the solid solution nanoparticles.
本発明は、
式PtxM1yM21-x-y(0<x<1、0<y<1、x+y<1)によって表される組成を有し、
M1は、Ru又はIrであり、
M1がRuのとき、M2は、Ir、Rh、Ag、Cu及びAuからなる群より選ばれる少なくとも1種であり、
M1がIrのとき、M2は、Rh、Pd、Ag、Cu及びAuからなる群より選ばれる少なくとも1種であり、
Pt、M1及びM2は、固溶体を形成している、
固溶体ナノ粒子を提供する。 The present invention
It has a composition represented by the formula Pt x M1 y M2 1-xy (0 <x <1, 0 <y <1, x + y <1).
M1 is Ru or Ir and
When M1 is Ru, M2 is at least one selected from the group consisting of Ir, Rh, Ag, Cu and Au.
When M1 is Ir, M2 is at least one selected from the group consisting of Rh, Pd, Ag, Cu and Au.
Pt, M1 and M2 form a solid solution,
Provided are solid solution nanoparticles.
式PtxM1yM21-x-y(0<x<1、0<y<1、x+y<1)によって表される組成を有し、
M1は、Ru又はIrであり、
M1がRuのとき、M2は、Ir、Rh、Ag、Cu及びAuからなる群より選ばれる少なくとも1種であり、
M1がIrのとき、M2は、Rh、Pd、Ag、Cu及びAuからなる群より選ばれる少なくとも1種であり、
Pt、M1及びM2は、固溶体を形成している、
固溶体ナノ粒子を提供する。 The present invention
It has a composition represented by the formula Pt x M1 y M2 1-xy (0 <x <1, 0 <y <1, x + y <1).
M1 is Ru or Ir and
When M1 is Ru, M2 is at least one selected from the group consisting of Ir, Rh, Ag, Cu and Au.
When M1 is Ir, M2 is at least one selected from the group consisting of Rh, Pd, Ag, Cu and Au.
Pt, M1 and M2 form a solid solution,
Provided are solid solution nanoparticles.
別の側面において、本発明は、
上記本発明の固溶体ナノ粒子を含む、触媒を提供する。 In another aspect, the present invention
Provided is a catalyst containing the solid solution nanoparticles of the present invention.
上記本発明の固溶体ナノ粒子を含む、触媒を提供する。 In another aspect, the present invention
Provided is a catalyst containing the solid solution nanoparticles of the present invention.
さらに別の側面において、本発明は、
溶媒と、
前記溶媒に分散した上記本発明の固溶体ナノ粒子と、
を備えた、固溶体ナノ粒子の分散液を提供する。 In yet another aspect, the present invention
With solvent
With the solid solution nanoparticles of the present invention dispersed in the solvent,
Provided is a dispersion liquid of solid solution nanoparticles provided with.
溶媒と、
前記溶媒に分散した上記本発明の固溶体ナノ粒子と、
を備えた、固溶体ナノ粒子の分散液を提供する。 In yet another aspect, the present invention
With solvent
With the solid solution nanoparticles of the present invention dispersed in the solvent,
Provided is a dispersion liquid of solid solution nanoparticles provided with.
さらに別の側面において、本発明は、
式PtxM1yM21-x-y(0<x<1、0<y<1、x+y<1)によって表される組成を有する固溶体ナノ粒子の製造方法であって、
Pt塩、M1の塩及びM2の塩を含む溶液を150℃以上250℃以下の範囲の温度に加熱した液体還元剤に加えて反応させることを含み、
前記M1の塩は、Ru塩又はIr塩であり、
前記M1の塩がRu塩のとき、前記M2の塩は、Ir塩、Rh塩、Ag塩、Cu塩及びAu塩からなる群より選ばれる少なくとも1種を含み、
前記M1の塩がIr塩のとき、前記M2の塩は、Rh塩、Pd塩、Ag塩、Cu塩及びAu塩からなる群より選ばれる少なくとも1種を含む、
固溶体ナノ粒子の製造方法を提供する。 In yet another aspect, the present invention
A method for producing solid solution nanoparticles having a composition represented by the formula Pt x M1 y M2 1-xy (0 <x <1, 0 <y <1, x + y <1).
It involves adding a solution containing a Pt salt, a salt of M1 and a salt of M2 to a liquid reducing agent heated to a temperature in the range of 150 ° C. or higher and 250 ° C. or lower for reaction.
The salt of M1 is a Ru salt or an Ir salt.
When the salt of M1 is Ru salt, the salt of M2 contains at least one selected from the group consisting of Ir salt, Rh salt, Ag salt, Cu salt and Au salt.
When the salt of M1 is an Ir salt, the salt of M2 contains at least one selected from the group consisting of Rh salt, Pd salt, Ag salt, Cu salt and Au salt.
Provided is a method for producing solid solution nanoparticles.
式PtxM1yM21-x-y(0<x<1、0<y<1、x+y<1)によって表される組成を有する固溶体ナノ粒子の製造方法であって、
Pt塩、M1の塩及びM2の塩を含む溶液を150℃以上250℃以下の範囲の温度に加熱した液体還元剤に加えて反応させることを含み、
前記M1の塩は、Ru塩又はIr塩であり、
前記M1の塩がRu塩のとき、前記M2の塩は、Ir塩、Rh塩、Ag塩、Cu塩及びAu塩からなる群より選ばれる少なくとも1種を含み、
前記M1の塩がIr塩のとき、前記M2の塩は、Rh塩、Pd塩、Ag塩、Cu塩及びAu塩からなる群より選ばれる少なくとも1種を含む、
固溶体ナノ粒子の製造方法を提供する。 In yet another aspect, the present invention
A method for producing solid solution nanoparticles having a composition represented by the formula Pt x M1 y M2 1-xy (0 <x <1, 0 <y <1, x + y <1).
It involves adding a solution containing a Pt salt, a salt of M1 and a salt of M2 to a liquid reducing agent heated to a temperature in the range of 150 ° C. or higher and 250 ° C. or lower for reaction.
The salt of M1 is a Ru salt or an Ir salt.
When the salt of M1 is Ru salt, the salt of M2 contains at least one selected from the group consisting of Ir salt, Rh salt, Ag salt, Cu salt and Au salt.
When the salt of M1 is an Ir salt, the salt of M2 contains at least one selected from the group consisting of Rh salt, Pd salt, Ag salt, Cu salt and Au salt.
Provided is a method for producing solid solution nanoparticles.
本発明によれば、新規な固溶体ナノ粒子、その製造方法、固溶体ナノ粒子の分散液、及び、固溶体ナノ粒子を用いた触媒を提供できる。
According to the present invention, it is possible to provide a novel solid solution nanoparticles, a method for producing the same, a dispersion liquid of the solid solution nanoparticles, and a catalyst using the solid solution nanoparticles.
従来から、Ptの触媒活性を調整する手段として、Ptを担体に担持させることが知られている。これにより、Ptの比表面積を増加させたり、Ptと担体との相互作用により触媒活性を変化させたりすることができる利点がある。
Conventionally, it has been known to support Pt on a carrier as a means for adjusting the catalytic activity of Pt. This has the advantage that the specific surface area of Pt can be increased and the catalytic activity can be changed by the interaction between Pt and the carrier.
特許文献1~4には、複数の貴金属を用いた触媒が開示されている。それらの触媒は、複数の貴金属塩を含む水溶液を担体に含浸させたのち、空気中、550~600℃、3~6時間の条件で担体を焼成することによって作製される。この方法は、含浸法と呼ばれる。含浸法によれば、触媒を構成する複数の貴金属は、合金化せずに単体の貴金属粒子の状態で存在したり、ばらつきのある不均一な組成の貴金属粒子を形成したりすると推測される。そのため、含浸法によって作製された触媒は、合金化による効果を十分に発揮し得ない。
Patent Documents 1 to 4 disclose catalysts using a plurality of precious metals. These catalysts are produced by impregnating a carrier with an aqueous solution containing a plurality of noble metal salts, and then calcining the carrier in air at 550 to 600 ° C. for 3 to 6 hours. This method is called the impregnation method. According to the impregnation method, it is presumed that the plurality of noble metals constituting the catalyst exist in the state of simple noble metal particles without alloying, or form noble metal particles having a variable and non-uniform composition. Therefore, the catalyst produced by the impregnation method cannot sufficiently exert the effect of alloying.
例えば、天然ガスの燃焼排ガスのように、排ガス中の炭化水素の主成分がメタンである場合、メタンが高い化学的安定性を有するため、炭化水素の酸化分解(メタンの除去)を十分に進行させることは容易ではない。また、燃料に含まれた硫黄化合物に由来する硫黄酸化物(SOx)などの反応阻害物質が触媒の表面に析出することによって、触媒の活性が経時的に低下するという問題もある。
For example, when the main component of hydrocarbons in exhaust gas is methane, such as combustion exhaust gas of natural gas, methane has high chemical stability, so oxidative decomposition of hydrocarbons (removal of methane) proceeds sufficiently. It's not easy to get it done. Further, there is also a problem that the activity of the catalyst decreases with time due to the precipitation of a reaction inhibitor such as sulfur oxide (SOx) derived from the sulfur compound contained in the fuel on the surface of the catalyst.
本発明者らは、通常は固溶しない金属同士が固溶した固溶体ナノ粒子を製造できること、及び、その固溶体ナノ粒子を新規な触媒として使用できることを見出した。本発明は、この新たな知見に基づくものである。
The present inventors have found that solid solution nanoparticles in which metals that normally do not dissolve in solid solution are solid-solved can be produced, and that the solid solution nanoparticles can be used as a novel catalyst. The present invention is based on this new finding.
詳細には、本発明は、Ptに種々の金属を混合して合金化させることによって、従来では困難であったナノスケールでのPtの触媒活性の調整が可能であることを明らかにする。これは、Ptの触媒としての新たな産業上の利用可能性を示すものである。以下の実施形態は、このような触媒活性がナノレベルで調整されたPtの一態様を示すものである。
In detail, the present invention reveals that by mixing and alloying Pt with various metals, it is possible to adjust the catalytic activity of Pt on a nanoscale, which was difficult in the past. This demonstrates the new industrial applicability of Pt as a catalyst. The following embodiments show one aspect of Pt in which such catalytic activity is adjusted at the nano level.
(実施形態)
以下、本発明の実施形態について、図面を参照しながら説明する。本発明は、以下の実施形態に限定されない。 (Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments.
以下、本発明の実施形態について、図面を参照しながら説明する。本発明は、以下の実施形態に限定されない。 (Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments.
本実施形態の固溶体ナノ粒子は、下記式(1)によって表される組成を有する。
The solid solution nanoparticles of the present embodiment have a composition represented by the following formula (1).
PtxM1yM21-x-y・・・(1)
Pt x M1 y M2 1-xy ... (1)
式(1)において、x及びyは、0<x<1、0<y<1及びx+y<1を満たす。M1は、Ru又はIrである。M1がRuのとき、M2は、Ir、Rh、Ag、Cu及びAuからなる群より選ばれる少なくとも1種である。M1がIrのとき、M2は、Rh、Pd、Ag、Cu及びAuからなる群より選ばれる少なくとも1種である。Pt、M1及びM2は、固溶体を形成している。言い換えれば、Pt、M1及びM2は、原子レベルで互いに固溶している。固溶体ナノ粒子において、各元素が均一に分布している領域が含まれる。固溶体ナノ粒子の全体において、各元素が均一に分布していることが好ましい。
In the formula (1), x and y satisfy 0 <x <1, 0 <y <1 and x + y <1. M1 is Ru or Ir. When M1 is Ru, M2 is at least one selected from the group consisting of Ir, Rh, Ag, Cu and Au. When M1 is Ir, M2 is at least one selected from the group consisting of Rh, Pd, Ag, Cu and Au. Pt, M1 and M2 form a solid solution. In other words, Pt, M1 and M2 are in solid solution with each other at the atomic level. In the solid solution nanoparticles, a region in which each element is uniformly distributed is included. It is preferable that each element is uniformly distributed throughout the solid solution nanoparticles.
固溶体とは、合金の概念に含まれる1つの形態であり、構成元素が原子レベルで混ざり合った状態を意味する。一般に、「合金」の語句は、固溶体だけでなく、非固溶系の合金も広く含んだ広義の合金を意味する。局所的な合金組成は、固溶体では均一であるのに対し、非固溶系では均一ではない。複数種の金属元素が全体的に固溶体合金として原子レベルで混ざり合っているのか、単に非固溶系の合金を形成しているのかに応じて、合金の物性は一般的には異なる。
A solid solution is one form included in the concept of alloy, and means a state in which constituent elements are mixed at the atomic level. In general, the term "alloy" means an alloy in a broad sense that includes not only solid solutions but also non-solid solutions. The local alloy composition is uniform in a solid solution, whereas it is not uniform in a non-solid solution system. The physical characteristics of alloys generally differ depending on whether a plurality of metal elements are mixed as a solid solution alloy as a whole at the atomic level or simply form a non-solid solution type alloy.
本実施形態の固溶体ナノ粒子は、貴金属ナノ粒子でありうる。一般に、Cuは貴金属に分類されないが、本明細書では貴金属として取り扱う。
The solid solution nanoparticles of this embodiment can be precious metal nanoparticles. Generally, Cu is not classified as a noble metal, but is treated as a noble metal in the present specification.
貴金属ナノ粒子が固溶体であることを確かめるための手法として、走査透過型電子顕微鏡(STEM)を用いたエネルギー分散型X線分析(EDX)による元素マッピング、EDX線分析、X線回折(XRD)による構造解析などが挙げられる。
As a method for confirming that the noble metal nanoparticles are a solid solution, element mapping by energy dispersive X-ray analysis (EDX) using a scanning transmission electron microscope (STEM), EDX ray analysis, and X-ray diffraction (XRD) are performed. Structural analysis and the like can be mentioned.
本実施形態の固溶体ナノ粒子の平均粒径は、0.5nm以上100nm以下の範囲にあってもよく、1nm以上10nm以下の範囲にあってもよい。平均粒径が十分に小さいとき、固溶体ナノ粒子は、高い活性を示しうる。平均粒径は、固溶体ナノ粒子の電子顕微鏡像から算出することが可能である。電子顕微鏡像において、複数の固溶体ナノ粒子(例えば100個)の粒径(長径)を測定する。測定された粒径の平均値は、固溶体ナノ粒子の平均粒径を表す。
The average particle size of the solid solution nanoparticles of the present embodiment may be in the range of 0.5 nm or more and 100 nm or less, or may be in the range of 1 nm or more and 10 nm or less. When the average particle size is small enough, the solid solution nanoparticles can exhibit high activity. The average particle size can be calculated from the electron microscope image of the solid solution nanoparticles. In the electron microscope image, the particle size (major axis) of a plurality of solid solution nanoparticles (for example, 100) is measured. The average value of the measured particle sizes represents the average particle size of the solid solution nanoparticles.
式(1)において、Ptの含有比率を表すxは、例えば、0.01≦x≦0.98を満たす。式(1)において、M1の含有比率を表すyは、例えば、0.01≦y≦0.98を満たす。式(1)において、M2の含有比率を表す(1-x-y)は、0.01≦(1-x-y)≦0.98を満たす。言い換えれば、、Pt、M1及びM2のそれぞれの含有比率は、固溶体ナノ粒子を基準(100mol%)として、例えば、1mol%以上98mol%以下の範囲にある。Pt、M1及びM2のそれぞれの含有比率は、5mol%以上90mol%以下の範囲にあってもよく、10mol%以上80mol%以下の範囲にあってもよい。
In the formula (1), x representing the content ratio of Pt satisfies, for example, 0.01 ≦ x ≦ 0.98. In the formula (1), y representing the content ratio of M1 satisfies, for example, 0.01 ≦ y ≦ 0.98. In the formula (1), (1-xy) representing the content ratio of M2 satisfies 0.01 ≦ (1-xy) ≦ 0.98. In other words, the respective content ratios of Pt, M1 and M2 are in the range of, for example, 1 mol% or more and 98 mol% or less based on the solid solution nanoparticles (100 mol%). The respective content ratios of Pt, M1 and M2 may be in the range of 5 mol% or more and 90 mol% or less, or may be in the range of 10 mol% or more and 80 mol% or less.
本実施形態の固溶体ナノ粒子は、必須成分としてPtを含む。Ptナノ粒子は、電子材料、磁性材料、触媒材料、医薬品材料、化粧品材料、食料品材料などの様々な用途に使用されうる。しかし、Ptは高価である。そのため、Ptの含有比率を下げながら、Ptナノ粒子と同等以上の機能及び活性を達成できれば、経済性に優れた固溶体ナノ粒子を提供できる。後述するように、本実施形態の固溶体ナノ粒子は、Ptナノ粒子を超える触媒活性を示す。ただし、触媒活性は、固溶体ナノ粒子の1つの機能にすぎない。
The solid solution nanoparticles of this embodiment contain Pt as an essential component. Pt nanoparticles can be used in various applications such as electronic materials, magnetic materials, catalytic materials, pharmaceutical materials, cosmetic materials, food materials and the like. However, Pt is expensive. Therefore, if the function and activity equal to or higher than those of the Pt nanoparticles can be achieved while lowering the Pt content ratio, the solid solution nanoparticles having excellent economic efficiency can be provided. As will be described later, the solid solution nanoparticles of the present embodiment exhibit catalytic activity exceeding that of Pt nanoparticles. However, catalytic activity is only one function of solid solution nanoparticles.
式(1)において、M1は、Ruでありうる。Ruは、Ptよりも安価であり、固溶体ナノ粒子におけるPtの代替元素として適している。
In equation (1), M1 can be Ru. Ru is cheaper than Pt and is suitable as a substitute element for Pt in solid solution nanoparticles.
なお、単体のRuの活性(触媒活性)は、通常、Ptの活性よりも低い。そのため、Ruナノ粒子自体は、Ptナノ粒子の代替物となりにくい。
The activity of Ru alone (catalytic activity) is usually lower than that of Pt. Therefore, Ru nanoparticles themselves are unlikely to be a substitute for Pt nanoparticles.
式(1)において、M1は、Irであってもよい。Irは、Ptと同様に高価な貴金属であるものの、Ruよりも高い活性を示すことが多く、本実施形態の固溶体ナノ粒子の材料として適している。Irを含むことによって、固溶体ナノ粒子は、より高い活性を示しうる。
In equation (1), M1 may be Ir. Although Ir is an expensive precious metal like Pt, it often exhibits higher activity than Ru, and is suitable as a material for the solid solution nanoparticles of the present embodiment. By including Ir, the solid solution nanoparticles can exhibit higher activity.
式(1)において、M1がRuであり、M2がIrであってもよい。この場合、Pt及びIrの組み合わせの利点と、Pt及びRuの組み合わせの利点との両方が得られる。
In the formula (1), M1 may be Ru and M2 may be Ir. In this case, both the advantages of the combination of Pt and Ir and the advantages of the combination of Pt and Ru are obtained.
M2は、1種、2種、3種、4種又は5種の金属元素からなっていてもよい。M2が1種の金属元素からなるとき、本実施形態の固溶体ナノ粒子は、3元系固溶体ナノ粒子である。つまり、式(1)において、M1がRuのとき、M2は、Ir、Rh、Ag、Cu又はAuである。M1がIrのとき、M2は、Rh、Pd、Ag、Cu又はAuである。4元系又は5元系と比較すれば、3元系固溶体ナノ粒子の製造は容易である。
M2 may consist of 1 type, 2 types, 3 types, 4 types or 5 types of metal elements. When M2 is composed of one kind of metal element, the solid solution nanoparticles of the present embodiment are ternary solid solution nanoparticles. That is, in the formula (1), when M1 is Ru, M2 is Ir, Rh, Ag, Cu or Au. When M1 is Ir, M2 is Rh, Pd, Ag, Cu or Au. Compared with the quaternary system or the quaternary system, the production of the ternary solid solution nanoparticles is easy.
M1がRuであり、M2が2種の金属元素からなる場合、M2=Ma
p2Mb
q2(式中、Ma及びMbは互いに異なって、Ir、Rh、Ag、Cu及びAuからなる群から選ばれ、p2=0.01~0.99、q2=0.99~0.01、p2+q2=1)で表される。
M1 is Ru, if M2 is composed of two metal elements, consisting of M2 = M a p2 M b q2 ( where, M a and M b are different from each other, Ir, Rh, Ag, Cu and Au It is selected from the group and is represented by p2 = 0.01 to 0.99, q2 = 0.99 to 0.01, p2 + q2 = 1).
M1がIrであり、M2が2種の金属元素からなる場合、M2=Ma
p2Mb
q2(式中、Ma及びMbは互いに異なって、Rh、Pd、Ag、Cu及びAuからなる群から選ばれ、p2=0.01~0.99、q2=0.99~0.01、p2+q2=1)で表される。
M1 is Ir, if M2 is composed of two metal elements, consisting of M2 = M a p2 M b q2 ( where, M a and M b are different from each other, Rh, Pd, Ag, Cu and Au It is selected from the group and is represented by p2 = 0.01 to 0.99, q2 = 0.99 to 0.01, p2 + q2 = 1).
M1がRuであり、M2が3種の金属元素からなる場合、M2=Ma
p3Mb
q3Mc
r3(式中、Ma、Mb及びMcは互いに異なって、Ir、Rh、Ag、Cu及びAuからなる群から選ばれ、p3=0.01~0.98、q3=0.01~0.98、r3=0.01~0.98、p3+q3+r3=1)で表される。
M1 is Ru, if M2 consists of three metal elements, M2 = M a p3 M b q3 M c r3 ( wherein, M a, M b and M c are different from one another, Ir, Rh, Ag , Cu and Au, p3 = 0.01 to 0.98, q3 = 0.01 to 0.98, r3 = 0.01 to 0.98, p3 + q3 + r3 = 1).
M1がIrであり、M2が3種の金属元素からなる場合、M2=Ma
p3Mb
q3Mc
r3(式中、Ma、Mb及びMcは互いに異なって、Rh、Pd、Ag、Cu及びAuからなる群から選ばれ、p3=0.01~0.98、q3=0.01~0.98、r3=0.01~0.98、p3+q3+r3=1)で表される。
When M1 is Ir and M2 is composed of three kinds of metal elements, M2 = M a p3 M b q3 M c r3 (in the formula, M a , M b and M c are different from each other, and Rh, Pd, Ag. , Cu and Au, p3 = 0.01 to 0.98, q3 = 0.01 to 0.98, r3 = 0.01 to 0.98, p3 + q3 + r3 = 1).
M1がRuであり、M2が4種の金属元素からなる場合、M2=Ma
p4Mb
q4Mc
r4Md
s4(式中、Ma、Mb、Mc及びMdは互いに異なって、Ir、Rh、Ag、Cu及びAuからなる群から選ばれ、p4=0.01~0.97、q4=0.01~0.97、r4=0.01~0.97、s4=0.01~0.97、p4+q4+r4+s4=1)で表される。
M1 is Ru, if M2 is composed of four metal elements, M2 = in M a p4 M b q4 M c r4 M d s4 ( wherein, M a, M b, M c and M d are different from each other , Ir, Rh, Ag, Cu and Au, p4 = 0.01 to 0.97, q4 = 0.01 to 0.97, r4 = 0.01 to 0.97, s4 = 0 It is represented by 0.01 to 0.97, p4 + q4 + r4 + s4 = 1).
M1がIrであり、M2が4種の金属元素からなる場合、M2=Ma
p4Mb
q4Mc
r4Md
s4(式中、Ma、Mb、Mc及びMdは互いに異なって、Rh、Pd、Ag、Cu及びAuからなる群から選ばれ、p4=0.01~0.97、q4=0.01~0.97、r4=0.01~0.97、s4=0.01~0.97、p4+q4+r4+s4=1)で表される。
M1 is Ir, if M2 is composed of four metal elements, M2 = in M a p4 M b q4 M c r4 M d s4 ( wherein, M a, M b, M c and M d are different from each other , Rh, Pd, Ag, Cu and Au, p4 = 0.01 to 0.97, q4 = 0.01 to 0.97, r4 = 0.01 to 0.97, s4 = 0 It is represented by 0.01 to 0.97, p4 + q4 + r4 + s4 = 1).
M1がRuであり、M2が5種の金属からなる場合、M2=Ma
p5Mb
q5Mc
r5Md
s5Me
t5(式中、Ma、Mb、Mc、Md及びMeは互いに異なって、Ir、Rh、Ag、Cu及びAuからなる群から選ばれ、p5=0.01~0.96、q5=0.01~0.96、r5=0.01~0.96、s5=0.01~0.96、t5=0.01~0.96、p5+q5+r5+s5+t5=1)で表される。
M1 is Ru, if M2 consists of five metal, M2 = M a p5 M b q5 M c r5 M d s5 M e t5 ( where, M a, M b, M c, M d and M e is different from each other and is selected from the group consisting of Ir, Rh, Ag, Cu and Au, p5 = 0.01 to 0.96, q5 = 0.01 to 0.96, r5 = 0.01 to 0. It is represented by 96, s5 = 0.01 to 0.96, t5 = 0.01 to 0.96, p5 + q5 + r5 + s5 + t5 = 1).
M1がIrであり、M2が5種の金属からなる場合、M2=Ma
p5Mb
q5Mc
r5Md
s5Me
t5(式中、Ma、Mb、Mc、Md及びMeは互いに異なって、Rh、Pd、Ag、Cu及びAuからなる群から選ばれ、p5=0.01~0.96、q5=0.01~0.96、r5=0.01~0.96、s5=0.01~0.96、t5=0.01~0.96、p5+q5+r5+s5+t5=1)で表される。
M1 is Ir, if M2 consists of five metal, M2 = M a p5 M b q5 M c r5 M d s5 M e t5 ( where, M a, M b, M c, M d and M e is different from each other and is selected from the group consisting of Rh, Pd, Ag, Cu and Au, p5 = 0.01 to 0.96, q5 = 0.01 to 0.96, r5 = 0.01 to 0. It is represented by 96, s5 = 0.01 to 0.96, t5 = 0.01 to 0.96, p5 + q5 + r5 + s5 + t5 = 1).
本実施形態の固溶体ナノ粒子において、Ptの含有比率は、10mol%以上30mol%以下の範囲にありうる。
In the solid solution nanoparticles of the present embodiment, the content ratio of Pt can be in the range of 10 mol% or more and 30 mol% or less.
例えば、固溶体ナノ粒子を触媒として使用するとき、Ptは、触媒活性を左右する主成分であると考えられる。そのため、Ptの含有比率を下げると、触媒活性も下がることが予測される。しかし、驚くべきことに、Ptの含有比率を抑えたとき、固溶体ナノ粒子を含む触媒は、最も高いメタン酸化分解活性を示す。具体的には、Ptの含有比率が50mol%、40mol%、30mol%と減少するにつれて触媒活性が高まる傾向にある。下限値に関して言えば、Ptの含有比率が5mol%、10mol%と増加するにつれて触媒活性が高まる傾向にある。このことは、後述する実施例より明らかとなる。
For example, when solid solution nanoparticles are used as a catalyst, Pt is considered to be the main component that influences the catalytic activity. Therefore, it is predicted that if the Pt content ratio is lowered, the catalytic activity is also lowered. However, surprisingly, catalysts containing solid solution nanoparticles exhibit the highest methane oxidative degradation activity when the Pt content is reduced. Specifically, the catalytic activity tends to increase as the Pt content ratio decreases to 50 mol%, 40 mol%, and 30 mol%. Regarding the lower limit, the catalytic activity tends to increase as the Pt content ratio increases to 5 mol% and 10 mol%. This becomes clear from the examples described later.
本実施形態の固溶体ナノ粒子は、各種の触媒として好適に使用されうる。
The solid solution nanoparticles of the present embodiment can be suitably used as various catalysts.
触媒反応としては、還元反応、酸化反応、脱水素反応、カップリング反応などの化学反応が挙げられる。これらの触媒反応を伴うプロセス又は装置に本実施形態の触媒を使用できる。触媒の具体的用途として、排ガスの浄化を含む環境用途、電極用途、及び化学プロセス用途が挙げられる。環境用途では、窒素酸化物の還元反応、一酸化炭素の酸化反応、炭化水素の酸化反応、及び揮発性有機化合物(VOC)の酸化反応からなる群より選ばれる少なくとも1つの反応に触媒が使用される。電極用途では、水素酸化反応、酸素還元反応、及び水電解反応からなる群より選ばれる少なくとも1つの反応に触媒が使用される。化学プロセス用途では、不飽和炭化水素の水添反応、及び、飽和又は不飽和炭化水素の脱水素反応からなる群より選ばれる少なくとも1つの反応に触媒が使用される。特に、熱機関から排出された排ガスの浄化、燃料電池における水素の生成、及び、揮発性有機化合物の除去に本実施形態の触媒を好適に使用できる。
Examples of catalytic reactions include chemical reactions such as reduction reaction, oxidation reaction, dehydrogenation reaction, and coupling reaction. The catalyst of this embodiment can be used in a process or apparatus involving these catalytic reactions. Specific applications of the catalyst include environmental applications including purification of exhaust gas, electrode applications, and chemical process applications. In environmental applications, catalysts are used in at least one reaction selected from the group consisting of nitrogen oxide reduction reactions, carbon monoxide oxidation reactions, hydrocarbon oxidation reactions, and volatile organic compound (VOC) oxidation reactions. To. In electrode applications, catalysts are used in at least one reaction selected from the group consisting of hydrogen oxidation reactions, oxygen reduction reactions, and water electrolysis reactions. In chemical process applications, catalysts are used in at least one reaction selected from the group consisting of hydrogenation reactions of unsaturated hydrocarbons and dehydrogenation reactions of saturated or unsaturated hydrocarbons. In particular, the catalyst of the present embodiment can be suitably used for purifying the exhaust gas discharged from the heat engine, generating hydrogen in the fuel cell, and removing the volatile organic compounds.
排ガスの中でも、天然ガスの燃焼排ガスのように、排ガス中の炭化水素の主成分がメタンであることがある。メタンは、二酸化炭素の約25倍の温室効果を持つ。そのため、大気中へのメタンの放出を極力減らすことが地球環境保護の観点から推奨される。本実施形態の触媒は、炭化水素の酸化分解、特に、メタンの酸化分解に適している。メタンの化学的安定性は高いものの、本実施形態の触媒は高い活性を示すので、メタンの酸化分解を比較的低い温度で十分に進行させることができる。また、本実施形態の触媒は、硫黄酸化物(SOx)などの反応阻害物質に対する耐久性にも優れている。天然ガスを燃料として使用する熱機関としては、ガスタービンが挙げられる。本実施形態の触媒は、ガスタービンの燃焼排ガスの浄化装置に適している。
Among the exhaust gas, methane may be the main component of hydrocarbons in the exhaust gas, such as the combustion exhaust gas of natural gas. Methane has a greenhouse effect about 25 times that of carbon dioxide. Therefore, it is recommended to reduce the release of methane into the atmosphere as much as possible from the viewpoint of global environmental protection. The catalyst of this embodiment is suitable for oxidative decomposition of hydrocarbons, particularly methane. Although the chemical stability of methane is high, the catalyst of the present embodiment exhibits high activity, so that the oxidative decomposition of methane can proceed sufficiently at a relatively low temperature. In addition, the catalyst of the present embodiment is also excellent in durability against reaction inhibitors such as sulfur oxides (SO x). Examples of heat engines that use natural gas as fuel include gas turbines. The catalyst of this embodiment is suitable for a purification device for combustion exhaust gas of a gas turbine.
本実施形態の触媒は、固溶体ナノ粒子を担持している担体をさらに備えていてもよい。固溶体ナノ粒子を担体に担持させることによって、固溶体ナノ粒子の凝集を抑制できる。また、担体からの電子的相互作用により、固溶体ナノ粒子の表面への反応分子の吸着及び活性化を促進できる。担体よっては、固溶体ナノ粒子と電子的に相互作用し、固溶体ナノ粒子の触媒活性を更に向上させることも可能である。
The catalyst of the present embodiment may further include a carrier supporting solid solution nanoparticles. By supporting the solid solution nanoparticles on the carrier, aggregation of the solid solution nanoparticles can be suppressed. In addition, the electronic interaction from the carrier can promote the adsorption and activation of the reaction molecule on the surface of the solid solution nanoparticles. Depending on the carrier, it is also possible to electronically interact with the solid solution nanoparticles to further improve the catalytic activity of the solid solution nanoparticles.
担体の構造は特に限定されない。担体は、典型的には、粒子である。粒子の形状も特に限定されず、球状、楕円球状、鱗片状などの種々の形状の粒子が使用されうる。
The structure of the carrier is not particularly limited. The carrier is typically particles. The shape of the particles is not particularly limited, and particles having various shapes such as spherical, elliptical spherical, and scaly can be used.
担体の材料は特に限定されない。担体の材料として、酸化物、窒化物、炭化物、炭素材料、及び金属材料が挙げられる。酸化物としては、シリカ、アルミナ、セリア、チタニア、ジルコニア、ニオビア、シリカ-アルミナ、チタニア-ジルコニア、セリア-ジルコニア、酸化スズ、三酸化タングステン、三酸化モリブデン、五酸化タンタル、及びチタン酸ストロンチウムなどが挙げられる。酸化物は、金属酸化物であってもよい。窒化物としては、窒化ホウ素、窒化ケイ素、窒化ガリウム、窒化インジウム、窒化アルミニウム、窒化ジルコニウム、窒化バナジウム、窒化タングステン、窒化モリブデン、窒化チタン、及び窒化ニオブなどが挙げられる。窒化物は、金属窒化物であってもよい。炭化物としては、炭化ケイ素、炭化ガリウム、炭化インジウム、炭化アルミニウム、炭化ジルコニウム、炭化バナジウム、炭化タングステン、炭化モリブデン、炭化チタン、炭化ニオブ、及び炭化ホウ素などが挙げられる。炭化物は、金属炭化物であってもよい。炭素材料としては、活性炭、カーボンブラック、グラファイト、カーボンナノチューブ、及び活性炭素繊維などが挙げられる。金属材料としては、鉄、銅、アルミニウムなどの純金属、及び、ステンレスなどの合金が挙げられる。これらの担体から選ばれる1種又は2種以上の組み合わせを使用できる。
The material of the carrier is not particularly limited. Examples of the carrier material include oxides, nitrides, carbides, carbon materials, and metal materials. Oxides include silica, alumina, ceria, titania, zirconia, niobia, silica-alumina, titania-zirconia, ceria-zirconia, tin oxide, tungsten trioxide, molybdenum trioxide, tantalum pentaoxide, and strontium titanate. Can be mentioned. The oxide may be a metal oxide. Examples of the nitride include boron nitride, silicon nitride, gallium nitride, indium nitride, aluminum nitride, zirconium nitride, vanadium nitride, tungsten nitride, molybdenum nitride, titanium nitride, and niobium nitride. The nitride may be a metal nitride. Examples of the carbide include silicon carbide, gallium carbide, indium carbide, aluminum carbide, zirconium carbide, vanadium carbide, tungsten carbide, molybdenum carbide, titanium carbide, niobium carbide, and boron carbide. The carbide may be a metal carbide. Examples of the carbon material include activated carbon, carbon black, graphite, carbon nanotubes, and activated carbon fiber. Examples of the metal material include pure metals such as iron, copper and aluminum, and alloys such as stainless steel. One kind or a combination of two or more kinds selected from these carriers can be used.
上記の中でも、ジルコニア粒子などの金属酸化物の粒子を担体として好適に使用できる。金属酸化物は、大きい比表面積を有し、耐熱性、化学的安定性、機械的強度、分散性に優れている。
Among the above, metal oxide particles such as zirconia particles can be suitably used as a carrier. The metal oxide has a large specific surface area and is excellent in heat resistance, chemical stability, mechanical strength, and dispersibility.
担体は、SnO2、WO3、MoO3、Ta2O5、及びNb2O5からなる群より選ばれる少なくとも1種を含んでいてもよい。これらの材料は、SOxに対する耐久性に優れるので、長期にわたって触媒の活性を維持する効果を奏する可能性がある。担体は、これらの材料のいずれかを主成分として含んでいてもよく、実質的にこれらの材料からなっていてもよい。「主成分」とは、質量比で最も多く含まれる成分を意味する。「実質的に・・・からなる」とは、不可避不純物を除き、特定の材料以外の材料が意図的に添加されていないことを意味する。
The carrier may contain at least one selected from the group consisting of SnO 2 , WO 3 , MoO 3 , Ta 2 O 5 , and Nb 2 O 5. Since these materials have excellent durability against SO x, they may have the effect of maintaining the activity of the catalyst for a long period of time. The carrier may contain any of these materials as a main component, or may be substantially composed of these materials. The "main component" means the component contained most in the mass ratio. By "substantially consisting of ...", it means that no material other than a specific material is intentionally added except for unavoidable impurities.
固溶体ナノ粒子を担体に担持させることなく触媒として使用してもよい。固溶体ナノ粒子を溶液中で触媒として用いる場合には、固溶体ナノ粒子を保護剤で保護してもよい。
The solid solution nanoparticles may be used as a catalyst without being supported on a carrier. When the solid solution nanoparticles are used as a catalyst in the solution, the solid solution nanoparticles may be protected with a protective agent.
次に、固溶体ナノ粒子の製造方法について説明する。以下に説明する方法は、状態図において不混和な金属の組み合わせであったとしても、原子レベルでの混合を可能にする。
Next, a method for producing solid solution nanoparticles will be described. The method described below allows mixing at the atomic level, even with immiscible metal combinations in the phase diagram.
式(1)で表される組成を有する固溶体ナノ粒子は、Pt塩、M1の塩及びM2の塩を含む溶液を所定温度Tに加熱した液体還元剤に加えて反応させる工程を経て作製される。固溶体ナノ粒子の組成は、原料である金属塩の比率を調節することによって制御されうる。
The solid solution nanoparticles having the composition represented by the formula (1) are produced through a step of adding a solution containing a Pt salt, a salt of M1 and a salt of M2 to a liquid reducing agent heated to a predetermined temperature T and reacting them. .. The composition of the solid solution nanoparticles can be controlled by adjusting the ratio of the metal salt as the raw material.
まず、Pt塩、M1の塩及びM2の塩を含む溶液を調製する。溶液は、典型的には、水溶液である。M1の塩は、Ru塩又はIr塩である。M1の塩がRu塩のとき、M2の塩は、Ir塩、Rh塩、Ag塩、Cu塩及びAu塩からなる群より選ばれる少なくとも1種を含む。M1の塩がIr塩のとき、M2の塩は、Rh塩、Pd塩、Ag塩、Cu塩及びAu塩からなる群より選ばれる少なくとも1種を含む。Pt塩、M1の塩及びM2の塩は、それぞれ、水溶性でありうる。
First, a solution containing a Pt salt, a salt of M1 and a salt of M2 is prepared. The solution is typically an aqueous solution. The salt of M1 is Ru salt or Ir salt. When the salt of M1 is Ru salt, the salt of M2 contains at least one selected from the group consisting of Ir salt, Rh salt, Ag salt, Cu salt and Au salt. When the salt of M1 is an Ir salt, the salt of M2 contains at least one selected from the group consisting of Rh salt, Pd salt, Ag salt, Cu salt and Au salt. The Pt salt, the salt of M1 and the salt of M2 can be water-soluble, respectively.
Pt塩、Ru塩、Ir塩、Rh塩、Pd塩、Ag塩、Cu塩及びAu塩としては、以下の塩が挙げられる。
Pt:K2PtCl4、(NH4)2K2PtCl4、(NH4)2PtCl6、Na2PtCl6、[Pt(NO2)2(NH3)2]
Ru:RuCl3、RuBr3などのハロゲン化ルテニウム、硝酸ルテニウム
Ir:塩化イリジウム、イリジウムアセチルアセトナート、イリジウムシアン酸カリウム、イリジウム酸カリウム
Rh:酢酸ロジウム、硝酸ロジウム、塩化ロジウム
Pd:K2PdCl4、Na2PdCl4、K2PdBr4、Na2PdBr4、硝酸パラジウム
Ag:硝酸銀、酢酸銀
Cu:硫酸銅、塩化第1銅、塩化第2銅、酢酸銅、硝酸銅
Au:塩化金酸、臭化金酸、酢酸金 Examples of the Pt salt, Ru salt, Ir salt, Rh salt, Pd salt, Ag salt, Cu salt and Au salt include the following salts.
Pt: K 2 PtCl 4 , (NH 4 ) 2 K 2 PtCl 4 , (NH 4 ) 2 PtCl 6 , Na 2 PtCl 6 , [Pt (NO 2 ) 2 (NH 3 ) 2 ]
Ru: Ruthenium halides such as RuCl 3 , RuBr 3 , Ruthenium nitrate Ir: Iridium chloride, iridium acetylacetonate, potassium iridium cyanate, potassium iridium Rh: rhodium acetate, rhodium nitrate, rhodium chloride Pd: K 2 PdCl 4 , Na 2 PdCl 4 , K 2 PdBr 4 , Na 2 PdBr 4 , Palladium nitrate Ag: Silver nitrate, Silver acetate Cu: Copper sulfate, cuprous chloride, cupric chloride, copper acetate, copper nitrate Au: gold chloride acid, odor Chemical acid, gold acetate
Pt:K2PtCl4、(NH4)2K2PtCl4、(NH4)2PtCl6、Na2PtCl6、[Pt(NO2)2(NH3)2]
Ru:RuCl3、RuBr3などのハロゲン化ルテニウム、硝酸ルテニウム
Ir:塩化イリジウム、イリジウムアセチルアセトナート、イリジウムシアン酸カリウム、イリジウム酸カリウム
Rh:酢酸ロジウム、硝酸ロジウム、塩化ロジウム
Pd:K2PdCl4、Na2PdCl4、K2PdBr4、Na2PdBr4、硝酸パラジウム
Ag:硝酸銀、酢酸銀
Cu:硫酸銅、塩化第1銅、塩化第2銅、酢酸銅、硝酸銅
Au:塩化金酸、臭化金酸、酢酸金 Examples of the Pt salt, Ru salt, Ir salt, Rh salt, Pd salt, Ag salt, Cu salt and Au salt include the following salts.
Pt: K 2 PtCl 4 , (NH 4 ) 2 K 2 PtCl 4 , (NH 4 ) 2 PtCl 6 , Na 2 PtCl 6 , [Pt (NO 2 ) 2 (NH 3 ) 2 ]
Ru: Ruthenium halides such as RuCl 3 , RuBr 3 , Ruthenium nitrate Ir: Iridium chloride, iridium acetylacetonate, potassium iridium cyanate, potassium iridium Rh: rhodium acetate, rhodium nitrate, rhodium chloride Pd: K 2 PdCl 4 , Na 2 PdCl 4 , K 2 PdBr 4 , Na 2 PdBr 4 , Palladium nitrate Ag: Silver nitrate, Silver acetate Cu: Copper sulfate, cuprous chloride, cupric chloride, copper acetate, copper nitrate Au: gold chloride acid, odor Chemical acid, gold acetate
まず、Pt塩、M1の塩及びM2の塩を秤量し、水に加えて溶液を調製する。溶液のpHを調節するために、酸又はアルカリを水に加えてもよい。溶液の温度は、例えば、常温(20℃±15℃)である。
First, the Pt salt, the salt of M1 and the salt of M2 are weighed and added to water to prepare a solution. Acids or alkalis may be added to the water to adjust the pH of the solution. The temperature of the solution is, for example, room temperature (20 ° C. ± 15 ° C.).
次に、必要に応じて、溶液に担体を加える。担体を溶液に加えるタイミングは特に限定されない。担体を溶液中に存在させつつ、固溶体ナノ粒子を形成するための反応を進行させると、ポリマーなどの保護剤を用いることなく担体に固溶体ナノ粒子を直接的に担持させることができる。
Next, if necessary, add the carrier to the solution. The timing of adding the carrier to the solution is not particularly limited. When the reaction for forming the solid solution nanoparticles is allowed to proceed while the carrier is present in the solution, the solid solution nanoparticles can be directly supported on the carrier without using a protective agent such as a polymer.
次に、液体還元剤と溶液とを混合して反応液を得る。一例において、所定温度Tに加熱した液体還元剤に溶液を噴霧することによって、液体還元剤と溶液とを混合する。反応液を所定温度Tに維持しながら所定時間tかけて反応を進行させる。噴霧に代えて、液体還元剤に溶液を滴下してもよい。その後、反応液を放冷して固液分離を行うことによって、所望の組成の固溶体ナノ粒子が得られる。
Next, the liquid reducing agent and the solution are mixed to obtain a reaction solution. In one example, the liquid reducing agent and the solution are mixed by spraying the solution onto the liquid reducing agent heated to a predetermined temperature T. The reaction is allowed to proceed over a predetermined time t while maintaining the reaction solution at a predetermined temperature T. Instead of spraying, the solution may be added dropwise to the liquid reducing agent. Then, the reaction solution is allowed to cool to perform solid-liquid separation, whereby solid solution nanoparticles having a desired composition can be obtained.
所定温度Tは、例えば、150℃以上250℃以下の範囲にある。所定時間tは、例えば、1分以上12時間以下の範囲にある。液体還元剤としては、エチレングリコール、グリセリン、ジエチレングリコール、トリエチレングリコールなどの多価アルコールが挙げられる。液体還元剤及び溶液の一方又は両方を予め加熱し、それらを混合してもよい。
The predetermined temperature T is, for example, in the range of 150 ° C. or higher and 250 ° C. or lower. The predetermined time t is, for example, in the range of 1 minute or more and 12 hours or less. Examples of the liquid reducing agent include polyhydric alcohols such as ethylene glycol, glycerin, diethylene glycol, and triethylene glycol. One or both of the liquid reducing agent and the solution may be preheated and mixed.
反応液は、保護剤を含んでいてもよい。保護剤は、固溶体ナノ粒子の凝集を抑制する役割を持つ。保護剤としては、ポリマー、アミン、及びカルボン酸が挙げられる。ポリマーとしては、ポリ(N-ビニル-2-ピロリドン)(PVP)及びポリエチレングリコール(PEG)が挙げられる。アミンとしては、オレイルアミンが挙げられる。カルボン酸としては、オレイン酸が挙げられる。
The reaction solution may contain a protective agent. The protective agent has a role of suppressing the aggregation of solid solution nanoparticles. Protective agents include polymers, amines, and carboxylic acids. Polymers include poly (N-vinyl-2-pyrrolidone) (PVP) and polyethylene glycol (PEG). Examples of the amine include oleylamine. Examples of the carboxylic acid include oleic acid.
なお、固溶体ナノ粒子と担体の粒子とを混合することによって、事後的に担体に固溶体ナノ粒子を担持させることも可能である。混合は、溶媒を用いて行ってもよい。溶媒を使用した場合、必要に応じて、ろ過、乾燥、及び成形の操作を行ってもよい。
It is also possible to support the solid solution nanoparticles on the carrier after the fact by mixing the solid solution nanoparticles and the particles of the carrier. Mixing may be carried out using a solvent. When a solvent is used, filtration, drying, and molding operations may be performed, if necessary.
固液分離の工程は、省略されることもある。つまり、固溶体ナノ粒子は、分散液の状態で提供されてもよい。分散液は、溶媒と、溶媒に分散した固溶体ナノ粒子とを含む。用途によっては、分散液の状態で固溶体ナノ粒子が提供されることが望ましい。
The solid-liquid separation process may be omitted. That is, the solid solution nanoparticles may be provided in the form of a dispersion. The dispersion liquid contains a solvent and solid solution nanoparticles dispersed in the solvent. Depending on the application, it is desirable to provide solid solution nanoparticles in the form of a dispersion.
以下、実施例によって本発明をより詳細に説明する。
Hereinafter, the present invention will be described in more detail by way of examples.
<<実施例1:PtRuIr固溶体ナノ粒子>>
40mlの水に0.117mlの塩酸を加えて希塩酸を調製した。希塩酸のpHは1.64であり、温度は24.7℃であった。0.1025mmolのK2PtCl4を8mlの希塩酸に溶解させてPt塩水溶液を得た。0.205mmolのRuCl3・nH2Oを8mlの希塩酸に溶解させてRu塩水溶液を得た。0.205mmolのIrCl4・nH2Oを8mlの希塩酸に溶解させてIr塩水溶液を得た。Pt塩水溶液、Ru塩水溶液及びIr塩水溶液を混合し、貴金属塩の混合液を得た。超音波ホモジナイザを用い、1920mgのZrO2粉末(第一稀元素社製、RC-100)を16mlの希塩酸に分散させてZrO2分散液を得た。ZrO2分散液を撹拌しながらZrO2分散液に貴金属塩の混合液を加え、原料液を得た。原料液の撹拌を15分間続けた。 << Example 1: PtRuIr solid solution nanoparticles >>
Dilute hydrochloric acid was prepared by adding 0.117 ml of hydrochloric acid to 40 ml of water. The pH of dilute hydrochloric acid was 1.64 and the temperature was 24.7 ° C. 0.1025 mmol of K 2 PtCl 4 was dissolved in 8 ml of dilute hydrochloric acid to obtain a Pt salt aqueous solution. 0.205 mmol of RuCl 3 · nH 2 O was dissolved in 8 ml of dilute hydrochloric acid to obtain an aqueous Ru salt solution. 0.205 mmol of IrCl 4 · nH 2 O was dissolved in 8 ml of dilute hydrochloric acid to obtain an aqueous Ir salt solution. A Pt salt aqueous solution, a Ru salt aqueous solution and an Ir salt aqueous solution were mixed to obtain a mixed solution of a noble metal salt. Using an ultrasonic homogenizer, 1920 mg of ZrO 2 powder (RC-100, manufactured by Daiichi Rare Element Co., Ltd.) was dispersed in 16 ml of dilute hydrochloric acid to obtain a ZrO 2 dispersion. The mixture of noble metal salt added to the ZrO 2 dispersion with stirring ZrO 2 dispersion, to obtain a raw material solution. Stirring of the raw material solution was continued for 15 minutes.
40mlの水に0.117mlの塩酸を加えて希塩酸を調製した。希塩酸のpHは1.64であり、温度は24.7℃であった。0.1025mmolのK2PtCl4を8mlの希塩酸に溶解させてPt塩水溶液を得た。0.205mmolのRuCl3・nH2Oを8mlの希塩酸に溶解させてRu塩水溶液を得た。0.205mmolのIrCl4・nH2Oを8mlの希塩酸に溶解させてIr塩水溶液を得た。Pt塩水溶液、Ru塩水溶液及びIr塩水溶液を混合し、貴金属塩の混合液を得た。超音波ホモジナイザを用い、1920mgのZrO2粉末(第一稀元素社製、RC-100)を16mlの希塩酸に分散させてZrO2分散液を得た。ZrO2分散液を撹拌しながらZrO2分散液に貴金属塩の混合液を加え、原料液を得た。原料液の撹拌を15分間続けた。 << Example 1: PtRuIr solid solution nanoparticles >>
Dilute hydrochloric acid was prepared by adding 0.117 ml of hydrochloric acid to 40 ml of water. The pH of dilute hydrochloric acid was 1.64 and the temperature was 24.7 ° C. 0.1025 mmol of K 2 PtCl 4 was dissolved in 8 ml of dilute hydrochloric acid to obtain a Pt salt aqueous solution. 0.205 mmol of RuCl 3 · nH 2 O was dissolved in 8 ml of dilute hydrochloric acid to obtain an aqueous Ru salt solution. 0.205 mmol of IrCl 4 · nH 2 O was dissolved in 8 ml of dilute hydrochloric acid to obtain an aqueous Ir salt solution. A Pt salt aqueous solution, a Ru salt aqueous solution and an Ir salt aqueous solution were mixed to obtain a mixed solution of a noble metal salt. Using an ultrasonic homogenizer, 1920 mg of ZrO 2 powder (RC-100, manufactured by Daiichi Rare Element Co., Ltd.) was dispersed in 16 ml of dilute hydrochloric acid to obtain a ZrO 2 dispersion. The mixture of noble metal salt added to the ZrO 2 dispersion with stirring ZrO 2 dispersion, to obtain a raw material solution. Stirring of the raw material solution was continued for 15 minutes.
一方、2mlの水に1.3mmolのNaOHを溶解させてNaOH水溶液を調製した。400mlのトリエチレングリコールにNaOH水溶液をゆっくり加えてトリエチレングリコールのpHを7に合わせた。その後、トリエチレングリコールを232℃まで加熱した。
On the other hand, an aqueous NaOH solution was prepared by dissolving 1.3 mmol of NaOH in 2 ml of water. The pH of the triethylene glycol was adjusted to 7 by slowly adding an aqueous NaOH solution to 400 ml of triethylene glycol. Then, the triethylene glycol was heated to 232 ° C.
加熱したトリエチレングリコールに19分間かけて原料液を噴霧した。噴霧時におけるトリエチレングリコールの温度は、229~232℃であった。噴霧終了後、232℃に維持しながら、トリエチレングリコールと原料液とを含む反応液を10分間かけて撹拌した。反応液を放冷したのち、沈殿物を遠心分離によって分離し、水で洗浄した。その後、分離された固形物を真空乾燥させた。これにより、ZrO2に担持されたPtRuIr固溶体ナノ粒子を得た。
The raw material solution was sprayed on the heated triethylene glycol over 19 minutes. The temperature of triethylene glycol at the time of spraying was 229 to 232 ° C. After the spraying was completed, the reaction solution containing triethylene glycol and the raw material solution was stirred over 10 minutes while maintaining the temperature at 232 ° C. After allowing the reaction solution to cool, the precipitate was separated by centrifugation and washed with water. Then, the separated solid matter was vacuum dried. As a result, PtRuIr solid solution nanoparticles supported on ZrO 2 were obtained.
[組成分析、TEM観察]
蛍光X線分析装置を用いて、PtRuIr固溶体ナノ粒子の組成を同定した。結果を表1に示す。透過電子顕微鏡によってZrO2に担持されたPtRuIr固溶体ナノ粒子を観察した。得られたTEM像を図1に示す。 [Composition analysis, TEM observation]
The composition of PtRuIr solid solution nanoparticles was identified using a fluorescent X-ray analyzer. The results are shown in Table 1. PtRuIr solid solution nanoparticles supported on ZrO 2 were observed by a transmission electron microscope. The obtained TEM image is shown in FIG.
蛍光X線分析装置を用いて、PtRuIr固溶体ナノ粒子の組成を同定した。結果を表1に示す。透過電子顕微鏡によってZrO2に担持されたPtRuIr固溶体ナノ粒子を観察した。得られたTEM像を図1に示す。 [Composition analysis, TEM observation]
The composition of PtRuIr solid solution nanoparticles was identified using a fluorescent X-ray analyzer. The results are shown in Table 1. PtRuIr solid solution nanoparticles supported on ZrO 2 were observed by a transmission electron microscope. The obtained TEM image is shown in FIG.
Ptの担持量は、1.08wt%であり、目標値(1wt%)に概ね一致した。PtRuIr固溶体ナノ粒子における組成比(atom%)は、Pt:Ru:Ir=22:40:38であり、目標の1:2:2に概ね一致した。HfO2は、ジルコニア粒子に不可避的に含まれる不純物である。
The amount of Pt supported was 1.08 wt%, which was almost the same as the target value (1 wt%). The composition ratio (atom%) of the PtRuIr solid solution nanoparticles was Pt: Ru: Ir = 22: 40: 38, which was almost in line with the target of 1: 2: 2. HfO 2 is an impurity inevitably contained in zirconia particles.
図1において、大きい粒子がZrO2粒子である。ZrO2粒子の表面に付着した小さい粒子がPtRuIr固溶体ナノ粒子である。PtRuIr固溶体ナノ粒子は、ZrO2粒子の表面に均一に付着していた。PtRuIr固溶体ナノ粒子の平均粒径は、2.2±0.4nmであった。「A±Bnm」の表記において、Aは平均粒径を表し、Bは標準偏差を表す。
In FIG. 1, the large particles are ZrO 2 particles. The small particles attached to the surface of the ZrO 2 particles are PtRuIr solid solution nanoparticles. The PtRuIr solid solution nanoparticles were uniformly attached to the surface of the ZrO 2 particles. The average particle size of the PtRuIr solid solution nanoparticles was 2.2 ± 0.4 nm. In the notation of "A ± Bnm", A represents the average particle size and B represents the standard deviation.
[元素マッピング及び線分析]
実施例1のZnO2に担持されたPtRuIr固溶体ナノ粒子について、エネルギー分散型X線分析(EDX)による元素マッピングと、線分析とを行った。HAADF-STEM(High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy)による像、及び、元素マッピングの結果を図2A~図2Dに示す。図2Aは、HAADF-STEM像を示す。図2B、図2C及び図2Dは、それぞれ、Pt、Ir、Ruの元素マッピングのデータを示す。線分析の結果を図3A及び図3Bに示す。図3Bは、図3AのSTEM像に現れたPtRuIr固溶体ナノ粒子の線分析の結果を示している。 [Elemental mapping and line analysis]
The PtRuIr solid solution nanoparticles supported on ZnO 2 of Example 1 were subjected to elemental mapping and line analysis by energy dispersive X-ray analysis (EDX). The image by HAADF-STEM (High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy) and the result of element mapping are shown in FIGS. 2A to 2D. FIG. 2A shows a HAADF-STEM image. 2B, 2C and 2D show elemental mapping data for Pt, Ir and Ru, respectively. The results of the line analysis are shown in FIGS. 3A and 3B. FIG. 3B shows the results of line analysis of PtRuIr solid solution nanoparticles appearing in the STEM image of FIG. 3A.
実施例1のZnO2に担持されたPtRuIr固溶体ナノ粒子について、エネルギー分散型X線分析(EDX)による元素マッピングと、線分析とを行った。HAADF-STEM(High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy)による像、及び、元素マッピングの結果を図2A~図2Dに示す。図2Aは、HAADF-STEM像を示す。図2B、図2C及び図2Dは、それぞれ、Pt、Ir、Ruの元素マッピングのデータを示す。線分析の結果を図3A及び図3Bに示す。図3Bは、図3AのSTEM像に現れたPtRuIr固溶体ナノ粒子の線分析の結果を示している。 [Elemental mapping and line analysis]
The PtRuIr solid solution nanoparticles supported on ZnO 2 of Example 1 were subjected to elemental mapping and line analysis by energy dispersive X-ray analysis (EDX). The image by HAADF-STEM (High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy) and the result of element mapping are shown in FIGS. 2A to 2D. FIG. 2A shows a HAADF-STEM image. 2B, 2C and 2D show elemental mapping data for Pt, Ir and Ru, respectively. The results of the line analysis are shown in FIGS. 3A and 3B. FIG. 3B shows the results of line analysis of PtRuIr solid solution nanoparticles appearing in the STEM image of FIG. 3A.
図2B~図2Dに現れた濃い白色の部分は、図2Aにおける小さい粒子の部分に対応している。これらの結果は、ZnO2粒子上にPtRuIr固溶体ナノ粒子が均一に形成されたことを示している。図3A及び図3Bの線分析の結果は、Pt、Ir及びRuが互いに分離して存在しているのではなく、Pt、Ir及びRuが粒子全体に均一に分布していることを示している。すなわち、図2A~図2D、図3A及び図3Bのデータは、PtRuIrナノ粒子において、Pt、Ir及びRuが原子レベルで固溶していることを示している。
The dark white portion appearing in FIGS. 2B to 2D corresponds to the portion of small particles in FIG. 2A. These results indicate that PtRuIr solid solution nanoparticles were uniformly formed on the ZnO 2 particles. The results of the line analysis of FIGS. 3A and 3B show that Pt, Ir and Ru are not present separately from each other, but that Pt, Ir and Ru are uniformly distributed throughout the particles. .. That is, the data in FIGS. 2A-2D, 3A and 3B show that Pt, Ir and Ru are solid-solved at the atomic level in the PtRuIr nanoparticles.
<<実施例2~6:PtRuIr固溶体ナノ粒子>>
Pt塩、Ru塩及びIr塩の仕込み比を変更したことを除き、実施例1と同じ方法によって、組成比が互いに異なる実施例2~6のPtRuIr固溶体ナノ粒子を作製した。各実施例における目標の組成は、以下の通りであった。各実施例におけるPtの担持量の目標値は、1wt%であった。 << Examples 2 to 6: PtRuIr solid solution nanoparticles >>
PtRuIr solid solution nanoparticles of Examples 2 to 6 having different composition ratios were prepared by the same method as in Example 1 except that the charging ratios of Pt salt, Ru salt and Ir salt were changed. The target composition in each example was as follows. The target value of the amount of Pt supported in each example was 1 wt%.
Pt塩、Ru塩及びIr塩の仕込み比を変更したことを除き、実施例1と同じ方法によって、組成比が互いに異なる実施例2~6のPtRuIr固溶体ナノ粒子を作製した。各実施例における目標の組成は、以下の通りであった。各実施例におけるPtの担持量の目標値は、1wt%であった。 << Examples 2 to 6: PtRuIr solid solution nanoparticles >>
PtRuIr solid solution nanoparticles of Examples 2 to 6 having different composition ratios were prepared by the same method as in Example 1 except that the charging ratios of Pt salt, Ru salt and Ir salt were changed. The target composition in each example was as follows. The target value of the amount of Pt supported in each example was 1 wt%.
実施例2:Pt0.2Ru0.6Ir0.2
実施例3:Pt0.2Ru0.2Ir0.6
実施例4:Pt0.25Ru0.25Ir0.5
実施例5:Pt0.3Ru0.3Ir0.3
実施例6:Pt0.6Ru0.2Ir0.2 Example 2: Pt 0.2 Ru 0.6 Ir 0.2
Example 3: Pt 0.2 Ru 0.2 Ir 0.6
Example 4: Pt 0.25 Ru 0.25 Ir 0.5
Example 5: Pt 0.3 Ru 0.3 Ir 0.3
Example 6: Pt 0.6 Ru 0.2 Ir 0.2
実施例3:Pt0.2Ru0.2Ir0.6
実施例4:Pt0.25Ru0.25Ir0.5
実施例5:Pt0.3Ru0.3Ir0.3
実施例6:Pt0.6Ru0.2Ir0.2 Example 2: Pt 0.2 Ru 0.6 Ir 0.2
Example 3: Pt 0.2 Ru 0.2 Ir 0.6
Example 4: Pt 0.25 Ru 0.25 Ir 0.5
Example 5: Pt 0.3 Ru 0.3 Ir 0.3
Example 6: Pt 0.6 Ru 0.2 Ir 0.2
<<参照例1:Ptナノ粒子>>
0.205mmolのK2PtCl4を20mlの水に溶解させてPt塩水溶液を得た。3960mgのZrO2粉末を30mlの水に分散させてZrO2分散液を得た。ZrO2分散液を撹拌しながらZrO2分散液にPt塩水溶液を加え、原料液を得た。原料液の撹拌を15分間続けた。 << Reference Example 1: Pt nanoparticles >>
0.205 mmol of K 2 PtCl 4 was dissolved in 20 ml of water to obtain a Pt salt aqueous solution. 3960 mg of ZrO 2 powder was dispersed in 30 ml of water to obtain a ZrO 2 dispersion. The Pt salt solution was added to ZrO 2 dispersion with stirring ZrO 2 dispersion, to obtain a raw material solution. Stirring of the raw material solution was continued for 15 minutes.
0.205mmolのK2PtCl4を20mlの水に溶解させてPt塩水溶液を得た。3960mgのZrO2粉末を30mlの水に分散させてZrO2分散液を得た。ZrO2分散液を撹拌しながらZrO2分散液にPt塩水溶液を加え、原料液を得た。原料液の撹拌を15分間続けた。 << Reference Example 1: Pt nanoparticles >>
0.205 mmol of K 2 PtCl 4 was dissolved in 20 ml of water to obtain a Pt salt aqueous solution. 3960 mg of ZrO 2 powder was dispersed in 30 ml of water to obtain a ZrO 2 dispersion. The Pt salt solution was added to ZrO 2 dispersion with stirring ZrO 2 dispersion, to obtain a raw material solution. Stirring of the raw material solution was continued for 15 minutes.
232℃に加熱した300mlのトリエチレングリコールに19分間かけて原料液を噴霧した。噴霧時におけるトリエチレングリコールの温度は、228~233℃であった。噴霧終了後、230℃に維持しながら、トリエチレングリコールと原料液とを含む反応液を10分間かけて撹拌した。反応液を放冷したのち、沈殿物を遠心分離によって分離し、水で洗浄した。その後、分離された固形物を真空乾燥させた。これにより、ZrO2に担持されたPtナノ粒子を得た。Ptの担持量は、1.02wt%であり、目標値(1wt%)に概ね一致した。
The raw material solution was sprayed on 300 ml of triethylene glycol heated to 232 ° C. over 19 minutes. The temperature of triethylene glycol at the time of spraying was 228 to 233 ° C. After the spraying was completed, the reaction solution containing triethylene glycol and the raw material solution was stirred over 10 minutes while maintaining the temperature at 230 ° C. After allowing the reaction solution to cool, the precipitate was separated by centrifugation and washed with water. Then, the separated solid matter was vacuum dried. As a result, Pt nanoparticles supported on ZrO 2 were obtained. The amount of Pt supported was 1.02 wt%, which was almost the same as the target value (1 wt%).
図4は、参照例1のZrO2に担持されたPtナノ粒子のTEM像である。図4において、大きい粒子がZrO2粒子である。ZrO2粒子の表面に付着した小さい粒子がPtナノ粒子である。Ptナノ粒子の平均粒径は、2.9±0.8nmであった。
FIG. 4 is a TEM image of Pt nanoparticles supported on ZrO 2 of Reference Example 1. In FIG. 4, the large particles are ZrO 2 particles. The small particles attached to the surface of the ZrO 2 particles are Pt nanoparticles. The average particle size of the Pt nanoparticles was 2.9 ± 0.8 nm.
<<参照例2:Ruナノ粒子>>
30mlの水に0.088mlの塩酸を加えて希塩酸を調製した。0.07689mmolのRuCl3・nH2Oを8mlの希塩酸に溶解させてRu塩水溶液を得た。超音波ホモジナイザを用い、1462.45mgのZrO2粉末を12mlの希塩酸に分散させてZrO2分散液を得た。ZrO2分散液を撹拌しながらZrO2分散液にRu塩水溶液を加え、原料液を得た。原料液の撹拌を15分間続けた。 << Reference example 2: Ru nanoparticles >>
Dilute hydrochloric acid was prepared by adding 0.088 ml of hydrochloric acid to 30 ml of water. 0.07689 mmol of RuCl 3 · nH 2 O was dissolved in 8 ml of dilute hydrochloric acid to obtain an aqueous Ru salt solution. Using an ultrasonic homogenizer, 1462.45 mg of ZrO 2 powder was dispersed in 12 ml of dilute hydrochloric acid to obtain a ZrO 2 dispersion. The Ru salt solution was added to ZrO 2 dispersion with stirring ZrO 2 dispersion, to obtain a raw material solution. Stirring of the raw material solution was continued for 15 minutes.
30mlの水に0.088mlの塩酸を加えて希塩酸を調製した。0.07689mmolのRuCl3・nH2Oを8mlの希塩酸に溶解させてRu塩水溶液を得た。超音波ホモジナイザを用い、1462.45mgのZrO2粉末を12mlの希塩酸に分散させてZrO2分散液を得た。ZrO2分散液を撹拌しながらZrO2分散液にRu塩水溶液を加え、原料液を得た。原料液の撹拌を15分間続けた。 << Reference example 2: Ru nanoparticles >>
Dilute hydrochloric acid was prepared by adding 0.088 ml of hydrochloric acid to 30 ml of water. 0.07689 mmol of RuCl 3 · nH 2 O was dissolved in 8 ml of dilute hydrochloric acid to obtain an aqueous Ru salt solution. Using an ultrasonic homogenizer, 1462.45 mg of ZrO 2 powder was dispersed in 12 ml of dilute hydrochloric acid to obtain a ZrO 2 dispersion. The Ru salt solution was added to ZrO 2 dispersion with stirring ZrO 2 dispersion, to obtain a raw material solution. Stirring of the raw material solution was continued for 15 minutes.
一方、2mlの水に1mmolのNaOHを溶解させてNaOH水溶液を調製した。300mlのトリエチレングリコールにNaOH水溶液をゆっくり加えてトリエチレングリコールのpHを7に合わせた。その後、トリエチレングリコールを232℃まで加熱した。
On the other hand, 1 mmol of NaOH was dissolved in 2 ml of water to prepare an aqueous NaOH solution. The pH of the triethylene glycol was adjusted to 7 by slowly adding an aqueous NaOH solution to 300 ml of triethylene glycol. Then, the triethylene glycol was heated to 232 ° C.
加熱したトリエチレングリコールに13分間かけて原料液を噴霧した。噴霧時におけるトリエチレングリコールの温度は、229~232℃であった。噴霧終了後、230℃に維持しながら、トリエチレングリコールと原料液とを含む反応液を10分間かけて撹拌した。反応液を放冷したのち、沈殿物を遠心分離によって分離し、水で洗浄した。その後、分離された固形物を真空乾燥させた。これにより、ZrO2に担持されたRuナノ粒子を得た。Ruの担持量は、0.43wt%であり、目標値(0.5wt%)に概ね一致した。
The raw material solution was sprayed on the heated triethylene glycol over 13 minutes. The temperature of triethylene glycol at the time of spraying was 229 to 232 ° C. After the spraying was completed, the reaction solution containing triethylene glycol and the raw material solution was stirred over 10 minutes while maintaining the temperature at 230 ° C. After allowing the reaction solution to cool, the precipitate was separated by centrifugation and washed with water. Then, the separated solid matter was vacuum dried. As a result, Ru nanoparticles supported on ZrO 2 were obtained. The amount of Ru carried was 0.43 wt%, which was almost the same as the target value (0.5 wt%).
図5は、参照例2のZrO2に担持されたRuナノ粒子のTEM像である。図5において、大きい粒子がZrO2粒子である。ZrO2粒子の表面に付着した小さい粒子がRuナノ粒子である。Ruナノ粒子の平均粒径は、4.2±0.8nmであった。
FIG. 5 is a TEM image of Ru nanoparticles supported on ZrO 2 of Reference Example 2. In FIG. 5, the large particles are ZrO 2 particles. The small particles attached to the surface of the ZrO 2 particles are Ru nanoparticles. The average particle size of the Ru nanoparticles was 4.2 ± 0.8 nm.
<<参照例3:Irナノ粒子>>
0.07689mmolのIrCl4・nH2Oを18mlの水に溶解させてIr塩水溶液を得た。1462.45mgのZrO2粉末を12mlの水に分散させてZrO2分散液を得た。ZrO2分散液を撹拌しながらZrO2分散液にIr塩水溶液を加え、原料液を得た。原料液の撹拌を15分間続けた。 << Reference Example 3: Ir Nanoparticles >>
0.07689 mmol of IrCl 4 · nH 2 O was dissolved in 18 ml of water to obtain an aqueous Ir salt solution. 1462.45 mg of ZrO 2 powder was dispersed in 12 ml of water to obtain a ZrO 2 dispersion. The Ir salt solution was added to ZrO 2 dispersion with stirring ZrO 2 dispersion, to obtain a raw material solution. Stirring of the raw material solution was continued for 15 minutes.
0.07689mmolのIrCl4・nH2Oを18mlの水に溶解させてIr塩水溶液を得た。1462.45mgのZrO2粉末を12mlの水に分散させてZrO2分散液を得た。ZrO2分散液を撹拌しながらZrO2分散液にIr塩水溶液を加え、原料液を得た。原料液の撹拌を15分間続けた。 << Reference Example 3: Ir Nanoparticles >>
0.07689 mmol of IrCl 4 · nH 2 O was dissolved in 18 ml of water to obtain an aqueous Ir salt solution. 1462.45 mg of ZrO 2 powder was dispersed in 12 ml of water to obtain a ZrO 2 dispersion. The Ir salt solution was added to ZrO 2 dispersion with stirring ZrO 2 dispersion, to obtain a raw material solution. Stirring of the raw material solution was continued for 15 minutes.
232℃に加熱した300mlのトリエチレングリコールに12分間かけて原料液を噴霧した。噴霧時におけるトリエチレングリコールの温度は、228~232℃であった。噴霧終了後、230℃に維持しながら、トリエチレングリコールと原料液とを含む反応液を10分間かけて撹拌した。反応液を放冷したのち、沈殿物を遠心分離によって分離し、水で洗浄した。その後、分離された固形物を真空乾燥させた。これにより、ZrO2に担持されたIrナノ粒子を得た。Irの担持量は、1.1wt%であり、目標値(1wt%)に概ね一致した。
The raw material solution was sprayed on 300 ml of triethylene glycol heated to 232 ° C. over 12 minutes. The temperature of triethylene glycol at the time of spraying was 228 to 232 ° C. After the spraying was completed, the reaction solution containing triethylene glycol and the raw material solution was stirred over 10 minutes while maintaining the temperature at 230 ° C. After allowing the reaction solution to cool, the precipitate was separated by centrifugation and washed with water. Then, the separated solid matter was vacuum dried. As a result, Ir nanoparticles supported on ZrO 2 were obtained. The amount of Ir carried was 1.1 wt%, which was almost the same as the target value (1 wt%).
図6は、参照例3のZrO2に担持されたIrナノ粒子のTEM像である。図6において、大きい粒子がZrO2粒子である。ZrO2粒子の表面に付着した小さい粒子がIrナノ粒子である。Irナノ粒子の平均粒径は、1.3±0.3nmであった。
FIG. 6 is a TEM image of Ir nanoparticles supported on ZrO 2 of Reference Example 3. In FIG. 6, the large particles are ZrO 2 particles. The small particles attached to the surface of the ZrO 2 particles are Ir nanoparticles. The average particle size of the Ir nanoparticles was 1.3 ± 0.3 nm.
<<参照例4:Pdナノ粒子>>
0.3759mmolのK2PdCl4を20mlの水に溶解させてPd塩水溶液を得た。3960mgのZrO2粉末を30mlの水に分散させてZrO2分散液を得た。ZrO2分散液を撹拌しながらZrO2分散液にPd塩水溶液を加え、原料液を得た。原料液の撹拌を15分間続けた。 << Reference Example 4: Pd nanoparticles >>
0.3759 mmol of K 2 PdCl 4 was dissolved in 20 ml of water to obtain an aqueous Pd salt solution. 3960 mg of ZrO 2 powder was dispersed in 30 ml of water to obtain a ZrO 2 dispersion. The Pd salt solution was added to ZrO 2 dispersion with stirring ZrO 2 dispersion, to obtain a raw material solution. Stirring of the raw material solution was continued for 15 minutes.
0.3759mmolのK2PdCl4を20mlの水に溶解させてPd塩水溶液を得た。3960mgのZrO2粉末を30mlの水に分散させてZrO2分散液を得た。ZrO2分散液を撹拌しながらZrO2分散液にPd塩水溶液を加え、原料液を得た。原料液の撹拌を15分間続けた。 << Reference Example 4: Pd nanoparticles >>
0.3759 mmol of K 2 PdCl 4 was dissolved in 20 ml of water to obtain an aqueous Pd salt solution. 3960 mg of ZrO 2 powder was dispersed in 30 ml of water to obtain a ZrO 2 dispersion. The Pd salt solution was added to ZrO 2 dispersion with stirring ZrO 2 dispersion, to obtain a raw material solution. Stirring of the raw material solution was continued for 15 minutes.
232℃に加熱した300mlのトリエチレングリコールに22分間かけて原料液を噴霧した。噴霧時におけるトリエチレングリコールの温度は、228~233℃であった。噴霧終了後、230℃に維持しながら、トリエチレングリコールと原料液とを含む反応液を10分間かけて撹拌した。反応液を放冷したのち、沈殿物を遠心分離によって分離し、水で洗浄した。その後、分離された固形物を真空乾燥させた。これにより、ZrO2に担持されたPdナノ粒子を得た。Pdの担持量は、1.06wt%であり、目標値(1wt%)に概ね一致した。
The raw material solution was sprayed on 300 ml of triethylene glycol heated to 232 ° C. over 22 minutes. The temperature of triethylene glycol at the time of spraying was 228 to 233 ° C. After the spraying was completed, the reaction solution containing triethylene glycol and the raw material solution was stirred over 10 minutes while maintaining the temperature at 230 ° C. After allowing the reaction solution to cool, the precipitate was separated by centrifugation and washed with water. Then, the separated solid matter was vacuum dried. As a result, Pd nanoparticles supported on ZrO 2 were obtained. The amount of Pd supported was 1.06 wt%, which was almost the same as the target value (1 wt%).
図7は、参照例4のZrO2に担持されたPdナノ粒子のTEM像である。図7において、大きい粒子がZrO2粒子である。ZrO2粒子の表面に付着した小さい粒子がPdナノ粒子である。Pdナノ粒子の平均粒径は、3.9±0.8nmであった。
FIG. 7 is a TEM image of Pd nanoparticles supported on ZrO 2 of Reference Example 4. In FIG. 7, the large particles are ZrO 2 particles. The small particles attached to the surface of the ZrO 2 particles are Pd nanoparticles. The average particle size of the Pd nanoparticles was 3.9 ± 0.8 nm.
<<比較例1:含浸法によるナノ粒子の作製>>
2.94gのZrO2粉末を50mlの水に分散させてZrO2分散液を得た。ZrO2分散液を室温で30分間かけて撹拌した。0.666gのPt(NO2)2(NH3)2溶液(Pt含有量:4.595wt%)と、1.043gのRu(NO)(NO3)3溶液(Ru含有量:1.50wt%)と、0.375gのIr(NO3)4溶液(Ir含有量:7.91wt%)とを混合して混合液を得た。ZrO2分散液を撹拌しながらZrO2分散液に混合液をゆっくりと滴下し、原料液を得た。原料液の撹拌を1時間続けた。 << Comparative Example 1: Preparation of nanoparticles by impregnation method >>
2.94 g of ZrO 2 powder was dispersed in 50 ml of water to obtain a ZrO 2 dispersion. The ZrO 2 dispersion was stirred at room temperature for 30 minutes. 0.666 g of Pt (NO 2 ) 2 (NH 3 ) 2 solution (Pt content: 4.595 wt%) and 1.043 g of Ru (NO) (NO 3 ) 3 solution (Ru content: 1.50 wt%) %) And 0.375 g of Ir (NO 3 ) 4 solution (Ir content: 7.91 wt%) were mixed to obtain a mixed solution. ZrO 2 dispersion was mixed solution slowly added dropwise to ZrO 2 dispersion while stirring to obtain a raw material solution. Stirring of the raw material solution was continued for 1 hour.
2.94gのZrO2粉末を50mlの水に分散させてZrO2分散液を得た。ZrO2分散液を室温で30分間かけて撹拌した。0.666gのPt(NO2)2(NH3)2溶液(Pt含有量:4.595wt%)と、1.043gのRu(NO)(NO3)3溶液(Ru含有量:1.50wt%)と、0.375gのIr(NO3)4溶液(Ir含有量:7.91wt%)とを混合して混合液を得た。ZrO2分散液を撹拌しながらZrO2分散液に混合液をゆっくりと滴下し、原料液を得た。原料液の撹拌を1時間続けた。 << Comparative Example 1: Preparation of nanoparticles by impregnation method >>
2.94 g of ZrO 2 powder was dispersed in 50 ml of water to obtain a ZrO 2 dispersion. The ZrO 2 dispersion was stirred at room temperature for 30 minutes. 0.666 g of Pt (NO 2 ) 2 (NH 3 ) 2 solution (Pt content: 4.595 wt%) and 1.043 g of Ru (NO) (NO 3 ) 3 solution (Ru content: 1.50 wt%) %) And 0.375 g of Ir (NO 3 ) 4 solution (Ir content: 7.91 wt%) were mixed to obtain a mixed solution. ZrO 2 dispersion was mixed solution slowly added dropwise to ZrO 2 dispersion while stirring to obtain a raw material solution. Stirring of the raw material solution was continued for 1 hour.
エバポレータを用い、50℃の湯浴にて原料液から溶媒を除去した。残った粉末を回収し、乾燥器に入れ、空気中、110℃、12時間の条件で乾燥させた。乾燥した粉末を乳鉢で粉砕したのち、電気炉に入れ、空気中、600℃、5時間の条件で焼成した。これにより、比較例1のPtRuIr/ZrO2粒子を得た。
The solvent was removed from the raw material solution in a hot water bath at 50 ° C. using an evaporator. The remaining powder was collected, placed in a dryer, and dried in air at 110 ° C. for 12 hours. The dried powder was crushed in a mortar, placed in an electric furnace, and baked in air at 600 ° C. for 5 hours. As a result, PtRuIr / ZrO 2 particles of Comparative Example 1 were obtained.
[メタン酸化活性の評価]
実施例5、参照例1~4及び比較例1のナノ粒子を触媒として使用したときのメタン酸化活性を調べた。メタン酸化活性は、メタンを酸化分解する触媒能を意味する。以下、実施例のナノ粒子を用いた触媒を「実施例の触媒」と称する。参照例のナノ粒子を用いた触媒を「参照例の触媒」と称する。比較例のナノ粒子を用いた触媒を「比較例の触媒」と称する。 [Evaluation of methane oxidation activity]
The methane oxidation activity when the nanoparticles of Example 5, Reference Examples 1 to 4 and Comparative Example 1 were used as a catalyst was investigated. Methane oxidative activity means the catalytic ability to oxidatively decompose methane. Hereinafter, the catalyst using the nanoparticles of the example will be referred to as "catalyst of the example". A catalyst using nanoparticles of the reference example is referred to as a "catalyst of the reference example". A catalyst using nanoparticles of the comparative example is referred to as a "catalyst of the comparative example".
実施例5、参照例1~4及び比較例1のナノ粒子を触媒として使用したときのメタン酸化活性を調べた。メタン酸化活性は、メタンを酸化分解する触媒能を意味する。以下、実施例のナノ粒子を用いた触媒を「実施例の触媒」と称する。参照例のナノ粒子を用いた触媒を「参照例の触媒」と称する。比較例のナノ粒子を用いた触媒を「比較例の触媒」と称する。 [Evaluation of methane oxidation activity]
The methane oxidation activity when the nanoparticles of Example 5, Reference Examples 1 to 4 and Comparative Example 1 were used as a catalyst was investigated. Methane oxidative activity means the catalytic ability to oxidatively decompose methane. Hereinafter, the catalyst using the nanoparticles of the example will be referred to as "catalyst of the example". A catalyst using nanoparticles of the reference example is referred to as a "catalyst of the reference example". A catalyst using nanoparticles of the comparative example is referred to as a "catalyst of the comparative example".
実施例5、参照例1~4及び比較例1の触媒のメタン酸化活性は、固定床流通式の反応装置を用いて評価した。まず、ペレット状に成形した50mgの触媒を内径7mmの石英製反応管に石英ウールを用いて充填した。反応管をガス供給装置に接続し、天然ガスの燃焼排ガスを模擬した反応ガス(CH4:0.1%、O2:10%、SO2:5volppm、H2O:3%、He:バランスガス)を触媒に向けて供給した。
The methane oxidation activity of the catalysts of Example 5, Reference Examples 1 to 4 and Comparative Example 1 was evaluated using a fixed bed flow type reactor. First, a pellet-shaped 50 mg catalyst was filled in a quartz reaction tube having an inner diameter of 7 mm using quartz wool. A reaction gas (CH 4 : 0.1%, O 2 : 10%, SO 2 : 5 volppm, H 2 O: 3%, He: balance) that simulates the combustion exhaust gas of natural gas by connecting the reaction tube to the gas supply device. Gas) was supplied towards the catalyst.
測定前の前処理として、上記の反応ガス中で触媒を600℃に加熱して1時間保持した。その後、触媒の温度を200℃まで下げ、100ml/minの流量にて反応ガスを供給した。触媒の温度は、200℃から600℃まで50℃ずつ上昇させた。触媒の温度を各温度で20分間維持し、定常状態にある触媒を通過した反応ガス中のメタンの濃度を測定した。測定された濃度からメタン転化率(%)を算出した。結果を図8に示す。縦軸の「メタン転化率」は、酸化分解されたメタンの割合を示す。メタン転化率が大きければ大きいほど、触媒のメタン酸化活性が高いことを意味する。
As a pretreatment before measurement, the catalyst was heated to 600 ° C. in the above reaction gas and held for 1 hour. Then, the temperature of the catalyst was lowered to 200 ° C., and the reaction gas was supplied at a flow rate of 100 ml / min. The temperature of the catalyst was increased by 50 ° C. from 200 ° C. to 600 ° C. The temperature of the catalyst was maintained at each temperature for 20 minutes, and the concentration of methane in the reaction gas that passed through the catalyst in a steady state was measured. The methane conversion rate (%) was calculated from the measured concentration. The results are shown in FIG. The "methane conversion rate" on the vertical axis indicates the ratio of oxidatively decomposed methane. The higher the methane conversion rate, the higher the methane-oxidizing activity of the catalyst.
実施例5の触媒の400℃におけるメタン転化率は、41%であった(図8)。比較例1の触媒の400℃でのメタン転化率は、29%であった。下記式に基づき、速度定数kを算出したところ、実施例5の触媒の速度定数は、4.71×10-5mol/min/g-catであった。比較例1の触媒の速度定数は、3.06×10-5mol/min/g-catであった。実施例5の触媒の速度定数は、比較例1の触媒の速度定数の約1.5倍であった。
The methane conversion rate of the catalyst of Example 5 at 400 ° C. was 41% (FIG. 8). The methane conversion rate of the catalyst of Comparative Example 1 at 400 ° C. was 29%. When the rate constant k was calculated based on the following formula, the rate constant of the catalyst of Example 5 was 4.71 × 10 -5 mol / min / g-cat. The rate constant of the catalyst of Comparative Example 1 was 3.06 × 10 -5 mol / min / g-cat. The rate constant of the catalyst of Example 5 was about 1.5 times the rate constant of the catalyst of Comparative Example 1.
k=-(F/W)ln(1-x)
F:メタンのモル流速(=(0.1/100)×100/22400)
W:触媒の重量(50mg)
x:転化率 k =-(F / W) ln (1-x)
F: Molar flow velocity of methane (= (0.1 / 100) × 100/22400)
W: Weight of catalyst (50 mg)
x: Conversion rate
F:メタンのモル流速(=(0.1/100)×100/22400)
W:触媒の重量(50mg)
x:転化率 k =-(F / W) ln (1-x)
F: Molar flow velocity of methane (= (0.1 / 100) × 100/22400)
W: Weight of catalyst (50 mg)
x: Conversion rate
実施例5のPtRuIr触媒(Pt0.3Ru0.3Ir0.3/ZnO2)は、参照例4のPd触媒と同等以上の高い活性を示した。350~500℃の低温度域において、実施例5のPtRuIr触媒の活性は、比較例1の触媒の活性を上回っていた。実施例5のPtRuIr触媒の活性は、参照例1~3のPt触媒、Ru触媒及びIr触媒の活性を大幅に上回った。例えば、400℃において、参照例1~3のPt触媒、Ru触媒及びIr触媒のメタン転化率は10%未満であった。これに対し、400℃における実施例5の触媒のメタン転化率は、約40%であった。
The PtRuIr catalyst of Example 5 (Pt 0.3 Ru 0.3 Ir 0.3 / ZnO 2 ) showed a high activity equal to or higher than that of the Pd catalyst of Reference Example 4. In the low temperature range of 350 to 500 ° C., the activity of the PtRuIr catalyst of Example 5 exceeded that of the catalyst of Comparative Example 1. The activity of the PtRuIr catalyst of Example 5 was significantly higher than that of the Pt catalyst, Ru catalyst and Ir catalyst of Reference Examples 1 to 3. For example, at 400 ° C., the methane conversion rates of the Pt catalyst, Ru catalyst and Ir catalyst of Reference Examples 1 to 3 were less than 10%. On the other hand, the methane conversion rate of the catalyst of Example 5 at 400 ° C. was about 40%.
「400℃」は、例えば、一般的なガスタービンの排ガスの温度よりも十分に低い温度である。そのため、400℃で十分な活性を発揮しうる触媒は、ガスタービンの排ガスからメタンを除去するための用途に適していると言える。
"400 ° C" is, for example, a temperature sufficiently lower than the temperature of the exhaust gas of a general gas turbine. Therefore, it can be said that a catalyst capable of exhibiting sufficient activity at 400 ° C. is suitable for use in removing methane from the exhaust gas of a gas turbine.
同じ方法によって、実施例1~4及び6のPtRuIr触媒のメタン酸化活性も調べた。結果を図9に示す。
The methane-oxidizing activity of the PtRuIr catalysts of Examples 1 to 4 and 6 was also examined by the same method. The results are shown in FIG.
実施例1~6において、貴金属の合計の担持量(wt%)は互いに異なる。実施例1~6において、Ptの担持量は、1wt%で等しい。例えば、400℃での活性(メタン転化率)を比較したとき、実施例1のPtRuIr触媒(Pt0.2Ru0.4Ir0.4)の活性は最も高かった。実施例6のPtRuIr触媒(Pt0.6Ru0.2Ir0.2)の活性は最も低かった。実施例1におけるPtの担持量も実施例6におけるPtの担持量も概ね1wt%で等しい。Ptの含有比率が比較的低いとき、PtRuIr触媒が高い活性を示した。
In Examples 1 to 6, the total supported amount (wt%) of the noble metal is different from each other. In Examples 1 to 6, the amount of Pt supported is equal at 1 wt%. For example, when the activity at 400 ° C. (methane conversion rate) was compared, the activity of the PtRuIr catalyst of Example 1 (Pt 0.2 Ru 0.4 Ir 0.4 ) was the highest. The activity of the PtRuIr catalyst of Example 6 (Pt 0.6 Ru 0.2 Ir 0.2 ) was the lowest. The amount of Pt supported in Example 1 and the amount of Pt supported in Example 6 are approximately 1 wt% and equal. When the Pt content was relatively low, the PtRuIr catalyst showed high activity.
Ruナノ粒子の単独でのメタン酸化活性は非常に低い(図8)。それにもかかわらず、実施例1のPtRuIr触媒(Pt0.2Ru0.4Ir0.4)及び実施例2のPtRuIr触媒(Pt0.2Ru0.6Ir0.2)が非常に高い活性を示したことは驚きに値する。
The methane-oxidizing activity of Ru nanoparticles alone is very low (Fig. 8). Nevertheless, it is surprising that the PtRuIr catalyst of Example 1 (Pt 0.2 Ru 0.4 Ir 0.4 ) and the PtRuIr catalyst of Example 2 (Pt 0.2 Ru 0.6 Ir 0.2 ) showed very high activity.
なお、貴金属の全担持量を所定の割合(例えば4wt%)に統一しつつ、PtRuIr固溶体ナノ粒子の組成を変更した場合にも、様々な組成を持つPtRuIr触媒は、上記実施例と同じ傾向を示すと推測される。
Even when the composition of the PtRuIr solid solution nanoparticles is changed while the total amount of the noble metal supported is unified to a predetermined ratio (for example, 4 wt%), the PtRuIr catalyst having various compositions has the same tendency as that of the above example. Presumed to show.
図10は、400℃でのメタン転化率と固溶体ナノ粒子の組成との関係を示す三角グラフである。Pt-Ru-Irの組成比が0.2:0.4:0.4であるとき(実施例1)、PtRuIr触媒は最高の活性(77.3%)を示した。図9及び図10から理解できるように、PtRuIr固溶体ナノ粒子におけるPtの含有比率が適切な範囲にあるとき、PtRuIr固溶体ナノ粒子を用いた触媒が高い活性を示した。図9及び図10より、Ptの含有比率が50mol%、40mol%、30mol%と減少するにつれて触媒活性が高まる傾向があった。下限値に関して言えば、Ptの含有比率が5mol%、10mol%と増加するにつれて触媒活性が高まる傾向があった。したがって、PtRuIr固溶体ナノ粒子におけるPtの含有比率の上限値は、例えば、50mol%、40mol%又は30mol%である。PtRuIr固溶体ナノ粒子におけるPtの含有比率の下限値は、例えば、5mol%又は10mol%である。PtRuIr固溶体ナノ粒子におけるPtの含有比率は、10mol%以上30mol%以下の範囲にあってもよい。
FIG. 10 is a triangular graph showing the relationship between the methane conversion rate at 400 ° C. and the composition of the solid solution nanoparticles. When the composition ratio of Pt-Ru-Ir was 0.2: 0.4: 0.4 (Example 1), the PtRuIr catalyst showed the highest activity (77.3%). As can be seen from FIGS. 9 and 10, when the content ratio of Pt in the PtRuIr solid solution nanoparticles was in an appropriate range, the catalyst using the PtRuIr solid solution nanoparticles showed high activity. From FIGS. 9 and 10, the catalytic activity tended to increase as the Pt content ratio decreased to 50 mol%, 40 mol%, and 30 mol%. Regarding the lower limit, the catalytic activity tended to increase as the Pt content ratio increased to 5 mol% and 10 mol%. Therefore, the upper limit of the Pt content ratio in the PtRuIr solid solution nanoparticles is, for example, 50 mol%, 40 mol% or 30 mol%. The lower limit of the Pt content ratio in the PtRuIr solid solution nanoparticles is, for example, 5 mol% or 10 mol%. The content ratio of Pt in the PtRuIr solid solution nanoparticles may be in the range of 10 mol% or more and 30 mol% or less.
[耐久試験]
次に、実施例1、実施例5、参照例1~4及び比較例1の触媒の耐久性を調べた。具体的には、先に説明した反応装置及び反応ガスを使用し、30時間が経過するまで400℃でのメタン酸化活性の経時変化を調べた。触媒の量を50mgから200mgに変更した。先に説明した方法と同じ方法で前処理を行った。結果を図11A及び図11Bに示す。 [An endurance test]
Next, the durability of the catalysts of Example 1, Example 5, Reference Examples 1 to 4 and Comparative Example 1 was examined. Specifically, using the reactor and reaction gas described above, the time course of methane oxidation activity at 400 ° C. was investigated until 30 hours had passed. The amount of catalyst was changed from 50 mg to 200 mg. The pretreatment was performed by the same method as described above. The results are shown in FIGS. 11A and 11B.
次に、実施例1、実施例5、参照例1~4及び比較例1の触媒の耐久性を調べた。具体的には、先に説明した反応装置及び反応ガスを使用し、30時間が経過するまで400℃でのメタン酸化活性の経時変化を調べた。触媒の量を50mgから200mgに変更した。先に説明した方法と同じ方法で前処理を行った。結果を図11A及び図11Bに示す。 [An endurance test]
Next, the durability of the catalysts of Example 1, Example 5, Reference Examples 1 to 4 and Comparative Example 1 was examined. Specifically, using the reactor and reaction gas described above, the time course of methane oxidation activity at 400 ° C. was investigated until 30 hours had passed. The amount of catalyst was changed from 50 mg to 200 mg. The pretreatment was performed by the same method as described above. The results are shown in FIGS. 11A and 11B.
図11Aに示すように、参照例4の触媒(Pdナノ粒子)の活性は、時間の経過に伴って大幅に低下した。この結果は、PdがSO2によって被毒されたことを示している。
As shown in FIG. 11A, the activity of the catalyst (Pd nanoparticles) of Reference Example 4 decreased significantly with the passage of time. This result indicates that Pd was poisoned by SO 2.
実施例1、実施例5及び比較例1の触媒の活性は、それぞれ、30時間の試験期間にわたって概ね一定であった。この結果は、PtRuIr触媒が硫黄被毒を受けにくいことを示している。また、実施例1及び実施例5の触媒の活性は、比較例1の触媒の活性よりも遥かに高かった。
The activity of the catalysts of Example 1, Example 5, and Comparative Example 1 was substantially constant over the test period of 30 hours, respectively. This result indicates that the PtRuIr catalyst is less susceptible to sulfur poisoning. Moreover, the activity of the catalysts of Examples 1 and 5 was much higher than that of the catalyst of Comparative Example 1.
図11Bに示すように、参照例1~3の触媒の活性は、時間の経過に伴って少し低下した。ただし、参照例1~3の触媒の活性は、初期から低かった。初期の活性を基準としたときの低下の割合で比較すると、参照例1~3の触媒の活性の低下の割合は大きかった。このことは、Pdほどではないものの、Pt、Ru及びIrも硫黄被毒を受けることを示している。実施例1の触媒の活性は殆ど低下しなかったことから、Pt、Ru及びIrが固溶体を形成することによって、PtRuIr触媒が硫黄被毒に対する優れた耐久性を新たに獲得したと考えられる。
As shown in FIG. 11B, the activity of the catalysts of Reference Examples 1 to 3 decreased slightly with the passage of time. However, the activity of the catalysts of Reference Examples 1 to 3 was low from the initial stage. Comparing the rate of decrease based on the initial activity, the rate of decrease in the activity of the catalysts of Reference Examples 1 to 3 was large. This indicates that Pt, Ru and Ir are also subject to sulfur poisoning, though not as much as Pd. Since the activity of the catalyst of Example 1 was hardly reduced, it is considered that the PtRuIr catalyst newly acquired excellent durability against sulfur poisoning by forming a solid solution of Pt, Ru and Ir.
<<実施例7:PtRuIr固溶体ナノ粒子/SnO2>>
ZrO2粉末に代えて、1438.5mgのSnO2粉末を用い、担持後の合計金属量が4.1wt%となるように仕込みの金属塩の量を調整したこと除き、実施例5と同じ方法によって、SnO2に担持されたPtRuIr固溶体ナノ粒子を得た。すなわち、実施例7におけるPtRuIr固溶体ナノ粒子の組成は、Pt0.3Ru0.3Ir0.3である。 << Example 7: PtRuIr solid solution nanoparticles / SnO 2 >>
The same method as in Example 5 except that 1438.5 mg of SnO 2 powder was used instead of ZrO 2 powder and the amount of metal salt charged was adjusted so that the total amount of metal after support was 4.1 wt%. Obtained PtRuIr solid solution nanoparticles supported on SnO 2. That is, the composition of the PtRuIr solid solution nanoparticles in Example 7 is Pt 0.3 Ru 0.3 Ir 0.3 .
ZrO2粉末に代えて、1438.5mgのSnO2粉末を用い、担持後の合計金属量が4.1wt%となるように仕込みの金属塩の量を調整したこと除き、実施例5と同じ方法によって、SnO2に担持されたPtRuIr固溶体ナノ粒子を得た。すなわち、実施例7におけるPtRuIr固溶体ナノ粒子の組成は、Pt0.3Ru0.3Ir0.3である。 << Example 7: PtRuIr solid solution nanoparticles / SnO 2 >>
The same method as in Example 5 except that 1438.5 mg of SnO 2 powder was used instead of ZrO 2 powder and the amount of metal salt charged was adjusted so that the total amount of metal after support was 4.1 wt%. Obtained PtRuIr solid solution nanoparticles supported on SnO 2. That is, the composition of the PtRuIr solid solution nanoparticles in Example 7 is Pt 0.3 Ru 0.3 Ir 0.3 .
[耐久試験]
以下の4種類の触媒の耐久性を調べた。具体的には、先に説明した反応装置及び反応ガスを使用し、100時間が経過するまで400℃でのメタン酸化活性の経時変化を調べた。結果を図12に示す。 [An endurance test]
The durability of the following four types of catalysts was investigated. Specifically, using the reactor and reaction gas described above, the time course of methane oxidation activity at 400 ° C. was investigated until 100 hours had passed. The results are shown in FIG.
以下の4種類の触媒の耐久性を調べた。具体的には、先に説明した反応装置及び反応ガスを使用し、100時間が経過するまで400℃でのメタン酸化活性の経時変化を調べた。結果を図12に示す。 [An endurance test]
The durability of the following four types of catalysts was investigated. Specifically, using the reactor and reaction gas described above, the time course of methane oxidation activity at 400 ° C. was investigated until 100 hours had passed. The results are shown in FIG.
実施例3の触媒(Pt0.2Ru0.2Ir0.6/ZrO2)200mg
実施例5の触媒(Pt0.3Ru0.3Ir0.3/ZrO2)50mg
実施例7の触媒(Pt0.3Ru0.3Ir0.3/SnO2)200mg
実施例7の触媒(Pt0.3Ru0.3Ir0.3/SnO2)50mg Example 3 catalyst (Pt 0.2 Ru 0.2 Ir 0.6 / ZrO 2 ) 200 mg
50 mg of catalyst of Example 5 (Pt 0.3 Ru 0.3 Ir 0.3 / ZrO 2)
Example 7 catalyst (Pt 0.3 Ru 0.3 Ir 0.3 / SnO 2 ) 200 mg
Example 7 catalyst (Pt 0.3 Ru 0.3 Ir 0.3 / SnO 2 ) 50 mg
実施例5の触媒(Pt0.3Ru0.3Ir0.3/ZrO2)50mg
実施例7の触媒(Pt0.3Ru0.3Ir0.3/SnO2)200mg
実施例7の触媒(Pt0.3Ru0.3Ir0.3/SnO2)50mg Example 3 catalyst (Pt 0.2 Ru 0.2 Ir 0.6 / ZrO 2 ) 200 mg
50 mg of catalyst of Example 5 (Pt 0.3 Ru 0.3 Ir 0.3 / ZrO 2)
Example 7 catalyst (Pt 0.3 Ru 0.3 Ir 0.3 / SnO 2 ) 200 mg
Example 7 catalyst (Pt 0.3 Ru 0.3 Ir 0.3 / SnO 2 ) 50 mg
図12は、実施例3,5及び7の触媒の400℃でのメタン酸化活性の経時変化を示すグラフである。ZrO2を担体として用いた実施例3の触媒200mgの初期活性(0~50時間)は、SnO2を担体として用いた実施例7の触媒200mgの初期活性よりも優れていた。しかし、100時間経過後は、実施例7の触媒の活性がサンプル1の触媒の活性を上回った。つまり、SnO2を担体として用いた触媒は耐久性に優れていた。
FIG. 12 is a graph showing the time course of the methane oxidation activity of the catalysts of Examples 3, 5 and 7 at 400 ° C. The initial activity (0 to 50 hours) of 200 mg of the catalyst of Example 3 using ZrO 2 as a carrier was superior to the initial activity of 200 mg of the catalyst of Example 7 using SnO 2 as a carrier. However, after 100 hours, the activity of the catalyst of Example 7 exceeded that of the catalyst of Sample 1. That is, the catalyst using SnO 2 as a carrier was excellent in durability.
実施例5の触媒におけるPtRuIr固溶体ナノ粒子の組成は、実施例7の触媒におけるPtRuIr固溶体ナノ粒子の組成と同一である。実施例5の触媒50mgの活性は、試験開始後直ちに低下し、その後、40%付近で推移した。これに対し、実施例7の触媒50mgは、100時間経過後も初期の活性(60%)を維持していた。つまり、SnO2を担体として用いた触媒は耐久性に優れていた。
The composition of the PtRuIr solid solution nanoparticles in the catalyst of Example 5 is the same as the composition of the PtRuIr solid solution nanoparticles in the catalyst of Example 7. The activity of 50 mg of the catalyst of Example 5 decreased immediately after the start of the test, and then remained around 40%. On the other hand, 50 mg of the catalyst of Example 7 maintained the initial activity (60%) even after the lapse of 100 hours. That is, the catalyst using SnO 2 as a carrier was excellent in durability.
[担体の酸点及び塩基点]
担体としてのZrO2粒子及びSnO2粒子の表面の酸性質及び塩基性質を昇温脱離法(TPD)によって測定した。酸点の測定では、塩基プローブ分子であるアンモニアを担体に吸着させ、温度を連続的に上昇させたときに脱離するアンモニアの量を測定した(NH3-TPD)。塩基点の測定では、酸プローブ分子である二酸化炭素を使用して測定を行った(CO2-TPD)。具体的には、以下の条件で前処理及び測定を行った。 [Acid point and base point of carrier]
The acid and basic properties of the surfaces of the ZrO 2 particles and SnO 2 particles as carriers were measured by the thermal desorption method (TPD). In the measurement of acid sites, ammonia is a base probe molecules are adsorbed on the carrier, to determine the amount of ammonia desorbed when the temperature was continuously increased (NH 3 -TPD). In the measurement of the base point, carbon dioxide, which is an acid probe molecule, was used for the measurement (CO 2- TPD). Specifically, pretreatment and measurement were performed under the following conditions.
担体としてのZrO2粒子及びSnO2粒子の表面の酸性質及び塩基性質を昇温脱離法(TPD)によって測定した。酸点の測定では、塩基プローブ分子であるアンモニアを担体に吸着させ、温度を連続的に上昇させたときに脱離するアンモニアの量を測定した(NH3-TPD)。塩基点の測定では、酸プローブ分子である二酸化炭素を使用して測定を行った(CO2-TPD)。具体的には、以下の条件で前処理及び測定を行った。 [Acid point and base point of carrier]
The acid and basic properties of the surfaces of the ZrO 2 particles and SnO 2 particles as carriers were measured by the thermal desorption method (TPD). In the measurement of acid sites, ammonia is a base probe molecules are adsorbed on the carrier, to determine the amount of ammonia desorbed when the temperature was continuously increased (NH 3 -TPD). In the measurement of the base point, carbon dioxide, which is an acid probe molecule, was used for the measurement (CO 2- TPD). Specifically, pretreatment and measurement were performed under the following conditions.
(前処理)
100mgのZrO2粒子又はSnO2粒子をサンプルとして反応管に充填し、Arを流しながら600℃まで昇温させ、30分間かけてAr処理を実施した。その後、100%のO2に切り替えて30分間処理を実施した後、Arに切り替えて30分間処理を実施した。その後、サンプルを100℃(NH3-TPD)又は50℃(CO2-TPD)まで冷却した。NH3-TPDでは100℃で1時間にわたって0.5vol%の濃度でNH3を含むNH3/Ar混合ガスを流通させてサンプルにNH3を吸着させた。CO2-TPDでは、50℃で1時間にわたって0.5vol%の濃度のCO2を含むCO2/Ar混合ガスを流通させてサンプルにCO2を吸着させた。その後、Arに切り替えて、30分間かけてサンプルから物理吸着種を脱離させた。 (Preprocessing)
100 mg of ZrO 2 particles or SnO 2 particles were filled in a reaction tube as a sample, the temperature was raised to 600 ° C. while flowing Ar, and Ar treatment was carried out over 30 minutes. Then, after switching to 100% O 2 and performing the treatment for 30 minutes, switching to Ar and performing the treatment for 30 minutes. The sample was then cooled to 100 ° C. (NH 3- TPD) or 50 ° C. (CO 2-TPD). NH 3 at a concentration of 0.5 vol% for 1 hour at -TPD at 100 ° C. was circulated NH 3 / Ar mixed gas containing NH 3 and was adsorbed NH 3 in the sample. In CO 2- TPD, a CO 2 / Ar mixed gas containing 0.5 vol% concentration of CO 2 was circulated at 50 ° C. for 1 hour to adsorb CO 2 to the sample. Then, it was switched to Ar, and the physically adsorbed species was desorbed from the sample over 30 minutes.
100mgのZrO2粒子又はSnO2粒子をサンプルとして反応管に充填し、Arを流しながら600℃まで昇温させ、30分間かけてAr処理を実施した。その後、100%のO2に切り替えて30分間処理を実施した後、Arに切り替えて30分間処理を実施した。その後、サンプルを100℃(NH3-TPD)又は50℃(CO2-TPD)まで冷却した。NH3-TPDでは100℃で1時間にわたって0.5vol%の濃度でNH3を含むNH3/Ar混合ガスを流通させてサンプルにNH3を吸着させた。CO2-TPDでは、50℃で1時間にわたって0.5vol%の濃度のCO2を含むCO2/Ar混合ガスを流通させてサンプルにCO2を吸着させた。その後、Arに切り替えて、30分間かけてサンプルから物理吸着種を脱離させた。 (Preprocessing)
100 mg of ZrO 2 particles or SnO 2 particles were filled in a reaction tube as a sample, the temperature was raised to 600 ° C. while flowing Ar, and Ar treatment was carried out over 30 minutes. Then, after switching to 100% O 2 and performing the treatment for 30 minutes, switching to Ar and performing the treatment for 30 minutes. The sample was then cooled to 100 ° C. (NH 3- TPD) or 50 ° C. (CO 2-TPD). NH 3 at a concentration of 0.5 vol% for 1 hour at -TPD at 100 ° C. was circulated NH 3 / Ar mixed gas containing NH 3 and was adsorbed NH 3 in the sample. In CO 2- TPD, a CO 2 / Ar mixed gas containing 0.5 vol% concentration of CO 2 was circulated at 50 ° C. for 1 hour to adsorb CO 2 to the sample. Then, it was switched to Ar, and the physically adsorbed species was desorbed from the sample over 30 minutes.
(測定)
40ml/minの流量でArを流しながら、10℃/minの速度で100℃(NH3)又は50℃(CO2)から600℃までサンプルを昇温させた。NH3-TPDでは、NH3のフラグメントである質量数16のMSシグナルを測定した。CO2-TPDでは、CO2に相当する質量数44のMSシグナルを測定した。結果を図13A及び図13Bに示す。 (Measurement)
The sample was heated from 100 ° C. (NH 3 ) or 50 ° C. (CO 2 ) to 600 ° C. at a rate of 10 ° C./min while flowing Ar at a flow rate of 40 ml / min. In NH 3- TPD, the MS signal having a mass number of 16 which is a fragment of NH 3 was measured. In CO 2- TPD, an MS signal having a mass number of 44 corresponding to CO 2 was measured. The results are shown in FIGS. 13A and 13B.
40ml/minの流量でArを流しながら、10℃/minの速度で100℃(NH3)又は50℃(CO2)から600℃までサンプルを昇温させた。NH3-TPDでは、NH3のフラグメントである質量数16のMSシグナルを測定した。CO2-TPDでは、CO2に相当する質量数44のMSシグナルを測定した。結果を図13A及び図13Bに示す。 (Measurement)
The sample was heated from 100 ° C. (NH 3 ) or 50 ° C. (CO 2 ) to 600 ° C. at a rate of 10 ° C./min while flowing Ar at a flow rate of 40 ml / min. In NH 3- TPD, the MS signal having a mass number of 16 which is a fragment of NH 3 was measured. In CO 2- TPD, an MS signal having a mass number of 44 corresponding to CO 2 was measured. The results are shown in FIGS. 13A and 13B.
図13Aは、NH3-TPDの測定結果を示すグラフである。図13Bは、CO2-TPDの測定結果を示すグラフである。横軸はサンプルの温度を示す。縦軸はMSシグナル強度を示す。図13A及び図13Bに示すように、ZrO2は、広い温度範囲にわたってNH3及びCO2の脱離を示した。つまり、ZrO2には酸点及び塩基点の両方が存在していた。一方、SnO2は、広い温度範囲にわたってNH3の脱離を示したが、CO2の脱離を殆ど示さなかった。200℃以上ではCO2のシグナルが検出されなかった。つまり、SnO2には塩基点が殆ど存在しなかった。これらの結果から、SnO2を担体として用いた場合にメタン転化率の低下が緩やかである理由は、SnO2にSO4
2-が吸着しにくいためであると考えられる。CO2-TPD測定を行ったときに200℃以上でCO2のシグナルが検出されない担体を用いることによって、触媒の効果が長期に渡って維持されうる。
FIG. 13A is a graph showing the measurement results of NH 3-TPD. FIG. 13B is a graph showing the measurement results of CO 2-TPD. The horizontal axis shows the temperature of the sample. The vertical axis shows the MS signal intensity. As shown in FIGS. 13A and 13B, ZrO 2 showed desorption of NH 3 and CO 2 over a wide temperature range. That is, ZrO 2 had both an acid point and a base point. On the other hand, SnO 2 showed desorption of NH 3 over a wide temperature range, but showed almost no desorption of CO 2. No CO 2 signal was detected above 200 ° C. That is, there were almost no base points in SnO 2. From these results, it is considered that the reason why the decrease in the methane conversion rate is gradual when SnO 2 is used as a carrier is that SO 4 2- is difficult to be adsorbed on SnO 2. The effect of the catalyst can be maintained for a long period of time by using a carrier in which no CO 2 signal is detected at 200 ° C. or higher when CO 2-TPD measurement is performed.
<<実施例8:PtIrPd固溶体ナノ粒子>>
超音波ホモジナイザを用い、0.3mmolのK2PtCl4、0.3mmolのIrCl4・nH2O、及び0.3mmolのK2PdCl4を40mlの水に溶解させた。これにより、貴金属塩を含む原料液を得た。 << Example 8: PtIrPd solid solution nanoparticles >>
Using an ultrasonic homogenizer, 0.3 mmol of K 2 PtCl 4 , 0.3 mmol of IrCl 4 · nH 2 O, and 0.3 mmol of K 2 PdCl 4 were dissolved in 40 ml of water. As a result, a raw material liquid containing a noble metal salt was obtained.
超音波ホモジナイザを用い、0.3mmolのK2PtCl4、0.3mmolのIrCl4・nH2O、及び0.3mmolのK2PdCl4を40mlの水に溶解させた。これにより、貴金属塩を含む原料液を得た。 << Example 8: PtIrPd solid solution nanoparticles >>
Using an ultrasonic homogenizer, 0.3 mmol of K 2 PtCl 4 , 0.3 mmol of IrCl 4 · nH 2 O, and 0.3 mmol of K 2 PdCl 4 were dissolved in 40 ml of water. As a result, a raw material liquid containing a noble metal salt was obtained.
300mlのトリエチレングリコールに9mmolのPVPを加えて加熱した。加熱したトリエチレングリコールに15分間かけて原料液を噴霧した。噴霧時におけるトリエチレングリコールの温度は、228~233℃であった。噴霧終了後、230℃に維持しながら、トリエチレングリコールと原料液とを含む反応液を10分間かけて撹拌した。反応液を放冷したのち、沈殿物を遠心分離によって分離した。上澄み液は無色透明であった。これにより、736.89mgのPtIrPd固溶体ナノ粒子を得た。
9 mmol of PVP was added to 300 ml of triethylene glycol and heated. The raw material solution was sprayed on the heated triethylene glycol over 15 minutes. The temperature of triethylene glycol at the time of spraying was 228 to 233 ° C. After the spraying was completed, the reaction solution containing triethylene glycol and the raw material solution was stirred over 10 minutes while maintaining the temperature at 230 ° C. After allowing the reaction solution to cool, the precipitate was separated by centrifugation. The supernatant was colorless and transparent. As a result, 736.89 mg of PtIrPd solid solution nanoparticles were obtained.
[組成分析、TEM観察]
蛍光X線分析装置を用いて、PtIrPd固溶体ナノ粒子の組成を同定した。結果を表2に示す。透過電子顕微鏡によってPtIrPd固溶体ナノ粒子を観察した。得られたTEM像を図14に示す。 [Composition analysis, TEM observation]
The composition of PtIrPd solid solution nanoparticles was identified using a fluorescent X-ray analyzer. The results are shown in Table 2. PtIrPd solid solution nanoparticles were observed with a transmission electron microscope. The obtained TEM image is shown in FIG.
蛍光X線分析装置を用いて、PtIrPd固溶体ナノ粒子の組成を同定した。結果を表2に示す。透過電子顕微鏡によってPtIrPd固溶体ナノ粒子を観察した。得られたTEM像を図14に示す。 [Composition analysis, TEM observation]
The composition of PtIrPd solid solution nanoparticles was identified using a fluorescent X-ray analyzer. The results are shown in Table 2. PtIrPd solid solution nanoparticles were observed with a transmission electron microscope. The obtained TEM image is shown in FIG.
PtIrPd固溶体ナノ粒子における組成比(atom%)は、Pt:Ir:Pd=32:35:32であり、目標の1:1:1に概ね一致した。なお、定量結果(wt%)は、貴金属以外の残部がPVPであるものと仮定して算出した値である。
The composition ratio (atom%) of the PtIrPd solid solution nanoparticles was Pt: Ir: Pd = 32: 35: 32, which was almost in line with the target of 1: 1: 1. The quantitative result (wt%) is a value calculated on the assumption that the balance other than the precious metal is PVP.
図14は、実施例8のPtIrPd固溶体ナノ粒子のTEM像である。図14に示すように、ナノサイズのPtIrPd固溶体ナノ粒子が得られた。PtIrPd固溶体ナノ粒子の平均粒径は、4.4±0.9nmであった。平均粒径は、TEM像中の粒子(100個)の粒径(長径)を実測し、その平均を算出するという方法で算出した。A±Bnmという表記のAは平均粒径を表し、Bは標準偏差を表している。「長径」は、粒子の外縁上の2点間距離のうち、最も長いものを意味する。
FIG. 14 is a TEM image of the PtIrPd solid solution nanoparticles of Example 8. As shown in FIG. 14, nano-sized PtIrPd solid solution nanoparticles were obtained. The average particle size of the PtIrPd solid solution nanoparticles was 4.4 ± 0.9 nm. The average particle size was calculated by measuring the particle size (major axis) of the particles (100 particles) in the TEM image and calculating the average. A in the notation A ± Bnm represents the average particle size, and B represents the standard deviation. "Major axis" means the longest distance between two points on the outer edge of a particle.
[X線回折測定]
実施例8のPtIrPd固溶体ナノ粒子の粉末X線回折測定を実施した。図15は、実施例8のPtIrPd固溶体ナノ粒子のX線回折パターンである。X線回折測定は、CuKα線を用いて室温で行った。X線回折パターンは、単一のfccパターンを示していた。このことは、試料がPt、Ir及びPdの混合物ではなく、固溶体であることを示している。複数種類の単体の貴金属ナノ粒子が単に物理的に混合されている場合、又は、単一の粒子の中で複数種類の単体の貴金属が相分離している場合、各単体の貴金属の格子定数は異なるため、ピーク位置の異なるfccパターンが複数観測される。しかし、全元素が均一に原子レベルで混合した固溶体の場合、その格子定数は各元素の組成比と原子半径とにより単一の値に決定されるため、単一のfccパターンしか観測されない。 [X-ray diffraction measurement]
Powder X-ray diffraction measurement of PtIrPd solid solution nanoparticles of Example 8 was carried out. FIG. 15 is an X-ray diffraction pattern of the PtIrPd solid solution nanoparticles of Example 8. X-ray diffraction measurement was performed at room temperature using CuKα rays. The X-ray diffraction pattern showed a single fcc pattern. This indicates that the sample is a solid solution rather than a mixture of Pt, Ir and Pd. When multiple types of single noble metal nanoparticles are simply physically mixed, or when multiple types of single noble metals are phase-separated in a single particle, the lattice constant of each single noble metal is Since they are different, a plurality of fcc patterns having different peak positions are observed. However, in the case of a solid solution in which all elements are uniformly mixed at the atomic level, the lattice constant is determined by the composition ratio of each element and the atomic radius to a single value, so that only a single fcc pattern is observed.
実施例8のPtIrPd固溶体ナノ粒子の粉末X線回折測定を実施した。図15は、実施例8のPtIrPd固溶体ナノ粒子のX線回折パターンである。X線回折測定は、CuKα線を用いて室温で行った。X線回折パターンは、単一のfccパターンを示していた。このことは、試料がPt、Ir及びPdの混合物ではなく、固溶体であることを示している。複数種類の単体の貴金属ナノ粒子が単に物理的に混合されている場合、又は、単一の粒子の中で複数種類の単体の貴金属が相分離している場合、各単体の貴金属の格子定数は異なるため、ピーク位置の異なるfccパターンが複数観測される。しかし、全元素が均一に原子レベルで混合した固溶体の場合、その格子定数は各元素の組成比と原子半径とにより単一の値に決定されるため、単一のfccパターンしか観測されない。 [X-ray diffraction measurement]
Powder X-ray diffraction measurement of PtIrPd solid solution nanoparticles of Example 8 was carried out. FIG. 15 is an X-ray diffraction pattern of the PtIrPd solid solution nanoparticles of Example 8. X-ray diffraction measurement was performed at room temperature using CuKα rays. The X-ray diffraction pattern showed a single fcc pattern. This indicates that the sample is a solid solution rather than a mixture of Pt, Ir and Pd. When multiple types of single noble metal nanoparticles are simply physically mixed, or when multiple types of single noble metals are phase-separated in a single particle, the lattice constant of each single noble metal is Since they are different, a plurality of fcc patterns having different peak positions are observed. However, in the case of a solid solution in which all elements are uniformly mixed at the atomic level, the lattice constant is determined by the composition ratio of each element and the atomic radius to a single value, so that only a single fcc pattern is observed.
<<実施例9:PtIrPdRh固溶体ナノ粒子>>
超音波ホモジナイザを用い、0.25mmolのK2PtCl4、0.25mmolのIrCl4・nH2O、0.25mmolのK2PdCl4、及び0.25mmolのRhCl3・3H2Oを40mlの水に溶解させた。これにより、貴金属塩を含む原料液を得た。 << Example 9: PtIrPdRh solid solution nanoparticles >>
Using an ultrasonic homogenizer, 0.25mmol of K 2 PtCl 4, IrCl 4 · nH 2 O of 0.25mmol, K 2 PdCl 4 of 0.25mmol, and RhCl 3 · 3H 2 O of 0.25mmol in 40ml water Was dissolved in. As a result, a raw material liquid containing a noble metal salt was obtained.
超音波ホモジナイザを用い、0.25mmolのK2PtCl4、0.25mmolのIrCl4・nH2O、0.25mmolのK2PdCl4、及び0.25mmolのRhCl3・3H2Oを40mlの水に溶解させた。これにより、貴金属塩を含む原料液を得た。 << Example 9: PtIrPdRh solid solution nanoparticles >>
Using an ultrasonic homogenizer, 0.25mmol of K 2 PtCl 4, IrCl 4 · nH 2 O of 0.25mmol, K 2 PdCl 4 of 0.25mmol, and RhCl 3 · 3H 2 O of 0.25mmol in 40ml water Was dissolved in. As a result, a raw material liquid containing a noble metal salt was obtained.
300mlのトリエチレングリコールに2mmolのPVPを加えて加熱した。加熱したトリエチレングリコールに16分間かけて原料液を噴霧した。噴霧時におけるトリエチレングリコールの温度は、229~232℃であった。噴霧終了後、230℃に維持しながら、トリエチレングリコールと原料液とを含む反応液を10分間かけて撹拌した。反応液を放冷したのち、沈殿物を遠心分離によって分離した。上澄み液はうすい茶色の色を有していた。これにより、105.19mgのPtIrPdRh固溶体ナノ粒子を得た。
2 mmol of PVP was added to 300 ml of triethylene glycol and heated. The raw material liquid was sprayed on the heated triethylene glycol over 16 minutes. The temperature of triethylene glycol at the time of spraying was 229 to 232 ° C. After the spraying was completed, the reaction solution containing triethylene glycol and the raw material solution was stirred over 10 minutes while maintaining the temperature at 230 ° C. After allowing the reaction solution to cool, the precipitate was separated by centrifugation. The supernatant had a light brown color. As a result, 105.19 mg of PtIrPdRh solid solution nanoparticles were obtained.
[組成分析、TEM観察]
蛍光X線分析装置を用いて、PtIrPdRh固溶体ナノ粒子の組成を同定した。結果を表3に示す。透過電子顕微鏡によってPtIrPdRh固溶体ナノ粒子を観察した。得られたTEM像を図16に示す。 [Composition analysis, TEM observation]
The composition of PtIrPdRh solid solution nanoparticles was identified using a fluorescent X-ray analyzer. The results are shown in Table 3. PtIrPdRh solid solution nanoparticles were observed with a transmission electron microscope. The obtained TEM image is shown in FIG.
蛍光X線分析装置を用いて、PtIrPdRh固溶体ナノ粒子の組成を同定した。結果を表3に示す。透過電子顕微鏡によってPtIrPdRh固溶体ナノ粒子を観察した。得られたTEM像を図16に示す。 [Composition analysis, TEM observation]
The composition of PtIrPdRh solid solution nanoparticles was identified using a fluorescent X-ray analyzer. The results are shown in Table 3. PtIrPdRh solid solution nanoparticles were observed with a transmission electron microscope. The obtained TEM image is shown in FIG.
PtIrPdRh固溶体ナノ粒子における組成比(atom%)は、Pt:Ir:Pd:Rh=21:24:28:27であり、目標の1:1:1:1に概ね一致した。なお、定量結果(wt%)は、貴金属以外の残部がPVPであるものと仮定して算出した値である。
The composition ratio (atom%) of the PtIrPdRh solid solution nanoparticles was Pt: Ir: Pd: Rh = 21: 24: 28: 27, which was almost in line with the target of 1: 1: 1: 1. The quantitative result (wt%) is a value calculated on the assumption that the balance other than the precious metal is PVP.
図16は、実施例9のPtIrPdRh固溶体ナノ粒子のTEM像である。図16に示すように、ナノサイズのPtIrPdRh固溶体ナノ粒子が得られた。PtIrPdRh固溶体ナノ粒子の平均粒径は、3.9±1.2nmであった。
FIG. 16 is a TEM image of the PtIrPdRh solid solution nanoparticles of Example 9. As shown in FIG. 16, nano-sized PtIrPdRh solid solution nanoparticles were obtained. The average particle size of the PtIrPdRh solid solution nanoparticles was 3.9 ± 1.2 nm.
[X線回折測定]
実施例9のPtIrPdRh固溶体ナノ粒子の粉末X線回折測定を実施した。図17は、実施例9のPtIrPdRh固溶体ナノ粒子のX線回折パターンである。X線回折パターンは、単一のfccパターンを示していた。このことは、試料がPt、Ir、Pd及びRhの混合物ではなく、固溶体であることを示している。複数種類の単体の貴金属ナノ粒子が単に物理的に混合されている場合、又は、単一の粒子の中で複数種類の単体の貴金属が相分離している場合、各単体の貴金属の格子定数は異なるため、ピーク位置の異なるfccパターンが複数観測される。しかし、全元素が均一に原子レベルで混合した固溶体の場合、その格子定数は各元素の組成比と原子半径とにより単一の値に決定されるため、単一のfccパターンしか観測されない。 [X-ray diffraction measurement]
Powder X-ray diffraction measurement of PtIrPdRh solid solution nanoparticles of Example 9 was carried out. FIG. 17 is an X-ray diffraction pattern of the PtIrPdRh solid solution nanoparticles of Example 9. The X-ray diffraction pattern showed a single fcc pattern. This indicates that the sample is a solid solution rather than a mixture of Pt, Ir, Pd and Rh. When multiple types of single noble metal nanoparticles are simply physically mixed, or when multiple types of single noble metals are phase-separated in a single particle, the lattice constant of each single noble metal is Since they are different, a plurality of fcc patterns having different peak positions are observed. However, in the case of a solid solution in which all elements are uniformly mixed at the atomic level, the lattice constant is determined by the composition ratio of each element and the atomic radius to a single value, so that only a single fcc pattern is observed.
実施例9のPtIrPdRh固溶体ナノ粒子の粉末X線回折測定を実施した。図17は、実施例9のPtIrPdRh固溶体ナノ粒子のX線回折パターンである。X線回折パターンは、単一のfccパターンを示していた。このことは、試料がPt、Ir、Pd及びRhの混合物ではなく、固溶体であることを示している。複数種類の単体の貴金属ナノ粒子が単に物理的に混合されている場合、又は、単一の粒子の中で複数種類の単体の貴金属が相分離している場合、各単体の貴金属の格子定数は異なるため、ピーク位置の異なるfccパターンが複数観測される。しかし、全元素が均一に原子レベルで混合した固溶体の場合、その格子定数は各元素の組成比と原子半径とにより単一の値に決定されるため、単一のfccパターンしか観測されない。 [X-ray diffraction measurement]
Powder X-ray diffraction measurement of PtIrPdRh solid solution nanoparticles of Example 9 was carried out. FIG. 17 is an X-ray diffraction pattern of the PtIrPdRh solid solution nanoparticles of Example 9. The X-ray diffraction pattern showed a single fcc pattern. This indicates that the sample is a solid solution rather than a mixture of Pt, Ir, Pd and Rh. When multiple types of single noble metal nanoparticles are simply physically mixed, or when multiple types of single noble metals are phase-separated in a single particle, the lattice constant of each single noble metal is Since they are different, a plurality of fcc patterns having different peak positions are observed. However, in the case of a solid solution in which all elements are uniformly mixed at the atomic level, the lattice constant is determined by the composition ratio of each element and the atomic radius to a single value, so that only a single fcc pattern is observed.
本発明の固溶体ナノ粒子は、電子材料、磁性材料、触媒材料、医薬品材料、化粧品材料又は食料品材料として有用である。
The solid solution nanoparticles of the present invention are useful as electronic materials, magnetic materials, catalyst materials, pharmaceutical materials, cosmetic materials or food materials.
Claims (15)
- 式PtxM1yM21-x-y(0<x<1、0<y<1、x+y<1)によって表される組成を有し、
M1は、Ru又はIrであり、
M1がRuのとき、M2は、Ir、Rh、Ag、Cu及びAuからなる群より選ばれる少なくとも1種であり、
M1がIrのとき、M2は、Rh、Pd、Ag、Cu及びAuからなる群より選ばれる少なくとも1種であり、
Pt、M1及びM2は、固溶体を形成している、
固溶体ナノ粒子。 It has a composition represented by the formula Pt x M1 y M2 1-xy (0 <x <1, 0 <y <1, x + y <1).
M1 is Ru or Ir and
When M1 is Ru, M2 is at least one selected from the group consisting of Ir, Rh, Ag, Cu and Au.
When M1 is Ir, M2 is at least one selected from the group consisting of Rh, Pd, Ag, Cu and Au.
Pt, M1 and M2 form a solid solution,
Solid solution nanoparticles. - M1がRuのとき、M2は、Ir、Rh、Ag、Cu又はAuであり、
M1がIrのとき、M2は、Rh、Pd、Ag、Cu又はAuである、
請求項1に記載の固溶体ナノ粒子。 When M1 is Ru, M2 is Ir, Rh, Ag, Cu or Au.
When M1 is Ir, M2 is Rh, Pd, Ag, Cu or Au.
The solid solution nanoparticles according to claim 1. - M1がRuである、
請求項1又は2に記載の固溶体ナノ粒子。 M1 is Ru,
The solid solution nanoparticles according to claim 1 or 2. - M2がIrである、
請求項1から3のいずれか1項に記載の固溶体ナノ粒子。 M2 is Ir,
The solid solution nanoparticles according to any one of claims 1 to 3. - M1がRuであり、
M2がIrである、
請求項1から4のいずれか1項に記載の固溶体ナノ粒子。 M1 is Ru,
M2 is Ir,
The solid solution nanoparticles according to any one of claims 1 to 4. - 請求項1から5のいずれか1項に記載の固溶体ナノ粒子を含む、触媒。 A catalyst containing the solid solution nanoparticles according to any one of claims 1 to 5.
- 前記固溶体ナノ粒子を担持している担体をさらに備えた、
請求項6に記載の触媒。 Further comprising a carrier carrying the solid solution nanoparticles,
The catalyst according to claim 6. - 前記担体は、金属酸化物の粒子である、
請求項7に記載の触媒。 The carrier is particles of metal oxide.
The catalyst according to claim 7. - 10℃/minの昇温速度で前記担体のCO2-TPD測定を行ったときに200℃以上でCO2のシグナルが検出されない、
請求項7又は8に記載の触媒。 When the CO 2- TPD measurement of the carrier was performed at a heating rate of 10 ° C./min, no CO 2 signal was detected at 200 ° C. or higher.
The catalyst according to claim 7 or 8. - 前記担体は、SnO2、WO3、MoO3、Ta2O5、及びNb2O5からなる群より選ばれる少なくとも1種を含む、
請求項7から9のいずれか1項に記載の触媒。 The carrier comprises at least one selected from the group consisting of SnO 2 , WO 3 , MoO 3 , Ta 2 O 5 , and Nb 2 O 5.
The catalyst according to any one of claims 7 to 9. - 炭化水素の酸化分解用触媒である、
請求項6から10のいずれか1項に記載の触媒。 A catalyst for oxidative decomposition of hydrocarbons,
The catalyst according to any one of claims 6 to 10. - 前記炭化水素がメタンを含む、
請求項11に記載の触媒。 The hydrocarbon contains methane,
The catalyst according to claim 11. - 溶媒と、
前記溶媒に分散した請求項1から5のいずれか1項に記載の固溶体ナノ粒子と、
を備えた、固溶体ナノ粒子の分散液。 With solvent
The solid solution nanoparticles according to any one of claims 1 to 5 dispersed in the solvent.
A dispersion of solid solution nanoparticles. - 式PtxM1yM21-x-y(0<x<1、0<y<1、x+y<1)によって表される組成を有する固溶体ナノ粒子の製造方法であって、
Pt塩、M1の塩及びM2の塩を含む溶液を150℃以上250℃以下の範囲の温度に加熱した液体還元剤に加えて反応させることを含み、
前記M1の塩は、Ru塩又はIr塩であり、
前記M1の塩がRu塩のとき、前記M2の塩は、Ir塩、Rh塩、Ag塩、Cu塩及びAu塩からなる群より選ばれる少なくとも1種を含み、
前記M1の塩がIr塩のとき、前記M2の塩は、Rh塩、Pd塩、Ag塩、Cu塩及びAu塩からなる群より選ばれる少なくとも1種を含む、
固溶体ナノ粒子の製造方法。 A method for producing solid solution nanoparticles having a composition represented by the formula Pt x M1 y M2 1-xy (0 <x <1, 0 <y <1, x + y <1).
It involves adding a solution containing a Pt salt, a salt of M1 and a salt of M2 to a liquid reducing agent heated to a temperature in the range of 150 ° C. or higher and 250 ° C. or lower for reaction.
The salt of M1 is a Ru salt or an Ir salt.
When the salt of M1 is Ru salt, the salt of M2 contains at least one selected from the group consisting of Ir salt, Rh salt, Ag salt, Cu salt and Au salt.
When the salt of M1 is an Ir salt, the salt of M2 contains at least one selected from the group consisting of Rh salt, Pd salt, Ag salt, Cu salt and Au salt.
A method for producing solid solution nanoparticles. - 前記溶液が担体をさらに含む、
請求項14に記載の固溶体ナノ粒子の製造方法。 The solution further comprises a carrier,
The method for producing solid solution nanoparticles according to claim 14.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021567533A JPWO2021132335A1 (en) | 2019-12-27 | 2020-12-23 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-239386 | 2019-12-27 | ||
JP2019239386 | 2019-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021132335A1 true WO2021132335A1 (en) | 2021-07-01 |
Family
ID=76573006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/048169 WO2021132335A1 (en) | 2019-12-27 | 2020-12-23 | Solid solution nanoparticles, method for producing same, dispersion liquid of solution solid nanoparticles, and catalyst |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021132335A1 (en) |
WO (1) | WO2021132335A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024095872A1 (en) * | 2022-11-01 | 2024-05-10 | 住友化学株式会社 | Method for producing c2-3 alcohol |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0398644A (en) * | 1989-09-11 | 1991-04-24 | Toyota Motor Corp | Preparation of catalyst for purifying exhaust gas |
JPH11273690A (en) * | 1998-03-26 | 1999-10-08 | Ne Chemcat Corp | Cathode electrode catalyst for phosphoric acid fuel cell, cathode electrode using the catalyst and phosphoric acid fuel cell having the cathode electrode |
JP2002253969A (en) * | 2001-03-02 | 2002-09-10 | Osaka Gas Co Ltd | Catalyst for purifying waste gas and method of purifying waste gas |
JP2006198490A (en) * | 2005-01-19 | 2006-08-03 | Mitsubishi Heavy Ind Ltd | Exhaust gas cleaning catalyst, its manufacturing method and exhaust gas cleaning method |
JP2006272079A (en) * | 2005-03-28 | 2006-10-12 | Tokyo Gas Co Ltd | Catalyst for oxidizing and removing methane in combustion exhaust gas and exhaust gas cleaning method |
CN104174392A (en) * | 2013-05-27 | 2014-12-03 | 中国科学院大连化学物理研究所 | One-step preparation method and application of supported platinum-based multi-metal catalysts |
WO2017150596A1 (en) * | 2016-03-03 | 2017-09-08 | 国立大学法人京都大学 | Multicomponent solid solution microparticles and method for producing same, and catalyst |
-
2020
- 2020-12-23 JP JP2021567533A patent/JPWO2021132335A1/ja active Pending
- 2020-12-23 WO PCT/JP2020/048169 patent/WO2021132335A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0398644A (en) * | 1989-09-11 | 1991-04-24 | Toyota Motor Corp | Preparation of catalyst for purifying exhaust gas |
JPH11273690A (en) * | 1998-03-26 | 1999-10-08 | Ne Chemcat Corp | Cathode electrode catalyst for phosphoric acid fuel cell, cathode electrode using the catalyst and phosphoric acid fuel cell having the cathode electrode |
JP2002253969A (en) * | 2001-03-02 | 2002-09-10 | Osaka Gas Co Ltd | Catalyst for purifying waste gas and method of purifying waste gas |
JP2006198490A (en) * | 2005-01-19 | 2006-08-03 | Mitsubishi Heavy Ind Ltd | Exhaust gas cleaning catalyst, its manufacturing method and exhaust gas cleaning method |
JP2006272079A (en) * | 2005-03-28 | 2006-10-12 | Tokyo Gas Co Ltd | Catalyst for oxidizing and removing methane in combustion exhaust gas and exhaust gas cleaning method |
CN104174392A (en) * | 2013-05-27 | 2014-12-03 | 中国科学院大连化学物理研究所 | One-step preparation method and application of supported platinum-based multi-metal catalysts |
WO2017150596A1 (en) * | 2016-03-03 | 2017-09-08 | 国立大学法人京都大学 | Multicomponent solid solution microparticles and method for producing same, and catalyst |
Non-Patent Citations (3)
Title |
---|
COMIGNANI, VANINA: "Influence of carbon support properties on the electrocatalytic activity of PtRuCu nanoparticles for methanol and ethanol oxidation", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 42, 4 September 2017 (2017-09-04), pages 24785 - 24796, XP085176581, DOI: 10.1016/j.ijhydene. 2017.08.07 9 * |
EGUILUZ, K.I.B. ET AL.: "Effect of the catalyst composition in the Ptx(Ru-Ir)l-x/C system on the electro-oxidation of methanol in acid media", JOURNAL OF POWER SOURCES, vol. 179, 27 December 2007 (2007-12-27), pages 42 - 49, XP022512051, DOI: 10.1016/j.jpowsour. 2007.12.07 0 * |
SALAZAR-BANDA, GIANCARLO R. ET AL.: "The influence of different co-catalysts in Pt-based ternary and quaternary electro-catalysts on the electro-oxidation of methanol and ethanol in acid media", JOURNAL OF ELECTROANALYTICAL CHEMISTRY, vol. 668, 2012, pages 13 - 25, XP028463130, DOI: 10.1016/j.jelechem. 2012.01.00 6 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024095872A1 (en) * | 2022-11-01 | 2024-05-10 | 住友化学株式会社 | Method for producing c2-3 alcohol |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021132335A1 (en) | 2021-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mortazavi-Derazkola et al. | Facile hydrothermal and novel preparation of nanostructured Ho2O3 for photodegradation of eriochrome black T dye as water pollutant | |
JP3749391B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
KR100460249B1 (en) | A Process for the Oxidation of Ammonia | |
JP5894233B2 (en) | Supported catalysts with controlled metal cluster size | |
KR20150058373A (en) | Catalyst using pd-ru solid-solution-type alloy particles | |
US9115621B2 (en) | Metal particles, exhaust gas purifying catalyst comprising metal particles, and methods for producing them | |
JP6855073B2 (en) | Multidimensional solid solution fine particles, their production method, and catalyst | |
JP5715726B2 (en) | Ruthenium fine particles having substantially face-centered cubic structure and method for producing the same | |
JP2011089143A (en) | Method for producing mono-component system and bi-component system cubic type metal nanoparticle | |
JP6782411B2 (en) | Method for manufacturing a supported catalyst | |
EP2918342A1 (en) | Exhaust gas purification catalyst and production method thereof | |
WO2013187323A1 (en) | Gold cluster catalyst and method for producing same | |
US9962683B2 (en) | Alloy microparticles and method for producing same, alloy microparticle cluster, catalyst, and method for producing same | |
WO2021132335A1 (en) | Solid solution nanoparticles, method for producing same, dispersion liquid of solution solid nanoparticles, and catalyst | |
CN109718807B (en) | Methane dry reforming catalyst, preparation method and application thereof, and method for preparing synthesis gas by methane dry reforming | |
JP2020168588A (en) | Method for manufacturing carried bimetal alloy | |
JP2006198490A (en) | Exhaust gas cleaning catalyst, its manufacturing method and exhaust gas cleaning method | |
JP5825439B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
Seridi et al. | Structural study of radiolytic catalysts Ni-Ce/Al2O3 and Ni-Pt/Al2O3 | |
WO2022009870A1 (en) | Alloy, aggregate of alloy nanoparticles, and catalyst | |
JP6909405B2 (en) | Methaneization catalyst, its production method, and methane production method using it | |
JP2004188390A (en) | Metal nano cluster, production method therefor, and catalyst using the same for eliminating air- contaminating material | |
JP2011038158A (en) | Metallic fine particle and method for producing the same | |
JP2014237078A (en) | Exhaust gas purifying catalyst and method for producing the same | |
JP2007117835A (en) | Tabular oxide particle-deposited carbon particle, its manufacturing method and method for manufacturing noble metal-deposited tabular oxide particle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20907331 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2021567533 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20907331 Country of ref document: EP Kind code of ref document: A1 |