JPS6050489B2 - Catalyst for purifying exhaust gas containing sulfur compounds - Google Patents

Catalyst for purifying exhaust gas containing sulfur compounds

Info

Publication number
JPS6050489B2
JPS6050489B2 JP53136693A JP13669378A JPS6050489B2 JP S6050489 B2 JPS6050489 B2 JP S6050489B2 JP 53136693 A JP53136693 A JP 53136693A JP 13669378 A JP13669378 A JP 13669378A JP S6050489 B2 JPS6050489 B2 JP S6050489B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
weight
alumina
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53136693A
Other languages
Japanese (ja)
Other versions
JPS5564839A (en
Inventor
将人 竹内
臣平 松田
友一 加茂
明 加藤
茂男 宇野
史登 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP53136693A priority Critical patent/JPS6050489B2/en
Publication of JPS5564839A publication Critical patent/JPS5564839A/en
Publication of JPS6050489B2 publication Critical patent/JPS6050489B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は硫黄化合物含有排ガス浄化用触媒に関し、特
に、排ガス中の水素、一酸化炭素、炭化水素及び含酸素
有機化合物等の可燃性成分を完全燃焼ししかも排ガス中
に含有される硫黄化合物により被毒されずに高性能を維
持しうる硫黄化合物含有排ガス浄化用触媒に関する。
Detailed Description of the Invention The present invention relates to a catalyst for purifying exhaust gas containing sulfur compounds, and in particular, it completely burns combustible components such as hydrogen, carbon monoxide, hydrocarbons, and oxygen-containing organic compounds in the exhaust gas. The present invention relates to a catalyst for purifying exhaust gas containing sulfur compounds that can maintain high performance without being poisoned by the sulfur compounds contained therein.

近年、石油化学工業、製鉄工業、塗装工業及び印刷工
業等の各種固定排ガス発生源及び自動車等の移動排ガス
発生源から排出される排ガス中に含まれる一酸化炭素、
炭化水素及ひ含酸素有機化合物等は、有害成分又は悪臭
成分としてその大気汚染対策が強く望まれている。
In recent years, carbon monoxide contained in exhaust gas emitted from various fixed exhaust gas generation sources such as the petrochemical industry, steel industry, painting industry, and printing industry, and from mobile exhaust gas generation sources such as automobiles,
Hydrocarbons, oxygen-containing organic compounds, and the like are harmful or malodorous components, and there is a strong need for countermeasures against air pollution.

ごのような排ガスの処理方法としては、一般に直燃式
排ガス浄化方法及び触媒燃焼式排ガス浄化方法がある。
Generally, methods for treating exhaust gas include direct combustion exhaust gas purification methods and catalytic combustion exhaust gas purification methods.

しかし、前者の方法は高温で処理する関係上多量の燃料
を消費するという欠点があるために、特に近年では省エ
ネルギーの観点から、不経済な前者の方法に対して後者
の方法が見直されてきた。触媒燃焼方法により、各種排
ガスを触媒と接触させて排ガス中の有害成分又は悪臭成
分等を完全燃焼させて浄化するに当つては、使用する触
媒の性能及び寿命が最も重要な因子となる。
However, the former method has the disadvantage of consuming a large amount of fuel due to the high temperature involved, so in recent years, the latter method has been reconsidered over the uneconomical former method, especially from the perspective of energy conservation. . When using a catalytic combustion method to bring various types of exhaust gas into contact with a catalyst to completely burn and purify harmful or malodorous components in the exhaust gas, the performance and lifespan of the catalyst used are the most important factors.

従来、この種の触媒としては、アルミナ系担体にNj.
Cr.Fe.Cu又はCO等の酸化物又はパラジウム及
び白金等の白金属元素等を添加したもので、自動車排ガ
ス処理を対象としたものが多い。
Conventionally, as this type of catalyst, Nj.
Cr. Fe. It contains oxides such as Cu or CO, or platinum elements such as palladium and platinum, and is often used for automobile exhaust gas treatment.

しかしながら、産業用プラント排ガス、例えばコークス
炉排ガスのように硫黄化合物を含有する排ガスを処理す
る場合、上記のような既知の触媒は硫黄酸化物に被毒さ
れて経時的に性能が低下するためその実用化が困難であ
る。このような触媒の劣化機構は、担体であるアルミナ
及び活性成分である金属酸化物が硫黄酸化物によつて硫
酸塩化し、触媒の細孔構造変化あるいは成分変化により
触媒活性を失うためと考えられる。又、最近、硫黄化合
物含有排ガスを処理し、SO3あるいは硫酸ミストの排
出を抑制するためSO2からSO3への変化率を低下さ
せかつCO及びHC(炭化水素)の酸化能を良好に維持
しうる触、媒として、活性アルミナを主体としそれぞれ
を酸化チタン及び五酸化リンて変性した担体に白金属元
素を担持させたものが提案されている(特開昭52−1
2691号公報参照)が、硫黄酸化物による触媒の被毒
抑制効果の点では必ずしも満足できるもJのとは言えな
い。
However, when treating industrial plant exhaust gas containing sulfur compounds such as coke oven exhaust gas, the known catalysts described above are poisoned by sulfur oxides and their performance deteriorates over time. Difficult to put into practical use. The deterioration mechanism of such a catalyst is thought to be that alumina, which is a support, and metal oxide, which is an active component, are sulfated by sulfur oxides, and the catalyst loses its activity due to changes in the pore structure or components of the catalyst. . Recently, in order to treat exhaust gas containing sulfur compounds and suppress the emission of SO3 or sulfuric acid mist, catalysts have been developed that can reduce the rate of change from SO2 to SO3 and maintain good oxidation ability of CO and HC (hydrocarbons). As a medium, it has been proposed that a platinum metal element is supported on a carrier mainly composed of activated alumina and modified with titanium oxide and phosphorus pentoxide (Japanese Patent Application Laid-Open No. 52-1
2691), but it cannot be said that it is necessarily satisfactory in terms of the effect of suppressing poisoning of the catalyst by sulfur oxides.

本発明は、このような現状に鑑みてなされたものてあり
、その目的は、硫黄化合物含有排ガス中の水素、一酸化
炭素、炭化水素及ひ含酸素有機化合物(例えば酢酸、メ
タノール及びアルデヒド3等)等の可燃性成分を完全酸
化して排ガスを浄化し、しかも、硫黄化合物により被毒
されずに高性能を長期にわたつて安定に維持し、又、燃
焼下限濃度以下すなわち自燃性の無いあるいは自燃性に
乏しい可燃性成分を含むガス(低カロリーガス)ηを完
全燃焼させて熱エネルギーを回収しうる触媒を提供する
ことである。
The present invention has been made in view of the current situation, and its purpose is to eliminate hydrogen, carbon monoxide, hydrocarbons, and oxygen-containing organic compounds (such as acetic acid, methanol, and aldehyde 3, etc.) in exhaust gas containing sulfur compounds. ), etc., to completely oxidize the exhaust gas, and maintain high performance stably over a long period of time without being poisoned by sulfur compounds. An object of the present invention is to provide a catalyst capable of recovering thermal energy by completely burning a gas (low calorie gas) η containing a combustible component with poor self-combustibility.

ここで、上記低カロリーガスとは、例えば都市ゴミの乾
留分解ガス、石炭の部分燃焼低カロリーガス、鉄鋼プラ
ントの高炉ガスあるいは石油精製プラントにおける触媒
再生ガス(例えばクラツキング触媒の再生で生じるガス
)等であり、これらは通常硫黄化合物そして時には硫化
水素を含有している。本発明は、上記の目的を達成する
ため次の構成をとるものである。
Here, the above-mentioned low-calorie gas is, for example, carbonized gas from municipal waste, low-calorie gas from partial combustion of coal, blast furnace gas from a steel plant, or catalyst regeneration gas from an oil refinery plant (e.g., gas generated from cracking catalyst regeneration), etc. and these usually contain sulfur compounds and sometimes hydrogen sulfide. The present invention has the following configuration to achieve the above object.

すなわち、本発明の硫黄酸化物含有排ガス浄化用触媒は
、約70〜95重量%の二酸化チタンを含有する二酸化
チタン−アルミナ混合成形担体に触媒重量を基として約
0.02〜2重量)%の少なくとも1種の白金属元素を
担持させたことを特徴とするものである。本発明者等は
、硫黄酸化物(SO2及びSO3)を含む排ガス中の窒
素酸化物をアンモニアにより接触還元するための触媒に
つき検討中に、酸化チタンを主成分とする遷移金属酸化
物触媒か耐硫黄酸化物性に優れていることを見出した。
That is, the sulfur oxide-containing exhaust gas purifying catalyst of the present invention has a titanium dioxide-alumina mixed molded carrier containing about 70 to 95 weight % titanium dioxide, and about 0.02 to 2 weight % based on the catalyst weight. It is characterized by supporting at least one type of platinum metal element. The present inventors were investigating a catalyst for the catalytic reduction of nitrogen oxides in exhaust gas containing sulfur oxides (SO2 and SO3) with ammonia, and found that a transition metal oxide catalyst containing titanium oxide as the main component was highly resistant. It was found that it has excellent sulfur oxide properties.

そして、この触媒は、主成分である酸化チタンが硫黄酸
化物により硫酸塩化されにくく、かつ第二成分である遷
移金属酸化物が硫酸塩化されても酸化チタンが主成分で
あるため触媒の細孔構造変化が少なく、硫黄化合物によ
る活性低下が少ないことがわかつた。本発明者等は、上
記事実に基づき、酸化チタンを主成分とした担体を用い
た触媒が前記した水素、一酸化炭素、炭化水素及び含酸
素有機化合物等の完全酸化反応用触媒として有効てある
と考えて更に詳細に検討した結果、酸化チタンを主成分
とした担体を用いこれにパラジウム、白金及びテニウム
等の白金属元素の少なくとも1種を担持させた触媒が、
硫黄酸化物に被毒されることなく長期にわたつてその性
能を維持できることを見出した。
In this catalyst, titanium oxide, which is the main component, is difficult to be sulfated by sulfur oxides, and even if the transition metal oxide, which is the second component, is sulfated, titanium oxide is the main component, so the pores of the catalyst It was found that there was little structural change and little decrease in activity due to sulfur compounds. Based on the above facts, the present inventors believe that a catalyst using a carrier mainly composed of titanium oxide is effective as a catalyst for the complete oxidation reaction of hydrogen, carbon monoxide, hydrocarbons, oxygen-containing organic compounds, etc. As a result of further detailed investigation, we found that a catalyst that uses a carrier mainly composed of titanium oxide and supports at least one platinum metal element such as palladium, platinum, and thenium,
It was discovered that the performance could be maintained over a long period of time without being poisoned by sulfur oxides.

ところで、酸化チタンそれ自体単独では、球状又は円柱
状等各種の形状に成形する場合の成形性が悪く、十分に
満足しうる強度を有する成形体を得ることが困難であり
、十分な強度の成形体にするにはこれを更に高温(80
0℃以上)で焼結させなければならない。
By the way, titanium oxide itself has poor formability when molded into various shapes such as spherical or cylindrical shapes, and it is difficult to obtain molded products with sufficient strength. To make it into the body, heat it to a higher temperature (80
must be sintered at temperatures above 0°C).

ところが、もう一つの問題点として、酸化チタンは、ア
ルミナ等に比して高温処理による結晶成長が進み易く、
800′C以上の温度で処理することによりその比表面
積が1イIy以下になつてしまい、成形体も著しく収縮
して時にはクラックの発生等を伴う。本発明者等は、こ
れらの問題点の解決を考慮に入れて検討を進めた結果、
酸化チタンとアルミナの混合成形担体を用いることによ
り目的が達成されることを見出して本発明に到達したも
のである。本発明者等は、酸化チタンにアルミナを添加
した場合、その量により各焼成温度における比表面積の
変化について調べた。
However, another problem is that titanium oxide tends to grow crystals more easily when treated at high temperatures than alumina etc.
When treated at a temperature of 800'C or higher, the specific surface area becomes less than 1Iy, and the molded product also shrinks significantly, sometimes accompanied by the occurrence of cracks. As a result of our studies taking into consideration the solutions to these problems, the present inventors found that
The present invention was achieved by discovering that the object can be achieved by using a mixed molded carrier of titanium oxide and alumina. The present inventors investigated changes in specific surface area at various firing temperatures depending on the amount of alumina added to titanium oxide.

第1図は、焼成温度を変化させた場合における担体中の
アルミナ含量と担体の比表面積との関係を示したグラフ
であり、図中の温度は担体の焼成温度を示す。このグラ
フから、酸化チタン単独では、700゜Cで焼成処理し
た場合比表面積は約3イIyであるが900℃以上で焼
成処理した場合1イ1f1となつてしまうのに対して、
アルミナを添加すると比表面積の低下が抑制されること
がわかる。この効果は、単に比表面積の大きいアルミナ
と比表面積の小さい酸化チタンの加成性に基づくもので
はなく、アルミナ含有率の低いところで傾向的にアルミ
ナ添加による比表面積低下抑制効果が特に顕著に現われ
ていることが明らかである。このように、酸化チタン−
アルミナ混合成形担体は、酸化チタン単独の場合に比べ
てその成形性が改善されると共に、より高に温度(90
0℃も可)で焼成処理することにより、クラックの発生
もなく強度が大で比表面積がより大きい特性を有する。
FIG. 1 is a graph showing the relationship between the alumina content in the carrier and the specific surface area of the carrier when the firing temperature is changed, and the temperature in the figure indicates the firing temperature of the carrier. From this graph, it can be seen that for titanium oxide alone, the specific surface area is approximately 3 Iy when fired at 700°C, but it becomes 1I1f1 when fired at 900°C or higher.
It can be seen that addition of alumina suppresses the decrease in specific surface area. This effect is not simply based on the additivity of alumina, which has a large specific surface area, and titanium oxide, which has a small specific surface area; it also shows that the effect of suppressing the reduction in specific surface area by adding alumina tends to be particularly pronounced at low alumina content. It is clear that there are In this way, titanium oxide
The alumina mixed molded carrier has improved moldability compared to titanium oxide alone, and can also be heated to a higher temperature (90°C).
By performing the firing treatment at temperatures as high as 0°C (0°C is also possible), it has the characteristics of high strength and a larger specific surface area without the occurrence of cracks.

本発明の触媒における担体としては、上記特性に耐硫黄
化合物を加味し、担体重量当り約70〜95重量%の酸
化チタンを含有する酸化チタン−アルミナ混合成形担体
を使用することが必要である。
As the carrier for the catalyst of the present invention, it is necessary to use a titanium oxide-alumina mixed molded carrier containing about 70 to 95% by weight of titanium oxide based on the weight of the carrier, taking into account the above properties and a sulfur-resistant compound.

酸化チタンの含有量が約7鍾量%以下の担体では、排ガ
ス中の硫黄酸化物等によりアルミナ等が硫酸塩化され担
体の細孔構造変化が大きくなり触媒活性点が著しく減少
してその性能低下を招き、約95重量%以上では強度が
出ない。又、本発明の触媒の比表面積は、活性その他の
点から1TTIIダ以上望ましくは10dIy以上のも
のが適当である。
In carriers with a titanium oxide content of approximately 7% by weight or less, alumina, etc. will be sulfated by sulfur oxides in the exhaust gas, and the pore structure of the carrier will change significantly, resulting in a significant decrease in catalytic active sites and a decrease in performance. If the content exceeds about 95% by weight, no strength will be obtained. Further, the specific surface area of the catalyst of the present invention is suitably 1TTII da or more, preferably 10 dIy or more, from the viewpoint of activity and other aspects.

又、本発明における成形担体又は触媒の焼成温度は約5
00〜900℃とするのが望ましく、約500′C以下
では十分な強度が得られず、約900℃以上では比表面
積が低下して活性が不十分となる。
Furthermore, the firing temperature of the shaped carrier or catalyst in the present invention is about 5
The temperature is desirably 00 to 900°C; below about 500'C, sufficient strength cannot be obtained, and above about 900°C, the specific surface area decreases and the activity becomes insufficient.

本発明における酸化チタン原料としては、酸化チタン粉
末の他に、約150℃以上で熱分解して酸化チタンとな
るオルトチタン酸、メタチタン酸又は硫酸チタン、四塩
化チタン等の加水分解による含水酸化チタンを用いても
よく、又、チタンイソプロポキシド等の有機チタン化合
物等を原料として用いることができる。又、本発明にお
けるアルミナ原料としては、その比表面積が10d1y
1望ましくは50dIy以上のアルミナ粉末が好適であ
り、又、ジプサイト、バイヤライト及びベーマイト等熱
分解によりアルミナを得るアルミナ水和物、無定形アル
ミナゲルあるいはアルミナゾル等も原料として使用する
ことができる。
In addition to titanium oxide powder, the titanium oxide raw materials used in the present invention include hydrated titanium oxide obtained by hydrolysis of orthotitanic acid, metatitanic acid, titanium sulfate, titanium tetrachloride, etc., which are thermally decomposed to titanium oxide at about 150°C or higher. Alternatively, an organic titanium compound such as titanium isopropoxide can be used as a raw material. In addition, the alumina raw material in the present invention has a specific surface area of 10d1y.
1 desirably 50 dIy or more, and alumina hydrate, amorphous alumina gel, alumina sol, etc., which obtain alumina by thermal decomposition such as gypsite, bayerite, and boehmite, can also be used as raw materials.

又、アルミナ製造の出発原料としては、通常の硝酸塩、
硫酸塩、塩化物等、又、アルミン酸アルカリ、アルミニ
ウムアルコキシド及び金属アルミニウム等を使用するこ
とができる。なお、本発明における担体には、マグネシ
ア、ジルコニア、シリコンカーバイド、ケイソウ土、ゼ
オライト、ムライト及びシリカ等の他の耐火性物質の若
干量(数重量%程度)を添加、混合することができる。
本発明における酸化チタン−アルミナ混合成形担体の製
造過程において、酸化チタン及びアルミナ粉末又はその
前駆体である含水酸化物の混合物に水を加えて十分に湿
式混練し圧密化工程を経て十分均密混合されたものは、
比表面積を十分高い値に保持して強度も高く、かつ又耐
硫黄酸化物性も優れているので、高性能てあり長期にわ
たつて安定な触媒担体として使用することができる。
In addition, as starting materials for alumina production, ordinary nitrates,
Sulfates, chlorides, etc., alkali aluminates, aluminum alkoxides, metallic aluminum, etc. can be used. In addition, a small amount (about several weight %) of other refractory substances such as magnesia, zirconia, silicon carbide, diatomaceous earth, zeolite, mullite, and silica can be added to and mixed with the carrier in the present invention.
In the manufacturing process of the titanium oxide-alumina mixed molded support in the present invention, water is added to a mixture of titanium oxide and alumina powder or a hydrous oxide that is a precursor thereof, and the mixture is sufficiently wet-kneaded and thoroughly mixed through a compaction process. What was done is
It maintains a sufficiently high specific surface area, has high strength, and has excellent resistance to sulfur oxides, so it has high performance and can be used as a stable catalyst carrier for a long period of time.

本発明の触媒は、上記の二酸化チタン−アルミナ混合成
形担体に、その約0.02〜2重量%の少なくとも1種
の白金族元素を担持させたものである。本発明における
上記白金属元素としては例えばパラジウム、白金、ルテ
ニウム及びロジウム等を挙げることができ、これらの金
属は、予め酸化チタンとアルミナの混合成形担体を製造
した後にこれに含浸、担持させて触媒を得ることができ
、あるいは又、上記混合成形担体を得る段階で予め白金
族元素化合物を混合し、湿式混練工程を経て最終触媒成
形体を得ることもできる。
The catalyst of the present invention has at least one platinum group element supported on the titanium dioxide-alumina mixed molded carrier in an amount of about 0.02 to 2% by weight. Examples of the above-mentioned platinum metal elements in the present invention include palladium, platinum, ruthenium, and rhodium, and these metals are prepared in advance by preparing a mixed support of titanium oxide and alumina, and then impregnated and supported on the support to form a catalyst. Alternatively, a platinum group element compound can be mixed in advance at the stage of obtaining the mixed molded carrier and a final catalyst molded body can be obtained through a wet kneading process.

白金族元素の担持量は、最終触媒重量を基として約0.
02〜2重量%、望ましくは0.1〜1重量%とするの
が適当である。
The amount of platinum group elements supported is about 0.0000000000000000000000000000000000000000000000000000000000000000000000.
A suitable amount is 0.02 to 2% by weight, preferably 0.1 to 1% by weight.

この量が約0.0踵量%以下では触媒活性が低下し、約
2重量%以上ではコスト的に不利となる。又、本発明の
触媒には、助触媒成分として、Ni..Cr..Fe.
.Cu..CO等の遷移金属元素を含有させることも有
効である。この場合における遷移金属元素は白金属元素
に対して0.01〜3唾量%程度添加することが適当で
ある。上記担体及び触媒の成形手段は特に限定されす、
既知の打錠成形法、転動造粒法、押出成形法及び噴霧造
粒法等のいずれによつてもよい。又、触媒の形状も特に
限定されず、円柱状、円筒状、球状、粒状及びハニカム
状等の形状を適宜選択することができ、望ましい形状は
、排ガスの性状、製造の容易さ等により綜合的に決定さ
れる。次に、本発明の触媒の調製法につき一例をあげて
具体的にその概要を説明する。まず、メタチタン酸スラ
リーに水酸化アルミニウムの所定量を添加し、混練機で
十分に加熱混練する。
If this amount is less than about 0.0% by weight, the catalytic activity will decrease, and if it is more than about 2% by weight, it will be disadvantageous in terms of cost. The catalyst of the present invention also contains Ni. .. Cr. .. Fe.
.. Cu. .. It is also effective to include a transition metal element such as CO. In this case, it is appropriate that the transition metal element be added in an amount of about 0.01 to 3% based on the white metal element. The means for forming the above-mentioned carrier and catalyst are particularly limited.
Any of the known tableting methods, rolling granulation methods, extrusion molding methods, spray granulation methods, etc. may be used. Further, the shape of the catalyst is not particularly limited, and shapes such as cylindrical, cylindrical, spherical, granular, and honeycomb can be selected as appropriate, and the desired shape is generally determined depending on the properties of exhaust gas, ease of production, etc. determined. Next, the outline of the method for preparing the catalyst of the present invention will be specifically explained by giving an example. First, a predetermined amount of aluminum hydroxide is added to metatitanic acid slurry, and the mixture is sufficiently heated and kneaded using a kneader.

全体が十分に均密混合されたところでこれを140゜C
で乾燥後ボールミルで粉砕する。この粉体を転動造粒法
により2〜4朗径の球状に造粒した後、乾燥し、700
℃で6時間焼成して酸化チタン−アルミナ混合成形担体
を得る。この担体に塩化白金酸水溶液の所定量を含浸し
、120℃で5時間乾燥後、水素気流中で450′Cで
3時間焼成還元して酸化チタン−アルミナー白金触媒を
得る。このようにして得られた触媒を用いて水素、一酸
化炭素、炭化水素及び含酸化有機化合物等の可燃性成分
を酸化するための触媒層温度は、排ガスの組成、性状及
び処理条件によつて異なるので、処理対象となる排ガス
の組成等を十分みきわめた上でその処理条件を決定しな
ければならない。
Once everything is thoroughly mixed, heat it to 140°C.
After drying, grind with a ball mill. This powder was granulated into spheres with a diameter of 2 to 4 mm using a rolling granulation method, and then dried.
C. for 6 hours to obtain a titanium oxide-alumina mixed molded support. This carrier is impregnated with a predetermined amount of an aqueous solution of chloroplatinic acid, dried at 120° C. for 5 hours, and then calcined and reduced at 450° C. for 3 hours in a hydrogen stream to obtain a titanium oxide-alumina platinum catalyst. The temperature of the catalyst layer for oxidizing combustible components such as hydrogen, carbon monoxide, hydrocarbons, and oxidized organic compounds using the catalyst thus obtained depends on the composition, properties, and treatment conditions of the exhaust gas. Therefore, the treatment conditions must be determined after fully understanding the composition of the exhaust gas to be treated.

すなわち、例えば、触媒粒径2〜4TW1、空間速度2
000h−1、0.2%白金一酸化チタン−アルミナ触
媒の場合、水素は100℃以下で十分に酸化反応が進行
するのに対して、一酸化炭素は約200℃以上、プロパ
ンは250℃以上、メタンは400℃以上そ!して酢酸
は300℃以上(いずれも硫黄酸化物共存下)でほぼ完
全に酸化反応が進行する。これらの可燃性成分の酸化は
発熱反応であり、排ガス中の可燃性成分濃度がある程度
以上高い場合には、触媒層温度がその燃焼熱によつて上
昇すくるため、排ガスが触媒上で自燃し、燃焼を継続で
きる可能性もあり、このような処理の可能な排ガスを対
象とした場合に触媒燃焼式浄化の特徴を顕著に発揮する
ことができ、又、熱エネルギーを有効に回収することが
できる。
That is, for example, catalyst particle size 2 to 4 TW1, space velocity 2
In the case of 000h-1, 0.2% platinum titanium monoxide-alumina catalyst, the oxidation reaction of hydrogen proceeds sufficiently at temperatures below 100°C, while the oxidation reaction of carbon monoxide proceeds at temperatures above approximately 200°C and for propane above 250°C. , methane is over 400 degrees Celsius! The oxidation reaction of acetic acid proceeds almost completely at temperatures above 300°C (both in the presence of sulfur oxides). The oxidation of these combustible components is an exothermic reaction, and if the concentration of combustible components in the exhaust gas is higher than a certain level, the catalyst layer temperature will rise due to the heat of combustion, causing the exhaust gas to self-combust on the catalyst. , there is a possibility that combustion can be continued, and when treating exhaust gas that can be treated in this way, the characteristics of catalytic combustion purification can be clearly demonstrated, and thermal energy can be effectively recovered. can.

本発明の触媒を用いる燃焼式排ガス浄化方法において、
二次空気の添加量は、排ガス中の可燃性成分を完全酸化
するのに必要な化学量論量の酸素の1.皓以上、望まし
くは1.3倍以上になる相当量が適当である。
In the combustion type exhaust gas purification method using the catalyst of the present invention,
The amount of secondary air added is 1.5% of the stoichiometric amount of oxygen required to completely oxidize the combustible components in the exhaust gas. An appropriate amount is 1.3 times or more, preferably 1.3 times or more.

二次空気添加量の上限は特に限定されないが、熱エネル
ギーを有効に回収する本発明の目的を達成するには、上
記の化学量論量の酸素の2.皓以下、望ましくは1.皓
以下に相当するノ空気を添加するのがよい。空気の代わ
りに酸素を添加することも当然可能である。又、本発明
の触媒を用いる燃焼式排ガス浄化方法を実施する際の空
間速度は、10000〜100000h−1の範囲とす
ることが望ましい。
The upper limit of the amount of secondary air added is not particularly limited, but in order to achieve the objective of the present invention of effectively recovering thermal energy, it is necessary to add 2.0% of the above stoichiometric amount of oxygen. Below 1, preferably 1. It is better to add air equivalent to less than 100 ml of air. Of course, it is also possible to add oxygen instead of air. Further, the space velocity when carrying out the combustion type exhaust gas purification method using the catalyst of the present invention is preferably in the range of 10,000 to 100,000 h-1.

次に、本発明を実施例により説明するが、本発明はこれ
らによりなんら限定されるものではない。
Next, the present invention will be explained with reference to Examples, but the present invention is not limited to these in any way.

実施例1 酸化チタンとして35重量%含有するメタチタン酸スラ
リー1k9及び200メッシュバスのγ−アルミナ粉末
0.15k9を混練機に採取し、これを約1.5時間1
00〜200℃で混練して十分に均密混合して水分が約
30%になつたところで、これを140℃で約■時間乾
燥した。
Example 1 1k9 of metatitanic acid slurry containing 35% by weight of titanium oxide and 0.15k9 of γ-alumina powder in a 200 mesh bath were collected in a kneader and mixed for about 1.5 hours.
When the mixture was kneaded at 00 to 200°C and thoroughly mixed to a moisture content of about 30%, it was dried at 140°C for about 2 hours.

乾燥後、これをボールミルで2時間粉砕し得られた粉末
を転動造粒法により2〜4Tm!RL径の球状に造粒し
一昼夜静置した。これを140℃で5時間乾燥後、更に
500℃で2時間焼成して、球状に成形された酸化チタ
ン−アルミナ混合成形担体を得た。この成形担体に、塩
化白金酸水溶液(10ダPt/100m1)10m1を
蒸留水で希釈した溶液170m1を含浸した。
After drying, this was ground in a ball mill for 2 hours, and the resulting powder was processed by rolling granulation to a powder size of 2 to 4 Tm! The pellets were granulated into spheres with a diameter of RL and left to stand overnight. This was dried at 140°C for 5 hours and then fired at 500°C for 2 hours to obtain a spherical titanium oxide-alumina mixed molded carrier. This molded carrier was impregnated with 170 ml of a solution prepared by diluting 10 ml of a chloroplatinic acid aqueous solution (10 da Pt/100 ml) with distilled water.

120℃で5時間乾燥後、水素気流中て400℃で3時
間還元焼成した。
After drying at 120°C for 5 hours, reduction firing was performed at 400°C for 3 hours in a hydrogen stream.

このようにして得た触媒は、0.踵量%白金含有酸化チ
タン(7鍾量%)ーアルミナ(3唾量%)触媒である。
この触媒24m1を内径4−の石英製反応管に充填し、
下記組成のガスを空間速度20000h−1で流通して
反応させた。
The catalyst thus obtained was 0. It is a platinum-containing titanium oxide (7 weight%)-alumina (3 weight%) catalyst.
24 ml of this catalyst was packed into a quartz reaction tube with an inner diameter of 4 mm,
A gas having the following composition was caused to flow and react at a space velocity of 20,000 h-1.

一酸化炭素は非分散型赤外線分析計により測定した。C
O5OOOppmCO2l5% SO2lOOOppmsO35OPPmO22%
H2OlO%N2残部 一酸化炭素の酸化率は次式により求めた。
Carbon monoxide was measured using a non-dispersive infrared analyzer. C
O5OOOppmCO2l5% SO2lOOOOppmsO35OPPmO22%
The oxidation rate of H2OlO%N2 and remaining carbon monoxide was determined by the following formula.

初期活性の測定結果を第2図に示す。The measurement results of initial activity are shown in Figure 2.

すなわち、第2図は反応温度とCO酸化率の関係を示し
たグラフであり、このグラフかられかるように、硫黄酸
化物の存在下において約230℃でも高い活性を示した
。実施例2 酸化チタンとアルミナの混合比を変えた以外は実施例1
と同様の方法により、0.2重量%白金含有酸化チタン
(95重量%)−アルミナ(5重量%)触媒を調製した
That is, FIG. 2 is a graph showing the relationship between reaction temperature and CO oxidation rate, and as can be seen from this graph, high activity was exhibited even at about 230° C. in the presence of sulfur oxide. Example 2 Example 1 except that the mixing ratio of titanium oxide and alumina was changed
A titanium oxide (95% by weight)-alumina (5% by weight) catalyst containing 0.2% by weight of platinum was prepared in the same manner as described above.

又、対照1として、0.2重量%白金含有酸化チタン(
5呼量%)−アルミナ(5鍾量%)触媒を調製した。又
、別に、対照2として、2〜477177!径の球状ア
ルミナ担体100qに塩化白金酸水溶液50m1を蒸留
水で希釈した溶液50mtを含浸し、120℃で5時間
乾燥後、水素気流中で400℃て3時間還元焼成して、
0.2重量%白金含有アルミナ触媒を調製した。上記3
種の触媒及び実施例1の触媒につき、実施例1と同様の
ガス組成及ひ測定条件で、300℃における一酸化炭素
酸化反応の100時間連続試験(空間速度20000h
−1)を行なつた。
In addition, as a control 1, titanium oxide containing 0.2% by weight platinum (
5% by weight)-alumina (5% by weight) catalyst was prepared. Separately, as a control 2, 2-477177! A spherical alumina carrier of 100 q of diameter was impregnated with 50 ml of a solution of 50 ml of chloroplatinic acid aqueous solution diluted with distilled water, dried at 120°C for 5 hours, and then reduced and calcined at 400°C for 3 hours in a hydrogen stream.
An alumina catalyst containing 0.2% by weight platinum was prepared. Above 3
A 100-hour continuous test of carbon monoxide oxidation reaction at 300°C (space velocity 20,000 h) using the seed catalyst and the catalyst of Example 1 under the same gas composition and measurement conditions as in Example 1.
-1) was carried out.

その耐久試験結果を第3図に示す。すなわち、第3図は
反応時間とCO酸化率の関係を示したグラフであり、A
は実施例1、Bは実施例2、Cは対照1、Dは対照2の
触媒の場合を示す。第3図のグラフから明らかなように
、実施例1及び2の触媒の耐久性は10叫間後において
も変化がないが、対照1及び2の触媒は時間の経過と共
にCO酸化率が低下し、対照2の場合に著しく低下し耐
久性が劣つている。
The durability test results are shown in Figure 3. That is, FIG. 3 is a graph showing the relationship between reaction time and CO oxidation rate, and A
shows the case of the catalyst of Example 1, B shows the case of Example 2, C shows the case of Control 1, and D shows the case of Control 2. As is clear from the graph in Figure 3, the durability of the catalysts of Examples 1 and 2 does not change even after 10 hours, but the CO oxidation rate of the catalysts of Controls 1 and 2 decreases over time. , in the case of Control 2, the durability was significantly lowered.

実施例3成形担体の焼成温度を900゜Cにした以外は
実施例1と同様の方法により調製した0.5重量%白金
含有酸化チタン(7唾量%)−アルミナ(3踵量%)触
媒を用いて、下記組成のガスを空間速度で流通して反応
させた。
Example 3 0.5% by weight platinum-containing titanium oxide (7%)-alumina (3%) catalyst prepared in the same manner as in Example 1 except that the firing temperature of the shaped carrier was 900°C. A gas having the following composition was passed at a space velocity to cause a reaction.

C3H3lOOOppmsO25OOppmsO32O
ppmO25% N2残部プロパン(C3H3)はFI
Dガスクロマトグラフィーを用いて測定した。
C3H3lOOOppmsO25OOppmsO32O
ppmO25% N2 balance propane (C3H3) is FI
Measured using D gas chromatography.

その結果、250℃におけるプロパンの酸化率は99%
以上であつた。一方、上記と同様にして調製した0.5
重量%白金含有酸化チタン(単独担体)触媒(対照3)
を用いて上記と同様の反応を行なつたところ、250℃
におけるプロパンの酸化率は87%であつた。
As a result, the oxidation rate of propane at 250°C was 99%.
That's all. On the other hand, 0.5 prepared in the same manner as above
Titanium oxide (sole carrier) catalyst containing wt% platinum (control 3)
When the same reaction as above was carried out using
The oxidation rate of propane was 87%.

又、成形担体の焼成温度を1200゜Cとした以外は、
実施例1と同様にして調製した0.5重量%白金含有酸
化チタン(7唾量%)−アルミナ(3踵量%)触媒(対
照4)を用いて上記と同様の反応を行なつたところ、2
50℃におけるプロパンの酸化率は91%であつた。実
施例4 成形担体の焼成温度を800′Cとし、酸化チタンとア
ルミナの混合比及び白金族元素の種類を変えた以外は、
実施例1と同様にして0.5重量%パラジウム含有酸化
チタン(8唾量%)−アルミナ(2鍾量%)触媒を調製
し、これを用いて下記組成のガスを空間速度10000
h−1て流通して反応させたところ、30℃においても
95%以上の水素酸化率を得た。
In addition, except that the firing temperature of the shaped carrier was 1200°C,
The same reaction as above was carried out using a 0.5% by weight platinum-containing titanium oxide (7% by weight)-alumina (3% by weight) catalyst (Control 4) prepared in the same manner as in Example 1. ,2
The oxidation rate of propane at 50°C was 91%. Example 4 Except that the firing temperature of the shaped carrier was 800'C, and the mixing ratio of titanium oxide and alumina and the type of platinum group element were changed,
A titanium oxide (8% by weight)-alumina (2% by weight) catalyst containing 0.5% by weight palladium was prepared in the same manner as in Example 1, and using this, a gas having the following composition was heated at a space velocity of 10,000.
When the mixture was reacted by flowing through the reactor at h-1, a hydrogen oxidation rate of 95% or more was obtained even at 30°C.

実施例5 成形担体の焼成温度を800゜Cとし、酸化チタンとア
ルミナの混合比及び白金族元素とその量を変えた以外は
、実施例1と同様にして0.2重量%ロジウム含有酸化
チタン(8鍾量%)−アルミナ(2鍾量%)触媒を調製
し、これを用いて、下記組成のガスを空間速度1000
0h−1で流通して反応させたところ、300℃て99
%以上の酢酸酸化率を得)た。
Example 5 Titanium oxide containing 0.2% by weight rhodium was prepared in the same manner as in Example 1, except that the firing temperature of the shaped carrier was 800°C and the mixing ratio of titanium oxide and alumina and the platinum group element and its amount were changed. (8 weight%) - alumina (2 weight%) catalyst was prepared, and using this, a gas having the following composition was heated at a space velocity of 1000.
When reacted by flowing at 0h-1, 99% at 300℃
% or more of acetic acid oxidation rate was obtained).

V2ρ ′υ b〜HPO.O踵量
%のロジウムを含有させた以外は上記と同様にして調製
した0.0踵量%ロジウム含有酸夕化チタン(8唾量%
)−アルミナ(2唾量%)触媒及び0.01重量%ロジ
ウム含有酸化チタン(80重量%)−アルミナ(2鍾量
%)触媒(対照6)を用いて、上記と同様の反応を行な
つたところ、300゜Cにおいて前者は96.5%、後
者は83%の酢酸ク酸化率を得た。
V2ρ ′υ b〜HPO. Oxidized titanium containing 0.0% rhodium (8% rhodium) prepared in the same manner as above except that rhodium of 0% rhodium was contained.
)-alumina (2% by weight) catalyst and titanium oxide (80% by weight) containing 0.01% by weight rhodium-alumina (2% by weight) catalyst (Control 6) to carry out the same reaction as above. As a result, the acetic acid oxidation rate was 96.5% for the former and 83% for the latter at 300°C.

以上の実施例及び対照の結果かられかるように、担体中
の酸化チタンは約70〜95重量%、触媒中の白金族元
素含量は0.02〜2重量%とするのが適当であり、又
、担体の焼成温度は500〜900゜C程度とすること
が望ましく、これらの範囲を外れると良好な効果を発揮
することができない。
As can be seen from the results of the above examples and controls, it is appropriate that the titanium oxide in the carrier be about 70 to 95% by weight, and the platinum group element content in the catalyst be 0.02 to 2% by weight. Further, it is preferable that the firing temperature of the carrier is about 500 to 900°C, and if it is out of this range, good effects cannot be obtained.

以上述べたように、本発明によれば、硫黄酸化物含有排
ガス中の水素、一酸化炭素、炭化水素及び含酸素有機化
合物等を完全に酸化、燃焼させ、しかも硫黄化合物によ
り被毒されることなく長時間にわたり高性能を維持しう
る触媒を提供することができる。
As described above, according to the present invention, hydrogen, carbon monoxide, hydrocarbons, oxygen-containing organic compounds, etc. in the sulfur oxide-containing exhaust gas are completely oxidized and burned, and moreover, it is possible to completely oxidize and burn the hydrogen, carbon monoxide, hydrocarbons, oxygen-containing organic compounds, etc. in the sulfur oxide-containing exhaust gas, and furthermore, it is possible to prevent poisoning by the sulfur compounds. It is possible to provide a catalyst that can maintain high performance over a long period of time.

したがつて、本発明の触媒は、各種工業の固定発生源及
び自動車等の移動発生源から排出される排ガス処理用そ
の他に広範かつ有効に使用することができる。
Therefore, the catalyst of the present invention can be widely and effectively used for treating exhaust gases emitted from stationary sources in various industries and mobile sources such as automobiles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼成温度を変化させた場合における担体中のア
ルミナ含量と担体の比表面積との関係を示したグラフ、
第2図は実施例1における反応温度とCO酸化率との関
係を示したグラフそして第3図は実施例2における反応
時間とCO酸化率の関係を示したグラフである。
Figure 1 is a graph showing the relationship between the alumina content in the carrier and the specific surface area of the carrier when the firing temperature is changed.
FIG. 2 is a graph showing the relationship between reaction temperature and CO oxidation rate in Example 1, and FIG. 3 is a graph showing the relationship between reaction time and CO oxidation rate in Example 2.

Claims (1)

【特許請求の範囲】 1 約70〜95重量%の二酸化チタンを含有する二酸
化チタン−アルミナ混合成形担体に触媒重量を基として
約0.02〜2重量%の少なくとも1種の白金族元素を
担持させたことを特徴とする硫黄化合物含有排ガス浄化
用触媒。 2 成形担体が約500〜900℃で焼成処理された特
許請求の範囲第1項記載の硫黄化合物含有排ガス浄化用
触媒。 3 担体又は触媒が湿式混練−圧密化されたものである
特許請求の範囲第1項又は第2項記載の硫黄化合物含有
排ガス浄化用触媒。 4 白金属元素が白金、パラジウム、ルテニウム及びロ
ジウムからなる群から選ばれた1種以上である特許請求
の範囲第1項ないし第3項のいずれかに記載の硫黄化合
物含有排ガス浄化用触媒。
[Scope of Claims] 1. A titanium dioxide-alumina mixed molded support containing about 70 to 95% by weight of titanium dioxide and supporting about 0.02 to 2% by weight of at least one platinum group element based on the weight of the catalyst. A catalyst for purifying exhaust gas containing sulfur compounds, characterized in that: 2. The sulfur compound-containing exhaust gas purifying catalyst according to claim 1, wherein the shaped carrier is calcined at about 500 to 900°C. 3. The catalyst for purifying exhaust gas containing sulfur compounds according to claim 1 or 2, wherein the carrier or the catalyst is wet-kneaded and compacted. 4. The sulfur compound-containing exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein the platinum metal element is one or more selected from the group consisting of platinum, palladium, ruthenium, and rhodium.
JP53136693A 1978-11-08 1978-11-08 Catalyst for purifying exhaust gas containing sulfur compounds Expired JPS6050489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53136693A JPS6050489B2 (en) 1978-11-08 1978-11-08 Catalyst for purifying exhaust gas containing sulfur compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53136693A JPS6050489B2 (en) 1978-11-08 1978-11-08 Catalyst for purifying exhaust gas containing sulfur compounds

Publications (2)

Publication Number Publication Date
JPS5564839A JPS5564839A (en) 1980-05-15
JPS6050489B2 true JPS6050489B2 (en) 1985-11-08

Family

ID=15181255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53136693A Expired JPS6050489B2 (en) 1978-11-08 1978-11-08 Catalyst for purifying exhaust gas containing sulfur compounds

Country Status (1)

Country Link
JP (1) JPS6050489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048095U (en) * 1990-05-14 1992-01-24

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003414A1 (en) * 1984-12-05 1986-06-19 Kabushiki Kaisha Violet Deodorizing method based upon oxidation and decomposition using ultraviolet rays and an apparatus therefor
KR100435438B1 (en) * 1999-12-23 2004-06-10 주식회사 포스코 Palladium-platinum/titania catalyst and a method for removing hydrocarbon by using the catalyst
JP4723467B2 (en) * 2006-12-19 2011-07-13 幸人 三浦 Cord winder
JP6401740B2 (en) * 2016-06-13 2018-10-10 株式会社豊田中央研究所 Exhaust gas purification catalyst and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048095U (en) * 1990-05-14 1992-01-24

Also Published As

Publication number Publication date
JPS5564839A (en) 1980-05-15

Similar Documents

Publication Publication Date Title
KR950007578B1 (en) Carrier for gas-treating catalyst, method for production thereof, and gas-treating catalyst incorporation said canier therein
US4164546A (en) Method of removing nitrogen oxides from gaseous mixtures
CZ168898A3 (en) NOx REDUCTION PROCESS OF WASTE GASES
Soloviev et al. Oxidation of diesel soot on binary oxide CuCr (Co)-based monoliths
JPS594175B2 (en) Nitrogen oxide removal using coated catalysts
JPH03193140A (en) Catalyst for treating gas effluence and method for treating said effluence
JP4917003B2 (en) Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
JP4512691B2 (en) Catalyst for selective reduction of nitrogen oxides by carbon monoxide and its preparation
JPS6050489B2 (en) Catalyst for purifying exhaust gas containing sulfur compounds
JP4283037B2 (en) Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
JPS6147568B2 (en)
KR100510321B1 (en) Catalysts for refining reformed gas and process for selectively removing carbon monoxide in reformed gas using the same
JPH11128688A (en) Purification of waste gas
JP3316566B2 (en) Reduction and purification method of exhaust gas containing nitrogen oxides
JP4494068B2 (en) Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
JP3854325B2 (en) Exhaust gas purification material and exhaust gas purification method
JPS6043170B2 (en) Catalyst for removing nitrogen oxides
JP2000107602A (en) Oxidation catalyst for unburned hydrocarbon in waste gas and its preparation
JPS5813217B2 (en) catalyst composition
JPH11128689A (en) Purification of waste gas
EP0673282B1 (en) Catalyst for the purification of diesel engine exhaust gases
JPS58885B2 (en) HIGH SHIYUTSUGASUTUYUNO CHITSUSOSUKABUTSUNO
JPH0586253B2 (en)
JPH09299805A (en) Catalyst for nox-containing waste gas purification, manufacture thereof, and purification method of nox-containing waste gas
JPH10235156A (en) Exhaust gas purifying catalyst bed, exhaust gas purifying catalyst coated structure and exhaust gas purifying method using the same