JPS6147568B2 - - Google Patents
Info
- Publication number
- JPS6147568B2 JPS6147568B2 JP53080982A JP8098278A JPS6147568B2 JP S6147568 B2 JPS6147568 B2 JP S6147568B2 JP 53080982 A JP53080982 A JP 53080982A JP 8098278 A JP8098278 A JP 8098278A JP S6147568 B2 JPS6147568 B2 JP S6147568B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- gas
- combustion
- titanium oxide
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003054 catalyst Substances 0.000 claims description 55
- 239000007789 gas Substances 0.000 claims description 35
- 238000002485 combustion reaction Methods 0.000 claims description 22
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 22
- 229910052815 sulfur oxide Inorganic materials 0.000 claims description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 15
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims description 14
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 13
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 13
- 229930195733 hydrocarbon Natural products 0.000 claims description 11
- 150000002430 hydrocarbons Chemical class 0.000 claims description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 239000007800 oxidant agent Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 13
- 230000003647 oxidation Effects 0.000 description 13
- 238000007254 oxidation reaction Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- -1 which is a support Inorganic materials 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- MBDHJOBKSBYBJB-UHFFFAOYSA-N oxygen(2-) platinum(2+) titanium(4+) Chemical class [O-2].[Ti+4].[Pt+2].[O-2].[O-2] MBDHJOBKSBYBJB-UHFFFAOYSA-N 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Inorganic materials O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- IREVRWRNACELSM-UHFFFAOYSA-J ruthenium(4+);tetrachloride Chemical compound Cl[Ru](Cl)(Cl)Cl IREVRWRNACELSM-UHFFFAOYSA-J 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Incineration Of Waste (AREA)
Description
本発明はガス中に含まれる水素、一酸化炭素、
炭化水素、含酸素炭化水素などの燃焼成分を接触
的に酸化する方法に関する。
内燃機関の不完全燃焼により生じる一酸化炭素
や未燃焼燃料成分を含んだ排ガス、あるいは各種
産業プラント、例えば、コークス炉排ガス、塗料
工業から出てくる有機溶剤あるいは有害なもしく
は悪臭をもつた化学プラント排ガスや微生物を利
用した汚物処理装置の排出ガス等は、大気汚染の
原因となつている。これらの排出ガス中の有害成
分の除去方法の一つとして、触媒を用いた接触還
元法がある。触媒はアルミナ担体を用いる場合が
多く、アルミナにNi、Crの酸化物(特公昭52−
3632、52−3633)アルミナにFeの酸化物(特公
昭51−4715)アルミナにCu、Coの酸化物やパラ
ジウム、白金などの白金族元素(Ind.Eng.Chem.
、Prod.Res.Dev.、Vol.15、No.3、1976)、ならび
にアルミナにTi.Pの酸化物と白金族元素(特開
昭52−12691)を添加したものが知られている。
その他にはFe2O3+Cr2O3、CuO+Cr2O3、シリ
カ−MnO2等の触媒が知られている。これ等の触
媒は特に自動車排ガス処理を対象としたものであ
る。しかし産業用プラント排ガス、例えば、コー
クス炉排ガスの様に硫黄酸化物を含有する排ガス
を処理する場合上記した公知の触媒は、硫黄酸化
物に被毒され経時的に性能が低下するので実用化
するのは困難である。この劣化の機構は、担体で
あるアルミナ及び活性成分である金属酸化物が硫
黄酸化物によつて硫酸塩化し、触媒の細孔構造変
化や成分変化によつて酸化活性を失うためと考え
られる。これらの理由によつて、硫黄酸化物を含
有するガスの処理触媒として、貴金族触媒はこれ
までほとんど使われていなかつた。
本発明の目的は硫黄酸化物を含有するガス中に
あつても長期間にわたつて安定した触媒活性を与
えうる改良された触媒を用いた、ガス中の燃焼成
分の燃焼方法を提供するにある。
本発明はガス中の燃焼成分を燃焼するにあたつ
て、高活性でしかも耐硫黄酸化物性を有するチタ
ン担体に白金族元素を担持した触媒を用いる燃焼
方法である。
被処理ガスに含まれる燃焼成分が燃焼下限濃度
付近またはそれ以下のガスとして、例えば都市ゴ
ミの乾留分解により生成するガス、石炭の部分燃
焼により発生する低カロリーガス、鉄鋼プラント
の高炉ガス、あるいは石油精製プラントにおける
触媒再生ガス(例えばクラツキング触媒の再生で
生じるCOを含むガス)などがある。これらは通
常水素、一酸化炭素、炭化水素あるいは含酸素炭
化水素の外に、5〜10ppm以上の硫黄酸化物
(SO3)やときには硫化水素(H2S)を含んでい
る。
前記のようなガス中の燃焼成分を完全に燃焼す
ることは、たんに公害成分を除去するばかりでは
なく、低カロリーガスから熱エネルギーを取付す
ることにもなり、熱エネルギーの有効活用が達成
される。
本発明に用いる触媒は高活性でしかも硫黄酸化
物に対する耐性を有する酸化チタンを担体とする
ものである。かかる酸化チタンはオルトチタン
酸、メタチタン酸等を熱分解したり、硫酸チタ
ン、四塩化チタンなどを加水分解したものであつ
て、400〜800℃の温度域で熱処理したものであ
る。熱処理温度が低い程、酸化チタンの細孔容積
が大きく、その比表面積が大となつて触媒活性が
高くなる。しかし、耐硫黄酸化物性が乏しくなる
ので、少くとも400℃以上の温度履歴を加えてお
く必要がある。ただし、硫黄酸化物とくに硫酸の
濃度が低くて、処理ガス温度が400℃以上の場合
には、事前の焼成は省略することも可能である。
酸化チタン担体は800℃以上に加熱されると、急
速に焼結が進み、比表面積が20m2/g以下にな
る。そして、これに担体された白金族触媒の触媒
活性は大幅に低下する。酸化チタンの焼結を防止
するための耐火性物質や、白金族触媒の助触媒と
なる遷移金属や希土類元素を添加することは勿論
可能であるが、その添加量は通常の添加方法では
触媒重量の25重量%以下にしなければならない。
触媒の活性成分であるパラジウム、白金、ルテ
ニウム、ロジウム等の白金族元素の担持量は、金
属として、0.02〜2重量%の範囲が好ましい。
0.02%以下では触媒活性が低く、また2%以上と
しても、活性はそれほど向上しない。経済性と長
期寿命とを考慮すると、工業的には0.1〜1重量
%とするのが良い。
触媒の製造法は、公知の打錠成形法、転動造粒
法、押出成形法、噴霧造粒法、あるいはその他の
成形法のいずれによつても成形することが出来
る。
また白金族の金属は、予め酸化チタンを主成分
とする担体を製造した後に、水溶性白金族化合物
の溶液を含浸するとよい。しかし、酸化チタンを
主成分とする粉末と水溶性白金族化合物の溶液を
混合し、これを上記した製造法で、触媒を作るこ
ともできる。含浸した、あるいは混合成形された
触媒は、400〜800℃で焼成すると、本発明による
酸化触媒を得ることができる。
触媒の形状は、先に記した製造法によつて、円
柱状、円筒状、球状、板状、もしくは、ハニカム
状のものを作ることができる。望ましい構造は、
排ガスの組成と製造の簡易さによつて決められ
る。例えば、粉塵を含まないガスの場合には、円
筒状あるいは円柱状のペレツト触媒で固定床型反
応器を用いる。粉塵が含有されている様な場合に
は、球状による移動床型の反応器を用いるか、あ
るいは板状、ハニカム状の触媒を用いて平行流型
の反応器を使用することが望ましい。
この酸化チタン−白金族系触媒を用いて一酸化
炭素、炭化水素などを酸化するための触媒層温度
は、排ガスの組成によつて異る。例えば、触媒粒
径を2〜4mm、空間速度10000h-1のとき、一酸化
炭素は、250℃以上、炭化水素の場合には300℃以
上で95%以上の酸化率が得られる。
しかし一酸化炭素、炭化水素などの酸化は、発
熱反応であり、触媒層の温度は、反応の進行によ
つて上昇する。温度上昇は、濃度によつて異る
が、1000ppmの時、一酸化炭素で約9℃、炭化
水素類の場合は約80〜100℃に達する。ガス中の
燃焼成分の濃度が高い場合には必要に応じてガス
を希釈して温度上昇を防ぐ。反応の温度条件はこ
れらの反応熱や機器の容量変動などを考慮して、
触媒自体の温度が800℃を越さないように選択す
る。
燃焼成分が水素の場合には、本発明のパラジウ
ム担持酸化チタン触媒を用いれば、燃焼反応は常
温(15〜30℃)においても進行する。炭化水素類
の燃焼では、最も反応が起りにくいのはメタンで
あり、プロパン、ブタンの場合には白金担持酸化
チタン触媒で250℃以上の温度ですみやかに反応
が進行する。以上のごとく、反応温度は燃焼成分
の種類により異つている。
本発明の燃焼を用いて燃焼を行うときの空間速
度は、1000〜500000m3/m3/hである。空間速度が
1000より小さいと、触媒量が多大になり経済的で
なくなる。空間速度の上限は触媒粒径により異な
るが、500000m3/m3/hである。
次に本発明を実施例を挙げて説明する。但し以
下の実施例は、本発明を具体的に説明するもので
あり、これに限定されるものではない。
実施例 1
酸化チタンとして35重量%含有するメタチタン
酸スラリ10をニーダにとり、これを2時間加熱
混練し、水分を約35%とする。これを140℃5時
間乾燥し、ボールミルで2時間粉砕する。得られ
た粉体を空気中350℃で2時間仮焼成処理を行
う。この粉体を転動造粒法を用いて2〜4mm径の
球状に造粒し一昼夜静置する。これを140℃で5
時間乾燥し、さらに450℃で2時間焼成すると、
球状に成形された酸化チタンが得られる。
次にヘキサクロロ白金酸塩(H2PtCl6)水溶液
(10gPt/100g溶液)5mlを蒸留水で希釈して全
量を35mlにし、これを上記製造法で得られた球状
酸化チタンに含浸する。120℃で5時間乾燥後、
水蒸気流中で450℃にて3時間焼成還元する。こ
の触媒は、酸化チタン−白金(0.5重量%)触媒
である。
上記方式で調製した触媒24mlを内径40mmの石英
製反応管に充填し、下記の組成のガスを、空間速
度約10000h-1で反応させた。一酸化炭素は、非分
散型赤外吸光光度計で測定した。
SO2 1000ppm
SO3 50ppm
CO 5000ppm
CO2 15%
O2 2%
H2O 10%
N2 残部
一酸化炭素の酸化率は次式より求めた。
CO還元率(%)=(1−出口CO濃度/入口CO濃度)
×100
初期活性を測定した結果を第1図に実線Aで示
す。250℃以上の温度で一酸化炭素の酸化率は95
%以上である。約100時間の連続運転を行い、触
媒の耐久性を調べた結果を第2図のAに示す。本
触媒は、SO21000ppm、SO350ppmという苛酷な
条件下でも活性が低下しない。
参考例 1
ヘキサクロロ白金酸塩(H2PtCl6)水溶液(10
gPt/1000g溶液)5mlを蒸留水で希釈して全量
を70mlにした。これを2〜4mm径の球状活性アル
ミナ担体、及びアルミナ−チタン混合担体
(Al2O3−TiO2等モル混合物)各100gに含浸し、
120℃で5時間乾燥後、水蒸気流中で450℃にて3
時間焼成還元する。この触媒は0.5重量%白金付
き触媒である。
上記方式で調整した触媒24mlを内径40mmの石英
製反応管に充填し実施例1と同様のガス組成で初
期活性を測定した結果を第1図の点線Bに示す。
この結果は第1図に示される様に、初期活性は、
250℃以上で95%以上の酸化率を示す。しかし第
2図のBに示すように、アルミナ担体を使用した
ものは反応時間の経過と共に酸化率が急速に低下
した。また、アルミナ−チタン担体(TiO248重
量%)に担持した触媒は点線Cに示すように、50
時間経過した後から、徐々に活性が低下しはじめ
た。
実施例 2
白金の含有量を変化させた他は第1の実施例と
同様にして、CO酸化率を測定した。結果を第1
表に示す。
The present invention deals with hydrogen, carbon monoxide, and
This invention relates to a method for catalytically oxidizing combustion components such as hydrocarbons and oxygenated hydrocarbons. Exhaust gas containing carbon monoxide and unburned fuel components resulting from incomplete combustion of internal combustion engines, or various industrial plants, such as coke oven exhaust gas, organic solvents from the paint industry, or chemical plants with harmful or foul odors. Exhaust gases and exhaust gases from waste treatment equipment that utilize microorganisms are a cause of air pollution. One of the methods for removing harmful components from these exhaust gases is a catalytic reduction method using a catalyst. Catalysts often use alumina carriers, and alumina with Ni and Cr oxides (Special Publications 1972-
3632, 52-3633) Alumina with Fe oxides (Special Publication No. 51-4715) Alumina with Cu, Co oxides, and platinum group elements such as palladium and platinum (Ind.Eng.Chem.
, Prod.Res.Dev., Vol. 15, No. 3, 1976), as well as those in which Ti.P oxide and platinum group elements (Japanese Patent Application Laid-open No. 12691-1976) are added to alumina are known.
Other known catalysts include Fe2O3 + Cr2O3 , CuO + Cr2O3 , and silica - MnO2 . These catalysts are particularly intended for automotive exhaust gas treatment. However, when treating industrial plant exhaust gas, for example exhaust gas containing sulfur oxides such as coke oven exhaust gas, the above-mentioned known catalysts are poisoned by sulfur oxides and their performance deteriorates over time, so they cannot be put to practical use. is difficult. The mechanism of this deterioration is thought to be that alumina, which is a support, and a metal oxide, which is an active component, are sulfated by sulfur oxides, and the oxidation activity is lost due to changes in the pore structure and components of the catalyst. For these reasons, precious metal group catalysts have rarely been used as catalysts for treating gases containing sulfur oxides. An object of the present invention is to provide a method for burning combustion components in gas using an improved catalyst that can provide stable catalytic activity over a long period of time even in gas containing sulfur oxides. . The present invention is a combustion method that uses a catalyst in which a platinum group element is supported on a titanium carrier that is highly active and resistant to sulfur oxides, in order to burn combustion components in gas. The combustion components contained in the gas to be treated are near or below the lower flammability limit concentration, such as gas generated by carbonized decomposition of municipal waste, low-calorie gas generated by partial combustion of coal, blast furnace gas from steel plants, or petroleum. These include catalyst regeneration gas (e.g. gas containing CO generated during cracking catalyst regeneration) in refinery plants. These usually contain 5 to 10 ppm or more of sulfur oxides (SO 3 ) and sometimes hydrogen sulfide (H 2 S) in addition to hydrogen, carbon monoxide, hydrocarbons, or oxygenated hydrocarbons. Complete combustion of the combustible components in the gas as described above not only removes polluting components, but also allows thermal energy to be extracted from low-calorie gas, making effective use of thermal energy possible. Ru. The catalyst used in the present invention uses titanium oxide as a carrier, which is highly active and has resistance to sulfur oxides. Such titanium oxide is obtained by thermally decomposing orthotitanic acid, metatitanic acid, etc., or by hydrolyzing titanium sulfate, titanium tetrachloride, etc., and is heat-treated in a temperature range of 400 to 800°C. The lower the heat treatment temperature, the larger the pore volume of titanium oxide, the larger its specific surface area, and the higher the catalytic activity. However, since the resistance to sulfur oxides becomes poor, it is necessary to add a temperature history of at least 400°C. However, if the concentration of sulfur oxides, especially sulfuric acid, is low and the processing gas temperature is 400° C. or higher, the pre-calcination can be omitted.
When the titanium oxide support is heated to 800° C. or higher, sintering progresses rapidly and the specific surface area becomes 20 m 2 /g or less. Then, the catalytic activity of the platinum group catalyst supported thereon is significantly reduced. It is of course possible to add refractory substances to prevent sintering of titanium oxide, and transition metals and rare earth elements that act as co-catalysts for platinum group catalysts, but the amount of addition is limited to the weight of the catalyst using the normal addition method. Must be less than 25% by weight. The supported amount of platinum group elements such as palladium, platinum, ruthenium, and rhodium, which are active components of the catalyst, is preferably in the range of 0.02 to 2% by weight as a metal.
If it is less than 0.02%, the catalyst activity will be low, and if it is more than 2%, the activity will not improve much. Considering economy and long life, it is preferable to set the content to 0.1 to 1% by weight industrially. The catalyst can be manufactured by any of the known tabletting methods, rolling granulation methods, extrusion molding methods, spray granulation methods, or other molding methods. Further, for platinum group metals, it is preferable to prepare a carrier containing titanium oxide as a main component in advance and then impregnate it with a solution of a water-soluble platinum group compound. However, the catalyst can also be produced by mixing a powder containing titanium oxide as a main component and a solution of a water-soluble platinum group compound and using the above-described production method. The impregnated or mixed-molded catalyst can be calcined at 400-800°C to obtain the oxidation catalyst according to the invention. The shape of the catalyst can be cylindrical, cylindrical, spherical, plate-like, or honeycomb-shaped by the production method described above. The desired structure is
It is determined by the composition of the exhaust gas and the ease of production. For example, in the case of a dust-free gas, a fixed bed reactor is used with a cylindrical or cylindrical pellet catalyst. In cases where dust is contained, it is desirable to use a spherical moving bed type reactor, or a parallel flow type reactor using a plate-shaped or honeycomb-shaped catalyst. The temperature of the catalyst layer for oxidizing carbon monoxide, hydrocarbons, etc. using this titanium oxide-platinum group catalyst varies depending on the composition of the exhaust gas. For example, when the catalyst particle size is 2 to 4 mm and the space velocity is 10,000 h -1 , an oxidation rate of 95% or more can be obtained for carbon monoxide at 250° C. or higher, and for hydrocarbons at 300° C. or higher. However, the oxidation of carbon monoxide, hydrocarbons, etc. is an exothermic reaction, and the temperature of the catalyst layer increases as the reaction progresses. The temperature rise varies depending on the concentration, but at 1000 ppm, the temperature rise reaches about 9°C for carbon monoxide and about 80 to 100°C for hydrocarbons. When the concentration of combustion components in the gas is high, the gas is diluted as necessary to prevent temperature rise. The temperature conditions for the reaction are determined by taking into account the heat of reaction and fluctuations in the capacity of the equipment.
Select so that the temperature of the catalyst itself does not exceed 800°C. When the combustion component is hydrogen, if the palladium-supported titanium oxide catalyst of the present invention is used, the combustion reaction will proceed even at room temperature (15 to 30°C). In the combustion of hydrocarbons, methane is the most difficult to react with, but in the case of propane and butane, the reaction proceeds quickly with a platinum-supported titanium oxide catalyst at temperatures above 250°C. As mentioned above, the reaction temperature differs depending on the type of combustion component. The space velocity when performing combustion using the combustion of the present invention is 1000 to 500000 m 3 /m 3 /h. space velocity
When it is less than 1000, the amount of catalyst becomes large and becomes uneconomical. The upper limit of the space velocity varies depending on the catalyst particle size, but is 500000 m 3 /m 3 /h. Next, the present invention will be explained by giving examples. However, the following examples specifically explain the present invention, and the present invention is not limited thereto. Example 1 Metatitanic acid slurry 10 containing 35% by weight of titanium oxide is placed in a kneader and heated and kneaded for 2 hours to bring the water content to about 35%. This was dried at 140°C for 5 hours and ground in a ball mill for 2 hours. The obtained powder is calcined in air at 350°C for 2 hours. This powder is granulated into spheres with a diameter of 2 to 4 mm using a rolling granulation method and left to stand overnight. Heat this at 140℃ for 5
After drying for an hour and then baking at 450℃ for 2 hours,
Spherical titanium oxide is obtained. Next, 5 ml of hexachloroplatinate (H 2 PtCl 6 ) aqueous solution (10 g Pt/100 g solution) is diluted with distilled water to make a total volume of 35 ml, and this is impregnated into the spherical titanium oxide obtained by the above production method. After drying at 120℃ for 5 hours,
Calcination reduction is carried out at 450° C. for 3 hours in a stream of steam. This catalyst is a titanium oxide-platinum (0.5% by weight) catalyst. A quartz reaction tube with an inner diameter of 40 mm was filled with 24 ml of the catalyst prepared in the above manner, and a gas having the composition shown below was reacted at a space velocity of about 10,000 h -1 . Carbon monoxide was measured with a non-dispersive infrared spectrophotometer. SO 2 1000ppm SO 3 50ppm CO 5000ppm CO 2 15% O 2 2% H 2 O 10% N 2 balance The oxidation rate of carbon monoxide was determined from the following formula. CO reduction rate (%) = (1 - outlet CO concentration/inlet CO concentration)
×100 The results of measuring the initial activity are shown in FIG. 1 by solid line A. At temperatures above 250℃, the oxidation rate of carbon monoxide is 95
% or more. The durability of the catalyst was investigated after approximately 100 hours of continuous operation, and the results are shown in A in Figure 2. The activity of this catalyst does not decrease even under severe conditions of 1000 ppm SO 2 and 50 ppm SO 3 . Reference example 1 Hexachloroplatinate (H 2 PtCl 6 ) aqueous solution (10
gPt/1000g solution) 5ml was diluted with distilled water to make a total volume of 70ml. This was impregnated into 100 g each of a spherical activated alumina carrier with a diameter of 2 to 4 mm and an alumina-titanium mixed carrier (Al 2 O 3 -TiO 2 equimolar mixture),
After drying at 120℃ for 5 hours, drying at 450℃ in a steam stream for 3 hours.
Reduce baking time. This catalyst is a 0.5% by weight platinized catalyst. 24 ml of the catalyst prepared in the above manner was filled into a quartz reaction tube with an inner diameter of 40 mm, and the initial activity was measured using the same gas composition as in Example 1. The results are shown by dotted line B in FIG.
As shown in Figure 1, the initial activity is
Shows an oxidation rate of 95% or more at temperatures above 250℃. However, as shown in FIG. 2B, in the case of using an alumina carrier, the oxidation rate rapidly decreased as the reaction time progressed. In addition, as shown by dotted line C, the catalyst supported on an alumina-titanium support (TiO 2 48% by weight)
After some time had passed, the activity began to gradually decrease. Example 2 The CO oxidation rate was measured in the same manner as in the first example except that the platinum content was changed. Results first
Shown in the table.
【表】
これは白金の含有量は、0.02重量%以上で有効
であることを示し、0.1重量%以上ではほぼ同程
度の活性を示している。
実施例 3
含浸液が硝酸パラジウム水溶液35ml(パラジウ
ム金属として0.5gを含む)であること以外は実
施例1と全く同様の方法で調製しCO酸化率を測
定した。結果を第2表に示す。[Table] This shows that the platinum content is effective when it is 0.02% by weight or more, and it shows almost the same level of activity when it is 0.1% by weight or more. Example 3 The impregnating solution was prepared in exactly the same manner as in Example 1, except that 35 ml of an aqueous palladium nitrate solution (containing 0.5 g of palladium metal) was used, and the CO oxidation rate was measured. The results are shown in Table 2.
【表】
第2図のDに示すように300℃反応温度におけ
る酸化率は100時間後にも低下は見られない。
実施例 4
含浸液が四塩化ルテニウム水溶液35ml(ルテニ
ウム金属として0.5gを含む)であること以外は
第一の実施例と全く同様の方法で調製し、CO酸
化率を測定した結果を第3表に示す。[Table] As shown in D in Figure 2, the oxidation rate at a reaction temperature of 300°C shows no decrease even after 100 hours. Example 4 The impregnating solution was prepared in exactly the same manner as in the first example except that it was 35 ml of ruthenium tetrachloride aqueous solution (containing 0.5 g of ruthenium metal), and the results of measuring the CO oxidation rate are shown in Table 3. Shown below.
【表】
第2図のEに示すように300℃における反応
で、100時間後にも酸化率の低下はみられない。
本発明によれば、硫酸塩化しにくい酸化チタン
と白金族元素から成る触媒であるために、硫黄酸
化物を含有するガス中の一酸化炭素や炭化水素を
完全酸化除去反応を長時間行つても、触媒の細孔
構造や組成にほとんど変化がなく、高い酸化率を
維持することができる。
実施例 5
本実施例では、各種の燃焼成分を燃焼させた実
験結果を記述する。反応ガスは実施例1で用いた
ガスの中で、一酸化炭素を水素(1%)、メタン
(1%)、ブタン(0.5%)、あるいはメタノール
(2%)に置換したものである。
実施例1と同様の反応条件で得られた結果を第
4表に示す。[Table] As shown in E in Figure 2, no decrease in oxidation rate was observed even after 100 hours in the reaction at 300°C. According to the present invention, since the catalyst is made of titanium oxide and platinum group elements that are difficult to convert into sulfates, carbon monoxide and hydrocarbons in gas containing sulfur oxides can be completely oxidized and removed for a long time. , there is almost no change in the pore structure or composition of the catalyst, and a high oxidation rate can be maintained. Example 5 In this example, the results of experiments in which various combustion components were combusted will be described. The reaction gas used in Example 1 was obtained by replacing carbon monoxide with hydrogen (1%), methane (1%), butane (0.5%), or methanol (2%). Table 4 shows the results obtained under the same reaction conditions as in Example 1.
【表】
実施例 6
酸化チタンの担体を焼成温度を変えた以外は実
施例1と同様に調製し、合計量で0.2gのルテニ
ウム、パラジウムを担持させて、触媒を調製し
た。反応ガスとして次の組成のものを用いて、実
施例1と同様な方法で300℃における反応率を求
めた。
SO2 500ppm
SO3 500ppm
CO 1%
O2 15%
N2 残
結果を第5表に示す。[Table] Example 6 A titanium oxide carrier was prepared in the same manner as in Example 1 except that the firing temperature was changed, and a total amount of 0.2 g of ruthenium and palladium was supported to prepare a catalyst. The reaction rate at 300° C. was determined in the same manner as in Example 1 using a reaction gas having the following composition. SO 2 500ppm SO 3 500ppm CO 1% O 2 15% N 2 remaining The results are shown in Table 5.
【表】【table】
【表】
焼成温度が250、1100℃のものは参考例であ
り、焼成温度が低いと、触媒活性が低下する。一
方、高温度で焼成したものは、活性の低下はない
が、本質的に低活性である。なお、1100℃で焼成
した触媒の活性度は、市販のチタン担体を使用し
た場合とほぼ同程度であつた。
実施例 7
実施例1および参考例1の触媒を用いて、反応
ガスに含まれるSOx濃度の影響を調べた。SO2と
SO3の濃度を変えた以外は実施例6と同じ条件で
行なつた。結果を第6表に示す。[Table] Those with a calcination temperature of 250 and 1100°C are reference examples. If the calcination temperature is low, the catalyst activity will decrease. On the other hand, those fired at high temperatures have essentially low activity, although there is no decrease in activity. Note that the activity of the catalyst calcined at 1100°C was approximately the same as that when a commercially available titanium carrier was used. Example 7 Using the catalysts of Example 1 and Reference Example 1, the influence of the SOx concentration contained in the reaction gas was investigated. SO 2 and
The same conditions as in Example 6 were used except that the concentration of SO 3 was changed. The results are shown in Table 6.
【表】
SOxの中ではSO3の被毒効果が大きく、特に
5ppm以上でアルミナ担体は被毒し顕著な活性低
下を示すようになる。
以上詳述したように、本発明の方法では硫黄酸
化物の影響を受けることなく、高い反応率でガス
中の低濃度燃焼成分を長期間にわたつて燃焼せし
めることができる。[Table] Among SOx, SO3 has the greatest poisoning effect, especially
At 5 ppm or more, the alumina support becomes poisoned and shows a significant decrease in activity. As described above in detail, the method of the present invention makes it possible to burn low-concentration combustion components in gas over a long period of time at a high reaction rate without being affected by sulfur oxides.
第1図は、本発明による酸化チタン−白金触媒
と参考例1によるアルミナ担体付白金触媒の初期
活性を示す。第2図は、参考例1、実施例1、
3、4による触媒の硫黄酸化物に対する耐久性を
示す。
FIG. 1 shows the initial activity of the titanium oxide-platinum catalyst according to the present invention and the alumina-supported platinum catalyst according to Reference Example 1. Figure 2 shows Reference Example 1, Example 1,
3 and 4 show the durability of the catalyst against sulfur oxides.
Claims (1)
種および硫黄酸化物を含有するガス中の燃焼成分
を接触的に酸化する方法において、前記ガスを
400〜800℃で焼成された酸化チタン担体に担持せ
しめた白金族金属触媒に、酸化剤の存在下で800
℃以下の温度で接触せしめることを特徴とするガ
ス中の燃焼成分の燃焼方法。 2 特許請求の範囲第1項において、前記白金族
金属触媒は、白金、パラジウム、ルテニウムから
選ばれた少なくとも一種の金属触媒で有ることを
特徴とするガス中の燃焼成分の燃焼方法。[Scope of Claims] 1. A method for catalytically oxidizing combustion components in a gas containing at least one of hydrogen, carbon monoxide, hydrocarbons, and sulfur oxides, wherein the gas is
A platinum group metal catalyst supported on a titanium oxide support calcined at 400 to 800°C was heated to 800°C in the presence of an oxidizing agent.
A method for combustion of combustion components in a gas, characterized by bringing them into contact at a temperature below ℃. 2. The method for combustion of combustion components in a gas according to claim 1, wherein the platinum group metal catalyst is at least one metal catalyst selected from platinum, palladium, and ruthenium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8098278A JPS558827A (en) | 1978-07-05 | 1978-07-05 | Combusting of combustion component in gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8098278A JPS558827A (en) | 1978-07-05 | 1978-07-05 | Combusting of combustion component in gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS558827A JPS558827A (en) | 1980-01-22 |
JPS6147568B2 true JPS6147568B2 (en) | 1986-10-20 |
Family
ID=13733701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8098278A Granted JPS558827A (en) | 1978-07-05 | 1978-07-05 | Combusting of combustion component in gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS558827A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6162482U (en) * | 1984-09-27 | 1986-04-26 | ||
JPS6162481U (en) * | 1984-09-27 | 1986-04-26 | ||
CN108212149A (en) * | 2017-04-22 | 2018-06-29 | 天津大学 | High dispersive type ruthenium oxide catalysts and its preparation method and application |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6645772B1 (en) * | 2000-10-18 | 2003-11-11 | Hrl Laboratories, Llc | Method for improved detection of carbon monoxide by infrared absorption spectroscopy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53146991A (en) * | 1977-05-30 | 1978-12-21 | Nippon Shokubai Kagaku Kogyo Co Ltd | Exhaust gas purification catalyst |
-
1978
- 1978-07-05 JP JP8098278A patent/JPS558827A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53146991A (en) * | 1977-05-30 | 1978-12-21 | Nippon Shokubai Kagaku Kogyo Co Ltd | Exhaust gas purification catalyst |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6162482U (en) * | 1984-09-27 | 1986-04-26 | ||
JPS6162481U (en) * | 1984-09-27 | 1986-04-26 | ||
CN108212149A (en) * | 2017-04-22 | 2018-06-29 | 天津大学 | High dispersive type ruthenium oxide catalysts and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
JPS558827A (en) | 1980-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950007578B1 (en) | Carrier for gas-treating catalyst, method for production thereof, and gas-treating catalyst incorporation said canier therein | |
JP5030818B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP4429950B2 (en) | Catalyst for removing oxidation of methane from combustion exhaust gas and exhaust gas purification method | |
WO2012093599A1 (en) | Exhaust gas purifying catalyst | |
JP2007503977A (en) | Diesel particulate filter carrying a catalyst with improved thermal stability | |
EP0208434B1 (en) | Process for removing nitrogen oxides and carbon monoxide simultaneously | |
CN110935470B (en) | Preparation method of exhaust gas purification catalyst | |
JP4917003B2 (en) | Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method | |
CN113117517B (en) | Treatment method of high-concentration sulfur-containing organic waste gas | |
JP5541874B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP4512691B2 (en) | Catalyst for selective reduction of nitrogen oxides by carbon monoxide and its preparation | |
JPS6147568B2 (en) | ||
WO1992004967A1 (en) | Reduction of nitrogen oxide and carbon monoxide in effluent gases | |
KR20170138418A (en) | How to remove soot from a sulfur gas stream | |
JPH11342337A (en) | Catalyst b and method for removal of nitrogen oxides by decomposition | |
JPS6050489B2 (en) | Catalyst for purifying exhaust gas containing sulfur compounds | |
JP4283037B2 (en) | Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method | |
SE463496B (en) | CATALYTIC COMBUSTION OF SOT FROM DIESEL ENGINES AND CATALYST HAIR | |
KR20160039411A (en) | Manganese-ceria-tungsten-titania catalyst for removing nox at low temperature and preparing method same | |
JP5610805B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
KR100701331B1 (en) | Oxidation Catalyst for Removing the Fine Soot Particulates of Exhaust Gas and Method Thereof | |
JP5541873B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
WO1995024258A1 (en) | Method for removing nitrous oxide | |
RU2004320C1 (en) | Method for gas purification catalytic agent preparing | |
JPH11342336A (en) | Catalyst a for removal of nitrogen oxides by decomposition and method |