JP2002102700A - Normal temperature catalyst - Google Patents

Normal temperature catalyst

Info

Publication number
JP2002102700A
JP2002102700A JP2000296952A JP2000296952A JP2002102700A JP 2002102700 A JP2002102700 A JP 2002102700A JP 2000296952 A JP2000296952 A JP 2000296952A JP 2000296952 A JP2000296952 A JP 2000296952A JP 2002102700 A JP2002102700 A JP 2002102700A
Authority
JP
Japan
Prior art keywords
oxide
catalyst
oxygen
room temperature
active oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000296952A
Other languages
Japanese (ja)
Other versions
JP4656352B2 (en
Inventor
Toshitaka Tanabe
稔貴 田辺
Hideo Sofugawa
英夫 曽布川
Kenichiro Suzuki
賢一郎 鈴木
Shigeru Sasaki
慈 佐々木
Akira Morikawa
彰 森川
Hiroaki Hayashi
宏明 林
Masahiro Sugiura
正洽 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000296952A priority Critical patent/JP4656352B2/en
Publication of JP2002102700A publication Critical patent/JP2002102700A/en
Application granted granted Critical
Publication of JP4656352B2 publication Critical patent/JP4656352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To decompose and remove an environment load substance such as CO, amines, formaldehyde and the like by activating it at a normal temperature of 50 deg.C or less. SOLUTION: The catalyst contains 40 μmol/g or more of an active oxygen active at 50 deg.C or less. The active oxygen is reacted with the environment load substance adsorbed on a surface of the catalyst at a normal temperature of 50 deg.C or less and decomposes the environment load substance by an oxidation. The active oxygen contained in the catalyst is consumed by the reaction with the environment load substance. However, an oxygen gas contained in an air is taken in the catalyst to become an active oxygen and it is further reacted with the environment load substance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば一酸化炭素
(CO)、炭化水素(HC)、アルデヒド類、エチレン、ア
ンモニアなどの環境負荷物質を、50℃以下の常温(室
温)で容易に分解除去できる常温触媒に関する。
The present invention relates to a method for easily decomposing environmentally hazardous substances such as carbon monoxide (CO), hydrocarbons (HC), aldehydes, ethylene and ammonia at room temperature (room temperature) of 50 ° C. or less. It relates to a room temperature catalyst that can be removed.

【0002】[0002]

【従来の技術】例えば合板用接着剤あるいは家具に塗装
されている塗膜などには遊離ホルムアルデヒドが含まれ
る場合があり、それが徐々に大気中に放出される。また
ホルムアルデヒドを原料とする接着剤や塗料を用いた工
業製品からは、劣化に伴ってホルムアルデヒドが発生す
る。このホルムアルデヒドは刺激臭があり、シックハウ
ス症候群の原因物質の1つとして指摘されている。その
ため住宅メーカでは、住宅の施工後施主に引き渡す前
に、住宅内をエージングしてホルムアルデヒド濃度を低
減する努力を行っているが、エージングだけでは必ずし
も厚生省の基準値を満たしているとは言えず、空気中の
ホルムアルデヒド濃度のさらなる低減が求められてい
る。
2. Description of the Related Art For example, adhesives for plywood or coatings applied to furniture may contain free formaldehyde, which is gradually released into the atmosphere. In addition, formaldehyde is generated from industrial products using adhesives and paints using formaldehyde as a raw material along with deterioration. This formaldehyde has a pungent odor and is pointed out as one of the causative substances of sick house syndrome. For this reason, house manufacturers are making efforts to reduce the formaldehyde concentration by aging the house before handing it over to the owner after the construction of the house, but aging alone does not necessarily meet the standards of the Ministry of Health and Welfare, There is a need for a further reduction in the formaldehyde concentration in the air.

【0003】そこで空気中の環境負荷物質を除去する方
法として、オゾンを用いる方法、あるいは活性炭やゼオ
ライトなどの吸着材を用いる方法が広く行われている。
例えば冷蔵庫、押入、下駄箱などに置いて脱臭する脱臭
剤として、吸着材を空気の流通可能な容器に収納したも
のが市販されている。また吸着材や光触媒を内蔵した空
気清浄機なども知られている。
[0003] Therefore, as a method for removing environmentally hazardous substances from the air, a method using ozone or a method using an adsorbent such as activated carbon or zeolite is widely used.
For example, as a deodorant which is placed in a refrigerator, a closet, a shoe box or the like to deodorize, a product in which an adsorbent is stored in a container through which air can flow is commercially available. Also, an air purifier with a built-in adsorbent or photocatalyst is known.

【0004】また空気中に含まれているエチレンは、青
果物の生理作用を促進させ追熟老化を進行させるため
に、エチレンによって青果物の鮮度が低下すると考えら
れている。したがって青果物の鮮度保持には大気からの
エチレンの除去が有効であり、オゾンや過酸化水素によ
りエチレンを分解させたり、エチレンを吸着除去したり
する方法が提案されている。
[0004] In addition, ethylene contained in the air promotes the physiological action of the fruits and vegetables to promote ripening and aging, so that it is thought that the freshness of the fruits and vegetables is reduced by ethylene. Therefore, the removal of ethylene from the atmosphere is effective for maintaining the freshness of fruits and vegetables, and methods of decomposing ethylene by ozone and hydrogen peroxide and adsorbing and removing ethylene have been proposed.

【0005】例えば特開平7-260331号公報には、生鮮野
菜類を収容する貯蔵容器内に光触媒と紫外線光源を配置
し、光触媒作用によってエチレン、アセトアルデヒドな
ど生鮮野菜類の鮮度保持に有害なガスを分解除去する装
置が開示されている。
[0005] For example, Japanese Patent Application Laid-Open No. 7-260331 discloses that a photocatalyst and an ultraviolet light source are arranged in a storage container for accommodating fresh vegetables, and a gas harmful to freshness maintenance of fresh vegetables such as ethylene and acetaldehyde is provided by the photocatalytic action. An apparatus for disassembly and removal is disclosed.

【0006】また例えば特開平10−296087号公報には、
ジルコニアまたはセリアを含む担体に貴金属を担持した
触媒が開示されている。この触媒によれば、 200℃程度
の温度で用いることによってトリメチルアミンを酸化分
解することができる。
For example, Japanese Patent Application Laid-Open No. 10-296087 discloses that
A catalyst in which a noble metal is supported on a support containing zirconia or ceria is disclosed. According to this catalyst, trimethylamine can be oxidatively decomposed at a temperature of about 200 ° C.

【0007】そしてCOやHCを酸化する触媒、あるいはNO
x を還元する触媒として、アルミナなどの担体に貴金属
を担持した触媒が知られ、排ガス浄化用触媒などとして
広く用いられている。
A catalyst for oxidizing CO or HC, or NO
As a catalyst for reducing x , a catalyst in which a noble metal is supported on a carrier such as alumina is known, and is widely used as an exhaust gas purifying catalyst and the like.

【0008】[0008]

【発明が解決しようとする課題】ところがオゾンを用い
る方法では、オゾンの効果を発現させるためには規制値
を上回るオゾン濃度が必要であり、環境負荷物質を除去
した後にもオゾンが残留する恐れがある。そのため残留
オゾンを処理するための触媒が必要となるなど、実用的
でない。
However, in the method using ozone, an ozone concentration exceeding a regulated value is required in order to exert the effect of ozone, and there is a possibility that ozone will remain even after removing environmental load substances. is there. Therefore, it is not practical because a catalyst for treating residual ozone is required.

【0009】また吸着材によって空気中の環境負荷物質
を吸着して除去する方法では、吸着材の吸着容量を越え
て吸着することは困難であり、吸着量が飽和する前に吸
着材を交換する必要がある。
In the method of adsorbing and removing environmentally hazardous substances in the air by the adsorbent, it is difficult to adsorb the adsorbent in excess of the adsorbing capacity of the adsorbent. There is a need.

【0010】そして光触媒を利用する方法では、光触媒
の励起源となる人工光源が必要であり、常時光源を光触
媒に照射するとなると光源を作動させる電気代も必要と
なり、コスト的に高いものとなっている。
In the method using a photocatalyst, an artificial light source is required as an excitation source of the photocatalyst. If the light source is constantly irradiated with the light source, an electricity cost for operating the light source is also required, which is expensive. I have.

【0011】さらに触媒を利用する方法では、貴金属の
活性化温度まで温度を上げなければならず、50℃以下の
常温で活性化する触媒はまだ知られていない。
Further, in the method using a catalyst, the temperature must be raised to the activation temperature of the noble metal, and a catalyst that activates at a normal temperature of 50 ° C. or less has not yet been known.

【0012】本発明はこのような事情に鑑みてなされた
ものであり、50℃以下の常温で活性化してCO、アミン
類、ホルムアルデヒドなどの環境負荷物質を分解除去で
きる触媒を提供することを目的とする。
The present invention has been made in view of such circumstances, and has as its object to provide a catalyst which can be activated at room temperature of 50 ° C. or lower to decompose and remove environmentally harmful substances such as CO, amines and formaldehyde. And

【0013】[0013]

【課題を解決するための手段】上記課題を解決する本発
明の常温触媒の特徴は、50℃以下で活性な活性酸素を40
μモル/g以上含有することにある。
The feature of the room temperature catalyst of the present invention that solves the above-mentioned problems is that active oxygen active at 50 ° C. or less
at least μmol / g.

【0014】この常温触媒としては、還元処理によって
酸素欠損が導入された酸化物に貴金属を担持してなるも
のが望ましい。そしてこの酸化物としては遷移金属酸化
物及び希土類酸化物から選ばれる少なくとも一種が望ま
しく、遷移金属酸化物は、Zr、Fe、Mn、Co、Ni、Cu、C
r、Mo及びNbの酸化物から選ばれる少なくとも一種であ
り、希土類酸化物は、Ce、Y、Nd、Pr及びSmの酸化物か
ら選ばれる少なくとも一種であることが望ましい。さら
にCe酸化物とZr酸化物とを含み、Ce酸化物の少なくとも
一部が酸素欠損の状態で存在することが望ましい。
As the room-temperature catalyst, a catalyst in which a noble metal is supported on an oxide in which oxygen vacancies have been introduced by a reduction treatment is desirable. The oxide is preferably at least one selected from transition metal oxides and rare earth oxides, and the transition metal oxides are Zr, Fe, Mn, Co, Ni, Cu, C
It is at least one selected from oxides of r, Mo and Nb, and the rare earth oxide is desirably at least one selected from oxides of Ce, Y, Nd, Pr and Sm. Further, it is preferable that the oxide includes a Ce oxide and a Zr oxide, and at least a part of the Ce oxide exists in a state of oxygen deficiency.

【0015】[0015]

【発明の実施の形態】本発明の常温触媒は、50℃以下で
活性な活性酸素を40μモル/g以上含有している。この
活性酸素は、触媒表面に吸着した環境負荷物質と50℃以
下の常温で反応し、環境負荷物質を酸化分解する。触媒
中に含まれていた活性酸素は、環境負荷物質との反応に
よって消費されるが、空気中に含まれる酸素ガスが触媒
中に取り込まれて活性酸素となり、それがさらに環境負
荷物質と反応する。このように酸化反応が触媒的に進行
することにより、環境負荷物質を酸化分解して除去する
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION The room temperature catalyst of the present invention contains active oxygen active at 50 ° C. or lower at 40 μmol / g or more. This active oxygen reacts with the environmental load substance adsorbed on the catalyst surface at a room temperature of 50 ° C. or lower, and oxidatively decomposes the environmental load substance. The active oxygen contained in the catalyst is consumed by the reaction with environmentally harmful substances, but the oxygen gas contained in the air is taken into the catalyst to become active oxygen, which further reacts with the environmentally harmful substances . As described above, the oxidation reaction proceeds catalytically, whereby the environmentally hazardous substance can be oxidatively decomposed and removed.

【0016】例えばCOは活性酸素によって酸化されてCO
2 となり、ホルムアルデヒド(HCHO)あるいはエチレン
(C2H4)などは酸化されてCO2 及び H2Oとなって無害化
される。
For example, CO is oxidized by active oxygen to form CO.
2 and formaldehyde (HCHO) or ethylene (C 2 H 4 ) is oxidized to CO 2 and H 2 O and made harmless.

【0017】そして本発明の常温触媒は、活性酸素を40
μモル/g以上含有している。この活性酸素の含有量が
40μモル/g未満であると、50℃以下の常温における環
境負荷物質との反応が十分でない。
[0017] The room temperature catalyst of the present invention has an active oxygen content of 40
It contains at least μmol / g. The content of this active oxygen
If it is less than 40 μmol / g, the reaction with the environmental load substance at room temperature of 50 ° C. or less is not sufficient.

【0018】このように活性酸素を40μモル/g以上含
有する触媒としては、酸素欠損が導入された酸化物に貴
金属を担持したものが代表的に例示される。酸素欠損と
は、酸化物を形成している酸素の一部が脱離したきわめ
て活性の高い状態をいい、酸化物として結合している酸
素のモル量が規定値より少ない状態をいう。例えばCe酸
化物の場合はCeO2が酸素欠損の無い状態であるので、酸
素原子がCe原子に対して2倍モル未満であれば酸素欠損
が導入されているということになる。
As such a catalyst containing active oxygen of 40 μmol / g or more, a catalyst in which a noble metal is supported on an oxide into which oxygen deficiency has been introduced is typically exemplified. Oxygen deficiency refers to a highly active state in which part of oxygen forming an oxide is eliminated, and a state in which the molar amount of oxygen bonded as an oxide is smaller than a specified value. For example, in the case of Ce oxide, CeO 2 has no oxygen deficiency. Therefore, if the oxygen atom is less than twice the mole of Ce atom, it means that oxygen deficiency has been introduced.

【0019】本発明の常温触媒は、この酸素欠損が導入
された酸化物に貴金属を担持している。酸素欠損によっ
て酸化物自体の活性が高められ、その結果、環境負荷物
質の貴金属への吸着性が弱まる。これにより貴金属の活
性が高まり、酸素欠損部を経由して活性化された活性酸
素を利用して環境負荷物質の酸化反応が進行する。そし
て本発明の常温触媒では活性酸素量が40μモル/g以上
と多いため、環境負荷物質の酸化反応が速やかに進行
し、常温域での環境負荷物質の浄化が可能となっている
ものと考えられる。なお50℃を超える高温でも環境負荷
物質の酸化浄化は可能であるが、酸素欠損が喪失する場
合があるので50℃以下、より好ましくは10〜40℃の範囲
で使用することが望ましい。
In the room temperature catalyst of the present invention, a noble metal is supported on the oxide into which the oxygen vacancy has been introduced. The activity of the oxide itself is enhanced by the oxygen deficiency, and as a result, the ability of the environmentally hazardous substance to be adsorbed on the noble metal is reduced. As a result, the activity of the noble metal is increased, and the oxidation reaction of the environmentally hazardous substance proceeds using active oxygen activated via the oxygen deficient portion. And, since the amount of active oxygen is as large as 40 μmol / g or more in the ordinary temperature catalyst of the present invention, it is considered that the oxidation reaction of the environmentally harmful substance proceeds quickly, and it is possible to purify the environmentally harmful substance in the ordinary temperature range. Can be Although oxidative purification of environmentally harmful substances is possible even at a high temperature exceeding 50 ° C., it is desirable to use it at 50 ° C. or lower, more preferably 10 to 40 ° C., because oxygen deficiency may be lost.

【0020】酸化物としては、酸素欠損を導入可能なも
のであればよいが、Zr、Fe、Mn、Co、Ni、Cu、Cr、Mo及
びNbから選ばれる少なくとも一種の遷移金属の酸化物、
あるいはCe、Y、Nd、Pr及びSmから選ばれる少なくとも
一種の希土類元素の酸化物が好ましい。このうちの一種
でもよいし、複数種類併用することもできる。
As the oxide, any oxide can be introduced as long as it can introduce oxygen deficiency, and an oxide of at least one transition metal selected from Zr, Fe, Mn, Co, Ni, Cu, Cr, Mo and Nb;
Alternatively, an oxide of at least one rare earth element selected from Ce, Y, Nd, Pr and Sm is preferable. One of these may be used, or a plurality of them may be used in combination.

【0021】中でもCe酸化物は酸素欠損を導入しやす
く、かつ酸素欠損状態を安定して保持できるので特に好
ましい酸化物である。またCe酸化物とZr酸化物とを併用
すれば、Ce酸化物の酸素欠損状態の安定性が一層向上す
る。この場合、Ce酸化物とZr酸化物とは、複合酸化物又
は固溶体を形成していることがさらに望ましい。複合酸
化物又は固溶体とすることにより、酸素欠損をさらに多
く形成することができ、また酸素欠損状態の安定性もさ
らに向上する。
Among them, Ce oxide is a particularly preferred oxide because it easily introduces oxygen deficiency and can stably maintain the oxygen deficiency state. If Ce oxide and Zr oxide are used together, the stability of the oxygen deficiency state of Ce oxide is further improved. In this case, it is more desirable that the Ce oxide and the Zr oxide form a composite oxide or a solid solution. By using a composite oxide or a solid solution, more oxygen vacancies can be formed, and the stability of the oxygen deficiency state is further improved.

【0022】酸化物に酸素欠損を形成するには、酸化物
を還元処理する方法が例示される。例えば上記の酸化物
を 100℃〜 800℃の温度範囲において、還元ガス気流中
でおよそ1時間程度処理すればよい。酸化物が高温下で
還元ガスと接触することで酸化物の酸素の一部が還元ガ
スと結合して除去され、その結果、酸化物の一部が酸素
欠損状態となり酸素欠損を導入することができる。還元
処理温度が 100℃未満では還元反応が進行せず所望の酸
素欠損状態を形成することが困難となる。また、処理温
度が 800℃を超えると酸化物の比表面積が小さくなり触
媒活性が低下するので好ましくない。なおヒドラジン、
水素化硼素アルミニウム等に代表される還元性薬剤を用
いて還元処理することも可能である。
In order to form oxygen vacancies in the oxide, a method of reducing the oxide is exemplified. For example, the above oxide may be treated in a reducing gas stream at a temperature of 100 ° C. to 800 ° C. for about 1 hour. When the oxide comes in contact with the reducing gas at a high temperature, part of the oxygen of the oxide is combined with the reducing gas and removed, and as a result, part of the oxide becomes an oxygen-deficient state and oxygen deficiency may be introduced. it can. When the temperature of the reduction treatment is lower than 100 ° C., the reduction reaction does not proceed, and it is difficult to form a desired oxygen deficiency state. On the other hand, if the treatment temperature exceeds 800 ° C., the specific surface area of the oxide becomes small, and the catalytic activity is undesirably reduced. Hydrazine,
The reduction treatment can also be performed using a reducing agent represented by aluminum borohydride or the like.

【0023】還元処理に使用される還元ガスとしては、
水素、一酸化炭素などの還元性ガスの他、メタンなどの
炭化水素やアルデヒド類などが挙げられる。還元処理時
の還元ガス濃度としては、 0.1体積%〜 100体積%、よ
り好ましくは1体積%から 100体積%が良い。
The reducing gas used in the reduction treatment includes:
In addition to reducing gases such as hydrogen and carbon monoxide, hydrocarbons such as methane and aldehydes may be mentioned. The concentration of the reducing gas at the time of the reduction treatment is preferably 0.1% by volume to 100% by volume, more preferably 1% by volume to 100% by volume.

【0024】そして、含まれる活性酸素量と酸素欠損の
量との関係を予め知っておくことにより、還元処理の温
度、時間などを調整することで酸素欠損の量を容易に調
整することができ、含まれる活性酸素量を容易に40μモ
ル/g以上とすることができる。
By knowing in advance the relationship between the amount of active oxygen contained and the amount of oxygen deficiency, the amount of oxygen deficiency can be easily adjusted by adjusting the temperature and time of the reduction treatment. The amount of active oxygen contained can be easily increased to 40 μmol / g or more.

【0025】本発明の常温触媒に担持される貴金属とし
ては、Pt、Pd、Rh、Ir、Au、Ruから選ばれる少なくとも
一種を用いることができる。このうち一種でもよいし、
複数種類を担持することもできる。この貴金属の担持量
は、酸素欠損が導入された酸化物に対して 0.1〜10重量
%とするのが好ましい。 0.1重量%未満では50℃以下で
の触媒活性が得られないので好ましくない。また、貴金
属を10重量%を超えて担持しても添加の割に浄化効率が
向上せず、高価な貴金属を多量使用することになりコス
トアップとなる。また貴金属は粒子径が5nm以下である
ことが好ましく、2nm以下であることがより好ましい。
担持されている貴金属の粒径が小さいほど触媒の活性を
高くすることができる。
As the noble metal supported on the room temperature catalyst of the present invention, at least one selected from Pt, Pd, Rh, Ir, Au and Ru can be used. One of these may be
A plurality of types can be carried. The amount of the noble metal carried is preferably 0.1 to 10% by weight based on the oxide into which oxygen vacancies have been introduced. If the content is less than 0.1% by weight, the catalytic activity at 50 ° C. or less cannot be obtained, which is not preferable. Further, even if the precious metal is supported in an amount exceeding 10% by weight, the purification efficiency is not improved for the addition, and a large amount of expensive precious metal is used, resulting in an increase in cost. The noble metal preferably has a particle size of 5 nm or less, more preferably 2 nm or less.
The smaller the particle size of the supported noble metal, the higher the activity of the catalyst.

【0026】貴金属の担持には、吸着担持法、蒸発乾固
法、超臨界流体法など公知の担持方法を利用することが
できる。また酸化物を還元処理する前に貴金属を担持し
ておき、それを還元処理することにより、より効果的に
酸素欠損を導入することができる。
For supporting the noble metal, a known supporting method such as an adsorption supporting method, an evaporation to dryness method and a supercritical fluid method can be used. In addition, by carrying a noble metal before reducing the oxide and reducing the noble metal, oxygen vacancies can be more effectively introduced.

【0027】以下、酸化物として固溶体又は複合酸化物
となっているCeO2−ZrO2を用いた場合について、本発明
の常温触媒の構成を具体的に説明する。
Hereinafter, the structure of the room temperature catalyst of the present invention will be described in detail when CeO 2 -ZrO 2 which is a solid solution or a composite oxide is used as the oxide.

【0028】CeO2−ZrO2は、Ce化合物とZr化合物の少な
くとも一方が溶解した溶液を用い、必要に応じて他方の
酸化物粉末を混合して、共沈法、アルコキシド法などで
析出させた後、それを焼成することで形成することがで
きる。またCeO2粉末とZrO2粉末との混合物を高温で焼成
してもよい。
CeO 2 -ZrO 2 was precipitated by a co-precipitation method, an alkoxide method, or the like, using a solution in which at least one of a Ce compound and a Zr compound was dissolved, mixing the other oxide powder as necessary. Thereafter, it can be formed by firing. Further, a mixture of CeO 2 powder and ZrO 2 powder may be fired at a high temperature.

【0029】CeO2−ZrO2におけるCeとZrのモル比は、C
e:Zr= 100:1〜1: 100の範囲が好ましく、Ce:Zr
=20:1〜1:10の範囲がより好ましく、Ce:Zr=5:
1〜1:1の範囲がさらに好ましい。この範囲とするこ
とで酸素欠損状態をより安定に維持することができる。
またCeのモル量をZrのモル量より多くするのが望まし
い。これにより酸素欠損状態をより容易に形成すること
ができ、活性酸素量をより多くすることができる。
The molar ratio of Ce and Zr in CeO 2 —ZrO 2 is
e: Zr = 100: 1 to 1: 100 is preferable, and Ce: Zr
= 20: 1 to 1:10, more preferably Ce: Zr = 5:
A range of 1 to 1: 1 is more preferred. By setting it in this range, the oxygen deficiency state can be more stably maintained.
It is desirable that the molar amount of Ce be larger than the molar amount of Zr. This makes it possible to more easily form an oxygen deficiency state and increase the amount of active oxygen.

【0030】CeO2−ZrO2には、さらに第3成分として
Y、La、Nd、Prなどの希土類元素の酸化物、Fe、Mn、C
o、Cr、Ni、Cuなどの遷移金属の酸化物から選ばれる1
種を含んでいても良い。これらの第3成分を配合するこ
とで、CeO2−ZrO2の酸素欠損状態をさらに安定に維持す
ることができる。この第3成分の含有量は、全体の1〜
30モル%とすることが好ましい。この範囲より少ないと
含有させた効果が得られず、30モル%を超えて含有させ
ると酸素欠損を形成しにくくなる場合がある。
CeO 2 -ZrO 2 has, as a third component, oxides of rare earth elements such as Y, La, Nd, Pr, Fe, Mn, C
1 selected from transition metal oxides such as o, Cr, Ni, and Cu
May contain seeds. By blending these third components, the oxygen-deficient state of CeO 2 —ZrO 2 can be more stably maintained. The content of the third component is 1 to
Preferably it is 30 mol%. If the amount is less than this range, the effect of containing the compound cannot be obtained, and if the amount exceeds 30 mol%, it may be difficult to form oxygen vacancies.

【0031】CeO2−ZrO2に酸素欠損を導入するには、上
記したように還元ガスを用いて還元処理することで行う
ことができる。これにより主としてCeO2に酸素欠損が導
入される。この場合CeOnにおけるnの構成比を 1.5≦n
<2、より好ましくは 1.5≦n≦ 1.8の範囲の酸素欠損
状態とすれば、ホルムアルデヒドの浄化に特に優れた効
果を示す。n値が 1.5未満の状態は通常の還元処理では
形成が困難であると考えられ、もしそうなっていたとし
ても通常の元素分析条件では同定が困難である。酸化物
の酸素欠損状態は、例えばX線回折などによって測定す
ることができる。なお触媒活性の面からは、触媒粒子の
内部よりも、触媒粒子の表面から 100nm程度の表層にお
ける構成比を 1.5≦n≦ 1.8の範囲とすることが望まし
い。
The introduction of oxygen deficiency into CeO 2 —ZrO 2 can be carried out by a reduction treatment using a reducing gas as described above. As a result, oxygen vacancies are mainly introduced into CeO 2 . In this case, the composition ratio of n in CeOn is 1.5 ≦ n
If the oxygen deficiency state is in the range of <2, more preferably 1.5 ≦ n ≦ 1.8, a particularly excellent effect on the purification of formaldehyde is exhibited. A state where the n value is less than 1.5 is considered to be difficult to form by ordinary reduction treatment, and even if it is, it is difficult to identify it under ordinary elemental analysis conditions. The oxygen deficiency state of the oxide can be measured by, for example, X-ray diffraction. From the viewpoint of catalytic activity, it is desirable that the composition ratio in the surface layer of about 100 nm from the surface of the catalyst particles be in the range of 1.5 ≦ n ≦ 1.8 rather than the inside of the catalyst particles.

【0032】CeO2−ZrO2に担持される貴金属としては、
Pt、Pd、Rh、Au、Ruの少なくとも一種が好ましく、Ptが
特に好ましい。また貴金属の担持量は、CeO2−ZrO2の 1
50gに対して 0.1gから20g、より好ましくは 0.5gか
ら5gとすることが好ましい。貴金属を担持するには、
還元処理の前に担持し、貴金属担持後に還元処理を行
う。またCeO2−ZrO2を共沈法などで製造する場合には、
貴金属の共存下で共沈させた後焼成して担持することも
できる。
The noble metals supported on CeO 2 —ZrO 2 include:
At least one of Pt, Pd, Rh, Au, and Ru is preferable, and Pt is particularly preferable. The supported amount of the noble metal is 1 of CeO 2 -ZrO 2 .
The amount is preferably 0.1 g to 20 g, more preferably 0.5 g to 5 g per 50 g. To support precious metals,
It is carried before the reduction treatment, and the reduction treatment is carried out after the noble metal is carried. When producing CeO 2 -ZrO 2 by a coprecipitation method or the like,
After coprecipitation in the coexistence of a noble metal, baking can be carried.

【0033】本発明の触媒は粉末状として調製され、そ
れをペレット状に成形して用いることができる。またハ
ニカム基材の表面に定法と同様にして触媒粉末からコー
ト層を形成することもできる。
The catalyst of the present invention is prepared as a powder, which can be formed into pellets for use. In addition, a coat layer can be formed from the catalyst powder on the surface of the honeycomb substrate in the same manner as in the usual method.

【0034】[0034]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。
The present invention will be specifically described below with reference to examples and comparative examples.

【0035】(実施例1)共沈法にて製造されたCe:Zr
=5:1のCeO2−ZrO2固溶体粉末に、所定濃度のジニト
ロジアンミン白金水溶液の所定量を含浸させ、撹拌後に
加熱して蒸発乾固し、その後大気中で 500℃で3時間焼
成してPtを担持した。Ptの担持量はCeO2−ZrO2固溶体 1
50gに対して2gである。
Example 1 Ce: Zr manufactured by coprecipitation method
= 5: 1 CeO 2 -ZrO 2 solid solution powder is impregnated with a predetermined amount of a dinitrodiammine platinum aqueous solution of a predetermined concentration, heated after stirring, evaporated to dryness, and then calcined at 500 ° C for 3 hours in the atmosphere. Pt was loaded. The supported amount of Pt is CeO 2 -ZrO 2 solid solution 1
2 g for 50 g.

【0036】次に、得られたPt担持CeO2−ZrO2固溶体粉
末を、COを1体積%含む窒素気流中に配置し、 500℃で
15分の還元処理を行って酸素欠損を導入して実施例1の
常温触媒を調製した。
Next, the obtained Pt-supported CeO 2 —ZrO 2 solid solution powder was placed in a nitrogen stream containing 1% by volume of CO, and heated at 500 ° C.
The reduction treatment was performed for 15 minutes to introduce oxygen vacancies, thereby preparing the room temperature catalyst of Example 1.

【0037】(実施例2)還元処理の条件を 400℃で3
時間としたこと以外は実施例1と同様にして、実施例2
の常温触媒を調製した。
Example 2 The conditions for the reduction treatment were 400 ° C. and 3
Example 2 was repeated in the same manner as in Example 1 except that
Was prepared at room temperature.

【0038】(実施例3)還元処理の条件を 300℃で3
時間としたこと以外は実施例1と同様にして、実施例3
の常温触媒を調製した。
Example 3 The conditions for the reduction treatment were 300 ° C. and 3
Example 3 was performed in the same manner as in Example 1 except that
Was prepared at room temperature.

【0039】(実施例4)還元処理の条件を 250℃で3
時間としたこと以外は実施例1と同様にして、実施例4
の常温触媒を調製した。
(Example 4) The conditions of the reduction treatment were 250 ° C. and 3
Example 4 was performed in the same manner as in Example 1 except that the time was changed.
Was prepared at room temperature.

【0040】(実施例5)還元処理の条件を 200℃で3
時間としたこと以外は実施例1と同様にして、実施例5
の常温触媒を調製した。
Example 5 The conditions for the reduction treatment were 200 ° C. and 3
Example 5 was performed in the same manner as in Example 1 except that
Was prepared at room temperature.

【0041】(実施例6)還元処理の条件を 100℃で3
時間としたこと以外は実施例1と同様にして、実施例6
の常温触媒を調製した。
Example 6 The conditions for the reduction treatment were 100 ° C. and 3
Example 6 was performed in the same manner as in Example 1 except that
Was prepared at room temperature.

【0042】(実施例7)CeO2−ZrO2固溶体粉末に代え
て Fe2O3粉末を用いたこと、及び還元温度を 300℃とし
たこと以外は実施例1と同様にして、実施例7の触媒を
調製した。
Example 7 Example 7 was performed in the same manner as in Example 1 except that Fe 2 O 3 powder was used instead of the CeO 2 —ZrO 2 solid solution powder, and the reduction temperature was set to 300 ° C. Was prepared.

【0043】(実施例8)CeO2−ZrO2固溶体粉末に代え
てMnO2粉末を用いたこと、及び還元温度を 300℃とした
こと以外は実施例1と同様にして、実施例8の触媒を調
製した。
Example 8 The catalyst of Example 8 was prepared in the same manner as in Example 1 except that MnO 2 powder was used instead of the CeO 2 —ZrO 2 solid solution powder, and the reduction temperature was set to 300 ° C. Was prepared.

【0044】(比較例1)CeO2−ZrO2固溶体粉末に代え
て Al2O3粉末を用いたこと以外は実施例1と同様にし
て、比較例1の触媒を調製した。
Comparative Example 1 A catalyst of Comparative Example 1 was prepared in the same manner as in Example 1 except that Al 2 O 3 powder was used instead of the CeO 2 —ZrO 2 solid solution powder.

【0045】(比較例2)吸着材として一般に用いられ
ているヤシ殻活性炭(比表面積 700m2/g)を比較例2
とした。
Comparative Example 2 Coconut shell activated carbon (specific surface area: 700 m 2 / g), which is generally used as an adsorbent, was used in Comparative Example 2.
And

【0046】<試験・評価> (試験例1)実施例1〜8及び比較例1の触媒につい
て、活性酸素量を測定した。測定に際して、先ず−60℃
まで触媒を冷却し、H2を1体積%含有するアルゴンガス
気流中で昇温しながら、H2消費量をTCD検出器によっ
て検出した。そして50℃となるまでに消費されたH2量か
ら活性酸素量を求め、結果を表1に示す。
<Test / Evaluation> (Test Example 1) The active oxygen content of the catalysts of Examples 1 to 8 and Comparative Example 1 was measured. When measuring, first -60 ℃
Until the catalyst was cooled, while raising the temperature in an argon gas stream containing of H 2 1% by volume, of H 2 consumption was detected by TCD detector. The amount of active oxygen was determined from the amount of H 2 consumed until the temperature reached 50 ° C., and the results are shown in Table 1.

【0047】また実施例1〜8及び比較例1の触媒をそ
れぞれ評価装置に5g配置し、CO濃度250ppm、O2濃度20
体積%、残部N2からなるモデルガスをガス流量10リット
ル/分で流して、室温(25℃)におけるCO転化率を測定
した。結果を表1に示す。
Further, 5 g of each of the catalysts of Examples 1 to 8 and Comparative Example 1 were placed in an evaluation device, and the CO concentration was 250 ppm and the O 2 concentration was 20.
A model gas consisting of volume% and the balance N 2 was flowed at a gas flow rate of 10 liter / min, and the CO conversion at room temperature (25 ° C.) was measured. Table 1 shows the results.

【0048】そして表1の活性酸素量とCO転化率との関
係をプロットし、結果を図1に示す。
The relationship between the amount of active oxygen and the CO conversion in Table 1 was plotted, and the results are shown in FIG.

【0049】[0049]

【表1】 [Table 1]

【0050】表1及び図1より、各実施例の触媒は活性
酸素量が40μモル/g以上である。そして活性酸素量が
40μモル/g以上であれば常温におけるCO浄化活性が発
現されることが明らかであり、活性酸素量が多くなるほ
ど常温における触媒活性が高くなっていることがわか
る。
As shown in Table 1 and FIG. 1, the catalysts of the examples have an active oxygen content of 40 μmol / g or more. And the amount of active oxygen
It is clear that when the concentration is 40 μmol / g or more, the CO purifying activity at room temperature is exhibited, and it is understood that the catalytic activity at room temperature increases as the amount of active oxygen increases.

【0051】(試験例2)実施例1の触媒と比較例2の
吸着材を選び、メチルメルカプタンを900ppm含む大気を
充填した5リットルの密閉容器中にそれぞれ 0.1g入
れ、室温(25℃)雰囲気にある密閉容器中のメチルメル
カプタン濃度の経時変化をガスクロマトグラフィによっ
て測定した。結果を図2に示す。
(Test Example 2) The catalyst of Example 1 and the adsorbent of Comparative Example 2 were selected, and 0.1 g of each was placed in a 5-liter closed container filled with an atmosphere containing 900 ppm of methyl mercaptan. The change over time of the methyl mercaptan concentration in the closed container was measured by gas chromatography. The results are shown in FIG.

【0052】図2より、実施例1の触媒は比較例2の吸
着材よりもメチルメルカプタンの除去特性に優れている
ことが明らかであり、高い常温浄化活性を有しているこ
とがわかる。
From FIG. 2, it is apparent that the catalyst of Example 1 is superior to the adsorbent of Comparative Example 2 in removing methyl mercaptan and has a high normal-temperature purifying activity.

【0053】(試験例3)実施例1の触媒と比較例2の
吸着材を選び、メチルメルカプタンに代えてトリエチル
アミン又はエチレンをそれぞれ900ppm含む大気を用いた
こと以外は試験例2と同様にして、トリエチルアミン濃
度及びエチレン濃度の経時変化を測定した。結果を図3
及び図4に示す。
Test Example 3 The procedure of Test Example 2 was repeated except that the catalyst of Example 1 and the adsorbent of Comparative Example 2 were selected, and instead of methyl mercaptan, air containing 900 ppm of triethylamine or ethylene was used. The changes over time in the triethylamine concentration and the ethylene concentration were measured. Fig. 3 shows the results.
And FIG.

【0054】図3及び図4より、実施例1の触媒は比較
例2の吸着材よりもトリエチルアミン及びエチレンの除
去特性に優れていることが明らかであり、高い常温浄化
活性を有していることがわかる。
From FIGS. 3 and 4, it is clear that the catalyst of Example 1 is superior to the adsorbent of Comparative Example 2 in removing triethylamine and ethylene, and has a high normal-temperature purification activity. I understand.

【0055】[0055]

【発明の効果】すなわち本発明の常温触媒によれば、50
℃以下の常温でCO、アミン類、ホルムアルデヒドなどの
環境負荷物質を効率よく分解除去することができる。
According to the room temperature catalyst of the present invention, 50
Environmentally hazardous substances such as CO, amines and formaldehyde can be efficiently decomposed and removed at room temperature of not more than ℃.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例及び比較例の触媒の活性酸素量
と室温におけるCO転化率との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the amount of active oxygen and the CO conversion at room temperature of catalysts of Examples and Comparative Examples of the present invention.

【図2】実施例1の触媒と比較例2の吸着材を入れた密
閉容器中の室温におけるメチルメルカプタン濃度の経時
変化を示すグラフである。
FIG. 2 is a graph showing the change over time of the methyl mercaptan concentration at room temperature in a closed container containing the catalyst of Example 1 and the adsorbent of Comparative Example 2.

【図3】実施例1の触媒と比較例2の吸着材を入れた密
閉容器中の室温におけるトリエチルアミン濃度の経時変
化を示すグラフである。
FIG. 3 is a graph showing a time-dependent change in the concentration of triethylamine at room temperature in a closed container containing the catalyst of Example 1 and the adsorbent of Comparative Example 2.

【図4】実施例1の触媒と比較例2の吸着材を入れた密
閉容器中の室温におけるエチレン濃度の経時変化を示す
グラフである。
FIG. 4 is a graph showing a time-dependent change in ethylene concentration at room temperature in a closed container containing the catalyst of Example 1 and the adsorbent of Comparative Example 2.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 37/16 B01D 53/36 H E B01J 23/64 104A (72)発明者 鈴木 賢一郎 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 佐々木 慈 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 森川 彰 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 林 宏明 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 杉浦 正洽 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 4C080 AA07 BB02 CC01 HH01 JJ01 KK08 LL02 MM02 QQ03 4D048 AA01 AA05 AA08 AA13 AA18 AA19 AB01 AB03 BA08X BA08Y BA18Y BA19X BA19Y BA28X BA28Y BA30X BA30Y BA31Y BA32Y BA33Y BA34Y BA36X BA36Y BA37Y BA38Y BD03 4G069 AA03 AA08 BB06A BB06B BC29A BC31A BC38A BC40A BC43A BC43B BC44A BC51A BC51B BC55A BC58A BC59A BC62A BC62B BC66A BC66B BC67A BC68A BC69A BC75B CA10 CA11 CA14 CA15 CA17 DA05 FA02 FB14 FB44 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 37/16 B01D 53/36 HE B01J 23/64 104A (72) Inventor Kenichiro Suzuki Nagakute, Aichi-gun, Aichi Prefecture 41 in the Toyota Central Research Institute, Inc. (72) Inventor: Satoshi Sasaki 41 in the Ochicho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Toyota Central Research Institute, Inc. (72) Inventor Morikawa Akira 41, Chukku Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory, Inc. (72) Inventor Masataka Sugiura 41-41, Yokomichi, Nagakute-cho, Aichi-gun, Aichi-gun (Reference) 4C080 AA07 BB02 CC01 HH01 JJ01 KK08 LL02 MM02 QQ03 4D048 AA01 AA05 AA08 AA13 AA18 AA19 AB01 AB03 BA08X BA08Y BA18Y BA19X BA19Y BA28X BA28Y BA30X BA30Y BA31Y BA32A BAA ABABAABABA BAY BAA BC43A BC43B BC44A BC51A BC51B BC55A BC58A BC59A BC62A BC62B BC66A BC66B BC67A BC68A BC69A BC75B CA10 CA11 CA14 CA15 CA17 DA05 FA02 FB14 FB44

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 50℃以下で活性な活性酸素を40μモル/
g以上含有することを特徴とする常温触媒。
An active oxygen which is active at 50 ° C. or less is 40 μmol /
A room temperature catalyst comprising at least g.
【請求項2】 還元処理によって酸素欠損が導入された
酸化物に貴金属を担持してなることを特徴とする請求項
1に記載の常温触媒。
2. The room-temperature catalyst according to claim 1, wherein the noble metal is supported on an oxide into which oxygen deficiency has been introduced by the reduction treatment.
【請求項3】 前記酸化物は遷移金属酸化物及び希土類
酸化物から選ばれる少なくとも一種である請求項2に記
載の常温触媒。
3. The room temperature catalyst according to claim 2, wherein the oxide is at least one selected from transition metal oxides and rare earth oxides.
【請求項4】前記遷移金属酸化物は、ジルコニウム、
鉄、マンガン、コバルト、ニッケル、銅、クロム、モリ
ブデン及びニオブの酸化物から選ばれる少なくとも一種
であり、前記希土類酸化物は、セリウム、イットリウ
ム、ネオジム、プラセオジム及びサマリウムの酸化物か
ら選ばれる少なくとも一種である請求項3に記載の常温
触媒。
4. The transition metal oxide is zirconium,
Iron, manganese, cobalt, nickel, copper, chromium, at least one selected from oxides of molybdenum and niobium, the rare earth oxide is at least one selected from oxides of cerium, yttrium, neodymium, praseodymium and samarium. The room temperature catalyst according to claim 3.
【請求項5】セリウム酸化物とジルコニウム酸化物とを
含み、セリウム酸化物の少なくとも一部が酸素欠損の状
態で存在する請求項2に記載の常温触媒。
5. The room temperature catalyst according to claim 2, comprising cerium oxide and zirconium oxide, wherein at least a part of the cerium oxide exists in a state of oxygen deficiency.
JP2000296952A 2000-09-28 2000-09-28 Room temperature catalyst Expired - Fee Related JP4656352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000296952A JP4656352B2 (en) 2000-09-28 2000-09-28 Room temperature catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000296952A JP4656352B2 (en) 2000-09-28 2000-09-28 Room temperature catalyst

Publications (2)

Publication Number Publication Date
JP2002102700A true JP2002102700A (en) 2002-04-09
JP4656352B2 JP4656352B2 (en) 2011-03-23

Family

ID=18779144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000296952A Expired - Fee Related JP4656352B2 (en) 2000-09-28 2000-09-28 Room temperature catalyst

Country Status (1)

Country Link
JP (1) JP4656352B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263449A (en) * 2001-03-09 2002-09-17 Equos Research Co Ltd Activated carbon filter
EP1676625A1 (en) * 2004-12-28 2006-07-05 Mitsubishi Denki Kabushiki Kaisha Method and catalyst for the oxidative decomposition of formaldehyde gas
JP2008104845A (en) * 2006-09-25 2008-05-08 Kobe Steel Ltd Deodorizer, its manufacture method, and deodorizing filter
CN104588127A (en) * 2014-10-13 2015-05-06 宁波市雨辰环保科技有限公司 Catalyst activation method
JP2016055289A (en) * 2016-01-29 2016-04-21 日立造船株式会社 Method for starting catalytic reactor
JP2017074591A (en) * 2016-12-22 2017-04-20 日立造船株式会社 Method for starting catalytic reactor
CN107486148A (en) * 2017-08-01 2017-12-19 上海纳米技术及应用国家工程研究中心有限公司 A kind of niobium modified activated carbon preparation method and products thereof and application
CN115770586A (en) * 2021-09-09 2023-03-10 中国石油化工股份有限公司 Denitration catalyst with regular structure, preparation method and application thereof, and gas NO removal X Method (2)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290251A (en) * 1989-01-24 1990-11-30 Nkk Corp Gold-containing catalyst for contact combustion
JPH044043A (en) * 1990-04-20 1992-01-08 Nissan Motor Co Ltd Heat-resistant catalyst for purifying exhaust gas
WO1997011779A1 (en) * 1995-09-26 1997-04-03 Kabushiki Kaisha Kobe Seiko Sho Poisonous gas removing agent
JPH11114419A (en) * 1997-10-13 1999-04-27 Mitsui Mining & Smelting Co Ltd Catalyst for removing carbon monoxide and filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290251A (en) * 1989-01-24 1990-11-30 Nkk Corp Gold-containing catalyst for contact combustion
JPH044043A (en) * 1990-04-20 1992-01-08 Nissan Motor Co Ltd Heat-resistant catalyst for purifying exhaust gas
WO1997011779A1 (en) * 1995-09-26 1997-04-03 Kabushiki Kaisha Kobe Seiko Sho Poisonous gas removing agent
JPH11114419A (en) * 1997-10-13 1999-04-27 Mitsui Mining & Smelting Co Ltd Catalyst for removing carbon monoxide and filter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263449A (en) * 2001-03-09 2002-09-17 Equos Research Co Ltd Activated carbon filter
EP1676625A1 (en) * 2004-12-28 2006-07-05 Mitsubishi Denki Kabushiki Kaisha Method and catalyst for the oxidative decomposition of formaldehyde gas
JP2008104845A (en) * 2006-09-25 2008-05-08 Kobe Steel Ltd Deodorizer, its manufacture method, and deodorizing filter
CN104588127A (en) * 2014-10-13 2015-05-06 宁波市雨辰环保科技有限公司 Catalyst activation method
JP2016055289A (en) * 2016-01-29 2016-04-21 日立造船株式会社 Method for starting catalytic reactor
JP2017074591A (en) * 2016-12-22 2017-04-20 日立造船株式会社 Method for starting catalytic reactor
CN107486148A (en) * 2017-08-01 2017-12-19 上海纳米技术及应用国家工程研究中心有限公司 A kind of niobium modified activated carbon preparation method and products thereof and application
CN115770586A (en) * 2021-09-09 2023-03-10 中国石油化工股份有限公司 Denitration catalyst with regular structure, preparation method and application thereof, and gas NO removal X Method (2)

Also Published As

Publication number Publication date
JP4656352B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
Ye et al. Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation
JP4759739B2 (en) Ethylene decomposition catalyst
US6492298B1 (en) Ordinary-temperature purifying catalyst
Hou et al. The performance of manganese-based catalysts with Ce0. 65Zr0. 35O2 as support for catalytic oxidation of toluene
RU2237514C1 (en) Nitrogen monoxide decomposition catalyst and a way of carrying out processes including formation of nitrogen oxide
JP5486497B2 (en) Deodorizing catalyst, deodorizing method using the same, and regenerating method of the catalyst
JP3799945B2 (en) Room temperature purification catalyst and method of using the same
JP4656353B2 (en) Room temperature catalyst
JP5227363B2 (en) Exhaust gas purification catalyst
JP3404739B2 (en) Filter, and air cleaner and air conditioner using the same
JP4656352B2 (en) Room temperature catalyst
CN110302830A (en) VOCs purification molecular sieve based catalyst under high humidity environment and the preparation method and application thereof
JPH10296087A (en) Deodorizing catalyst and its manufacture
JP4780490B2 (en) Activated carbon filter
JP5503155B2 (en) Carbon monoxide removal filter
JP2018176014A (en) Ozonolytic catalyst and ozonolytic method using the same, and voc removal catalyst and voc removal method using the same
JPH06142517A (en) Catalyst for decomposition of nitrous oxide
Jain et al. Role of La-based perovskite catalysts in environmental pollution remediation
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JP4417030B2 (en) Deodorizing device and deodorizing method
JP3348407B2 (en) Adsorbent for carbon monoxide in inert gas
JP6225807B2 (en) VOC decomposition removal catalyst, method for producing the same, and VOC decomposition removal method using the same
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof
JP4427357B2 (en) Ammonia purification catalyst, and ammonia purification method and ammonia purification apparatus using the same
JP3470496B2 (en) Deodorization treatment method using ozone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees