JP2002355558A - Method for oxidation removal of formaldehyde - Google Patents

Method for oxidation removal of formaldehyde

Info

Publication number
JP2002355558A
JP2002355558A JP2001166299A JP2001166299A JP2002355558A JP 2002355558 A JP2002355558 A JP 2002355558A JP 2001166299 A JP2001166299 A JP 2001166299A JP 2001166299 A JP2001166299 A JP 2001166299A JP 2002355558 A JP2002355558 A JP 2002355558A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
gold
hcho
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001166299A
Other languages
Japanese (ja)
Inventor
Masaki Haruta
正毅 春田
Atsushi Ueda
厚 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001166299A priority Critical patent/JP2002355558A/en
Publication of JP2002355558A publication Critical patent/JP2002355558A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which is capable of completely removing formaldehyde at a low temperature without using hazardous materials, such as ozone. SOLUTION: The method of removing the formaldehyde in the presence of oxygen by using a catalyst containing metallic particulates and metal oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ホルムアルデヒド
(HCHO)の空気酸化除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing formaldehyde (HCHO) by air oxidation.

【0002】[0002]

【従来の技術】近年、住宅内・建物内・車内等の生活空
間に存在する極微量〜微量の化学物質によるシックハウ
ス症候群が注目され、その原因物質とされているHCHOの
除去方法の開発が切望されている。
2. Description of the Related Art In recent years, sick house syndrome caused by a trace amount of a chemical substance present in a living space such as a house, a building, a car, etc. has been attracting attention, and there is an eager desire to develop a method for removing HCHO, which is a causative substance. Have been.

【0003】HCHOの除去方法としては、吸着法と酸化法
が知られている。吸着法は、HCHOを活性炭などの吸着剤
に吸着させて除去する方法であり、吸着剤の交換・再生
を必要とする欠点がある。
[0003] As a method for removing HCHO, an adsorption method and an oxidation method are known. The adsorption method is a method in which HCHO is adsorbed and removed by an adsorbent such as activated carbon, and has a disadvantage that the adsorbent needs to be exchanged and regenerated.

【0004】酸化分解法はHCHOを酸化して二酸化炭素と
水に変換し、無害化する方法である。この方法はHCHOを
完全に除去できるという利点がある。しかし、従来から
知られている白金系触媒では少なくとも120℃以上の温
度が必要であり、室温から100℃程度の比較的低い温度
でHCHOを完全には除去できない。
[0004] The oxidative decomposition method is a method of oxidizing HCHO to convert it into carbon dioxide and water, thereby rendering it harmless. This method has the advantage that HCHO can be completely removed. However, conventionally known platinum-based catalysts require a temperature of at least 120 ° C., and HCHO cannot be completely removed at a relatively low temperature from room temperature to about 100 ° C.

【0005】従来、比較的低温度でHCHOを除去する方法
として、酸化チタン等の触媒に紫外線を照射して、光に
よる酸化分解を促進する光分解法が知られている。しか
しながら、この方法は紫外線の発生光源を必要とし、処
理効率が低い。
Heretofore, as a method for removing HCHO at a relatively low temperature, a photolysis method has been known in which a catalyst such as titanium oxide is irradiated with ultraviolet rays to promote oxidative decomposition by light. However, this method requires a light source for generating ultraviolet light and has low processing efficiency.

【0006】また、高電圧放電によりオゾンを発生さ
せ、オゾンの強い酸化力を利用してHCHOを酸化分解する
オゾン酸化法も知られている。この方法では、除去性能
を向上させるために高電圧放電が必要であり、オゾン濃
度を高める必要がある。更に、オゾンは極微量でも人体
に有害であるという欠点がある。
There is also known an ozone oxidation method in which ozone is generated by high-voltage discharge, and HCHO is oxidatively decomposed using the strong oxidizing power of ozone. In this method, high-voltage discharge is required to improve the removal performance, and it is necessary to increase the ozone concentration. Furthermore, there is a drawback that ozone is harmful to the human body even in a very small amount.

【0007】[0007]

【発明が解決しようとする課題】本発明者は、上記した
如き従来技術の問題点に鑑みて、オゾン等の有害物質を
用いることなく、比較的低温度でHCHOを完全に除去し得
る方法を見出すべく鋭意研究を重ねてきた。その結果、
金属酸化物と金とからなる混合物をHCHOの除去用触媒と
して用いる場合には、酸素の存在下において比較的低温
度でHCHOを分解除去できることを見出し、本発明を完成
するに至った。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present inventors have developed a method capable of completely removing HCHO at a relatively low temperature without using harmful substances such as ozone. I have been conducting diligent research to find out. as a result,
When a mixture comprising a metal oxide and gold is used as a catalyst for removing HCHO, it has been found that HCHO can be decomposed and removed at a relatively low temperature in the presence of oxygen, and the present invention has been completed.

【0008】[0008]

【課題を解決するための手段】項1.ホルムアルデヒド
を触媒の存在下に酸化して除去する方法において、触媒
が下記の少なくとも1種であることを特徴とする方法: (I)粒径10nm以下の金粒子と、(II)酸化コバルト、
酸化ニッケル、酸化マンガン、酸化鉄、酸化チタン、AB
2O 4(Aは、Mg、Fe、Co、Ni、Cu、Mn及びZnを示し、B
は、Al、Fe、Co及びTiを示す;ただし、AとBとが同一で
あることはない)で表されるスピネル型結晶構造の複合
酸化物及びCDO3(Cは、La、Sr及びCeを示し、Dは、Fe、
Co、Ni、Cu、Mn及びAlを示す)で表されるペロブスカイ
ト型結晶構造の複合酸化物からなる群から選ばれた金属
酸化物の少なくとも1種とを含む触媒。 項2.触媒が、金属酸化物上に金を固定化した金固定化
金属酸化物からなる触媒である項1に記載の方法。 項3.触媒が、金固定化金属酸化物を担体に担持した触
媒である項2に記載の方法。 項4.担体が、アルミナ、シリカ、アルミナ−シリカ、
コージェライト、ゼオライト及び酸化チタンから選ばれ
る金属酸化物系担体、ステンレススチール、鉄、銅及び
アルミニウムから選ばれる金属系担体の少なくとも1種
である項3に記載の方法。
Means for Solving the Problems Item 1. Formaldehyde
Oxidizing and removing in the presence of a catalyst,
Is at least one of the following: (I) gold particles having a particle size of 10 nm or less, (II) cobalt oxide,
Nickel oxide, manganese oxide, iron oxide, titanium oxide, AB
TwoO Four(A represents Mg, Fe, Co, Ni, Cu, Mn and Zn, and B
Represents Al, Fe, Co and Ti; provided that A and B are the same
Compound of spinel type crystal structure represented by
Oxide and CDOThree(C represents La, Sr and Ce, D is Fe,
Perovskiy represented by Co, Ni, Cu, Mn and Al)
Metal selected from the group consisting of composite oxides with
A catalyst comprising at least one oxide. Item 2. Catalyst immobilizes gold on metal oxide
Item 2. The method according to Item 1, which is a catalyst comprising a metal oxide. Item 3. The catalyst is a catalyst in which a gold-immobilized metal oxide is supported on a carrier.
Item 3. The method according to Item 2, which is a medium. Item 4. The carrier is alumina, silica, alumina-silica,
Selected from cordierite, zeolite and titanium oxide
Metal oxide carrier, stainless steel, iron, copper and
At least one metal support selected from aluminum
Item 3. The method according to Item 3, wherein

【0009】[0009]

【発明の実施の形態】本発明で使用するHCHO除去用金触
媒は、金属酸化物と金とからなるものである。金は、粒
径10nm程度以下の微粒子であることが必要である。金属
酸化物の形状は、特に限定的ではなく、粉末状のみなら
ず、予め成形した状態で使用したり、各種の支持体に固
定化した状態で使用することが出来る。
BEST MODE FOR CARRYING OUT THE INVENTION The gold catalyst for removing HCHO used in the present invention comprises a metal oxide and gold. Gold needs to be fine particles having a particle size of about 10 nm or less. The shape of the metal oxide is not particularly limited. The metal oxide can be used not only in powder form but also in a state of being molded in advance or in a state of being fixed to various supports.

【0010】本発明では、金属酸化物としては、特に、
酸化コバルト、酸化ニッケル、酸化マンガン、酸化鉄、
酸化チタン等の酸化物、スピネル型結晶構造を有するAB
2O4(Aは、Mg、Fe、Co、Ni、Cu、Mn、Zn等、Bは、Al、F
e、Co、Ti等が例示され、AとBが同一であることはな
い。)で表される複合酸化物、ペロブスカイト型結晶構
造を有するCDO3(CはLa、Sr、Ce等、DはFe、Co、Ni、C
u、Mn、Al等)で表される複合酸化物が好ましい。
In the present invention, as the metal oxide,
Cobalt oxide, nickel oxide, manganese oxide, iron oxide,
Oxides such as titanium oxide, AB having a spinel crystal structure
2 O 4 (A is Mg, Fe, Co, Ni, Cu, Mn, Zn, etc., B is Al, F
e, Co, Ti, etc. are exemplified, and A and B are not the same. ), CDO 3 having a perovskite crystal structure (C is La, Sr, Ce, etc., D is Fe, Co, Ni, C
u, Mn, Al, etc.) are preferred.

【0011】また、本発明では、触媒は、金属酸化物上
に金を固定化した金固定化金属酸化物であることが特に
好ましい。この様に金を金属酸化物上に固定化した触媒
は、金と金属酸化物との接触面積が多くなり、優れた触
媒活性を発揮することが出来る。金属酸化物上に金を固
定化する場合にも、金を、粒径10nm程度以下、好ましく
は2〜5nm程度の微粒子状にするのがよいまたこの場合に
も金属酸化物の形状は特に限定的ではなく、粉末状の
他、予め成形した状態で用いることや各種の支持体に固
定化した状態で用いることが出来る。
In the present invention, the catalyst is particularly preferably a gold-immobilized metal oxide in which gold is immobilized on a metal oxide. As described above, the catalyst in which gold is immobilized on the metal oxide has a large contact area between the gold and the metal oxide, and can exhibit excellent catalytic activity. Even when gold is immobilized on metal oxide, gold is preferably in the form of fine particles having a particle size of about 10 nm or less, preferably about 2 to 5 nm.In this case, the shape of the metal oxide is particularly limited. Instead, it can be used in a powdered state, in a pre-formed state, or in a state of being fixed to various supports.

【0012】金属酸化物上に金を固定化する方法は公知
であり、例えば、1)共沈法(特開昭60−238148号公
報)、2)滴下中和沈殿法(特開昭63−252908号公
報)、3)還元剤添加法(特開昭63−252908号公報)、
4)pH制御中和沈殿法(特開昭63−252908号公報)、
5)カルボン酸金属塩添加法(特開平2−252610号公
報)、6)析出沈殿法(特開平3−97623号公報)、7)
有機金錯体吸着法(特開平9−122478号公報)等の方法
により行うことができる。
Methods for immobilizing gold on metal oxides are known, for example, 1) coprecipitation method (Japanese Patent Application Laid-Open No. 60-238148), and 2) drop neutralization precipitation method (Japanese Patent Application Laid-Open No. 63-238148). 252908), 3) a method of adding a reducing agent (JP-A-63-252908),
4) pH-controlled neutralization precipitation method (JP-A-63-252908),
5) Addition method of carboxylic acid metal salt (JP-A-2-252610), 6) Precipitation precipitation method (JP-A-3-97623), 7)
It can be carried out by a method such as an organic gold complex adsorption method (JP-A-9-122478).

【0013】本発明触媒の製造方法において、出発物質
としては、公知の方法と同様に、例えば金化合物として
は塩化金酸等の金の水溶性化合物が使用でき、金属酸化
物原料としては、各種金属の硝酸塩、硫酸塩、酢酸塩、
塩化物などが使用できる。また、上記した共沈法等によ
る沈殿物を析出させた後、乾燥、焼成することも上記公
知の方法と同様とすればよく、焼成温度も公知の焼成条
件の範囲から適宜選択すればよく、通常200〜600℃程
度、好ましくは250〜550℃程度、より好ましくは300〜4
00℃程度が適当である。
In the method for producing the catalyst of the present invention, as a starting material, for example, a water-soluble gold compound such as chloroauric acid can be used as a gold compound as in a known method. Metal nitrates, sulfates, acetates,
Chloride can be used. Further, after depositing a precipitate by the above-described coprecipitation method or the like, drying and baking may be performed in the same manner as in the known method, and the baking temperature may be appropriately selected from the range of known baking conditions. Usually about 200-600 ° C, preferably about 250-550 ° C, more preferably 300-4
About 00 ° C. is appropriate.

【0014】本発明の触媒では、金の含有量は、金属酸
化物と金の合計量に対して、0.1〜30重量%程度、好まし
くは0.1〜10%程度、より好ましくは0.1〜3%程度とすれ
ばよい。
In the catalyst of the present invention, the content of gold is about 0.1 to 30% by weight, preferably about 0.1 to 10%, more preferably about 0.1 to 3%, based on the total amount of the metal oxide and gold. And it is sufficient.

【0015】本発明では、各種の形状の金属酸化物系担
体又は金属系担体に上記金及び金属酸化物からなる触媒
を担持させることにより、実用性が向上する。金属酸化
物系担体としては、アルミナ、シリカ、アルミナ−シリ
カ、コージェライト、ゼオライト、酸化チタン等を例示
でき、金属系担体としてはステンレススチール、鉄、
銅、アルミニウム等を例示できる。担体の形状は特に限
定されず、例えば、粉末状、球状、粒状、ハニカム状、
発泡体状、繊維状、布状、板状、リング状等現在触媒担
体として一般に使用されている全ての形状が使用可能で
ある。担持させるにあたっては、各種方法を採ることが
でき、例えば、特開平1−94945号公報に記載の方法に従
って行えばよい。
In the present invention, practicability is improved by supporting a metal oxide-based carrier having various shapes or a catalyst comprising the above-mentioned gold and metal oxide on a metal-based carrier. Examples of the metal oxide-based carrier include alumina, silica, alumina-silica, cordierite, zeolite, and titanium oxide. Examples of the metal-based carrier include stainless steel, iron,
Examples include copper and aluminum. The shape of the carrier is not particularly limited, for example, powder, spherical, granular, honeycomb,
All shapes generally used as a catalyst carrier at present, such as foam, fiber, cloth, plate, and ring, can be used. Various methods can be used for carrying, for example, the method described in JP-A-1-94945 may be used.

【0016】本発明触媒を用いてHCHOを除去するには、
HCHO濃度、金の含有量、ガス中の共存成分等の条件にも
よるが、本発明触媒とHCHOとを酸素の存在下に室温(10
℃程度)〜400℃程度の温度で接触させればよい。酸素
濃度は特に限定的ではなく、HCHOを完全に酸化分解する
ための必要量以上存在すればよく、通常は、空気中で処
理を行えばよい。また、他のガス成分、例えば、水素、
一酸化炭素、炭化水素等の可燃性ガスが存在する場合に
も同時に酸化除去できる。
To remove HCHO using the catalyst of the present invention,
Depending on the conditions such as HCHO concentration, gold content, and coexisting components in the gas, the catalyst of the present invention and HCHO are allowed to stand at room temperature (10
The temperature may be about 400 ° C. to about 400 ° C. The oxygen concentration is not particularly limited, as long as it is at least the amount required for completely oxidatively decomposing HCHO, and the treatment may usually be performed in air. Also, other gas components, for example, hydrogen,
Even when a combustible gas such as carbon monoxide or hydrocarbon is present, it can be oxidized and removed at the same time.

【0017】[0017]

【実施例】以下、実施例を示し、本発明の特徴とすると
ころをより一層明瞭にする。
The following examples are provided to further clarify the features of the present invention.

【0018】実施例1 塩化金酸[HAuCl4・4H2O] 0.250g(0.000606モル)、硝酸
鉄[Fe(NO3)・9H2O] 16.2g(0.040モル)及び硝酸ニッケ
ル[Ni(NO3)2・6H2O] 5.82g(0.020モル)を600mlの蒸留
水に溶解させてA液を得た。一方、炭酸ナトリウム[Na2C
O3] 10.3g(0.0972モル)を400mlの蒸留水に溶解させて
B液を得た。
[0018] Example 1 chloroauric acid [HAuCl 4 · 4H 2 O] 0.250g (0.000606 mol), iron nitrate [Fe (NO 3) · 9H 2 O] 16.2g (0.040 mol) and nickel nitrate [Ni (NO 3) 2 · 6H 2 O] 5.82g of (0.020 mol) was dissolved in distilled water 600ml was obtained a solution. On the other hand, sodium carbonate [Na 2 C
O 3 ] 10.3 g (0.0972 mol) dissolved in 400 ml of distilled water
Liquid B was obtained.

【0019】上記B液中にA液を滴下し、1時間撹拌した
後、得られた共沈物を十分に水洗して乾燥し、空気中で
400℃で5時間焼成することにより、粒径2〜5nm程度の超
微粒子状の金が固定化された金固定化ニッケル鉄酸化物
(本発明触媒No.1)[Au/NiFe 2O4、原子比Au/(Fe+Ni)=1/
99]を得た。
Solution A was dropped into solution B and stirred for 1 hour.
After that, the obtained coprecipitate is thoroughly washed with water, dried, and
By baking at 400 ° C for 5 hours, the particle size is about 2 to 5 nm.
Gold-immobilized nickel-iron oxide with fine-particle gold immobilized
(Catalyst No. 1 of the present invention) [Au / NiFe TwoOFour, Atomic ratio Au / (Fe + Ni) = 1 /
99].

【0020】また、上記と同様にして各種金属塩を用い
て本発明触媒No.2〜9を得た。
Further, catalysts Nos. 2 to 9 of the present invention were obtained using various metal salts in the same manner as described above.

【0021】0.260gの塩化金酸[HAuCl4・4H2O]を含む0.0
01モル水溶液に水酸化カリウム[KOH]の0.1モル水溶液を
用いてpH8に調整した。この液に、50m2/gの比表面積を
有する酸化チタン(P−25、日本アエロジル製)5gを加
え、1時間熟成した。
0.0 containing [0021] chloroauric acid 0.260g [HAuCl 4 · 4H 2 O ]
The pH was adjusted to 8 using a 0.1 molar aqueous solution of potassium hydroxide [KOH] in the 01 molar aqueous solution. To this solution, 5 g of titanium oxide (P-25, manufactured by Nippon Aerosil) having a specific surface area of 50 m 2 / g was added, and the mixture was aged for 1 hour.

【0022】得られた触媒を水で洗浄後、400℃で5時間
焼成して金固定化酸化チタン触媒(本発明触媒No.10)
[Au/TiO2、原子比Au/Ti=1/99]を得た。
After washing the obtained catalyst with water, it is calcined at 400 ° C. for 5 hours to obtain a gold-fixed titanium oxide catalyst (the catalyst of the present invention No. 10).
[Au / TiO 2 , atomic ratio Au / Ti = 1/99] was obtained.

【0023】続いて、上記各触媒(No.1〜10)を70〜12
0メッシュにふるい分けしたもの0.15gを内径8mmのガラ
ス管に充填し、30、50、80、100℃の種々温度におい
て、このガラス管中にHCHOを50ppm含む空気ガスを100ml
/分の流量で流通させてHCHOの濃度を測定し、下記の式
により、HCHOの除去率(%)を算出した。
Subsequently, each of the above catalysts (Nos. 1 to 10) was
0.15 g sieved to 0 mesh is filled in a glass tube having an inner diameter of 8 mm, and at various temperatures of 30, 50, 80, and 100 ° C, 100 ml of air gas containing 50 ppm of HCHO in the glass tube.
The HCHO concentration was measured by flowing at a flow rate of / minute, and the HCHO removal rate (%) was calculated by the following equation.

【0024】HCHOの除去率(%)=[1−{触媒層出口のH
CHO濃度(ppm)/触媒層入口のHCHO濃度(ppm)}]×100 結果を表1に示す。なお、表1には、比較のためにNiFe2O
4(比較品1)を用いた場合の結果を併記する。
HCHO removal rate (%) = [1- {H at catalyst layer outlet
CHO concentration (ppm) / HCHO concentration at catalyst layer inlet (ppm)}] × 100 The results are shown in Table 1. Table 1 shows NiFe 2 O for comparison.
4 The result when (Comparative product 1) is used is also described.

【0025】[0025]

【表1】 [Table 1]

【0026】以上の結果から、金を金属酸化物に固定化
した触媒を用いることにより、HCHOを比較的低温度で効
率よく除去できることが明らかである。
From the above results, it is clear that HCHO can be efficiently removed at a relatively low temperature by using a catalyst having gold immobilized on a metal oxide.

【0027】また、生成した二酸化炭素の濃度を赤外式
二酸化炭素計で測定したところ、除去されたHCHOの量と
ほぼ一致した。このことより、HCHOは二酸化炭素に転化
されたことが分かる。
When the concentration of the produced carbon dioxide was measured by an infrared carbon dioxide meter, it almost coincided with the amount of HCHO removed. This indicates that HCHO was converted to carbon dioxide.

【0028】実施例2 200m2/gの比表面積を有する直径3mmのγ−アルミナビー
ズ50gに、硝酸鉄[Fe(NO3)・9H2O] 5.17gと硝酸ニッケル
[Ni(NO3)2・6H2O] 1.86gを溶解した水溶液を含浸させ、4
00℃で4時間焼成し、NiFe2O4を担持したアルミナビーズ
を得た。0.523gの塩化金酸[HAuCl4・4H2O]を含む0.005モ
ル水溶液に水酸化カリウム[KOH]の1モル水溶液を用いて
pH8に調整した。この液にNiFe2O4担持アルミナビーズを
加え、1時間熟成した。
Example 2 To 50 g of γ-alumina beads having a specific surface area of 200 m 2 / g and having a diameter of 3 mm, 5.17 g of iron nitrate [Fe (NO 3 ) · 9H 2 O] and nickel nitrate
[Ni (NO 3 ) 2・ 6H 2 O] Impregnated with an aqueous solution in which 1.86 g was dissolved,
The resultant was baked at 00 ° C. for 4 hours to obtain alumina beads supporting NiFe 2 O 4 . 0.005 molar aqueous solution containing chloroauric acid 0.523g [HAuCl 4 · 4H 2 O ] with 1 molar aqueous solution of potassium hydroxide [KOH]
The pH was adjusted to 8. NiFe 2 O 4 -supported alumina beads were added to this solution, and the solution was aged for 1 hour.

【0029】得られた触媒を水で洗浄後、400℃で5時間
焼成することにより、粒径2〜3nm程度の微粒子状の金が
固定化された金固定化ニッケル鉄酸化物担持アルミナビ
ーズ触媒(Au/NiFe2O4/アルミナビーズ、金の含有量0.5
重量%、NiFe2O4の含有量3重量%)を得た。
The obtained catalyst is washed with water, and then calcined at 400 ° C. for 5 hours to obtain a gold-immobilized nickel iron oxide-supported alumina bead catalyst having immobilized fine-particle gold having a particle size of about 2 to 3 nm. (Au / NiFe 2 O 4 / alumina beads, gold content 0.5
Wt%, NiFe 2 O 4 content 3 wt%).

【0030】上記触媒0.30gを内径12mmのガラス管に充
填し、30、50、80℃の種々温度において、このガラス管
にHCHOを50ppm含む空気ガスを200ml/分の流量で流通さ
せてHCHOの濃度を測定することにより、HCHOの除去性能
を求めた。結果を表2に示す。
0.30 g of the above catalyst was filled in a glass tube having an inner diameter of 12 mm, and at various temperatures of 30, 50, and 80 ° C., an air gas containing 50 ppm of HCHO was passed through the glass tube at a flow rate of 200 ml / min. The removal performance of HCHO was determined by measuring the concentration. Table 2 shows the results.

【0031】[0031]

【表2】 [Table 2]

【0032】以上の結果より、実用的な形態として、金
を固定化した金属酸化物をアルミナビーズに担持させた
場合にも、HCHO除去触媒として実用上十分な活性を示す
ことが分かる。
From the above results, it can be seen that as a practical form, even when a metal oxide on which gold is immobilized is supported on alumina beads, the catalyst exhibits practically sufficient activity as an HCHO removal catalyst.

【0033】実施例3 セル数400(400セル/平方インチ)のコージェライト製
ハニカム(5セル×5セル×長さ10cm)に、ニッケルナフ
テネート(5%ナフテックスニッケル、日本化学産業(株)
製)と鉄ナフテネート(5%ナフテックス鉄、日本化学産
業(株)製)の混合溶液(原子比Ni/Fe=1/2になるように
混合)をディップコートし、乾燥後、400℃で4時間焼成
し、NiFe2O4を担持したコージェライトハニカムを得
た。NiFe2O4担持量(NiFe2O4担持の前後におけるハニカ
ム重量変化により算出)は2重量%であった。塩化金酸[H
AuCl4・4H2O] 0.002モル水溶液100mlに水酸化カリウム[K
OH]の0.5モル水溶液を用いてpH8に調整した。この液の2m
lにNiFe2O4担持コージェライトハニカムを1個加え、70
℃で1時間熟成した。
Example 3 Nickel naphthenate (5% naphtex nickel, Nihon Kagaku Sangyo Co., Ltd.) was used on a cordierite honeycomb (5 cells × 5 cells × 10 cm in length) having 400 cells (400 cells / in 2).
Dip coating with a mixed solution of iron naphthenate (5% naphtex iron, manufactured by Nippon Chemical Industry Co., Ltd.) (mixed so that the atomic ratio is Ni / Fe = 1/2), dried, and dried at 400 ° C. After firing for a time, a cordierite honeycomb supporting NiFe 2 O 4 was obtained. The amount of NiFe 2 O 4 carried (calculated by the change in honeycomb weight before and after carrying NiFe 2 O 4 ) was 2% by weight. Chloroauric acid [H
AuCl 4 · 4H 2 O] Potassium hydroxide 0.002 molar aqueous solution 100 ml [K
[OH] was adjusted to pH 8 using a 0.5 molar aqueous solution of [OH]. 2m of this liquid
l, add one NiFe 2 O 4 supporting cordierite honeycomb
Aged at ℃ for 1 hour.

【0034】得られた触媒を水で洗浄後、400℃で5時間
焼成することにより、粒径2〜4nm程度の微粒子状の金が
固定化された金固定化ニッケル鉄酸化物担持コージェラ
イトハニカム触媒(Au/NiFe2O4/コージェライトハニカ
ム、金の含有量0.3重量%、NiFe2O4の含有量2重量%)を
得た。
The obtained catalyst is washed with water and calcined at 400 ° C. for 5 hours to obtain a gold-fixed nickel iron oxide-supported cordierite honeycomb in which particulate gold having a particle size of about 2 to 4 nm is fixed. A catalyst (Au / NiFe 2 O 4 / cordierite honeycomb, gold content 0.3% by weight, NiFe 2 O 4 content 2% by weight) was obtained.

【0035】上記触媒1個を内径12mmのガラス管に充填
し、30、50、80℃の種々温度において、このガラス管に
HCHOを50ppm含む空気ガスを140ml/分の流量で流通(空
間速度20,000/時間に相当)させてHCHOの濃度を測定す
ることにより、HCHOの除去性能を求めた。結果を表3に
示す。
One of the above catalysts was filled in a glass tube having an inner diameter of 12 mm, and the catalyst was added to the glass tube at various temperatures of 30, 50 and 80 ° C.
The removal performance of HCHO was determined by measuring the concentration of HCHO by flowing an air gas containing 50 ppm of HCHO at a flow rate of 140 ml / min (equivalent to a space velocity of 20,000 / hour). Table 3 shows the results.

【0036】[0036]

【表3】 [Table 3]

【0037】以上の結果により、実用的な形態として、
金を固定化した金属酸化物をコージェライト製ハニカム
に担持した場合にもHCHO除去触媒として実用上十分な活
性を示し、HCHO除去を出来ることが分かる。
From the above results, as a practical form,
It can be seen that even when a metal oxide having gold immobilized thereon is supported on a cordierite honeycomb, the catalyst has practically sufficient activity as an HCHO removal catalyst, and HCHO can be removed.

【0038】[0038]

【発明の効果】本発明の触媒によれば、オゾン等の有害
物質を用いることなく、比較的低温度でHCHOを容易に酸
化除去できる。このため、例えば、次のような応用が可
能である。
According to the catalyst of the present invention, HCHO can be easily oxidized and removed at a relatively low temperature without using harmful substances such as ozone. For this reason, for example, the following applications are possible.

【0039】1)公害防止用触媒 各種プラントで発生する廃ガス中に含まれるHCHOを完全
燃焼して廃ガスを浄化することができ、その際に発生す
る熱エネルギーを回収して、エネルギー効率を高めるこ
とが出来る。
1) Pollution Prevention Catalyst HCHO contained in the waste gas generated in various plants can be completely burned to purify the waste gas, and the heat energy generated at that time can be recovered to improve energy efficiency. Can be enhanced.

【0040】2)一般民生用利用 事業用及び家庭用に利用される調理器具、暖房器具、空
気浄化器具などに利用でき、これらの器具から発生する
HCHOの除去、及び壁材、合板、カーペット等の建築資材
から発生し住居内及び建物内に存在するHCHOの除去に利
用できる。また、自動車室内の空気浄化器具にも利用で
きる。
2) General consumer use It can be used for cooking utensils, heating utensils, air purification utensils, etc. used for business and home use, and is generated from these utensils.
It can be used for removing HCHO and HCHO generated from building materials such as wall materials, plywood and carpets and existing in dwellings and buildings. It can also be used as an air purification device in a car cabin.

【0041】3)高純度ガスの製造 各種高純度ガスに含まれる微量なHCHOを完全燃焼させる
ことにより、容易に除去しやすい物質である水と二酸化
炭素に変換して、更なる高純度化ができる。
3) Production of high-purity gas By completely burning a small amount of HCHO contained in various high-purity gases, it is converted into water and carbon dioxide, which are easily removed substances, and further purification is achieved. it can.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C080 AA07 BB02 CC02 CC12 HH05 JJ04 KK08 LL03 MM02 NN01 NN03 NN04 NN06 4D048 AA19 AB01 BA01X BA03X BA07X BA16X BA28X BA34X BA35X BA36X BA37X BA38X BA41X BA42X BB01 BB02 4G069 AA02 AA03 AA08 BA01A BA01B BA04B BA06B BA13B BB06B BC31B BC33B BC35B BC62B BC66B BC67B BC68B CA01 CA07 CA11 CA17 DA06 EA02X EA19 FB08 FB09 ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 4C080 AA07 BB02 CC02 CC12 HH05 JJ04 KK08 LL03 MM02 NN01 NN03 NN04 NN06 4D048 AA19 AB01 BA01X BA03X BA07X BA16X BA28X BA34X BA35X BA36X BA37X BA38A BAAAABABA02A02A02A BA06B BA13B BB06B BC31B BC33B BC35B BC62B BC66B BC67B BC68B CA01 CA07 CA11 CA17 DA06 EA02X EA19 FB08 FB09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ホルムアルデヒドを触媒の存在下に酸化
して除去する方法において、触媒が下記の少なくとも1
種であることを特徴とする方法: (I)粒径10nm以下の金粒子と、(II)酸化コバルト、
酸化ニッケル、酸化マンガン、酸化鉄、酸化チタン、AB
2O 4(Aは、Mg、Fe、Co、Ni、Cu、Mn及びZnを示し、B
は、Al、Fe、Co及びTiを示す;ただし、AとBとが同一で
あることはない)で表されるスピネル型結晶構造の複合
酸化物及びCDO3(Cは、La、Sr及びCeを示し、Dは、Fe、
Co、Ni、Cu、Mn及びAlを示す)で表されるペロブスカイ
ト型結晶構造の複合酸化物からなる群から選ばれた金属
酸化物の少なくとも1種とを含む触媒。
1. Oxidation of formaldehyde in the presence of a catalyst
In the method of removing, the catalyst comprises at least one of the following:
A method characterized by being a seed: (I) gold particles having a particle size of 10 nm or less, (II) cobalt oxide,
Nickel oxide, manganese oxide, iron oxide, titanium oxide, AB
TwoO Four(A represents Mg, Fe, Co, Ni, Cu, Mn and Zn, and B
Represents Al, Fe, Co and Ti; provided that A and B are the same
Compound of spinel type crystal structure represented by
Oxide and CDOThree(C represents La, Sr and Ce, D is Fe,
Perovskiy represented by Co, Ni, Cu, Mn and Al)
Metal selected from the group consisting of composite oxides with
A catalyst comprising at least one oxide.
【請求項2】 触媒が、金属酸化物上に金を固定化した
金固定化金属酸化物からなる触媒である請求項1に記載
の方法。
2. The method according to claim 1, wherein the catalyst is a catalyst comprising a gold-immobilized metal oxide having gold immobilized on the metal oxide.
【請求項3】 触媒が、金固定化金属酸化物を担体に担
持した触媒である請求項2に記載の方法。
3. The method according to claim 2, wherein the catalyst is a catalyst having a gold-immobilized metal oxide supported on a carrier.
【請求項4】 担体が、アルミナ、シリカ、アルミナ−
シリカ、コージェライト、ゼオライト及び酸化チタンか
ら選ばれる金属酸化物系担体、ステンレススチール、
鉄、銅及びアルミニウムから選ばれる金属系担体の少な
くとも1種である請求項3に記載の方法。
4. A carrier comprising alumina, silica, alumina
Silica, cordierite, metal oxide carrier selected from zeolite and titanium oxide, stainless steel,
4. The method according to claim 3, which is at least one metal-based support selected from iron, copper and aluminum.
JP2001166299A 2001-06-01 2001-06-01 Method for oxidation removal of formaldehyde Pending JP2002355558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001166299A JP2002355558A (en) 2001-06-01 2001-06-01 Method for oxidation removal of formaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001166299A JP2002355558A (en) 2001-06-01 2001-06-01 Method for oxidation removal of formaldehyde

Publications (1)

Publication Number Publication Date
JP2002355558A true JP2002355558A (en) 2002-12-10

Family

ID=19008851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001166299A Pending JP2002355558A (en) 2001-06-01 2001-06-01 Method for oxidation removal of formaldehyde

Country Status (1)

Country Link
JP (1) JP2002355558A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270738A (en) * 2004-03-23 2005-10-06 Nissan Motor Co Ltd Catalyst, exhaust gas cleaning catalyst and method for producing catalyst
JP2006015195A (en) * 2004-06-30 2006-01-19 Azumi Roshi Kk Low-temperature oxidation catalyst
EP1676625A1 (en) * 2004-12-28 2006-07-05 Mitsubishi Denki Kabushiki Kaisha Method and catalyst for the oxidative decomposition of formaldehyde gas
JP2007037670A (en) * 2005-08-02 2007-02-15 Matsushita Electric Ind Co Ltd Deodorizer and deodorizing device
JP2008253978A (en) * 2007-03-30 2008-10-23 Tatung Co Production method and application by catalyst which contains nano gold and is loaded on manganese oxide / iron oxide
US7674744B2 (en) 2004-03-31 2010-03-09 Nissan Motor Co., Ltd. Catalyst powder, method of producing the catalyst powder, and exhaust gas purifying catalyst
CN102151567A (en) * 2011-02-25 2011-08-17 哈尔滨工业大学 Catalyst for oxidation and decomposition of organic pollutants in water with ozone and method thereof for catalyzing sewage treatment with ozone
CN103830868A (en) * 2014-03-04 2014-06-04 福建皓尔宝新材料科技有限公司 Coating-functionalizing surface finishing agent composition as well as preparation and application thereof
JP2014237078A (en) * 2013-06-06 2014-12-18 トヨタ自動車株式会社 Exhaust gas purifying catalyst and method for producing the same
CN107684916A (en) * 2017-09-26 2018-02-13 嘉兴学院 A kind of integer catalyzer for being used for low temperature removal formaldehyde using carbide wood as carrier and preparation method thereof
CN113019389A (en) * 2021-03-16 2021-06-25 大连理工大学 Method for purifying industrial wastewater by using manganese-zinc-iron spinel loaded with silicon dioxide fiber membrane as ozone oxidation catalyst
WO2021136228A1 (en) * 2019-12-31 2021-07-08 哈尔滨工业大学 Method for preparing copper ferrite/zeolite spinel composite material and use thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713911B2 (en) 2004-03-23 2010-05-11 Nissan Motor Co., Ltd. Catalyst powder, exhaust gas purifying catalyst, and method of producing the catalyst powder
JP2005270738A (en) * 2004-03-23 2005-10-06 Nissan Motor Co Ltd Catalyst, exhaust gas cleaning catalyst and method for producing catalyst
JP4513372B2 (en) * 2004-03-23 2010-07-28 日産自動車株式会社 Exhaust gas purification catalyst and exhaust gas purification catalyst
US7674744B2 (en) 2004-03-31 2010-03-09 Nissan Motor Co., Ltd. Catalyst powder, method of producing the catalyst powder, and exhaust gas purifying catalyst
JP2006015195A (en) * 2004-06-30 2006-01-19 Azumi Roshi Kk Low-temperature oxidation catalyst
EP1676625A1 (en) * 2004-12-28 2006-07-05 Mitsubishi Denki Kabushiki Kaisha Method and catalyst for the oxidative decomposition of formaldehyde gas
JP2007037670A (en) * 2005-08-02 2007-02-15 Matsushita Electric Ind Co Ltd Deodorizer and deodorizing device
JP2008253978A (en) * 2007-03-30 2008-10-23 Tatung Co Production method and application by catalyst which contains nano gold and is loaded on manganese oxide / iron oxide
CN102151567A (en) * 2011-02-25 2011-08-17 哈尔滨工业大学 Catalyst for oxidation and decomposition of organic pollutants in water with ozone and method thereof for catalyzing sewage treatment with ozone
JP2014237078A (en) * 2013-06-06 2014-12-18 トヨタ自動車株式会社 Exhaust gas purifying catalyst and method for producing the same
CN103830868A (en) * 2014-03-04 2014-06-04 福建皓尔宝新材料科技有限公司 Coating-functionalizing surface finishing agent composition as well as preparation and application thereof
CN107684916A (en) * 2017-09-26 2018-02-13 嘉兴学院 A kind of integer catalyzer for being used for low temperature removal formaldehyde using carbide wood as carrier and preparation method thereof
CN107684916B (en) * 2017-09-26 2020-09-11 嘉兴学院 Monolithic catalyst using carbonized wood as carrier for removing formaldehyde at low temperature and preparation method thereof
WO2021136228A1 (en) * 2019-12-31 2021-07-08 哈尔滨工业大学 Method for preparing copper ferrite/zeolite spinel composite material and use thereof
CN113019389A (en) * 2021-03-16 2021-06-25 大连理工大学 Method for purifying industrial wastewater by using manganese-zinc-iron spinel loaded with silicon dioxide fiber membrane as ozone oxidation catalyst

Similar Documents

Publication Publication Date Title
Wu et al. Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts
JP2006187760A (en) Catalyst for completely oxidizing and decomposing formaldehyde gas at room temperature and its using method
KR101762718B1 (en) Porous copper-manganese filter media and the preparation of the same
KR101649334B1 (en) Preparation method of porous copper-manganese oxide catalysts
CN101204654A (en) Supported noble metal catalyst for low-temperature catalytic oxidation benzene series and preparation method thereof
Brummer et al. Contribution to cleaner production from the point of view of VOC emissions abatement: A review
Peng et al. Recent advances in the preparation and catalytic performance of Mn-based oxide catalysts with special morphologies for the removal of air pollutants
JP2002355558A (en) Method for oxidation removal of formaldehyde
JP4119974B2 (en) Catalyst composite for removing carbon monoxide and carbon monoxide removing method using the same
JP2004074069A (en) Formaldehyde oxidation removal method
JP2012081458A (en) Catalyst composition for catalytic combustion reaction of ethylene and method for decomposing ethylene by using the same
JPH02107339A (en) Catalyst structure and its manufacturing method and usage
JP2001187343A (en) Cleaning catalyst at normal temperature and utilization thereof
JPH10296087A (en) Deodorizing catalyst and its manufacture
JP5503155B2 (en) Carbon monoxide removal filter
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP2002102701A (en) Ordinary temperature catalyst
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JP3251009B2 (en) Exhaust gas purification catalyst
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof
JP2002210369A (en) Catalyst for cleaning exhaust gas and its production method
JPH04371228A (en) Gold catalyst for removal of malodorous substance
CN110385124B (en) Preparation of MnO by staged reactionx-CeO2Process for mixed oxide catalyst
JP2002102700A (en) Normal temperature catalyst
JP2001104781A (en) Material for removing nitrogen oxide and method for removing it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808